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Abstract
Monte Carlo methods, Variational Inference, and
their combinations play a pivotal role in sam-
pling from intractable probability distributions.
However, current studies lack a unified evalua-
tion framework, relying on disparate performance
measures and limited method comparisons across
diverse tasks, complicating the assessment of
progress and hindering the decision-making of
practitioners. In response to these challenges, our
work introduces a benchmark that evaluates sam-
pling methods using a standardized task suite and
a broad range of performance criteria. Moreover,
we study existing metrics for quantifying mode
collapse and introduce novel metrics for this pur-
pose. Our findings provide insights into strengths
and weaknesses of existing sampling methods,
serving as a valuable reference for future develop-
ments. The code is publicly available here.

1. Introduction
Sampling methods are designed to address the challenge
of generating approximate samples or estimating the in-
tractable normalization constant Z for a probability density
π on Rd of the form

π(x) =
γ(x)

Z
, Z =

∫
Rd

γ(x)dx, (1)

where γ : Rd → R+ can be pointwise evaluated. This for-
mulation has broad applications in fields such as Bayesian
statistics and the natural sciences (Liu & Liu, 2001; Stoltz
et al., 2010; Frenkel & Smit, 2023; Mittal et al., 2023).

Monte Carlo (MC) methods (Hammersley, 2013), includ-
ing Annealed Importance Sampling (AIS) (Neal, 2001) and
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its Sequential Monte Carlo (SMC) extensions (Del Moral
et al., 2006), have traditionally been considered the gold
standard for addressing the sampling problem. An alterna-
tive approach is Variational Inference (VI) (Blei et al., 2017),
where a tractable family of distributions is parameterized,
and optimization tools are employed to maximize similarity
to the intractable target distribution π.

In recent years, there has been a surge of interest in the
development of sampling methods that merge MC with VI
techniques to approximate complex, potentially multimodal
distributions (Wu et al., 2020a; Zhang & Chen, 2021; Arbel
et al., 2021; Matthews et al., 2022; Jankowiak & Phan, 2022;
Midgley et al., 2022; Berner et al., 2022; Richter et al., 2023;
Vargas et al., 2023a;b; Akhound-Sadegh et al., 2024).

However, the evaluation of these methods faces significant
challenges, including the absence of a standardized set of
tasks and diverse performance criteria. This diversity com-
plicates meaningful comparisons between methods. Exist-
ing evaluation protocols, such as the evidence lower bound
(ELBO), often rely on samples from the model, restricting
their evaluation capabilities to the model’s support. This
limitation becomes especially problematic when assessing
the ability to mitigate mode collapse on target densities with
well-separated modes. To overcome this challenge, others
propose the use of integral probability metrics (IPMs), like
maximum mean discrepancy (Arenz et al., 2018) or Wasser-
stein distance (Richter et al., 2023; Vargas et al., 2023a),
leveraging samples from the target density to assess perfor-
mance beyond the model’s support. However, these metrics
often involve subjective design choices such as kernel selec-
tion or cost function determination, potentially leading to
biased evaluation protocols.

To address these challenges, our work introduces a compre-
hensive set of tasks for evaluating variational methods for
sampling. We explore existing evaluation criteria and pro-
pose a novel metric specifically tailored to quantify mode
collapse. Through this evaluation, we aim to provide valu-
able insights into the strengths and weaknesses of current
sampling methods, contributing to the future design of more
effective techniques and the establishment of standardized
evaluation protocols.
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2. Preliminaries
We provide an overview of Monte Carlo methods, Varia-
tional Inference, and combinations. The notation introduced
in this section is used throughout the remainder of this work.

Monte Carlo Methods. A variety of Monte Carlo (MC)
techniques have been developed to tackle the sampling prob-
lem and estimation of Z. In particular sequential importance
sampling methods such as Annealed Importance Sampling
(AIS) (Neal, 2001) and its Sequential Monte Carlo (SMC)
extensions (Del Moral et al., 2006) are often regarded as a
gold standard to compute Z. These approaches construct
a sequence of distributions (πt)

T
t=1 that ‘anneal’ smoothly

from a tractable proposal distribution π0 to the target dis-
tribution πT = π. One typically uses the geometric aver-
age, that is, γt(x) = π0(x)

1−βtγ(x)βt , with πt ∝ γt for
0 = β0 < β1 < ... < βT = 1. Approximate samples
from π are then obtained by starting from x0 ∼ π0(·) and
running a sequence of Markov chain Monte Carlo (MCMC)
transitions that target (πt)

T
t=1.

Variational Inference. Variational inference (VI) (Blei
et al., 2017) is a popular alternative to MCMC and SMC
where one considers a flexible family of easy-to-sample
distributions qθ whose parameters θ are optimized by mini-
mizing the reverse Kullback–Leibler (KL) divergence, i.e.,

DKL(q
θ(x)∥π(x)) = −Eqθ(x)

[
log

γ(x)

qθ(x)

]
︸ ︷︷ ︸

ELBO

+ logZ (2)

It is well known that minimizing the reverse KL is equiva-
lent to maximizing the evidence lower bound (ELBO) and
that ELBO ≤ logZ with equality if and only if qθ = π.
Later, VI was extended to other variational objectives such
as α-divergences (Li & Turner, 2016; Midgley et al., 2022),
log-variance loss (Richter et al., 2020), trajectory balance,
(Malkin et al., 2022a) or general f - divergences (Wan et al.,
2020). Typical choices for qθ include mean-field approxima-
tions (Wainwright & Jordan, 2008), mixture models (Arenz
et al., 2022) or normalizing flows (Papamakarios et al.,
2021). To construct more flexible variational distributions
(Agakov & Barber, 2004) modeled qθ(x) as the marginal
of a latent variable model, i.e. qθ(x) =

∫
qθ(x, z)dz 1. As

this marginal is typically intractable, θ is then learned by
minimizing a discrepancy measure between qθ(x, z) and
an extended target pθ(x, z) = π(x)pθ(z|x) where pθ(z|x)
is an auxiliary conditional distribution. Using the chain
rule for the KL-divergence (Cover, 1999) one obtains an

1Agakov & Barber (2004) coined the term ‘augmentation’ for
z. We adopt the more established terminology and refer to z as a
latent variable.

extended version of the ELBO, that is,

DKL(q
θ(x)∥π(x)) ≤ −Eqθ(x,z)

[
log

γ(x)pθ(z|x)
qθ(x, z)

]
︸ ︷︷ ︸

ELBO

+ logZ.

(3)
Although the extended ELBO is often referred to as
ELBO, latent variables z introduce additional looseness, i.e.,
ELBO ≤ ELBO with equality if pθ(z|x) = qθ(x, z)/qθ(x).
To compute expectations with respect to qθ(x, z), one typi-
cally chooses tractable distributions qθ(x|z) and qθ(z) and
performs a Monte Carlo estimate using ancestral sampling.

Variational Monte Carlo Methods. Over recent years,
the idea of using extended distributions has been further
explored (Wu et al., 2020b; Geffner & Domke, 2021; Thin
et al., 2021; Zhang et al., 2021; Doucet et al., 2022b;
Geffner & Domke, 2022). In particular, these ideas marry
Monte Carlo with variational techniques by constructing
the variational distribution and extended target as Markov
chains, i.e., qθ(x0:T ) = π0(x0)

∏T
t=1 F

θ
t (xt|xt−1) and

pθ(x0:T ) = π(xT )
∏T−1

t=0 Bθ
t (xt|xt+1) with x = xT ,

z = (x0, . . . ,xT−1) and tractable π0. Common choices
of transition kernels F θ

t , B
θ
t include Gaussian distributions

(Doucet et al., 2022b; Geffner & Domke, 2022) or nor-
malizing flow maps (Wu et al., 2020a; Arbel et al., 2021;
Matthews et al., 2022) and can be optimized by e.g. maxi-
mization of the extended ELBO via stochastic gradient as-
cent. Recently, Vargas et al. (2023a); Zhang & Chen (2021);
Vargas et al. (2023b; 2024); Richter et al. (2023); Berner
et al. (2022) explored the limit of T → ∞ in which case
the Markov chains converge to forward and backward time
stochastic differential equations (SDEs) (Anderson, 1982;
Song et al., 2020) inducing the path distributions Qθ and Pθ

which can be thought of as continuous time analogous of
qθ and pθ respectively. Zhang & Chen (2021); Berner et al.
(2022); Richter et al. (2023); Vargas et al. (2024) leveraged
the continuous-time perspective to establish connections
with Schrödinger bridges (Léonard, 2013) and stochastic op-
timal control (Dai Pra, 1991), resulting in the development
of novel sampling algorithms.

Performance Criteria. Several performance criteria have
been proposed for evaluating sampling methods, notably,
those comparing the density ratio between the target and
model density and integral probability metrics (IPMs).

Density ratio-based criteria make use of the ratio between
the (unnormalized) target density γ(x) and the model qθ(x).
Due to the intractability of qθ(x) for methods that work
with latent variables, the density ratio between the joint
distributions of x and z is considered, i.e.,

w =
γ(x)

qθ(x)
, and w =

γ(x)pθ(z|x)
qθ(x, z)

, (4)

respectively. Note that w and w are also referred to as
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Figure 1: Illustration of the evidence upper (EUBO) and lower bound (ELBO). The mode-seeking nature of reverse KL
results in ELBO ≪ logZ if the model density qθ (indicated by the samples ×) averages over the target π (indicated by the
level plot) (t1) and ELBO ≈ logZ if π ≥ 0 whenever qθ ≥ 0 (t2 − t4). As a result, the ELBO is not sensitive to mode
collapse. In contrast, the mass-covering nature of the forward KL ensures that EUBO ≫ logZ if qθ ≈ 0 whenever π > 0
(t2) and EUBO ≈ logZ if qθ ≥ 0 whenever π ≥ 0 (t1). Consequently, the EUBO is well suited to quantify mode collapse.

(unnormalized) importance weights. Using this notation,
we can recover commonly used metrics such as the reverse
effective sample size (ESSr) or the ELBO, that is,

ESSr =
(Eqθ [w])

2

Eqθ [w2]
and ELBO = Eqθ [logw], (5)

respectively. Here, ‘reverse’ is used to denote that expeca-
tions are computed with respect to qθ. In addition, if the true
normalization constant is known, an importance-weighted
reverse estimate of logZ is often employed to report the
esimation bias, i.e., ∆ logZr = | logZ − log Ẑr| with

log Ẑr = logEqθ [w]. (6)

Please note that extended versions of these criteria are ob-
tainable by replacing w with the extended version w and
taking expectations under the joint distribution qθ(x, z).

3. Quantifying Mode-Collapse
Quantifying the ability to avoid mode collapse is difficult as
identifying all modes of the target density π and determin-
ing whether a model captures them accurately is inherently
challenging. In particular, methods that are optimized us-
ing the reverse KL divergence are forced to assign high
probability to regions with non-negligible probability in the
target distribution π. This is referred to as mode-seeking
behavior and can result in an overemphasis on a limited
set of modes, leading to mode collapse. Consequently, per-
formance criteria that use expectations under the model qθ,
such as ELBO, (reverse) ESS, or ∆ logZr, are influenced
by the mode-seeking nature of the reverse KL divergence,
making them less sensitive to mode collapse.

Here, we aim to explore criteria that are sensitive to mode
collapse such as density-ratio based ‘forward’ criteria, that

leverage expectations under π and integral probability met-
rics (IPMs). Furthermore, we introduce entropic mode cov-
erage, a novel criterion that leverages prior knowledge about
the target to heuristically quantify mode coverage.

Forward Criteria. We discuss the ‘forward’ versions of the
criteria discussed in Section 2. First, evidence upper bounds
(EUBOs) are based on the forward KL divergence and have
already been leveraged as learning objectives in VI (Ji &
Shen, 2019). Here, we explore them as performance criteria
that are sensitive to mode collapse. Formally, the EUBO is
the sum of the forward KL and logZ, that is,

DKL(π(x)∥qθ(x)) = Eπ(x)[logw]︸ ︷︷ ︸
EUBO

− logZ, (7)

with importance weights w = γ(x)/qθ(x). Due to the
non-negativeness of the KL divergence, it is easy to see
that EUBO ≥ logZ with equality if and only if qθ = π.
Hence, a lower EUBO means that qθ is closer to π in a DKL
sense. The mass-covering nature of the forward KL leads
to high EUBO values if the model fails to cover regions of
non-negligible probability in the target distribution π and
is therefore well suited to quantify mode-collapse. This is
further illustrated in Figure 1. We can again leverage the
chain rule for the KL-divergence (Cover, 1999) to obtain
an extended version of the EUBO, i.e., Eπ(x,z)[logw] that
satisfies EUBO ≥ EUBO, where the introduction of la-
tent variables introduce additional looseness. The extended
EUBO requires computing the importance weights w and
expectations under π(x, z). The former depends on the spe-
cific choice of sampling algorithm and is further discussed
in Section 4 when introducing the methods considered for
evaluation. The latter can be approximated by propagat-
ing target samples x back to z using π(z|x). Additionally,
having access to samples from π allows for computing for-
ward versions of Z and ESS which have already been used
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to quantify mode collapse by e.g. (Midgley et al., 2023).
Formally, they are defined as

Zf = 1/Eπ[w
−1], and ESSf = Zf/Eπ[w], (8)

where expectations are taken with respect to the target π.
For a detailed discussion see Appendix A.1.

Integral Probability Metrics. Alternatively, IPMs are of-
ten employed if samples from the target distribution π are
available (Arenz et al., 2018; Richter et al., 2023; Vargas
et al., 2023a; 2024). Common IPMs for assessing sample
quality are 2-Wasserstein distance (W2) (Peyré et al., 2019)
or the maximum mean discrepancy (MMD) (Gretton et al.,
2012). The former uses a cost function to calculate the
minimum cost required to transport probability mass from
one distribution to another while the latter assesses distri-
bution dissimilarity by examining the differences in their
mean embeddings within a reproducing kernel Hilbert space
(Aronszajn, 1950). For further details see Appendix A.2.

Entropic Mode Coverage. Inspired by inception scores and
distances from generative modelling (Salimans et al., 2016;
Heusel et al., 2017) we propose a heuristic approach for
detecting mode collapse by introducing the entropic mode
coverage (EMC). To compute EMC, we partition Rd into
disjoint subsets ξi, i ∈ {1, . . . ,M} that describe different
modes of the target density π. Moreover, we introduce
an auxiliary distribution that measures the probability of a
sample x being element of a mode descriptor, i.e., p(ξi|x) =
p(x ∈ ξi). We then compute the expected entropy of the
auxiliary distribution, that is,

EMC := Eqθ(x)H (p(ξ|x))

≈− 1

N

∑
x∼qθ

M∑
i=1

p(ξi|x) logM p(ξi|x), (9)

where the expectation is approximated using a Monte Carlo
estimate. Here, N denotes the number of samples drawn
from qθ. Please note that we employ the logarithm with
a base of M to ensure that EMC ∈ [0, 1]. This choice of
base facilitates a straightforward interpretation: A value of 0
signifies a model that consistently produces samples that are
elements of the same mode descriptor. In contrast, a value
of 1 represents a model that can produce samples from all
mode descriptors with equal probability.

Clearly, EMC is limited to targets where mode descriptors
are available which is further discussed in Section 5. More-
over, a suitable criterion for cases where mode descriptors
are not equally probable is discussed in Appendix A.3.

4. Benchmarking Methods
In this section, we elaborate on the methods included in
this benchmark, categorizing them into three distinct groups

Acronym Method Reference

MFVI Gaussian Mean-Field VI (Bishop, 2006)
GMMVI Gaussian Mixture Model VI (Arenz et al., 2022)
NFVI† Normalizing Flow VI (Rezende & Mohamed, 2015)
SMC Sequential Monte Carlo (Del Moral et al., 2006)
AFT Annealed Flow Transport (Arbel et al., 2021)
CRAFT Continual Repeated AFT (Matthews et al., 2022)
FAB Flow Annealed IS Bootstrap (Midgley et al., 2022)
ULA† Uncorrected Langevin Annealing (Thin et al., 2021)
MCD Monte Carlo Diffusion (Doucet et al., 2022a)
UHA† Uncorrected Hamiltonian Annealing (Geffner & Domke, 2021)
LDVI Langevin Diffusion VI (Geffner & Domke, 2022)
CMCD† Controlled MCD (Vargas et al., 2024)
PIS Path Integral Sampler (Zhang & Chen, 2021)
DIS Time-Reversed Diffusion Sampler (Berner et al., 2022)
DDS Denoising Diffusion Sampler (Vargas et al., 2023a)
GFN† Generative Flow Networks (Lahlou et al., 2023)
GBS General Bridge Sampler (Richter et al., 2023)

Table 1: Sampling Methods. For methods marked with ‘†’,
implementation is available, but the results are either not
included or only partially presented in this work.

based on the computation of importance weights. Please
refer to Table 1 for an overview of these methods and to
Appendix B for further details.

Tractable Density Models. Tractable density models al-
low for computing the model likelihood qθ(x). It is there-
fore straightforward to compute performance criteria as-
sociated with importance weights w = γ(x)/qθ(x). No-
table works include factorized (‘mean-field’) Gaussian dis-
tributions (MFVI), Normalizing Flows (NFVI) (Rezende &
Mohamed, 2015) and full rank Gaussian mixture models
(GMMVI) (Arenz et al., 2022).

Sequential Importance Sampling Methods. Sequential
importance sampling (SIS) methods define w in terms of
incremental importance sampling (IS) weights, that is, w =∏T

t=1 Gt(xt−1,xt) with

Gt(xt−1,xt) =
γt(xt)B

θ
t−1(xt−1|xt)

γt−1(xt−1)F θ
t (xt|xt−1)

, (10)

with annealed versions γt of γ. For example, choosing
Bθ

t−1(xt−1|xt) = πt(xt−1)F
θ
t (xt|xt−1)/πt(xt) recovers

AIS (Neal, 2001). Midgley et al. (2022) proposed to param-
eterize the proposal distribution π0 with normalizing flows
and, in combination with AIS, to minimize the α-divergence,
resulting in the Flow Annealed Importance Sampling Boot-
strap (FAB) algorithm. Additionally, when AIS is coupled
with resampling, it gives rise to Sequential Monte Carlo
(SMC) as originally proposed by Del Moral et al. (2006).

Recent advancements include the development of Stochas-
tic Normalizing Flows (Wu et al., 2020a), Annealed Flow
Transport (AFT) (Arbel et al., 2021), and Continual Re-
peated AFT (CRAFT) (Matthews et al., 2022). These meth-
ods extend Sequential Monte Carlo by employing sets of
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Funnel Credit Seeds Cancer Brownian Ionosphere Sonar Digits Fashion LGCP MoG MoS

True logZ

Samples from π

Mode descriptors ξ
Dimensionality D 10 25 26 31 32 35 61 196 784 1600 N+ N+

Table 2: Target densities π(x) = γ(x)/Z considered in this work.

normalizing flows that define deterministic transport maps
between neighboring distributions γt. For further details
on F θ

t , B
θ
t−1 and the corresponding Gt see Table 7. For

an in-depth exploration of the commonalities and distinc-
tions among these methods, please refer to (Matthews et al.,
2022).

Diffusion-Based Methods. Diffusion-based methods typi-
cally build on stochastic differential equations (SDEs) with
parameterized drift terms (Tzen & Raginsky, 2019), i.e.,

dxt = fθ
t (xt)dt+ σtdwt, x0 ∼ π0,

dxt = bθt (xt)dt+ σtdw̄t, xT ∼ πT , (11)

with diffusion coefficient σt and standard Brownian mo-
tion wt, w̄t. Using the Euler-Maruyama method (Särkkä &
Solin, 2019), their discretized counterparts can be character-
ized by Gaussian forward-backward transition kernels

F θ
t+1(xt+1|xt) = N (xt+1|xt + fθ

t (xt)∆t, σ
2
t∆t) and

Bθ
t−1(xt−1|xt) = N (xt−1|xt + bθt (xt)∆t, σ

2
t∆t), (12)

with discretization step size ∆t. The extended (unnormal-
ized) importance weights w can then be constructed as

pθ(x0:T )

qθ(x0:T )
∝ w =

γ(xT )
∏T

t=1 Bθ
t−1(xt−1|xt)

π0(x0)
∏T−1

t=0 F θ
t+1(xt+1|xt)

. (13)

One line of work considers annealed Langevin dynamics to
model Eq. (11). Works include Unadjusted Langevin An-
nealing (ULA) (Thin et al., 2021), Monte Carlo Diffusions
(MCD) (Doucet et al., 2022a), Controlled Monte Carlo Dif-
fusion (CMCD) (Vargas et al., 2024), Uncorrected Hamil-
tonian Annealing (UHA) (Geffner & Domke, 2021) and
Langevin Diffusion Variational Inference (LDVI) (Geffner
& Domke, 2022). A second line of work describes diffusion-
based sampling from a stochastic optimal control perspec-
tive (Dai Pra, 1991). Works include methods such as Path
Integral Sampler (PIS) (Zhang & Chen, 2021; Vargas et al.,
2023b), Denoising Diffusion Sampler (DDS) (Vargas et al.,
2023a), Time-Reversed Diffusion Sampler (DIS) (Berner
et al., 2022) and Generative Flow Networks (GFN) (Lahlou
et al., 2023; Malkin et al., 2022b; Zhang et al., 2023). Fur-
thermore, Richter et al. (2023) identify several of these
methods as special cases of a General Bridge Sampler (GBS)
where both processes in Eq. 11 are freely parameterized.

Funnel MoS MoG
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Figure 3: Synthetic target densities. Left: First two dimen-
sions of the funnel density. Middle: Mixture of Student-t
distribution with 15 components (MoS). Right: Mixture of
40 isotropic Gaussian distributions (MoG).

Specific choices of π0, F
θ
t+1, B

θ
t−1 are detailed in Table 6.

Lastly, we refer the interested reader to (Sendera et al., 2024)
which concurrently benchmarked diffusion-based sampling
methods.
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Figure 2: Mean and standard deviation of EMC values for
MoG and MoS across varying dimensions d.
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5. Benchmarking Target Densities
Here, we briefly summarize the target densities π considered
in this work. The dimensionality of the problem, if we have
access to the log normalizer logZ, target samples, or mode
descriptors for computing the entropic mode coverage is
presented in Table 2. Further details and formal definitions
of the target densities can be found in Appendix C.

Bayesian Logistic Regression. We consider four experi-
ments where we perform inference over the parameters of a
Bayesian logistic regression model for binary classification.
The datasets Credit and Cancer were taken from Nishihara
et al. (2014). The former distinguishes individuals as ei-
ther good or bad credit risks, while the latter deals with
the classification of recurrence events in breast cancer. The
Ionosphere dataset (Sigillito et al., 1989) involves classify-
ing radar signals passing through the ionosphere as either
good or bad. Similarly, the Sonar dataset (Gorman & Se-
jnowski, 1988) tackles the classification of sonar signals
bounced off a metal cylinder versus those bounced off a
roughly cylindrical rock.

Random Effect Regression. The Seeds data was collected
by (Crowder, 1978). The goal is to perform inference over
the variables of a random effect regression model that mod-
els the germination proportion of seeds arranged in a facto-
rial layout by seed and type of root.

Time Series Models. We consider the Brownian time se-
ries model obtained by discretizing a stochastic differential
equation, modeling a Brownian motion with a Gaussian
observation model, developed by (Sountsov et al., 2020).

Spatial Statistics. The log Gaussian Cox process (LGCP)
(Møller et al., 1998) is a probabilistic model commonly used
in statistics to model spatial point patterns. In this work,
the log Gaussian Cox process is applied to modeling the
positions of pine saplings in Finland.

Synthetic Targets. We additionally consider synthetic tar-
get densities as they commonly give access to the true nor-
malization constant Z, target samples, and mode descriptors.
The Funnel target was introduced by (Neal, 2003) and pro-
vides a complex ‘funnel’-shaped distribution. Moreover, we
consider two different types of mixture models: a mixture
of isotropic Gaussians (MoG) as proposed by Midgley et al.
(2022), and Student-t distributions (MoS). To obtain mode
descriptors for a mixture model with K components, i.e.,
π(x) =

∑
k πk(x)/K we compute the density per compo-

nent πk(x) and say that x ∈ ξi if i = argmaxk{πk(x)}Kk=1.
Lastly, we follow Doucet et al. (2022a) and train NICE
(Dinh et al., 2014) on a down-sampled 14 × 14 variant of
MNIST (Digits) (LeCun et al., 1998) and a 28×28 variant of
Fashion MNIST (Fashion) and use the trained model as tar-
get density. Here, we obtain the mode descriptors by training
a classifier p(c|x) on samples from π where the classes c are

represented by ten different digits. If i = argmaxc p(c|x)
we conclude x ∈ ξi.

6. Hyperparameters and Tuning
In this section, we provide details on hyperparameter tuning.
For further information, please refer to Appendix D.

Tractable Density Methods. For MFVI, we used a batch
size of 2000 and performed 100k gradient steps, tuning the
learning rate via grid search. For targets with known sup-
port, we adjusted the initial model variance accordingly. For
GMMVI, we adhered to the default settings from (Arenz
et al., 2022), utilizing 100 samples per mixture component.
We initialized with 10 components and employed an adap-
tive scheme to add and remove components heuristically.
The initial variance of the components was set based on the
target support, and we conducted 3000 training iterations.

Sequential Importance Sampling Methods. In SIS meth-
ods, we employed 2000 particles for training. All methods
except FAB used 128 annealing steps; FAB followed the
original 12 steps as proposed by its authors. The choice and
parameters of the MCMC transition kernel significantly im-
pacted performance. Hamilton-Monte Carlo (Duane et al.,
1987) generally outperformed Metropolis-Hastings (Chib
& Greenberg, 1995) (see Appendix F.3). Step sizes for
βt ≥ 0.5 and βt < 0.5 were tuned using grid search.
For AFT and CRAFT, we used diagonal affine flows (Pa-
pamakarios et al., 2021), which yielded more robust re-
sults than complex flows like inverse autoregressive flows
(Kingma et al., 2016) or neural spline flows (Durkan et al.,
2019) (see Appendix F.6). FAB employed RealNVP (Dinh
et al., 2016) for the proposal distribution π0. Learning rates
for these flows were also tuned via grid search. For targets
with known support, the variance of π0(x) = N (0, σ2

0I)
was set accordingly, otherwise, a grid search was performed.
We used multinomial resampling with a threshold of 0.3
(Douc & Cappé, 2005).

Diffusion-based Methods. Training involved a batch size
of 2000 and 40k gradient steps. SDEs were discretized with
128 steps, T = 1, and a fixed ∆t. The diffusion coefficient
was chosen as σt = σmax cos

2(π(T − t)/2T ), following
(Vargas et al., 2023a) for better performance compared to
linear or constant schedules. We used the architecture from
(Zhang & Chen, 2021) with 2 layers of 64 hidden units
each. For targets with known prior support, the initial model
support was set accordingly. For all methods except PIS,
this involved setting the variance of the prior distribution
π0(x) = N (0, σ2

0I). For PIS, σmax was carefully chosen.
In MCD and LDVI, we learned the annealing schedule βt

and σmax end-to-end by maximizing the ELBO.
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FUNNEL MOG (d = 50) MOS (d = 50) 14× 14 DIGITS 28× 28 FASHION

W2 ↓ MMD ↓ W2 ↓ MMD ↓ W2 ↓ MMD ↓ W2 ↓ MMD ↓ W2 ↓ MMD ↓

MFVI 178.264±0.271 0.303±0.002 39360.196±12.49 0.209±0.000 2462.260±1.009 0.215±0.000 254.179±0.025 0.351±0.000 1327.517±0.845 0.285±0.000

GMMVI 105.620±3.472 0.031±0.000 32004.968±1069. 0.203±0.013 1255.216±296.9 0.135±0.017 207.163±14.60 0.373±0.042 1343.495±136.9 0.462±0.033

SMC 149.353±2.973 0.162±0.015 46351.236±4.795 0.631±0.000 3297.640±1372. 0.431±0.161 159.255±1.877 1.168±0.008 6696.287±250.4 1.556±0.008

AFT 145.138±6.061 0.159±0.010 44914.194±1154. 0.622±0.009 2648.410±301.3 0.395±0.082 172.685±3.661 1.180±0.004 6413.147±548.6 1.538±0.010

CRAFT 134.335±0.663 0.115±0.003 43412.038±420.9 0.604±0.002 1893.926±117.3 0.257±0.024 151.791±11.02 0.139±0.032 1413.303±11.20 0.562±0.002

FAB 153.894±3.916 0.032±0.000 9567.319±626.1 0.073±0.005 1204.160±147.7 0.093±0.014 126.863±0.581 0.129±0.003 1186.967±263.4 0.347±0.007

MCD 163.317±0.101 0.228±0.001 5026.147±40.03 0.043±0.000 6418.981±22.15 0.256±0.000 220.710±5.547 0.252±0.007 1898.472±3.783 0.327±0.002

LDVI N/A N/A 5038.420±73.77 0.043±0.000 2919.688±103.4 0.182±0.003 154.167±0.816 0.133±0.000 3432.724±406.2 0.284±0.016

PIS N/A N/A 10495.164±83.20 0.083±0.000 2113.172±31.17 0.218±0.007 186.007±0.466 0.193±0.001 1484.598±5.125 0.240±0.000

DIS 118.947±12.81 0.159±0.036 3044.733±464.7 0.034±0.003 2200.590±18.73 0.155±0.001 220.392±11.69 0.194±0.011 3927.754±858.9 0.282±0.019

DDS 142.890±9.552 0.172±0.031 5551.107±116.4 0.046±0.001 2154.884±3.861 0.131±0.001 188.789±2.297 0.173±0.003 1811.685±24.47 0.208±0.006

GBS 178.075±0.103 0.305±0.002 5080.413±125.8 0.043±0.001 5722.074±22.71 0.232±0.000 186.436±1.834 0.176±0.005 1137.399±1.819 0.246±0.003

∆logZr ↓ ∆logZf ↓ ∆logZr ↓ ∆logZf ↓ ∆logZr ↓ ∆logZf ↓ ∆logZr ↓ ∆logZf ↓ ∆logZr ↓ ∆logZf ↓

MFVI 0.612±0.101 0.036±0.001 3.658±0.040 0.185±0.002 3.009±0.291 0.048±0.002 7.388±0.107 5.866±0.016 34.389±0.757 108.379±0.438

GMMVI 0.001±0.000 0.001±0.000 1.715±0.119 0.048±0.007 1.282±0.221 0.084±0.055 3.098±0.140 0.124±0.079 8.099±1.919 11.676±4.041

SMC 0.187±0.054 2.676±0.000 690.721±11.21 161.796±0.000 3.880±1.105 80.992±0.000 80.184±0.162 375.676±0.000 11742.014±139.2 1530.824±0.000

AFT 0.181±0.106 414.619±141.5 765.624±108.0 110.955±18.37 4.081±1.579 205.297±23.91 16.726±2.511 163.871±6.557 11653.343±1628. 1071.777±9.475

CRAFT 0.091±0.018 255.046±7.478 337.094±9.296 100.987±0.065 0.822±0.087 210.245±6.098 1.458±0.406 63.792±3.329 445.101±8.273 1156.718±7.810

FAB 0.001±0.000 0.019±0.003 2.952±0.247 126.363±1.789 3.358±1.062 84.592±22.64 0.847±0.076 63.910±1.565 350.544±599.0 3721.720±4646.

MCD 0.207±0.039 N/A 31.319±1.793 21.148±1.478 28.607±1.275 24.757±0.841 884.610±9.674 258.840±3.047 15122.090±996.7 1125.475±5.198

LDVI N/A N/A 8.159±0.775 15.477±0.815 4.360±0.741 5.472±0.938 537.763±25.07 265.674±1.181 12237.989±381.8 1087.592±4.844

PIS 0.918±0.598 0.436±0.002 7.122±0.630 3113.492±1.978 12.248±0.326 54.090±0.151 104.002±0.847 2149.224±19.39 1884.013±10.20 8785.873±9.880

DIS 0.113±0.083 25.544±8.267 87.709±8.942 369.352±16.29 10.448±0.607 87.897±5.255 569.837±35.40 1354.472±181.1 8807.430±337.6 17566.520±256.6

DDS 0.190±0.077 0.321±0.052 1.739±0.442 207.545±1.163 7.952±0.299 53.411±0.024 82.460±5.480 659.497±9.786 1579.602±41.65 2910.345±71.25

GBS 0.553±0.273 0.127±0.008 8.103±1.696 9.321±0.776 53.767±0.732 47.441±0.098 75.160±2.321 62.733±1.168 1495.194±42.03 527.580±9.426

ELBO ↑ EUBO ↓ ELBO ↑ EUBO ↓ ELBO ↑ EUBO ↓ ELBO ↑ EUBO ↓ ELBO ↑ EUBO ↓

MFVI −1.834±0.009 105.694±0.002 −3.690±0.000 164.114±0.000 −5.957±0.007 72.663±0.005 −14.004±0.005 210.713±0.024 −58.082±0.009 938.632±0.055

GMMVI −0.011±0.001 0.012±0.001 −1.715±0.119 240.459±51.13 −3.890±0.122 57.746±1.928 −7.135±0.148 142.636±9.701 −18.478±4.104 595.239±120.4

SMC −0.242±0.047 4.690±0.000 −877.034±10.23 161.921±0.000 −4.634±1.088 81.325±0.000 −185.057±0.257 376.093±0.000 −12187.873±134.6 1532.904±0.000

AFT −0.293±0.088 431.329±143.1 −927.160±103.8 117.630±22.16 −4.923±1.546 207.625±24.14 −64.442±4.464 214.486±4.870 −11828.529±1608. 1448.335±11.08

CRAFT −0.027±0.060 263.474±7.864 −451.399±7.561 103.674±0.069 −0.295±0.256 212.210±6.160 −11.154±0.307 89.518±1.904 −520.475±5.531 1578.114±2.360

FAB −0.014±0.003 0.012±0.002 −299.916±253.4 93.560±5.086 −26.496±1.875 18.088±2.503 −11.396±0.153 12.084±0.171 −892.971±1518. 394.346±263.6

MCD −0.611±0.005 N/A −185.021±0.743 43.670±0.457 −69.358±0.633 47.834±0.820 −1457.646±13.80 293.191±0.208 −21196.583±472.8 1276.456±1.033

LDVI N/A N/A −29.034±0.591 51.137±0.177 −28.471±1.018 20.887±1.042 −875.104±43.59 323.158±0.142 −16227.975±738.0 1185.331±6.660

PIS −3.198±0.042 104.975±0.002 −16.881±0.026 3626.120±1.360 −29.261±1.743 88.192±0.005 −172.988±0.630 2748.938±19.19 −2988.210±14.13 11179.374±11.72

DIS −1.021±0.436 40.892±38.48 −181.348±15.47 546.335±30.86 −36.704±0.629 193.270±3.293 −840.122±18.66 1745.719±205.7 −15337.229±154.0 20347.781±318.7

DDS −0.597±0.142 148.841±7.347 −13.284±0.460 291.867±0.047 −31.681±0.363 86.014±0.001 −156.145±6.063 881.476±22.83 −2617.761±46.78 3925.231±106.8

GBS −2.600±0.078 110.167±0.000 −35.771±1.105 67.819±2.157 −99.369±0.158 73.545±0.107 −154.186±1.387 106.777±0.113 −2198.997±36.56 705.996±11.66

Table 3: Results for various sampling methods. Evaluation criteria include 2-Wasserstein distance (W2), maximum mean
discrepancy (MMD), reverse and forward partition function error (∆ logZr, ∆ logZf ), and lower and upper evidence
bounds (ELBO, EUBO). The best results are highlighted in bold. Arrows (↑, ↓) indicate whether higher or lower values are
preferable, respectively. N/A denotes cases where reasonable results could not be obtained due to numerical issues.

7. Experiments
Here, we offer an overview of the evaluation protocol. Next,
we present the results obtained for synthetic target densities,
followed by those for real targets. We provide further results
in Appendix E and ablation studies in Appendix F.

Evaluation Protocol. We compute all performance criteria
100 times during training, applying a running average with
a length of 5 over these evaluations to obtain robust results
within a single run. To ensure robustness across runs, we
use four different random seeds and average the best results
from each run. We use 2000 samples to compute the per-
formance criteria and tune key hyperparameters such as the
learning rate and variance of the initial proposal distribu-
tion π0. We report the EMC values corresponding to the
method’s highest ELBO value to avoid high EMC values
caused by a large initial support of the model.

7.1. Evaluation on Synthetic Target Densities

Funnel. We utilize the funnel distribution as a testing
ground to assess whether sampling methods capture high
curvatures in the target density. Our findings indicate that
while most methods successfully capture the funnel-like
structure, they struggle to generate samples at the neck and
opening of the funnel, except for FAB and GMMVI (cf. Fig-
ure 4). This observation is further supported by quantitative
analysis, revealing that both FAB and GMMVI achieve the
best performance in terms of reverse and forward estimation
of logZ and evidence bounds as shown in Table 3.

Digits and Fashion. For a comprehensive assessment of
sampling methods, we conduct both qualitative and quantita-
tive analyses on two high-dimensional target densities. For
the qualitative analysis, model samples are interpreted as
images and shown in Table 4. For the quantitative analysis,
we report various performance criteria values, with results
presented in Table 3. Additionally, we report EMC values
in Table 4 to quantify mode collapse.
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xi ∼ π MFVI GMMVI xi ∼ π MFVI GMMVI

CRAFT FAB LDVI GBS FAB LDVI

EMC ↑ 14× 14 Digits 28× 28 Fashion

MFVI 0.000±0.000 0.000±0.000

GMMVI 0.164±0.081 0.217±0.167

SMC 0.873±0.000 0.000±0.000

AFT 0.727±0.000 0.011±0.000

CRAFT 0.772±0.070 0.016±0.027

FAB 0.915±0.007 0.349±0.137

MCD 0.851±0.010 0.619±0.001

LDVI 0.951±0.002 0.608±0.005

PIS 0.816±0.011 0.620±0.004

DIS 0.818±0.009 0.612±0.008

DDS 0.816±0.012 0.621±0.008

GBS 0.796±0.005 0.621±0.006

Table 4: Sample visualizations for Digits (left) and Fashion (middle) using various methods, as indicated by the subcaptions.
‘xi ∼ π’ refers to samples from the target density. Visualizations for the remaining methods are provided in Figure 5.
Corresponding EMC values are reported on the right.

For Digits, most methods are able to find the majority of
modes and produce high-quality samples, as visually evident
from the sample visualizations and EMC values in Table 4.
However, many methods, particularly diffusion-based ones,
struggle to obtain reasonable estimations of logZ. They
also perform poorly in terms of lower and upper evidence
bounds, as shown in Table 3. For Fashion, we observe that
methods either suffer from mode collapse or produce low-
quality samples. Interestingly, the methods experiencing
mode collapse achieve the lowest estimation error of logZ
in both reverse and forward estimations.

Mixture Models. We employ MoG and MoS to investi-
gate mode collapse across different dimensions, specifically
considering d ∈ 2, 50, 200. For d = 2, all methods except
MFVI demonstrate the capability to generate samples from
all modes, as indicated by EMC ≈ 1. This is further sup-
ported by visualizations in Figure 2. According to EMC, all
methods except diffusion-based ones exhibit mode collapse
for d = 50 and d = 200.

We also report additional evaluation criteria for MoG and
MoS, including 2-Wasserstein distance, maximum mean
discrepancy, reverse and forward partition function error,
lower and upper evidence bounds, and reverse and forward
effective sample size in Appendix E Table 9.

7.2. Evaluation on Real Target Densities

For real-world target densities, we do not have access to the
ground truth normalizer Z or samples from π. Consequently,
we present the ELBO values in Table 5. Surprisingly, we
find that GMMVI performs well across all tasks, often out-
performing more complex variational Monte Carlo methods.
However, it is noteworthy that GMMVI encounters scalabil-
ity challenges in very high-dimensional problems, such as
LGCP. Another method, FAB, consistently performs well
across a majority of tasks.

8. Discussion and Conclusion
Here, we list several general observations O1)-O6) and
observations tied to specific methods M1)-M6) that are
based on the experiments from Section 7 and Appendix E
and the Ablation studies in Appendix F.

O1) Mode collapse gets worse in high dimensions. We
observe that several methods, that do not suffer from mode
collapse in low-dimensional problems encounter significant
mode collapse when applied to higher-dimensional ones (cf.
Fig 2).

O2) ELBO and reverse logZ estimates are not well suited
for evaluating a model’s capability to avoid mode collapse.
This observation is evident, for instance, in Table 4, where
MFVI achieves relatively good ELBO and logZ estimates
despite suffering from mode collapse.

O3) While the EUBO helps to quantify mode collapse, com-
paring different method categories is challenging due to the
additional looseness introduced by latent variables in the ex-
tended EUBO. This is evident on the Fashion dataset, where
MFVI and GMMVI achieve a lower EUBO compared to
most other methods, despite suffering from mode collapse.

O4) Despite being influenced by subjective design choices
like the kernel or cost function, the 2-Wasserstein distance
and Maximum Mean Discrepancy (MMD) generally show
consistent performance across different sampling methods,
as demonstrated in Table 3. Additionally, the quantitative
results frequently align with the qualitative outcomes. For
instance, this alignment is evident from GMMVI samples
on Funnel or the GBS samples on the Fashion.

O5) For multimodal target distributions, both forward and
reverse ESS tend to exhibit a ’binary’ pattern, frequently tak-
ing values of 0 or 1. Forward ESS, in particular, often tends
to be predominantly zero for higher dimensional problems,
further complicating the evaluation of mode collapse sever-
ity. In contrast, EUBO and ELBO offer a more continuous
and informative perspective in assessing model performance
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ELBO ↑ CREDIT SEEDS CANCER BROWNIAN IONOSPHERE SONAR LGCP

MFVI −524.859±0.035 −76.733±0.012 −29.407±0.557 −3.872±0.012 −123.419±0.040 −137.672±0.043 383.18±0.059

GMMVI −504.487±0.001 −73.415±0.002 121.442±5.591 1.092±0.006 −111.832±0.007 −108.726±0.007 OOM
SMC −580.936±15.915 −74.699±0.100 −67.959±4.345 −1.874±0.622 −114.751±0.238 −111.355±1.177 393.907±5.727

AFT −584.766±13.979 −74.269±0.090 −15.515±5.100 N/A −113.272±0.647 −110.671±1.240 394.271±6.432

CRAFT −573.387±17.59 −73.793±0.015 19.283±0.523 0.886±0.053 −112.386±0.182 −115.618±1.316 495.291±0.384

FAB −504.496±0.001 −73.418±0.002 39.922±8.200 1.031±0.010 −111.678±0.003 −108.593±0.008 402.212±0.941

MCD N/A −73.652±0.003 N/A 0.643±0.012 −111.942±0.006 −109.534±0.055 444.313±0.452

LDVI N/A −73.530±0.003 N/A 0.772±0.016 −111.788±0.003 −108.841±0.006 161.839±1.436

PIS −846.568±2.417 −88.919±2.051 39.542±5.302 N/A −125.030±0.688 −142.868±3.289 479.542±0.403

DDS −514.736±1.223 −75.206±0.209 19.997±0.690 0.561±0.228 −114.191±0.105 −121.222±5.985 N/A
GBS −508.108±0.145 −88.778±0.109 −23.495±0.737 N/A −133.777±0.152 −153.094±0.500 N/A

Table 5: ELBO values for various target densities. The best results are highlighted in bold. N/A denotes cases where
reasonable results could not be obtained due to numerical issues. OOM refers to problems caused by memory constraints.

(cf. Appendix E, Table 9).

O6) No single method exhibits superiority across all sit-
uations. Generally, GMMVI and FAB demonstrate good
ELBO values across a diverse set of tasks, although both
tend to suffer from mode collapse in high dimensions. In
contrast, diffusion-based methods such as MCD and LDVI
exhibit resilience against mode collapse but frequently fall
short of achieving satisfactory ELBO values.

M1) Resampling causes mode collapse in high dimensions
(cf. Ablation F.3). SIS methods, in particular, experience
severe mode collapse in high dimensions, as illustrated in
Figure 2. Notably, eliminating the resampling step in Se-
quential Monte Carlo (SMC) proves effective in mitigating
this issue, but results in worse ELBO values.

M2) There exists an exploration-exploitation trade-off when
setting the support of the proposal distribution π0 in Varia-
tional Monte Carlo (cf. Ablation F.4). Opting for a small
initial support of π0 results in tight ELBO values but can
limit coverage to only a few modes. Conversely, employ-
ing a sufficiently large initial support helps prevent mode
collapse but introduces additional looseness in the ELBO.

M3) Learning the proposal distribution π0 in Variational
Monte Carlo methods often leads to mode collapse, espe-
cially in high dimensions. Training the base distribution end-
to-end by maximizing the extended ELBO or pre-training
the base distribution, for example, using methods like MFVI,
results in mode collapse, as indicated in Ablation F.5 and
Ablation F.8. Despite the occurrence of mode collapse, these
strategies yield higher ELBOs, emphasizing the inherent
exploration-exploitation trade-off discussed in M2).

M4) Variational Monte Carlo methods heavily benefit from
using a large number of steps T . This is shown in Ablation
F.2, where increasing the annealing steps for SIS methods
and discretization steps for diffusion-based methods leads
to tighter evidence bounds. However, increasing T results in

prolonged computational runtimes and demands substantial
memory resources.

M5) GMMVI exhibits high sample efficiency (cf. Table
10). Arenz et al. (2022) employ a replay buffer to enhance
the sample efficiency of GMMVI, leading to orders of mag-
nitude fewer target evaluations required for convergence.
Consequently, GMMVI may be the preferable choice when
target evaluations are time-consuming.

M6) Langevin diffusion methods demonstrate low sample
efficiency, as highlighted in Table 10. These methods re-
quire evaluating the target at each intermediate discretiza-
tion step due to the score function being part of the SDE,
and they typically need many iterations to converge. Other
diffusion-based methods that do not require target evalua-
tions at every step, such as DDS, often perform poorly and
suffer from mode collapse (cf. Ablation F.7). To address
this, Zhang & Chen (2021) proposed incorporating the score
function into the network architecture, resulting again in
poor sample efficiency.

9. Conclusion
In this work, we assessed the latest sampling methods using
a standardized set of tasks. Our exploration encompassed
various performance criteria, with a specific focus on quanti-
fying mode collapse. Through a comprehensive evaluation,
we illuminated the strengths and weaknesses of state-of-the-
art sampling methods, thereby offering a valuable reference
for future developments.
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Richter, L., Boustati, A., Nüsken, N., Ruiz, F., and Akyildiz,
O. D. Vargrad: a low-variance gradient estimator for
variational inference. Advances in Neural Information
Processing Systems, 33:13481–13492, 2020.

11



Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling

Richter, L., Berner, J., and Liu, G.-H. Improved sampling
via learned diffusions. arXiv preprint arXiv:2307.01198,
2023.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training gans. Advances in neural information processing
systems, 29, 2016.
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A. Performance Criteria Details
Here, we provide further details on the computation of the various performance criteria introduced in the main manuscript.

A.1. Density-Ratio-Based Criteria

Forward and Reverse Importance-Weighted Estimation of Z. Using the definition of the normalization constant, the
importance-weighted reverse estimate of Z is given by

Zr :=

∫
γ(x)dx =

∫
qθ(x)

qθ(x)
γ(x) = Eqθ

[ γ(x)

qθ(x)

]
≈ 1

Nqθ

∑
xi∼qθ

γ(xi)

qθ(xi)
(14)

where Nqθ denotes the number of samples from qθ used for the Monte Carlo estimate of the expectation. Using the identity
Z−1 = π(x)/γ(x), we obtain the forward estimation of Z as

Z−1 =

∫
Z−1qθ(x)dx = Eπ

[qθ(x)
γ(x)

]
, and thus, Zf := 1/Eπ

[qθ(x)
γ(x)

]
≈ 1/

( 1

Nπ

∑
xi∼π

qθ(xi)

γ(xi)

)
, (15)

where Nπ denotes the number of samples from π used for the Monte Carlo estimate of the expectation.

Forward and Reverse Effective Sample Size. The (reverse) effective sample size (ESS), or equivalently, reverse ESS
(Shapiro, 2003) is defined as

ESSr := 1/Eqθ

[( π(x)

qθ(x)

)2]
= Z2

r/Eqθ

[( γ(x)

qθ(x)

)2]
=

(
Eqθ

[ γ(x)

qθ(x)

])2

/Eqθ

[( γ(x)

qθ(x)

)2]
, (16)

where Z is approximated using the reverse estimate as defined in Eq. 14. Using the definition of the ESS, it is straightforward
to see that

ESSf := 1/Eqθ

[( π(x)

qθ(x)

)2]
= 1/Eπ

[ π(x)

qθ(x)

]
= Zf/Eπ

[ γ(x)

qθ(x)

]
= Eπ

[qθ(x)
γ(x)

]−1

/ Eπ

[ γ(x)

qθ(x)

]
, (17)

where Z is approximated using the forward estimate as defined in Eq. 15.

A.2. Integral Probability Metrics

Maximum Mean Discrepancy. The Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) is a kernel-based measure
of distance between two distributions. The MMD quantifies the dissimilarity between these distributions by comparing their
mean embeddings in a reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950) with kernel k. In our setting, we are
interested in computing the MMD between a model qθ and target distribution π. Formally, if Hk is the RKHS associated
with kernel function k, the MMD between qθ and π is the integral probability metric defined by:

MMDk(q
θ, π) = sup

f∈Hk:∥f∥Hk
≤1

(
Ex∼qθ [f(x)]− Ey∼π[f(y)]

)
, (18)

with MMDk(q
θ, π) ≥ 0 and MMDk(q

θ, π) = 0 if and only if qθ = π. The minimum variance unbiased estimate of MMDk

between two sample sets X ∼ qθ and Y ∼ π with sizes n and m respectively is given by

MMDk(q
θ, π) ≈

√√√√ 1

n(n− 1)

n∑
i,j

k(xi,xj) +
1

m(m− 1)

m∑
i,j

k(yi,yj)−
2

nm

n∑
i

m∑
j

k(xi,yj), (19)

In our experiments, we took a squared exponential kernel given by k(x,y) = exp
(
− ∥x− y∥22/α

)
, where the bandwidth

α is determined using the median heuristic (Gretton et al., 2012). The code for computing the MMD was built upon
https://github.com/antoninschrab/mmdfuse-paper.

Entropic Optimal Transport Distance. The 2-Wasserstein distance is given by

W2(q
θ, π) = inf

{ ∫
Rd×Rd

c(x,y)ξ(x,y)dxdy :

∫
Rd

ξ(x,y)dy = qθ(x),

∫
Rd

ξ(x,y)dx = π(y)

}1/2

, (20)
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with cost c, chosen as c(x,y) = ∥x−y∥2 in our experiments. To obtain a tractable objective, an entropy regularized version
has been proposed (Peyré et al., 2019), that is,

W2,ε(q
θ, π) = inf

{ ∫
Rd×Rd

c(x,y)ξ(x,y)dxdy − εH(ξ) :

∫
Rd

ξ(x,y)dy = qθ(x),

∫
Rd

ξ(x,y)dx = π(y)

}1/2

. (21)

with entropy H(ξ) = −
∫
Rd×Rd ξ(x,y) log ξ(x,y)dxdy. We chose ε = 10−3 for all experiments. The code was taken from

https://github.com/ott-jax/ott.

A.3. Extending the Entropic Mode Coverage

If the true mode probabilities p∗(ξ|x) are not uniformly distributed, EMC=1 does not correspond to the optimal value. In
that case, we propose the expected Jensen-Shannon divergence, that is,

EJS := Eqθ(x)DJS(p(ξ|x)∥p∗(ξ|x)), (22)

with

DJS(p(ξ|x)∥p∗(ξ|x)) =
1

2
DKL

(
p(ξ|x)∥p

∗(ξ|x) + p(ξ|x)
2

)
+

1

2
DKL

(
p∗(ξ|x)∥p

∗(ξ|x) + p(ξ|x)
2

)
, (23)

as an alternative heuristic to quantify mode collapse. Similar to EMC, EJS is bounded and is straightforward to interpret:
When employing the base 2 logarithm, EJS remains bounded, i.e., 0 ≤ EJS. ≤ 1. Moreover EJS = 0 implies that the model
matches the potentially unbalanced true mode probabilities, while EJS = 1 indicates that p and p∗ possess no overlapping
probability mass.

B. Details on Unnormalized Importance Weights / Density Ratios
Here, we provide further details on how the unnormalized importance weights / density ratios are computed for different
methods.

Tractable Density Methods. For models with tractable density qθ(x) the marginal (unnormalized) importance weights can
trivially computed using

w =
γ(x)

qθ(x)
.

Diffusion-based Methods. For diffusion-based methods, the extended importance weights can then be constructed as

pθ(x0:T )

qθ(x0:T )
=

π(xT )
∏T

t=1 Bθ
t−1(xt−1|xt)

π0(x0)
∏T−1

t=0 F θ
t+1(xt+1|xt)

. (24)

The different choices of forward and backward transition kernels F θ
t+1, B

θ
t−1 are listed in Table 6. Some methods such as

DDS (Vargas et al., 2023a), PIS (Zhang & Chen, 2021) and GFN (Zhang et al., 2023) introduce a reference process pref with

pref(x0:T ) = pref
0 (x0)

T−1∏
t=0

F ref
t+1(xt+1|xt) = pref

T (xT )

T∏
t=1

Bθ
t−1(xt−1|xt). (25)

This allows for rewriting Eq. 24 as

pθ(x0:T )

qθ(x0:T )
=

pθ(x0:T )

pref(x0:T )
· p

ref(x0:T )

qθ(x0:T )
=

π(xT )

pref
T (xT )

· p
ref(x0:T )

qθ(x0:T )
, (26)

potentially resulting in more tractable density ratios compared to Eq. 24. For concrete examples see e.g. (Zhang et al., 2023).
A continuous-time analogous of the reference process is detailed in (Vargas et al., 2024). Moreover, in continuous-time,
the importance weights correspond to a Radon–Nikodym derivative. For the sake of simplicity, we only consider the
discrete-time setting in this work. We refer the reader to (Vargas et al., 2024; Richter et al., 2023) for further details.
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Method π0(x0) F θ
t+1(xt+1|xt) Bθ

t−1(xt−1|xt)

DDS N (x0|0, σ2
0I) N (xt+1|(

√
1− βtxt + sθ(xt, t))∆t, βtσ

2
0∆t) N (xt−1|

√
1− βtxt∆t, βtσ

2
0∆t)

DIS N (x0|0, σ2
0I) N (xt+1|xt + (βtxt + sθ(xt, t))∆t, 2βtσ

2
0∆t) N (xt−1|(xt − βtxt)∆t, 2βtσ

2
0∆t)

PIS/GFN δ0 N (xt+1|xt + sθ(xt, t)∆t, σ
2
t∆t) N (xt−1| t−∆t

t xt,
t−∆t

t σ2
t∆t)

ULA arbitrary∗ N (xt+1|xt +∇xt
σ2
t log πt(xt)∆t, σ

2
t∆t) N (xt−1|xt +∇xt

σ2
t log πt(xt)∆t, σ

2
t∆t)

MCD arbitrary∗ N (xt+1|xt +∇xt
σ2
t log πt(xt)∆t, σ

2
t∆t) N (xt−1|xt + (∇xt

σ2
t log πt(xt) + sθ(xt, t))∆t, σ

2
t∆t)

CMCD arbitrary∗ N (xt+1|xt + (∇xt
σ2
t log πt(xt) + sθ(xt, t))∆t, σ

2
t∆t) N (xt−1|xt + (∇xt

σ2
t log πt(xt)− sθ(xt, t))∆t, σ

2
t∆t)

GBS arbitrary∗ N (xt+1|xt + (∇xtσ
2
t f

θ(xt, t))∆t, σ
2
t∆t) N (xt−1|xt + (∇xtσ

2
tb

θ(xt, t))∆t, σ
2
t∆t)

Table 6: Characterization of diffusion-based sampling methods. Here, sθ, fθ,bθ : Rd× [0, T ] → Rd denotes a parameterized
function approximator. ∗ In our experiments, we choose π0(x0) = N (x0|0, σ2

0∆t).

Method Bθ
t−1(xt−1|xt) Gt(xt−1,xt) F θ

t (xt|xt−1) Gt(xt−1,xt)

Optimal πt−1(xt−1)F
θ
t (xt|xt−1)/πt(xt) Zt/Zt−1 πt(xt)B

θ
t−1(xt−1|xt)/πt−1(xt−1) Zt/Zt−1

AIS/SMC/FAB πt(xt−1)F
θ
t (xt|xt−1)/πt(xt) γt(xt−1)/γt−1(xt−1) πt−1(xt)B

θ
t−1(xt−1|xt)/πt−1(xt−1) γt(xt)/γt−1(xt)

AFT/CRAFT δT θ
t (xt)(xt−1) γt(T

θ
t (xt−1))|det∇T θ

t (xt−1)|/γt−1(xt−1) δ(T θ
t−1)

−1(xt−1)(xt) γt(xt)/γt−1((T
θ
t−1)

−1(xt))|det∇(T θ
t−1)

−1(xt)|

Table 7: Characterization of Sequential Importance Methods methods: The middle column shows the backward kernels
Bθ

t−1 and the corresponding Gt when transporting samples from the prior π0 to the target πT to compute reverse criteria.
The right-most column shows the forward kernels F θ

t and the corresponding Gt when transporting samples from the target
πT back to the prior πT to compute forward criteria.

Sequential Importance Sampling Methods. Sequential importance sampling methods express the importance weights in
terms of incremental importance sampling weights, i.e.,

w =

T∏
t=1

Gt(xt−1, xt) with Gt(xt−1,xt) =
γt(xt)B

θ
t−1(xt−1|xt)

γt−1(xt−1)F θ
t (xt|xt−1)

.

For given forward transitions F θ
t , the optimal backward transitions Bθ

t−1 ensure that w = w. As the optimal transitions are
typically not available, SMC uses the AIS approximation (Neal, 2001). Moreover flow transport methods (Wu et al., 2020a;
Arbel et al., 2021; Matthews et al., 2022) use a flow as a deterministic map T θ to approximate the incremental IS weights.
In Table 7, we list different F θ

t , B
θ
t−1 and their corresponding incremental importance sampling weights.

C. Benchmark Target Details
Here, we introduce the target densities considered in this benchmark more formally.

C.1. Bayesian Logistic Regression

We used four binary classification problems in our benchmark, which have also been used in various other work to compare
different state-of-the-art methods in variational inference and Markov chain Monte Carlo. We assess the performance of a
Bayesian logistic model with:

x ∼ N
(
0, σ2

wI
)
,

yi ∼ Bernoulli(sigmoid(x⊤ui))

on two standardized datasets {(ui, yi)}i, namely Ionosphere (d = 35) with 351 data points and Sonar (d = 61) with 208
data points.

The German Credit dataset consists of (d = 25) features and 1000 data points, while the Breast Cancer dataset has
(d = 31) dimensions with 569 data points, which we standardize and apply linear logistic regression.
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C.2. Random Effect Regression

The Seeds (d = 26) target is a random effect regression model trained on the seeds dataset:

τ ∼ Gamma(0.01, 0.01)

a0, a1, a2, a12 ∼ N (0, 10)

bi ∼ N
(
0,

1√
τ

)
, i = 1, . . . , 21

logitsi = a0 + a1xi + a2yi + a12xiyi + b1, i = 1, . . . , 21

ri ∼ Binomial (logitsi, Ni) , i = 1, . . . , 21.

The goal is to do inference over the variables τ, a0, a1, a2, a12 and bi for i = 1, . . . , 21, given observed values for xi, yi and
Ni.

C.3. Time Series Models

The Brownian (d = 32) model corresponds to the time discretization of a Brownian motion:

αinn ∼ LogNormal(0, 2),

αobs ∼ LogNormal(0, 2),

x1 ∼ N (0, αinn),

xi ∼ N (xi−1, αinn), i = 2, . . . 20,

yi ∼ N (xi, αobs), i = 1, . . . 30.

inference is performed over the variables αinn, αobs and {xi}30i=1 given the observations {yi}10i=1 ∪ {yi}30i=20.

C.4. Spatial Statistics

The Log Gaussian Cox process (d = 1600) is a popular high-dimensional task in spatial statistics (Møller et al., 1998)
which models the position of pine saplings. Using a d = M ×M = 1600 grid, we obtain the unnormalized target density by

N (x;µ,K)
∏

i∈[1:M ]2

exp (xiyi − a exp (xi)) .

C.5. Synthetic Targets

We evaluate on three different mixture models which all follow the structure, that is,

π(x) =

K∑
k=1

wkπk(x),

K∑
k=1

wk = 1,

where K denotes the number of components.

The MoG (d = N) distribution, taken from (Midgley et al., 2022), consists of K = 40 mixture components with

πk(x) = N (µk, I)

µk ∼ U(−40, 40)

wk = 1/K,

where U(l, u) refers to a uniform distribution on [l, u].
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The MoS (d = N) comprises 10 Student’s t-distributions t2, where the 2 refers to the degree of freedom. Generally,
Student’s t-distributions have heavier tails compared to Gaussian distributions, making them sharper and more challenging
to approximate.

πk(x) = t2 + µk,

µk ∼ U(−10, 10),

wk = 1/K,

where µk refers to the translation of the individual components.

The Funnel (d = 10) target introduced in (Neal, 2003) is a challenging funnel-shaped distribution given by

π(x) = N (x1; 0, σ
2
f )N (x2:10; 0, exp(x1)I),

with σ2
f = 9.

Lastly, we follow Doucet et al. (2022a) and use NICE (Dinh et al., 2014) to train a normalizing flow on a 14 × 14 and
28× 28 variant of MNIST (DIGITS) and on the 28× 28 Fashion MNIST dataset (Fashion).

D. Algorithms and Parameter Choices
Here, we discuss the parameter choices of all methods. Most of these choices are based on recommendations of the authors.
For some choices, we run ablation studies to find suitable values.

Gaussian Mean Field Variational Inference (MFVI). We updated the mean and the diagonal covariance matrix using the
Adam optimizer (Kingma & Ba, 2014) for 100k iterations with a batch size of 2000. We ensured non-negativeness of the
variance by using a log transformation. The mean is initialized at 0 for all experiments. The initial covariance/scale and the
learning rate are set according to Table 8.

Gaussian Mixture Model Variational Inference (GMMVI). For GMMVI, we ported the tensorflow implementation of
https://github.com/OlegArenz/gmmvi to Jax and integrated it into our framework. We use the specifications
(Arenz et al., 2022) described as SAMTRUX. We make use of their adaptive component initializer and start using ten
components. The initial variance of the components is set according to Table 8.

Sequential Monte Carlo (SMC). For the Sequential Monte Carlo (SMC) approach, we leveraged the codebase available
at https://github.com/google-deepmind/annealed_flow_transport. We used 2000 particles and 128
annealing steps (temperatures) T . We used resampling with a threshold of 0.3. We used one Hamiltonian Monte Carlo
(HMC) step per temperature with 10 leapfrog steps. We tuned the stepsize of HMC according to Table 8 where we used
different stepsizes depending on the annealing parameter βt. We additionally tune the scale of the initial proposal distribution
π0 as shown in Table 8.

Continual Repeated Annealed Flow Transport (CRAFT/AFT). As AFT and CRAFT build on Sequential Monte Carlo
(SMC), we employed the same SMC specifications detailed above. Notably, we found that employing simpler flows in
conjunction with a greater number of temperatures yielded superior and more robust performance compared to the use of
more sophisticated flows such as RealNVP or Neural Spline Flows. Consequently, we opted for 128 temperatures, utilizing
diagonal affine flows as the transport map. Specifically for AFT, we determined that 400 iterations per temperature were
sufficient to achieve converged training results. For CRAFT and SNF, we found that a total of 3000 iterations provided
satisfactory convergence during training. For all methods, we use 2000 particles for training and testing and tune the learning
rate and the scale of the initial proposal distribution π0 as shown in Table 8.

Flow Annealed Importance Sampling Bootstrap (FAB). We built our implementation off of https://github.com/
lollcat/fab-jax. We adjusted the parameters of FAB in accordance with the author’s most important hyperparameter
suggestions and to ensure that SMC performs reasonably well. To achieve this, we set the number of temperatures to 128
and used HMC as MCMC kernel. For the flow architecture we use RealNVP (Dinh et al., 2016) where the conditioner is
given by an 8-layer MLP. Furthermore, we utilized FAB’s replay buffer to speed up computations. The learning rate and
base distribution scale are adjusted for target specificity, following the specifications outlined in Table 8. We used a batch
size of 2048 and trained FAB for 3000 iterations which proved sufficient for achieving a satisfactory convergence.

Denoising Diffusion Sampler (DDS) and Path Integral Sampler (PIS). We use the implementation of https:
//github.com/franciscovargas/denoising_diffusion_samplers to integrate the Diffusion and Path
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Integral Sampler into our framework. We set the parameters of the SDEs according to the authors, i.e., (Zhang & Chen,
2021) and (Vargas et al., 2023a) and use 128 timesteps and a batch size of 2000 if not otherwise stated. Both methods use
the network proposed in (Zhang & Chen, 2021) which uses a sinusoidal position embedding for the timestep and uses the
gradient of the log target density as an additional term. As proposed, we use a two-layer neural network with 64 hidden
units. For DDS we use a cosine scheduler (Vargas et al., 2023a) and for PIS a uniform time scheduler (Zhang & Chen, 2021).
Both methods were trained using 40k iterations.

Monte Carlo Diffusions (MCD) and Langevin Diffusion Variational Inference (LDVI). We build our implementation of
Langevin Diffusion methods on https://github.com/tomsons22/LDVI. For experiments where performance is
solely measured in terms of ELBO, due to the lack of samples from π or access to Z, we train all parameters of the SDE by
maximizing the EUBO as suggested by (Geffner & Domke, 2021). For multimodal target densities, we fix the proposal
distribution and the magnitude of the timestep. We found that this stabilizes training and yields better results (cf. Ablation
15). We use the network architecture proposed by (Zhang & Chen, 2021) with two hidden layers with 64 hidden units each.
We discretize the SDEs using 128 timesteps and a batchsize of 2000 if not otherwise stated. All methods were trained using
40k iterations.

Time-Reversed Diffusion Sampler (DIS) and General Bridge Samples (GBS). We base the implementation of DIS
and GBS on https://github.com/juliusberner/sde_sampler and implemented them in Jax. The remaining
parameters follow the description of DDS and PIS above.

Methods / Parameters Grid MoG MoS Funnel Digits/Fashion Credit Cancer Brownian Sonar Seeds Ionosphere LGCP

MFVI
Initial Scale {0.1, 1, 10} - - 1 0.1 0.1 10 1 0.1 1 1 0.1
Learning Rate {10−2, 10−3, 10−4, 10−5} 10−2 10−3 10−2 10−4 10−3 10−2 10−3 10−3 10−4 10−4 10−3

GMMVI
Initial Scale {0.1, 1, 10} - - 0.1 10 0.1 1 0.1 1 0.1 10 NA

SMC
Initial Scale {0.1, 1, 10} - - 1 1 0.1 1 1 1 1 1 1
HMC stepsize (β ≤ 0.5) {0.001, 0.01, 0.05, 0.1, 0.2} 0.2 0.2 0.001 0.2 0.1 0.05 0.001 0.05 0.2 0.2 0.01
HMC stepsize (β > 0.5) {0.001, 0.01, 0.05, 0.1, 0.2} 0.001 0.2 0.1 0.2 0.1 0.01 0.05 0.001 0.05 0.2 0.2

AFT
Initial Scale {0.1, 1, 10} - - 1 - 0.1 0.1 NA 1 1 1 1
Learning Rate {10−3, 10−4, 10−5} 10−3 10−4 10−3 10−3 10−3 10−3 NA 10−3 10−4 10−3 10−3

CRAFT
Initial Scale {0.1, 1, 10} - - 1 - 0.1 1 1 1 0.1 0.1 1
Learning Rate {10−3, 10−4, 10−5} 10−3 10−4 10−3 10−4 10−4 10−3 10−3 10−3 10−3 10−3 10−3

FAB
Initial Scale {0.1, 1, 10} - - 1 - 0.1 0.1 1 0.1 0.1 1 0.1
Learning Rate {10−3, 10−4, 10−5} 10−5 - 10−4 10−3 10−4 10−3 10−3 10−3 10−4 10−3 10−3

DDS/DIS
Initial Scale {0.1, 1, 10} - - 1 - 1 1 0.1 1 0.1 1 0.1
Learning Rate {10−3, 10−4, 10−5} 10−4 10−4 10−3 10−3 10−3 10−4 10−4 10−3 10−4 10−4 10−4

PIS
Learning Rate {10−3, 10−4, 10−5} 10−3 10−3 10−3 10−3 10−4 10−4 10−4 10−3 10−3 10−4 NA

LDVI
Initial Scale {0.1, 1, 10} - - 1 - 0.1 0.1 1 1 0.1 0.1 0.1
Learning Rate {10−3, 10−4, 10−5} 10−3 10−3 10−4 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

MCD
Initial Scale {0.1, 1, 10} - - 1 - 0.1 0.1 1 0.1 0.1 1 1
Learning Rate {10−3, 10−4, 10−5} 10−3 10−3 10−3 10−3 10−4 10−3 10−3 10−3 10−3 10−3 10−3

Table 8: Hyperparameter selection for all different sampling algorithms. The ‘Grid’ column indicates the values over which
we performed a grid search. The values in the column which are marked with experiment names indicate which values were
chosen for the reported results.

E. Further Experimental results
We additionally provide sample visualizations for Funnel and MoG in Figure 4, and Digits and Fashion in Figure 5. We
also report additional evaluation criteria for MoG and MoS, including 2-Wasserstein distance, maximum mean discrepancy,
reverse and forward partition function error, lower and upper evidence bounds, and reverse and forward effective sample
size in Table 9. Lastly, we provide insights into the models efficiency by providing values for the number of target queries
and wallclock time needed, for obtaining the best ELBO value. These results are shown in Table 10.
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MFVI GMMVI SMC AFT

CRAFT FAB MCD LDVI

PIS DIS DDS GBS

MFVI GMMVI SMC AFT

CRAFT FAB MCD LDVI

PIS DIS DDS GBS

Figure 4: Visualization of samples drawn from different sampling methods for Funnel (top) and MoG (bottom).
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MFVI GMMVI SMC AFT

CRAFT FAB MCD LDVI

PIS DIS DDS GBS

MFVI GMMVI SMC AFT

CRAFT FAB MCD LDVI

PIS DIS DDS GBS

Figure 5: Visualization of samples drawn from different sampling methods for Digits (top) and Fashion (bottom).
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MoG MoS

d = 2 d = 50 d = 200 d = 2 d = 50 d = 200 d = 2 d = 50 d = 200 d = 2 d = 50 d = 200

W2 ↓ MMD ↓ W2 ↓ MMD ↓
MFVI 506.967±7.385 36158.898±8.765 148945.539±14.42 0.251±0.002 0.209±0.000 0.211±0.000 24.688±0.225 2282.540±1.959 12956.415±6.530 0.162±0.001 0.187±0.001 0.195±0.000

GMMVI 76.474±20.60 31983.344±1065. 140166.746±3020. 0.052±0.010 0.202±0.013 0.214±0.012 2.851±0.128 1249.010±297.3 10402.243±870.9 0.036±0.000 0.133±0.018 0.211±0.026

SMC 32.387±9.219 46351.236±4.795 176586.789±3.638 0.047±0.004 0.631±0.000 0.611±0.000 34.963±2.833 3297.640±1372. 17612.889±2423. 0.069±0.003 0.431±0.161 0.509±0.113

AFT 21.571±6.374 44914.194±1154. 184075.172±4347. 0.040±0.003 0.622±0.009 0.622±0.008 41.299±11.27 2648.410±301.3 20207.756±998.6 0.077±0.011 0.395±0.082 0.611±0.019

CRAFT 24.554±4.216 42953.544±389.9 177039.500±329.3 0.041±0.003 0.600±0.003 0.609±0.002 10.108±0.186 1806.321±117.4 14411.712±305.9 0.048±0.000 0.233±0.021 0.425±0.024

FAB 57.111±24.53 9567.319±626.1 58832.370±1092. 0.047±0.007 0.073±0.005 0.099±0.001 8.868±1.673 1193.455±152.3 7490.803±433.9 0.035±0.003 0.093±0.014 0.102±0.012

MCD 211.657±3.504 4892.591±71.26 30977.775±276.6 0.136±0.001 0.043±0.000 0.054±0.000 102.002±0.338 6406.902±20.87 32034.058±40.86 0.215±0.001 0.256±0.000 0.257±0.000

LDVI 178.241±3.129 4931.898±87.43 31019.831±278.6 0.118±0.003 0.043±0.000 0.054±0.000 38.758±4.940 2899.472±102.9 17435.914±299.8 0.084±0.008 0.181±0.003 0.183±0.002

PIS 10.398±1.599 10405.749±69.41 92623.455±1219. 0.031±0.001 0.082±0.000 0.168±0.003 2.476±0.236 2078.751±41.51 32415.244±63.11 0.033±0.001 0.205±0.008 0.258±0.001

DIS 65.162±35.72 3044.733±464.7 31573.015±702.4 0.071±0.017 0.034±0.003 0.055±0.001 3.486±0.214 2200.590±18.73 13059.766±72.12 0.037±0.002 0.155±0.001 0.152±0.001

DDS 16.217±3.202 5435.177±172.2 38576.259±392.9 0.035±0.002 0.045±0.001 0.065±0.001 3.641±0.224 2145.188±3.960 24187.186±256.4 0.034±0.003 0.124±0.001 0.219±0.003

GBS 140.138±39.76 5027.819±103.7 31970.248±1177. 0.108±0.021 0.043±0.000 0.055±0.001 2.572±0.099 5708.871±20.91 22914.911±300.4 0.034±0.001 0.232±0.000 0.203±0.001

∆ logZr ↓ ∆ logZf ↓ ∆ logZr ↓ ∆ logZf ↓
MFVI 0.084±0.066 3.658±0.040 3.676±0.0130 0.150±0.002 0.185±0.002 0.176±0.0050 0.018±0.003 3.009±0.291 8.048±0.758 0.114±0.000 0.048±0.002 5.982±0.019

GMMVI 0.044±0.011 1.715±0.119 1.709±0.0580 0.003±0.002 0.048±0.007 0.028±0.0270 0.000±0.000 1.282±0.221 7.126±0.377 0.000±0.000 0.084±0.055 5.708±0.478

SMC 0.069±0.010 690.721±11.21 6326.621±51.428 2.728±0.000 161.796±0.000 661.945±0.0000 0.016±0.009 3.880±1.105 49.846±7.638 1.262±0.000 80.992±0.000 338.745±0.000

AFT 0.023±0.015 765.624±108.0 5567.272±277.52 1.157±0.038 110.955±18.37 420.932±12.987 0.024±0.014 4.081±1.579 47.121±6.693 0.639±0.095 205.297±23.91 12765.117±2877.

CRAFT 0.008±0.001 337.094±9.296 2504.363±64.970 0.901±0.007 100.987±0.065 415.277±0.4550 0.004±0.001 0.822±0.087 19.738±0.342 0.333±0.013 210.245±6.098 12516.502±631.8

FAB 0.007±0.003 2.952±0.247 3.331±0.2290 1.193±0.125 126.363±1.789 545.226±5.6200 0.005±0.001 3.358±1.062 43.419±4.690 0.268±0.093 84.592±22.64 13514.417±101.9

MCD 0.010±0.002 31.319±1.793 2354.020±60.855 0.009±0.005 21.148±1.478 305.656±2.6620 0.010±0.002 28.607±1.275 210.536±1.393 0.068±0.010 24.757±0.841 147.321±1.272

LDVI 0.038±0.015 8.159±0.775 647.953±7.2120 0.031±0.008 15.477±0.815 282.699±4.1050 0.004±0.001 4.360±0.741 103.224±2.118 0.017±0.003 5.472±0.938 83.029±0.819

CMCD 0.026±0.011 51.218±2.809 306.127±24.673 0.030±0.008 79.227±3.758 440.341±4.2520 0.004±0.001 10.533±0.404 167.654±1.564 0.005±0.002 12.835±0.275 148.676±2.851

PIS 0.267±0.006 7.122±0.630 40.699±0.5430 0.094±0.038 3113.492±1.978 16071.743±3.0460 0.275±0.016 12.248±0.326 209.981±2.573 0.342±0.001 54.090±0.151 304.178±0.329

DIS 0.058±0.030 87.709±8.942 11646.394±15938. 1.390±0.458 369.352±16.29 14376.906±17877. 0.049±0.005 10.448±0.607 658.634±4.952 3.212±0.028 87.897±5.255 433.741±10.78

DDS 0.012±0.005 1.739±0.442 27.506±2.5840 1.698±0.029 207.545±1.163 1052.805±1.7320 0.005±0.001 7.952±0.299 155.502±3.594 0.315±0.000 53.411±0.024 291.566±0.102

GBS 0.007±0.001 8.103±1.696 87.971±14.656 0.008±0.001 9.321±0.776 72.634±12.301 0.002±0.000 53.767±0.732 157.791±2.947 0.010±0.002 47.441±0.098 101.874±2.214

ELBO ↑ EUBO ↓ ELBO ↑ EUBO ↓
MFVI −3.011±0.002 −3.690±0.000 −3.695±0.0010 3.089±0.000 164.114±0.000 666.954±0.0000 −1.038±0.007 −5.957±0.007 −16.969±0.011 1.218±0.001 72.663±0.005 324.202±0.044

GMMVI −0.045±0.011 −1.715±0.119 −1.709±0.0580 3.619±1.308 240.459±51.13 645.405±6.3090 −0.001±0.000 −3.890±0.122 −15.649±0.173 0.002±0.001 57.746±1.928 268.513±17.65

SMC −2.095±0.009 −877.034±10.23 −6816.697±44.195 2.734±0.000 161.921±0.000 662.404±0.0000 −0.010±0.016 −4.634±1.088 −52.535±7.564 1.272±0.000 81.325±0.000 340.984±0.000

AFT −1.778±0.090 −927.16±103.8 −6053.823±260.99 1.248±0.045 117.63±22.16 439.434±16.788 −0.041±0.031 −4.923±1.546 −50.328±6.627 0.67±0.100 207.625±24.14 12801.561±2892.

CRAFT −0.666±0.026 −451.399±7.561 −2836.471±57.695 0.976±0.007 103.674±0.069 425.500±0.7070 −0.002±0.002 −0.339±0.180 −22.687±0.358 0.346±0.013 212.210±6.160 12553.883±645.7

FAB −19.932±12.80 −299.916±253.4 −63.212±56.191 0.865±0.113 93.560±5.086 386.884±12.161 −0.257±0.075 75.735±175.8 −98.558±7.688 0.162±0.055 18.088±2.503 227.514±0.320

MCD −0.651±0.014 −185.021±0.743 −4017.832±20.356 0.652±0.008 43.670±0.457 358.687±2.1120 −1.215±0.005 −69.358±0.633 −308.728±0.450 0.734±0.002 47.834±0.820 208.626±0.525

LDVI −0.986±0.136 −29.034±0.591 −956.576±6.2700 1.072±0.242 51.137±0.177 375.527±3.1100 −0.311±0.034 −28.471±1.018 −173.716±2.629 0.198±0.008 20.887±1.042 132.711±1.817

PIS −0.585±0.016 −16.881±0.026 −65.700±0.2010 7.344±0.004 3626.120±1.360 16979.347±4.4700 −0.387±0.009 −29.261±1.743 −306.678±0.548 1.868±0.000 88.192±0.005 363.435±0.030

DIS −1.850±0.359 −181.348±15.47 −14142.693±17807. 6.653±0.357 546.335±30.86 15792.004±18966. −0.157±0.023 −36.704±0.629 −819.959±6.264 4.778±0.038 193.270±3.293 658.575±7.820

DDS −0.527±0.022 −13.284±0.460 −60.642±2.3330 4.176±0.000 291.867±0.047 1224.926±2.4850 −0.110±0.007 −31.681±0.363 −244.188±3.504 1.783±0.000 86.014±0.001 351.204±0.005

GBS −0.473±0.061 −35.771±1.105 −161.259±20.704 0.485±0.047 67.819±2.157 204.498±48.539 −0.064±0.004 −99.369±0.158 −258.263±2.639 0.064±0.004 73.545±0.107 147.412±1.504

ESSr ↑ ESSf ↑ ESSr ↑ ESSf ↑
MFVI 0.077±0.016 0.997±0.000 0.988±0.001 0.286±0.000 0.000±0.000 0.000±0.000 0.180±0.007 0.031±0.007 0.006±0.001 0.163±0.000 0.000±0.000 0.000±0.000

GMMVI 1.000±0.000 1.000±0.000 1.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.997±0.000 0.027±0.004 0.006±0.001 0.997±0.000 0.000±0.000 0.000±0.000

MCD 0.311±0.013 0.001±0.000 0.000±0.000 0.289±0.010 0.000±0.000 0.000±0.000 0.332±0.004 0.001±0.000 0.000±0.000 0.352±0.004 0.000±0.000 0.000±0.000

LDVI 0.207±0.044 0.002±0.000 0.000±0.000 0.269±0.046 0.000±0.000 0.000±0.000 0.742±0.006 0.002±0.000 0.000±0.000 0.761±0.004 0.000±0.000 0.000±0.000

PIS 0.529±0.012 0.006±0.001 0.002±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.840±0.004 0.003±0.000 0.000±0.000 0.042±0.000 0.000±0.000 0.000±0.000

DIS 0.078±0.025 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.580±0.003 0.002±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

DDS 0.338±0.003 0.003±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.780±0.010 0.002±0.000 0.000±0.000 0.032±0.000 0.000±0.000 0.000±0.000

GBS 0.405±0.029 0.002±0.000 0.000±0.000 0.380±0.027 0.000±0.000 0.000±0.000 0.879±0.002 0.001±0.000 0.000±0.000 0.721±0.161 0.000±0.000 0.000±0.000

Table 9: Results for various sampling methods for MoG and MoS with varying dimensions d. Evaluation criteria include
2-Wasserstein distance (W2), maximum mean discrepancy (MMD), reverse and forward partition function error (∆ logZr,
∆ logZf ), lower and upper evidence bounds (ELBO, EUBO), reverse and forward effective sample size (ESSr, ESSf ). The
best results are highlighted in bold. Arrows (↑, ↓) indicate whether higher or lower values are preferable, respectively.

NFE ↓
METHOD d = 2 d = 50 d = 200

MFVI 6.5× 106 2.3× 106 1.9× 106

GMMVI 1.4× 105 5.9× 105 7.9× 105

SMC 2.8× 106 2.8× 106 2.8× 106

AFT 2.0× 105 2.0× 105 2.0× 105

CRAFT 4.5× 109 4.4× 109 4.5× 109

FAB 1.5× 107 3.4× 107 3.4× 107

DDS 6.0× 108 4.8× 108 3.6× 108

MCD 1.3× 109 1.3× 109 1.2× 109

LDVI 1.3× 109 1.3× 109 1.3× 109

Table 10: Number of function evaluations (NFE), that is number of times a sampling method queries γ(x) until achieving
the highest ELBO value for varying dimensions d on MoG.

F. Ablation Studies
F.1. Ablation Study: Batchsize and Number of Particles

Experimental Setup. We test the influence of different batchsizes/number of particles on ELBO and EMC on the MoG
experiment for various methods. We use the parameters detailed in Appendix D.

Discussion. The results for the ablation study for the batchsize can be found in Table 11. We find that increasing batchsizes
do not yield significant performance increases for simple methods such as MFVI. For more complex methods such as MCD
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or DDS, larger batchsizes tend to yield consistently better ELBO values across varying dimensionalities of the target density.
In contrast, EMC values are unaffected by larger batchsizes (cf. MCD d = 200).

The results for the number of particles can be found in Table 12. Surprisingly, ELBO values do often not improve beyond
512 particles, despite particle interactions through resampling (Del Moral et al., 2006). Moreover, similar to the batch size,
EMC does not change significantly when using a larger number of particles.

ELBO ↑ EMC ↑
METHOD BATCHSIZE d = 2 d = 50 d = 200 d = 2 d = 50 d = 200

MFVI 64 −3.011±0.003 −3.707±0.002 −3.746±0.001 0.383±0.002 0.0±0.0 0.0±0.0

128 −3.012±0.004 −3.698±0.002 −3.731±0.002 0.382±0.003 0.0±0.0 0.0±0.0

512 −3.011±0.004 −3.694±0.0 −3.706±0.0 0.382±0.002 0.0±0.0 0.0±0.0

1024 −3.012±0.003 −3.692±0.001 −3.701±0.002 0.382±0.002 0.0±0.0 0.0±0.0

2048 −3.012±0.003 −3.691±0.0 −3.697±0.001 0.383±0.002 0.0±0.0 0.0±0.0

MCD 64 −3.017±0.2 −942.74±8.447 −4699.422±269.44 0.796±0.003 0.994±0.001 0.989±0.0

128 −2.685±0.168 −889.472±7.41 −4145.279±179.564 0.798±0.001 0.994±0.001 0.988±0.0

512 −2.409±0.05 −876.718±6.132 −3442.883±260.824 0.796±0.002 0.994±0.0 0.988±0.0

1024 −2.277±0.131 −844.588±10.761 OOM 0.797±0.002 0.994±0.0 OOM
2048 −2.257±0.075 −823.443±18.151 OOM 0.796±0.002 0.994±0.0 OOM

DDS 64 −0.807±0.036 −16.83±0.404 −67.053±0.993 0.973±0.002 0.992±0.0 0.984±0.001

128 −0.716±0.009 −16.092±0.247 −65.232±0.4 0.978±0.002 0.991±0.001 0.983±0.001

512 −0.611±0.022 −15.61±0.206 −63.135±0.348 0.984±0.001 0.992±0.001 0.983±0.001

1024 −0.593±0.011 −15.414±0.161 −62.086±0.258 0.985±0.001 0.992±0.0 0.982±0.002

2048 −0.556±0.009 −15.313±0.165 −61.576±0.384 0.988±0.001 0.992±0.001 0.979±0.001

Table 11: ELBO and EMC values for varying batch sizes for different methods, and dimensions of the MoG target density.
Best values are marked with bold font. Here, OOM refers to ‘out of memory’.

ELBO ↑ EMC ↑
METHOD PARTICLES d = 2 d = 50 d = 200 d = 2 d = 50 d = 200

SMC 64 −9.267±0.217 −2622.073±21.637 −17904.276±25.557 0.824±0.018 0.0±0.0 0.0±0.0

128 −9.08±0.041 −2647.733±31.935 −16999.909±14.959 0.879±0.035 0.0±0.0 0.0±0.0

512 −8.823±0.033 −1911.449±8.527 −16867.03±44.663 0.941±0.004 0.0±0.0 0.0±0.0

1024 −8.595±0.035 −2323.482±13.52 −15565.314±78.958 0.971±0.004 0.0±0.0 0.0±0.0

2048 −10.317±0.028 −2041.686±20.993 −15032.371±46.049 0.965±0.002 0.0±0.0 0.0±0.0

CRAFT 64 −3.666±0.048 −793.354±19.752 −4646.891±77.062 0.986±0.001 0.0±0.0 0.0±0.0

128 −3.604±0.039 −790.385±23.036 −4656.227±80.153 0.986±0.001 0.0±0.0 0.0±0.0

512 −3.6±0.061 −784.881±14.364 −4624.869±63.618 0.987±0.0 0.0±0.0 0.0±0.0

1024 −3.552±0.041 −785.251±16.847 −4632.063±68.715 0.986±0.002 0.0±0.0 0.0±0.0

2048 −3.553±0.05 −782.068±13.855 −4625.769±55.853 0.987±0.001 0.0±0.0 0.0±0.0

Table 12: ELBO and EMC values for varying number of particles and dimensions of the MoG target density.

F.2. Ablation Study: Number of Temperatures / Timesteps T

Experimental Setup. We test the influence of different number of temperatures/timesteps T for methods of sequential
nature such as sequential importance sampling or SDE based methods. We use batch sizes of 512. The remaining parameters
are set according to Appendix D.

Discussion. The results are illustrated in Figure 6. We can see that using larger values of T tend to improves ELBO and
EUBO values across all methods.

F.3. Ablation Study: Sequential Monte Carlo Design Choices

Experimental Setup. As Sequential Monte Carlo is the basis for many sampling methods such as SNF (Wu et al., 2020a),
AFT (Arbel et al., 2021), CRAFT (Matthews et al., 2022), or FAB (Midgley et al., 2022) we perform a thorough ablation of
its design choices. In particular, we ablate the influence of the MCMC kernel and whether or not resampling is used. We
tested Metropolis-Hastings (MH) and Hamiltonian Monte Carlo (HMC) MCMC kernels where we used the same number of
function evaluations and hand-tuned the stepsizes such obtained a rejection rate ≈ 0.65. The results are shown in Table 13.
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Figure 6: Negative ELBO and EUBO values for varying temperatures/timesteps T for different dimensions of the MoG
target density. Best values are marked with bold font. Missing values for T = 256 are caused by out-of-memory problems.

Discussion. HMC outperforms MH across all dimensions with respect to both, ELBO and EMC values. Surprisingly, not
using resampling avoids mode collapse entirely as indicated by EMC ≈ 1.

MCMC RE- ELBO ↑ EMC ↑
KERNEL SAMPLING d = 2 d = 50 d = 200 d = 2 d = 50 d = 200

- −9.473±0.000 −32034.303±0.000 −292642.344±0.000 0.785±0.000 0.987±0.000 0.988±0.000

- −9.28±0.2044 −27534.303±72.32 −288123.325±108.010 0.618±0.191 0±0 0±0

MH −9.166±0.138 −26686.496±412.669 −275404.367±1375.306 0.785±0.003 0.987±0.000 0.988±0.000

MH −9.064±0.034 −22411.798±69.874 −251904.734±422.895 0.864±0.021 0±0 0±0

HMC −8.736±0.031 −2272.619±96.639 −18270.795±91.703 0.798±0.006 0.986±0.000 0.988±0.000

HMC −8.850±0.110 −1931.168±18.844 −16952.94±49.119 0.940±0.006 0±0 0±0

Table 13: Ablation study for Sequential Monte Carlo (Del Moral et al., 2006). ELBO and EUBO values for different MCMC
kernels and whether or not resampling is used. Here, MH refers to Metropolis-Hastings and HMC to Hamiltonian Monte
Carlo (Bishop, 2006). Results are reported for different dimensions of the MoG target density.

F.4. Ablation Study: Initial Model Support

Experimental Setup. We test the influence of the initial model support for different methods of sequential nature. In
particular, we vary the scale σ2

0 of the initial proposal/base distribution π0(x) = N (0, σ2
0I). To that end, we report ELBO

and EUBO values on the MoG experiment for varying dimensions. We use the parameters detailed in Appendix D. The
results are shown in Table 14.

Discussion. The results of the ablation study investigating varied initial standard deviations for parameterizing the base
distribution can be found in Table 14. We observe that, in terms of the ELBO, most methods exhibit poor performance with
a higher initial scale, particularly in higher dimensions. Conversely, EMC values tend to get 0 for small initial scales and 1
for large initial scales.
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METHOD INITIAL ELBO ↑ EMC ↑
SCALE d = 2 d = 50 d = 200 d = 2 d = 50 d = 200

SMC 1 −3.717±0.056 −1800.882±38.348 −12181.939±110.871 0.002±0.002 0.0±0.0 0.0±0.0

10 −0.175±0.408 −313.926±4.847 −2008.238±10.954 0.722±0.022 0.0±0.0 0.0±0.0

30 −0.666±0.081 −674.1±12.747 −5014.372±27.284 0.957±0.007 0.0±0.0 0.0±0.0

60 −8.823±0.033 −1911.449±8.527 −16867.03±44.663 0.941±0.004 0.0±0.0 0.0±0.0

CRAFT 1 −2.675±0.236 −11.333±0.644 −83.301±1.267 0.143±0.033 0.0±0.0 0.0±0.0

10 −0.633±0.538 −136.414±2.482 −1090.374±22.117 0.657±0.233 0.0±0.0 0.0±0.0

30 −0.229±0.018 −350.247±11.605 −2482.919±12.176 0.974±0.004 0.0±0.0 0.0±0.0

60 −3.563±0.057 −784.881±14.364 −4624.869±63.618 0.987±0.001 0.0±0.0 0.0±0.0

MCD 1 −3.676±0.001 −3.292±0.011 −4.281±0.039 0.005±0.0 0.187±0.0 0.005±0.001

10 −1.653±0.032 −87.5±0.519 −144.237±4.133 0.613±0.003 0.658±0.004 0.647±0.002

30 −1.138±0.064 −441.73±2.245 −1265.551±6.991 0.94±0.001 0.961±0.0 0.942±0.002

60 −2.384±0.059 −878.12±8.598 −3458.28±248.958 0.798±0.003 0.994±0.001 0.988±0.0

DDS 1 −3.622±0.012 −6.053±0.624 −49.0±10.277 0.0±0.0 0.187±0.0 0.0±0.0

10 −0.737±0.024 −6.954±0.146 −20.149±0.075 0.85±0.001 0.26±0.031 0.348±0.011

30 −0.408±0.01 −10.604±0.165 −42.396±0.105 0.989±0.001 0.941±0.003 0.841±0.011

60 −0.612±0.019 −15.598±0.106 −63.101±0.253 0.984±0.001 0.992±0.001 0.983±0.002

Table 14: ELBO and EMC values for varying initial scales, and dimensions of the MoG target density.

F.5. Ablation Study: Langevin Methods

Experimental Setup. The augemented ELBO allows for end-to-end training of several parameters that otherwise need
careful tuning. (Geffner & Domke, 2022) showed that learning the mean and variance of the proposal distribution π0,
the time discretization stepsize ∆t and annealing schedule (βt)

T
t=1 by maximizing the extended ELBO. Here, we test the

influence of training vs. fixing these paramters for MCD (Doucet et al., 2022b) on the MoG target for varying dimensions.
The results are shown in Table 15. The fixed parameters are chosen according to Table D.

Discussion. We observe that learning more parameters tend to yield higher ELBO values. However, especially learning the
parameters of the proposal π0 results in low EMC values.

TRAINABLE ELBO ↑ EMC ↑
σt βt π0 d = 2 d = 50 d = 200 d = 2 d = 50 d = 200

−3.519±0.154 −2513.292±26.017 −13575.6±414.217 0.799±0.004 0.994±0.0 0.988±0.001

−2.441±0.079 −1141.639±18.651 −6574.401±114.962 0.819±0.004 0.994±0.0 0.988±0.001

−2.384±0.059 −878.12±8.598 −3458.28±248.958 0.798±0.003 0.994±0.001 0.988±0.0

−1.51±0.035 −173.002±1.548 −825.303±44.797 0.828±0.003 0.993±0.0 0.989±0.001

−1.621±0.216 −38.022±41.035 −43.416±7.242 0.927±0.015 0.276±0.132 0.236±0.053

−1.235±0.072 −29.238±20.912 −33.686±4.508 0.95±0.005 0.309±0.109 0.393±0.014

−1.137±0.118 −8.323±1.718 −103.968±68.449 0.936±0.011 0.19±0.004 0.341±0.122

−1.05±0.099 −10.526±2.256 −36.254±15.018 0.913±0.017 0.381±0.075 0.435±0.062

Table 15: ELBO and EMC values of MCD for learning the mean and variance of the proposal distribution π0, the diffusion
coefficient σt and annealing schedule (βt)

T
t=1 by maximizing the extended ELBO for varying dimensions d on the MoG

target.

F.6. Ablation Study: Transport Flow Type

Experimental Setup. We test different flow types as transport maps for CRAFT using a different number of temperatures T .
In particular, we consider diagonal affine flows, inverse autoregressive flows (Kingma et al., 2016) and neural spline flows
(Durkan et al., 2019) where we set the spline bounds to match the support of the MoG target. The results are visualized in
Figure 7.

Discussion. We found that diagonal affine paired with larger number of temperatures results in a better, more robust
performance compared to using more sophisticated flow types. Moreover, the latter often result in out-of-memory problems
on high dimensional problems.
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Figure 7: ELBO and EUBO values for CRAFT for different flow types and number of temperatures T on the two-dimensional
MoG target. In particular, diagonal affine flows, inverse autoregressive flows (IAF) (Kingma et al., 2016) and neural spline
flows (NSF) (Durkan et al., 2019). For larger T , IAF becomes numerically unstable.

F.7. Ablation Study: Gradient Guidance

Experimental Setup. (Zhang & Chen, 2021) proposed to use a network of the form fθ(x, t) = fθ
1 (x, t) + fθ

2 (t)∇ log γ(x)
and initialize such that fθ

1 (x, t) = 0. They showed that this gradient guidance helps with mode collapse and yields overall
better results. (Vargas et al., 2023a; Berner et al., 2022; Richter et al., 2023) adopted the approach and reported similar
results. Here, we test the network architecture with and without gradient guidance fθ

2 (t)∇ log γ(x) on the MoG target for a
varying number of dimensions for the diffusion sampler.

Discussion. The results of this examination can be found in Table 16 and indicate that both the ELBO and EMC significantly
deteriorate without gradient guidance, and this degradation increases with higher dimensions. This aligns with the findings
from (Zhang & Chen, 2021; Vargas et al., 2023a; Berner et al., 2022; Richter et al., 2023).

GRADIENT ELBO ↑ EMC ↑
GUIDANCE d = 2 d = 50 d = 200 d = 2 d = 50 d = 200

−3.105±0.27 −543.099±13.612 −247920.463±4258.605 0.453±0.011 0.0±0.0 0.243±0.421

−0.612±0.019 −15.598±0.106 −63.101±0.253 0.984±0.001 0.992±0.001 0.983±0.002

Table 16: ELBO and EMC values with and without gradient guidance fθ
2 (t)∇ log γ(x) as part of the network architecture

for the denoising diffusion sampler (DDS) on the MoG target for varying dimension d.

F.8. Ablation Study: Pre-training the Proposal/Base-Distribution π0

Experimental Setup. We test the impact of pre-training the mean and covariance matrix of the Gaussian proposal/base
distribution π0 using MFVI on the MoG target for varying dimensions. The results are shown in Table 17.

Discussion. Pretraining the the mean and covariance matrix of the Gaussian proposal/base distribution π0 yields significantly
higher ELBO values at the cost of EMC values close to 0.

PRETRAINED ELBO ↑ EMC ↑
METHOD π0 d = 2 d = 50 d = 200 d = 2 d = 50 d = 200

CRAFT −3.563±0.057 −784.881±14.364 −4624.869±63.618 0.987±0.001 0.0±0.0 0.0±0.0

−3.676±0.007 −3.501±0.087 −3.699±0.135 0.0±0.0 0.0±0.0 0.0±0.0

MCD −2.384±0.059 −878.12±8.598 −3458.28±248.958 0.798±0.003 0.994±0.001 0.988±0.0

−3.689±0.0 −3.746±0.003 −3.938±0.003 0.0±0.0 0.0±0.0 0.0±0.0

Table 17: ELBO and EMC values for pre-trained/fixed Gaussian proposal/base distribution π0 on the MoG target with
varying dimensions d.

25


