
Optimal Epidemic Control as a Contextual Combinatorial Bandit
with Budget

Baihan Lin
baihan.lin@columbia.edu
Columbia University
New York, NY, USA

Djallel Bouneffouf
djallel.bouneffouf@ibm.com

IBM Research
Yorktown Heights, NY, USA

ABSTRACT
In light of the COVID-19 pandemic, it is an open challenge and
critical practical problem to find a optimal way to dynamically
prescribe the best policies that balance both the governmental re-
sources and epidemic control in different countries and regions.
To solve this multi-dimensional tradeoff of exploitation and ex-
ploration, we formulate this technical challenge as a contextual
combinatorial bandit problem that jointly optimizes a multi-criteria
reward function. Given the historical daily cases in a region and the
past intervention plans in place, the agent should generate useful
intervention plans that policy makers can implement in real time
to minimizing both the number of daily COVID-19 cases and the
stringency of the recommended interventions. We prove this con-
cept with simulations of multiple realistic policy making scenarios
and demonstrate a clear advantage in providing a pareto optimal
solution in the epidemic intervention problem. 1
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1 INTRODUCTION
Consider a practical case in epidemic intervention, the prescrip-
tor development of governmental resources and policies. In light
of the global pandemic of COVID-19, many agencies have de-
voted considerable time and resources in finding the best solu-
tion for it. For instance, the Xprize Pandemic Response Challenge

1The data and codes to reproduce the empirical results can be accessed and
reproduced at https://github.com/doerlbh/BanditZoo.
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(https://www.xprize.org/challenge/pandemicresponse) is a hypo-
thetical contest that foster the implementation of accurate and
rapid prescriptions and enable ongoing improvements to the model
as new interventions, treatments, and vaccinations become avail-
able. By integrating information on eco-environmental and social-
economical factors, machine learning models can better forecast
and prevent epidemic spread [29, 30]. The prescriptor development
encompasses the rapid creation of custom, non-pharmaceutical
and other intervention plan prescriptions and mitigation models
to help decision-makers minimize COVID-19 infection cases while
lessening economic and other negative implications of the virus.
According to one example of theirs, machine-generated prescrip-
tions may provide policymakers and public health officials with
actionable locally-based, customized, and least restrictive inter-
vention recommendations, such as mandatory masks and reduced
restaurant capacity.

The contextual bandit problem is a variant of the extensively
studied multi-armed bandit problem [5, 13, 14, 22], where at each
iteration, the agent observes an 𝑁 -dimensional context (feature
vector) and uses it, along with the rewards of the arms played
in the past, to decide which arm to play [2, 6, 9, 16]. The agent
uses this context, along with the rewards of the arms played in
the past, to choose which arm to play in the current iteration.
The objective of the agent is to learn the relationship between the
context and reward, in order to find the best arm-selection policy
for maximizing cumulative reward over time. These online learning
agents have been successfully applied to practical domains such as
modeling human behaviors [24], simulating game theory [21], and
even speech processing tasks [25–27].

However, in many more complicated real life problems, the se-
quential decision making process can involves multi-dimensional
action spaces and multi-criteria optimization objectives. In another
word, in the same iteration, the agent might have to make decisions
simultaneously in K action dimensions 1 through K, and within
each action dimension k, selecting the optimal arm for that dimen-
sion. As its feedback, this combinatorial action group can sometimes
yield a mixture of reward signals, such as a pair of positive reward
and negative cost. This is especially true in the critical application
of epidemic intervention.

With the variants of COVID-19 spreading across the globe wave
after wave, it is of vital importance for us as machine learning
researchers to provide intelligent solutions in various areas in epi-
demic control and help alleviate this looming condition that im-
pact hundreds of millions of people. As far as we are aware, there
have not been work that utilized active-learning-based method (e.g.
bandits) to prescribe non-pharmaceutical intervention plans given
high-dimensional cost and effect signal feedbacks. As a result, we

https://github.com/doerlbh/BanditZoo
https://www.xprize.org/challenge/pandemicresponse
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Indicator 𝑁 𝑗 values action
𝐶1 3 (0,1,2,3) School Closures
𝐶2 3 (0,1,2,3) Workplace Closures
𝐶3 2 (0,1,2) Cancel Public Events
𝐶4 4 (0,1,2,3,4) Restrictions on Gatherings
𝐶5 2 (0,1,2) Closing of Public Transport
𝐶6 3 (0,1,2,3) Stay at Home requirement
𝐶7 2 (0,1,2) Restrictions on internal movement
𝐶8 4 (0,1,2,3,4) International Travel Controls
𝐻1 2 (0,1,2) Public Information Campaigns
𝐻2 2 (0,1,2) Testing Policy
𝐻3 3 (0,1,2,3) Contact Tracing
𝐻6 4 (0,1,2,3,4) Facial Coverings

Table 1: Common non-pharmaceutical interventions (NPIs)

believe that our contextual bandit solution is a timely first attempt
to solve this challenging problem.

2 APPLICATION PROBLEM
The technical challenge of the prescriptor development can be
mapped to our contextual bandit problem as follows: Based on
a time sequence of the number of cases in a region and the past
intervention plans in place, the agent should generate useful inter-
vention plans that policy makers can implement. Each prescriptor
agent should balance a tradeoff between two objectives: minimiz-
ing the number of daily COVID-19 cases while minimizing the
stringency of the recommended interventions (as a proxy to the
economic and quality-of-life costs by taking this intervention).

Since the intervention plan costs can differ across regions (e.g.
closing public transportation may be more costlier in New York
City than in Pittsburgh), a region-specific weights can be provided
by each region government as a function to output a region-specific
resource stringency given a prescription as its input. In our setting,
the context to a contextual bandit will correspond to this weight
vector c = {c1, ..., ck} with k as its action dimensions. These action
dimensions are 𝑘 different possible non-pharmaceutical interven-
tions (NPIs, e.g. closing schools, lockdown, etc) are given as an
input since they are used to compute the reward functions that
needs to be jointly optimized, which are the scalar stringencymetric
and the scalar number-of-cases metric.

The action a = {a1, ..., ak} consists of severity values (0 to 𝑁𝑘 )
with 𝑘 as the index of the intervention. For instance, for the practi-
cal application of the Pandemic Response Challenge dataset, there
are 12 different intervention NPIs that need to be prescribed over
a 180-day period. The list of commonly used non-pharmaceutical
interventions and their potential actions are given by Table 1. Each
action consists of setting these variables to values within the ap-
propriate ones for a given period of time. The effect of the number
of cases can be computed in approximately 2 weeks as delayed
feedback, whereas the effect of the economic consequences can be
computed immediately as instant feedback.

The decision making agent will be given a time interval, the
historical time series of COVID daily cases and the previous NPI
actions taken, and then decide on a sequence of actions for the
next day. To produce a prescriptor that minimizes both the number

of cases and the modified health containment index, we want to
minimize the following 2-dimensional objective:{∑

time number_cases ,
∑
𝑖,time𝑤𝑖 stringency𝑖

}
where𝑤𝑖 stands for weight associated with the 𝑖th NPI. However,

it is a time-consuming process to choose an optimal intervention
plan. A plan is a combination of 12 NPIs, where there are from 3
to 5 options for each intervention, resulting in a total of 7,776,000
plans per day. Combining that with the fact that standard predictor
takes non-negligible time to return predictions, we see that a brute-
force approach is not possible. Contextual bandits can potentially
balance this tradeoff between exploration (accurate learning of
the relationships between prescribed policies and their outcomes)
and exploitation (early prescription of effective policies to control
pandemic).

3 BACKGROUND
This section introduces some background concepts our approach
builds upon, such as contextual bandit and contextual combinatorial
bandit.

3.1 The Contextual Bandit problem
The contextual bandit (CB) problem has been extensively studied in
the field of reinforcement learning, and a variety of solutions have
been proposed [19, 20, 23]. In LINUCB [1, 10, 17, 18], Neural Bandit
[4] and in linear Thompson Sampling [3, 7, 8], a linear dependency
is assumed between the expected reward given the context and
an action taken after observing this context; the representation
space is modeled using a set of linear predictors. In [11] the authors
proposed the novel framework of contextual bandit with restricted
context, where observing the whole feature vector at each iteration
is too costly or impossible for some reasons; this is related to the
budgeted learning problem, where a learner can access only a limited
number of attributes from the training set or from the test set (see
for instance [12]).

Following [16], this problem is defined as follows. At each time
point (iteration) 𝑡 ∈ {1, ...,𝑇 }, a agent is presented with a context
(feature vector) c(𝑡) ∈ R𝑁 before choosing an arm𝑘 ∈ 𝐴 = {1, ..., 𝐾}.
We will denote by 𝐶 = {𝐶1, ...,𝐶𝑁 } the set of features (variables)
defining the context. Let r(t) = (𝑟1 (𝑡), ..., 𝑟𝐾 (𝑡)) denote a reward
vector, where 𝑟𝑘 (𝑡) ∈ [0, 1] is a reward at time 𝑡 associated with the
arm 𝑘 ∈ 𝐴. Herein, we will primarily focus on the Bernoulli bandit
with binary reward, i.e. 𝑟𝑘 (𝑡) ∈ {0, 1}. Let 𝜋 : R𝑁 → 𝐴 denote
a policy, mapping a context 𝑐 (𝑡) ∈ 𝑅𝑁 into an action 𝑘 ∈ 𝐴. We
assume some probability distribution 𝑃𝑐 (𝑐) over the contexts in 𝐶 ,
and a distribution of the reward, given the context and the action
taken in that context. We will assume that the expected reward
(with respect to the distribution 𝑃𝑟 (𝑟 |𝑐, 𝑘)) is a linear function of
the context, i.e. 𝐸 [𝑟𝑘 (𝑡) |c(𝑡)] = 𝜇𝑇

𝑘
c(𝑡), where 𝜇𝑘 is an unknown

weight vector associated with the arm 𝑘 ; the agent’s objective is
to learn 𝜇𝑘 from the data so it can optimize its cumulative reward
over time.

3.2 The Contextual Combinatorial Bandit
Our feature subset selection approach will build upon the Contex-
tual Combinatorial Bandit (CCB) problem [28], specified as follows.
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Algorithm 1 Contextual Combinatorial Thompson Sampling with
Budget (CCTSB)
1: Require: 𝐾 , 𝑁 ,𝑇 ,𝐶 , 𝛼 > 0
2: Initialize: ∀𝑘 ∈ [𝐾 ] and ∀𝑖 ∈ [𝑁 ], 𝐵𝑘

𝑖
:= 𝐼𝐶 , 𝑧𝑘

𝑖
:= 0𝐶 , ˆ

𝜃𝑘
𝑖
:= 0𝐶

3: Foreach 𝑡 = 1, 2, ...,𝑇 do
4: observe 𝑐 (𝑡 )
5: Foreach action dimension 𝑘 ∈ 𝐾do
6: Foreach budget 𝑖 ∈ 𝑁do
7: Sample 𝜃𝑘

𝑖
from N(𝜃𝑘

𝑖
, 𝛼2𝐵𝑘

−1
𝑖

)
8: End do
9: End do
10: Foreach arm 𝑘 ∈ 𝐾 do
11: Select arm 𝑖𝑘 (𝑡 ) := argmax𝑖⊂[𝐼 ] 𝑐 (𝑡 )⊤𝜃𝑖
12: End do
13: Observe 𝑟 (𝑡 ) and Observe cost 𝑠 (𝑡 )
14: Get 𝑟 ∗ (𝑡 ) = 𝑟 (𝑡 )

𝑠 (𝑡 )
15: Foreach 𝑖 ∈ 𝑖𝑘 (𝑡 )
16: 𝐵𝑘

𝑖
:= 𝜆 (𝑡 )𝐵𝑘

𝑖
+ 𝑐 (𝑡 )𝑐 (𝑡 )⊤

17: 𝑧𝑘
𝑖
:= 𝑧𝑘

𝑖
+ 𝑐 (𝑡 )𝑟 ∗ (𝑡 )

18: 𝜃𝑖 := 𝐵𝑘
−1

𝑖
𝑧𝑖

19: End do
20: End do

Each arm 𝑘 ∈ {1, ..., 𝐾} is associated with the corresponding vari-
able 𝑥𝑘 (𝑡) ∈ 𝑅 which we assume that is sampled from a Gaussian
distribution and which indicates the reward obtained when choos-
ing the 𝑘-th arm at time 𝑡 , for 𝑡 > 1. Let us consider a constrained
set of arm subsets 𝑆 ⊆ Ψ(𝐾), where Ψ(𝐾) is the power set of 𝐾 ,
associated with a set of variables {𝑟𝑀 (𝑡)}, for all𝑀 ∈ 𝑆 and 𝑡 > 1.
Variable 𝑟𝑀 (𝑡) ∈ 𝑅 indicates the reward associated with selecting
a subset of arms 𝑀 at time 𝑡 , where 𝑟𝑀 (𝑡) = 𝑓 (𝑥𝑘 (𝑡)), 𝑘 ∈ 𝑀 , for
some function 𝑓 (·). The contextual combinatorial bandit setting
can be viewed as a game where the agent sequentially observes a
context 𝑐 , selects subsets in 𝑆 and observes rewards corresponding
to the selected subsets. Here we will define the reward function
𝑓 (·) used to compute 𝑟𝑀 (𝑡) as a sum of the outcomes of the arms
in𝑀 , i.e. 𝑟𝑀 (𝑡) = ∑

𝑘∈𝑀 𝑥𝑘 (𝑡), although one can also use nonlinear
rewards. The objective of the CCB algorithm is to maximize the
reward over time. We consider here a stochastic model, where the
expectation of 𝑥𝑘 (𝑡) observed for an arm 𝑘 is a linear function of
the context, i.e. 𝐸 [𝑥𝑘 (𝑡) |c(𝑡)] = 𝜃𝑇𝑘 c(𝑡), where 𝜃𝑘 is an unknown
weight vector (to be learned from the data) associated with the arm
𝑘 . The outcome distribution can be different for each action arm.

4 CONTEXTUAL COMBINATORIAL
THOMPSON SAMPLINGWITH BUDGET
(CCTSB)

In Algorithm 1, we introduced the Contextual Combinatorial
Thompson Sampling with Budget (CCTSB). Here are some prelimi-
naries: K is the number of action dimensions; N is the number of
action values or arms for each action dimension k; T is the entire
time length of the learning problem; C is the dimension of the
context vector.

In this specific formulation for epidemic intervention, the num-
ber of action values or arms, N, can be different for each action
dimension. For instance, there might be four levels of “School Clo-
sures”, but only three levels of “Testing policies”. The action values
or arms are ordinal budget level, meaning that they correspond

directly to the cost (and thus also the global budget) that each arm
is exhausting.

For each time step, the agent observed a context c(t). Then, for
each action dimension k and each budget levels i, the agent performs
a Contextual Thompson Sampling on each of this combinatorial
search space, and choose the right arm or budget in each action
dimensions that maximize the score 𝑐 (𝑡)⊤𝜃𝑖 . When the reward
r(t) and the cost s(t) is revealed, the agent update its embedding
with a mixed reward functions 𝑟∗ that coordinates between r and
s. Shown in the algorithm is one formulation, where 𝑟∗ (𝑡) = 𝑟 (𝑡 )

𝑠 (𝑡 ) ,
but depending on the application domains and empirical benefits, it
can be flexibly changed into other forms, such as 𝑟∗ (𝑡) = 𝑟 (𝑡) + 𝜆

𝑠 (𝑡 )
where 𝜆 can be changed to favor one reward criteria over the other.

Having multiple instances of CCTSB with different 𝜆 can poten-
tially give us a pareto frontier that maximizes the both criteria in
different degrees. This pareto frontier is especially important in
public health policy making, as governments need to balance the
tradeoff between the resource stringency and effective control of
the epidemic spread.

5 INDEPENDENT COMBINATORIAL BANDIT
(INDCOMB)

To better understand the effect of the context in this problem,
we propose two additional algorithms of interest, which we call
IndComb-UCB1 and IndComb-TS, as the model variants that don’t
use the context at all. IndComb-UCB1 and IndComb-TS are two
combinatorial bandits that consist of K independent multi-armed
bandits for each of the K action dimensions. The backbones we use
here are Upper Confidence Bound, or UCB1, [15] and the Thomp-
son Sampling, or TS [31], two theoretically optimal solutions in
the multi-armed bandit problem. We hypothesize that in cases
where the context is constant, these algorithms might perform bet-
ter than CCTSB, and in cases where the context varies a lot, the
CCTSB should be more effective because it utilizes these stringency-
relevant information.

We wish to note that, although some algorithmic backbone we
used as baselines, such as Thompson Sampling, UCB1, or Contextual
Thompson Sampling, are not necessarily newly proposed by us,
formulating and testing the critical and practical epidemic control
problem with these state-of-the-art contextual or combinatorial
bandits itself should be an important contribution by itself.

6 EMPIRICAL EVALUATIONS
To empirically evaluate the performance of the proposed combina-
torial contextual bandit algorithm in the epidemic control problem,
we created a simulation environment of different types of epidemic
intervention conditions, because there is no real-life dataset avail-
able as ground truth (i.e. to obtain one, we would need to have a
government perform exactly what an artificial agent recommend
and record the cost and effect, which might have unexpected ethical
concerns).

Disclaimer. Due to the serious nature of this application prob-
lem, we wish to disclaim that the use of data in the evaluation
environment that we created might be a simplification from the
real-world scenarios of the challenging epidemic control problem.
However, as one might also note, without access to proprietary
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Figure 1: Reward-driven study: CCTSB significantly reduces the number of cases and effectively controls the epidemic spread.

governmental data it is nearly impossible to obtain an accurate es-
timate of the effect- and stringency-related weights to initialize our
simulation environments. It is also potentially unethical to perform
a controlled experiment regarding the epidemic control problem.
Therefore, it is an unfortunate inherent limit that we couldn’t solve
in this current work. As a result, at the current stage we don’t
consider it as a topic of study, but focus instead on the algorithmic
development to prepare for a generic epidemic intervention sce-
nario with randomly initialized effect factors and stringency costs.
We believe by randomizing the weight matrix multiple times in
the simulation environment, we might provide a useful insight to
generalize to real world scenarios (where each city or region has a
different stringency and effect criterion).

Simulation environments. In our simulation, we can ran-
domly identify K action dimensions (corresponding to different
non-pharmaceutical invention approaches), and randomly identify
N different action levels for each action dimension. For instance, we
might design an epidemic control world where there are two action
dimensions (i.e. 𝐾 = 2), traffic control and school closure; traffic
control can have two levels (degree 1 and degree 2, i.e.𝑁 𝑡𝑟𝑎𝑓 𝑓 𝑖𝑐 = 2)
and school closure can have three levels (all schools, all schools
except universities, or all primary schools, i.e. 𝑁 𝑠𝑐ℎ𝑜𝑜𝑙 = 3). We
can either consider the budget used by each intervention to be
independent (each intervention approach and its value yields a
fixed amount of cost regardless of other action dimensions) or com-
binatorial (the cost of each intervention approach and its value

depends on what the action values are in other action dimensions).
In real-world, the cost for each intervention approach is usually
independent from other intervention dimensions. Thus, we adopt
an independent assumption for these cost weights (or stringency
weights as in epidemic control terms). As introduced in the prob-
lem settings, the policy makers (i.e. our agents) have access to
these stringency weights and thus can use them as contexts in this
sequential decision making task.

Stationarity priors. In real world, the stringency weights of
the government can have different stationarity priors. For instance,
in certain countries and cities, the costs of many infrastructure-
related intervention approaches are constant throughout the year.
For instance, the cost of different levels of public information cam-
paigns are usually constant due to the stability of the advertisement
business. In some population-dense cities and countries, many inter-
vention approaches might have highly volatile costs depending on
the population flows of the districts. For instance, the traffic control
might have significantly different economical costs depending on
how much population remain in the cities that are working from
home. Amidst the spectrum between the two extremes, there are
intervention plans that has cost which varies in slower time scale,
such as seasonal changes of costs. To accommodate for all three
scenarios, we considered three artificial scenarios in the simulation:
one that holds the stringency weights, or the context, constant
throughout the learning, one that changes the stringency weights
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Figure 2: Cost-driven study: CCTSB maintains a low cost consumption level and effectively constrains the resource stringency.

every 10 decision steps, and one that changes the resource strin-
gency weights every decision step.

Evaluation metrics. To evaluate the problems, we report four
metrics. The reward and cost are the ones recorded by the artificial
environments. To better match the realistic problem of epidemic
control. We post-process these two measures to create two addi-
tional metrics corresponding to real-life measures. The “cases” is an
estimate of the number of active cases that is infected by the disease,
given by an exponential function of the reward: 𝑐𝑎𝑠𝑒𝑠 = 𝑒−𝑟𝑒𝑤𝑎𝑟𝑑

∗
,

where 𝑟𝑒𝑤𝑎𝑟𝑑∗ is the quantile-binned normalized reward. The “bud-
get” is a quantile-binned metric of the cost. The pareto frontier
would be a curve of the number of cases over the used budget.

Baselines. We introduce two CCTSB agents, CCTSB-0.1 and
CCTSB-0.01, which either set the hyperparameter 𝛼 to be 0.1 or 0.01.
We also include IndComb-UCB1 and IndComb-TS to study the effect
of contextual information in the learning. Other than the proposed
CCTSB algorithm, we included two baselines. The first one is a
Random agent, which randomly pick an action value in every action
dimension in each decision step. The real-life correspondence of
this type of policy is a government policy that changes every day,
like a shotgun. RandomFixed is another baseline, where it randomly
picked an action value in each action dimension at the first step,
and then stick to this combinatorial intervention plan till the end.
This is like a government policy that doesn’t change throughout
the entire epidemic period.

Experimental setting. In our simulation, we randomly generate
multiple instances of the environments and randomly initialize
multiple instances of the agents. In each world instance, we let the
agents make decisions for 1000 steps and reveal the reward and cost
at each step as their feedbacks. For all the evaluations, there are
at least 50 random trials for each agent and we report their mean
and standard errors in all figures. In the multi-objective setting,
we consider the objective function to be 𝑟∗ (𝑡) = 𝑟 (𝑡) + 𝜆

𝑠 (𝑡 ) . In the
pareto optimal evaluation, each agent was evaluated as least for 50
random trials and we report their means and standard errors.

6.1 Purely reward-driven bandit agents
effectively control the epidemic spread

In the first scenario, we set the 𝜆 to be 1, such that the agents are
purely driven by the reward. As shown in Figure 1, comparing to
the baselines, our agent CCTSB-0.1, is the best performing agent,
significantly reducing the number of infected cases (and yielding
the highest rewards), which suggests that it effectively controls the
epidemic spread. We also note that if we set the hyperparameter 𝛼
to be 0.01 (which controls for the exploration), the result is not as
good. As we will see in later results, this hyperparameter can be
tuned to fit different situations.

It is also worth noting that, the two combinatorial bandit that
we use, IndComb-UCB1 and IndComb-TS, perform relatively well,
comparing to the two random baselines. This is interesting because,
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Figure 3: Cost-driven study: Despite not receiving feedback on the infection rate, CCTSB doesn’t tradeoff the epidemic control.

Figure 4: Pareto frontiers of the cases vs. budget in epidemic scenarios of different stationarities.

this study is not simply promoting one solution to this underex-
plored application, but to provide candidate methods to better un-
derstand the behaviors of different machine learning methods in
response to different priors. The relatively well performance of the
non-contextual bandit solutions here suggests, if the contextual in-
formation such as side knowledge are not available, policy makers
should still benefit from using a bandit algorithm to optimize for
their policy prescription.

6.2 Purely cost-driven bandit agents effectively
constrain the government stringency

In the second scenario, we set the 𝜆 to be 0, such that the agents
are purely driven by the cost. As shown in Figure 2, in all three
scenarios, CCTSB are the best performing agent that significantly
reduce the budget usage, which suggests that they can effectively
constrain the government stringency. We also note that CCTSB
can be sensitive to the choice of hyperparameter 𝛼 , where a bigger
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number 𝛼 (which controls the exploration) are more suitable for
more stationary condition, as in the epidemic environment with
constant context.

We also observe that, even if the objective function is only de-
pendent on the cost, the CCTSB does a decent job controlling the
epidemic control than all the baselines (Figure 3). This suggests that
the context might offer a regularization upon the learned policy,
such that it doesn’t converge early on an aggressive policy and
can adapt when the stringency weights vary. This is an important
feature for government agencies, it suggests that the recommen-
dations by this policy might be more reversible if taken a wrong
step. For instance, the policy maker might decide to focus on the
stringency constraint given a temporary resource shortage, but it
might not want to sacrifice the epidemic control aspect during this
temporary strategy shift.

Comparing to the results in purely reward-driven cases, we ob-
serve that the combinatorial method that we propose to use, CCTSB
is the best performing one, and each has its edges in different sce-
narios, while IndComb also performs well in many cases. We are
interested in reporting them all to facilitate a more complete under-
standing of the problem and engage the communities to continue
this line of work.

6.3 Pareto Optimal Solution in Epidemic
Control

To obtain a pareto frontier for the agents in the epidemic simulation,
we run the above evaluations with different values of 𝜆 ranging
from (0,0.25,0.5,0.75,1). Then we quantile-binned the metrics for
each agent and plot out their average and standard errors.

As shown in Figure 4, our proposed algorithms yield the pareto
optimal frontier, that every intervention plan extracted on its curve
will minimize both the number of infected cases in a given day
and the resource budget on the government. We also observe that
when the context is constant or slow changing, and if we have
some leeway in the budget side, we can get slightly better infection
control with the IndComb’s recommendations. This suggests that
for the governments whose stringency features are constant or slow
changing, a combinatorial bandit might suffice as the policy making
engine to yield a pareto optimal solution for epidemic control. How-
ever, in other realistic conditions where the stringency weights vary
every now and then, the CCTSB is more effective in extracting these
useful information in decision making. We recommend the policy
making agencies take into account the specific stationarity of their
stringency constraints to choose the best problem-specific solution
between our multi-objective combinatorial bandit framework for
epidemic control.

7 CONCLUSION
In summary, we introduce a series of combinatorial bandit algo-
rithms for the epidemic control problem, including a novel formula-
tion of contextual combinatorial bandits that continually learns to
prescribe a multidimensional action groups that maximizes a multi-
objective reward functions. It provides a pareto optimal solution
to a practical healthcare problem of epidemic intervention, such
that given historical policy prescription and epidemic progression,
the agent can continually prescribe future intervention plans in

different domains that minimizes both the pandemic daily cases
and the government resource stringency.

Active and reinforcement learning has been successfully applied
to different applications including but not limited to game playing
and computer vision, but the important application of prescribing
epidemic intervention policies happens to be mostly a field of blank.
Therefore, we believe our application contributes to the field in a
nontrivial way.

We demonstrate in multiple simulation environments of epi-
demic worlds under real-world assumptions that the proposed
combinatorial contextual bandit can effective balance the trade-
off between the epidemic control and resource stringency, and offer
the optimal pareto frontier of the epidemic intervention problem.
We believe this machine learning solution can help stakeholders like
governmental officials to create interpretable intervention policies
that control the global pandemic in a timely and efficient manner.
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