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Abstract

Video anomaly detection (VAD) focuses on identifying anomalies in videos. Su-
pervised methods demand substantial in-domain training data and fail to deliver
clear explanations for anomalies. In contrast, training-free methods leverage
the knowledge reserves and language interactivity of large pre-trained models
to detect anomalies. However, the current fixed-length temporal window sam-
pling approaches struggle to accurately capture anomalies with varying temporal
spans. Therefore, we propose VADTree that utilizes a Hierarchical Granularity-
aware Tree (HGTree) structure for flexible sampling in VAD. VADTree leverages
the knowledge embedded in a pre-trained Generic Event Boundary Detection
(GEBD) model to characterize potential anomaly event boundaries. Specifically,
VADTree decomposes the video into generic event nodes based on boundary
confidence, and performs adaptive coarse-fine hierarchical structuring and re-
dundancy removal to construct the HGTree. Then, the multi-dimensional priors
are injected into the visual language models (VLMs) to enhance the node-wise
anomaly perception, and anomaly reasoning for generic event nodes is achieved
via large language models (LLMs). Finally, an inter-cluster node correlation
method is used to integrate the multi-granularity anomaly scores. Extensive
experiments on three challenging datasets demonstrate that VADTree achieves
state-of-the-art performance in training-free settings while drastically reducing
the number of sampled video segments. The code will be available at https:
//github.com/wenlongli10/VADTree.

1 Introduction

Video Anomaly Detection (VAD) aims at temporally locating unexpected and unusual events in
videos, thereby facilitating widespread applications including autonomous driving [49, 23] and
industrial manufacturing [28]. Most traditional VAD approaches primarily locate anomalous frames
by learning the normal or abnormal patterns from training samples with either fully-supervised [1, 39],
weakly-supervised [34, 2, 48, 46, 25] or unsupervised learning [51, 62, 22].

While the aforementioned methods perform competitively on experimental VAD benchmarks, their
inherent drawbacks limit the capabilities of interpretability, generalization, and interaction in real-
world applications. The rapid development of pre-trained Large Language Models (LLMs) and Visual
Language Models (VLMs) facilitates the combination of visual comprehending and language inter-
action, which are particularly well-suited for explainable VAD in real-world surveillance scenarios.
Recent research on explainable VAD generates semantic segments of long-term videos with temporal
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Figure 1: Comparison of our methods with popular paradigms. As illustrated in (A), prevailing
training-free VAD methods relying on fixed-length sliding temporal window sampling inherently
fail to adapt to dynamic anomaly durations. (B) demonstrates our VADTree is based on pre-trained
knowledge of Generic Event Boundary Detection to achieve adaptive coarse-fine hierarchical rep-
resentation of videos, and support multi-granularity anomaly understanding and score fusion. (C)
displays the maximum IoU between all sampled video segments and ground-truth abnormal events
across two VAD datasets. The sampling results of 10 seconds long fixed-length sliding temporal
window (TW) [50, 55] can only achieve higher IoU with abnormal events that are close in length to
itself (mIoU = 0.51 on UCF-Crime and mIoU = 0.44 on XD-Violence). Our granularity-aware tree
demonstrates strong flexibility, and achieves higher IoU for events from 3 seconds to 630 seconds,
which is the basis for subsequent understanding and localization of anomalies (mIoU = 0.52 on
UCF-Crime and mIoU = 0.64 on XD-Violence).

window strategy and equips VLMs with auxiliary guidance to make interpretable anomaly scoring
[24, 55, 50]. As the pioneering training-free VAD, LAVAD [55] exploits an off-the-shelf VLM
to caption each video frame, and enables LLMs to aggregate and score scene semantic dynamics
over time in each temporal window. Inspired by Verbalized Machine Learning (VML), VERA [50]
leverages video-level annotation data and verbalized learning to optimize a set of guidance questions
to drive the frozen VLMs to make abnormal judgments on semantics within the temporal window,
and yields frame-level anomaly scores in a coarse-to-fine manner without parameter modifications.

Towards explainable VAD in more practical real-world scenarios, there remains a significant gap to
comprehend and reason about anomalies with different durations. A key challenge lies in accurately
localizing diverse anomalies under a training-free setting. The video segments sampled by fixed
temporal windows are straightforward to implement but remain far from the ground-truth abnormal
event boundaries [24, 55, 50]. More critically, this strategy risks abrupt semantic discontinuities or the
conflation of irrelevant semantics, which exacerbates the noise in abnormal semantics and amplifies
hallucinations of VLMs. Although HolmesVAU [60] introduces an anomaly-focused temporal
sampler to handle the anomalies of varying durations, this approach trained on domain-specific videos
is prone to underperform in practical videos recorded in changed domains. Another fundamental
limitation is the inability to comprehensively understand multi-granular anomalies. While existing
explainable VADs excel at detecting transient anomalies, such as traffic accidents or explosions, they
often fail to model more complex events like burglaries and arrests. These complex events require
extended contextual reasoning. Previous studies [55, 50] have attempted to integrate semantics from
sliding temporal windows. However, the fixed-length windows inherently conflicts with the dynamic
characteristics of event durations in real-world scenarios, struggling to address frame redundancy and
inevitable noise.

To address these challenges, we propose VADTree , a training-free VAD framework that realizes multi-
granularity anomaly reasoning via hierarchical event-aware video understanding. Unlike existing
temporal window-based approaches, VADTree adaptively organizes video content into a hierarchical
granularity-aware tree structure by leveraging pre-trained generic event boundary detectors. This
tree structure naturally aligns with the temporal dynamics of real-world events, allowing for adaptive
sampling of video segments that match anomaly durations. We address semantic noise in anomaly
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scoring by introducing intra-cluster node refinement that aggregates contextually relevant nodes to
refine initial predictions. To resolve the conflicts between coarse-grained and fine-grained cues, we
develop inter-cluster node correlation to dynamically integrate anomaly evidence across temporal
granularities, enhancing detection robustness through score consistent aggregation. We evaluate
VADTree on three benchmark datasets: UCF-Crime [34], XD-Violence [43], and MSAD [67]. Our
empirical results demonstrate that VADTree outperforms unsupervised, one-class, and training-free
VAD methods. This work makes the following contributions:

• We propose VADTree, a training-free generic event-centric video anomaly detection frame-
work that flexibly leverages pre-trained GEBD knowledge to localize anomalous events in
temporal positions. VADTree overcomes the inefficiency and roughness of dense sampling
while providing a multi-granularity perception and reasoning capability for training-free
VAD.

• We propose a hierarchical granularity-aware tree that utilizes a coarse-fine representation of
anomalous videos based on potential generic event boundaries. Additionally, we design an
event-centric anomaly scoring and refining approach to derive generic event anomaly scores
from tree nodes, which integrates multidimensional prior information and multi-granularity
scores to enhance VAD performance and reasoning ability.

• VADTree achieves SOTA performance among training-free, unsupervised, and one-class
methods on both UCF-Crime and XD-Violence datasets, and even surpasses some weakly
supervised methods on MSAD dataset.

2 Related Work

2.1 Video Anomaly Detection

Traditional VAD approaches primarily employ deep neural networks (DNNs) through three dominant
learning paradigms. Fully-supervised methods [1, 39] utilize frame-level annotations to learn the
distinction between normal and abnormal frames, but they entail a prohibitive cost of acquiring
large-scale labeled datasets. Weakly-supervised approaches [34, 2, 48, 57, 25] address this limitation
by training discriminative models using video-level labels from both normal and abnormal samples,
learning to identify anomalous patterns without precise temporal annotations. Unsupervised learning
approaches [21, 51, 62, 40, 22, 38] bypass annotation requirements entirely by solving frame recon-
struction or prediction tasks to construct distinct representation spaces for normal and anomalous
video content. The traditional methods still lack interactivity and rely heavily on the availability of
training data.

Recent advances [60, 59, 55, 47, 24, 50, 11] have successfully leveraged VLMs to generate in-
terpretable textual descriptions of detected anomalies. Current approaches primarily follow two
paradigms: (1) Methods that rely on frozen models first split videos via sliding temporal windows,
then analyze potential anomalies through multiple pre-trained models [55, 50, 11, 9]. (2) The in-
struction fine-tuning based methods utilize DNN-based VAD models to filter out potential abnormal
frames, which are then fed into the VLMs along with prompts for further abnormal description
and judgment [60, 59]. However, the sliding temporal window employed in current training-free
methods suffers from inflexibility and sampling redundancy, making it challenging to accurately
capture anomalous events with varying content lengths. Instruction fine-tuning based methods require
additional data and computational resources to identify potential anomalous video segments. In our
work, we explore an adaptive temporal sampling approach for potential anomalous events under
training-free conditions.

2.2 Event-based Video Understanding

An event is an inherent semantic unit of videos, serving as a critical foundation for scene context
understanding. Recent advances in video understanding have extensively explored event-centric
representations to achieve compact and effective modeling [41, 13, 6, 15]. Specifically, HEMLLM [6]
designs an adaptive sequence segmentation mechanism to partition long videos into coherent event
segments. Similarly, LLMEPET [15] employs pseudo-events to guide precise moment prediction
within event boundaries. TRACE [13] introduces a causal event modeling framework to deconstruct
videos into event sequences, where the current event is predicted based on previous event informa-
tion and textual instructions. Meanwhile, VideoTree [41] constructs a query-adaptive hierarchical
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Figure 2: The architecture of our proposed VADTree. The left side shows the construction of a
hierarchical granularity-aware tree, which provides flexible multi-granularity characterization for
the understanding and location of abnormal events. Then, as shown on the right, the description,
reasoning, and refinement are implemented in a node-wise manner, and finally abnormal score
integration is completed based on the topological relationship of the HGTree.

representation grounded in the inherent event and scene structure of videos. As an event-aware
training-free VAD framework, EventVAD [30] integrates dynamic spatiotemporal graph modeling
and VLMs to detect anomaly events. However, the generalization of the event-aware method it
constructs has not been verified, and its robustness in identifying complex boundaries is limited.
Differently, our work focuses on training-free VAD that addresses anomalous semantic understanding
within multi-granularity generic event-structured video representations.

3 Methodology

Given an input video sequence V = {It}Tt=1 with T frames, our training-free approach aims to
directly locate and detect the anomalous events within V without any parameter updates or fine-tuning
on external datasets. The overall pipeline of our VADTree is illustrated in Figure 2, which is composed
of a hierarchical granularity-aware tree, generic event-centric anomaly scoring and refining, and
inter-cluster node correlation. Firstly, we utilize the GEBD pre-trained model and depth-first traversal
to construct a granularity-aware tree. Further, we use k-means clustering to stratify and simplify
the tree, resulting in a hierarchical granularity-aware tree with coarse and fine clusters (Section 3.1).
Then, the generic event-centric anomaly scoring module produces initial anomaly score based on a
video content description and intrinsic prior knowledge, and ensures contextual relevance and reduces
scoring inaccuracy by aggregating score from semantically similar segments in the intra-cluster. For
the fusion of inter-cluster anomaly scores, we design a cohesion-driven correlation mechanism to
ensure semantic integrity and complementarity across different hierarchical structures (Section 3.2).

3.1 Hierarchical Granularity-aware Tree

To address the inherent limitations of uniform sampling for arbitrary-length anomalies, we construct
a hierarchical granularity-aware tree by leveraging pre-trained GEBD knowledge [64, 31], which
adaptively accommodates events with diverse temporal scales through dynamic multi-granularity
decomposition. It mainly includes three operations: segmentation confidence sequence generation,
generic event node initialization, and adaptive node stratification.

Segmentation Confidence Sequence As conventional GEBD models are limited to processing
short video clips (duration of lraw frames), we extend their capability to long videos through an
overlapping sliding window strategy. Inspired by [68, 33], we first partition the input video V into
K overlapping temporal segments {V (k)

local}Kk=1. Each segment is independently processed by the
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pre-trained GEBD model to generate a local boundary confidence sequence C
(k)
local of length lraw:

C
(k)
local = [(t1, c1), (t2, c2), . . . , (tlraw

, clraw
)] = fGEBD

(
V

(k)
local

)
, (1)

where ti ∈ Z+ represents the global frame index in V , and ci ∈ [0, 1] is the confidence score at
position ti. To mitigate edge effects from windowing, we retain only the central lraw/2 frames from
each C

(k)
local. These partial sequences are concatenated into a unified global confidence sequence C

that preserves both positional information and confidence scores:

C = ConcatKk=1

(
C

(k)
local

[
⌊ 14 lraw⌋ : ⌊

3
4 lraw⌋

])
,

Ĉ = {(t, ĉ)
∣∣ LocalMax(C, t)},

(2)

where Concat(·) operator aligns confidence scores by their global indices t, and ⌊·⌋ ensures the
central frames is an integer. This operation essentially discards the fractional part of the division
result. LocalMax(·) identifies peak positions at index t if the confidence score C(t) satisfies:

C(t) ≥ C(t± 1). (3)

Generic Event Node Initialization VADTree constructs a granularity-aware binary tree T =

{Ni}Mi=0 where each node Ni = (ĉ
(i)
l , ĉ

(i)
r , V

(i)
l:r ) represents a video segment V (i)

l:r with associated
confidence scores ĉ(i)l and ĉ

(i)
r for its left and right temporal boundaries. The tree structure is built

via the TreeInit algorithm (Appendix A.1), which recursively splits segments at the most confident
event boundaries ĉmax ∈ Ĉ. Initialization starts with the root node N0 = (1, 1, V

(0)
1:T ), where 1 means

that the confidence of the factual boundary for the beginning and end frames. The algorithm performs
depth-first partitioning until either exhausting all candidate boundaries or encountering confidence
values below the threshold γmin. The resulting tree T inherently encodes temporal granularity through
its hierarchical organization, where internal nodes represent segmentation decisions and leaf nodes
correspond to atomic events.

Adaptive Node Stratification After initializing the granularity-aware tree T , we stratify it hierar-
chically to enable multi-granular representation of videos. Given the continuous confidence scores
and the inherent content uncertainty in videos, T allows for decomposition into an arbitrary number of
hierarchical clusters. Considering the marginal performance gains diminishing with excessive layers
and the resultant increase in inference overhead, we adopt the classic two cluster granularity semantic
perception strategy to partition T into coarse cluster parent-wise nodes and fine-cluster child-wise
nodes [45]. The former captures those clear event boundaries, while the latter captures localized
motion patterns over shorter temporal intervals. To account for varying boundary clarity across
scenarios and filming conditions, we dynamically determine these clusters via K-means clustering,
thereby evolving T into a hierarchical granularity-aware tree T ′

= {S ′

coarse,S
′

fine}.

(Ĉcoarse, Ĉfine) = K-Means(Ĉ, 2),

Scoarse =
{
Ni

∣∣ min(ĉil, ĉ
i
r) ≥ min(Ĉcoarse)

}
, Sfine =

{
Ni

∣∣ min(ĉil, ĉ
i
r) ≤ max(Ĉfine)

}
,

S
′

coarse = RemoveDup(Scoarse), S
′

fine = Complete(RemoveDup(Sfine)),
(4)

where RemoveDup(·) and Complete(·) denote the redundancy elimination and node completion
operators, respectively. These two clusters S ′

coarse and S ′

fine are constructed per Eq. 4, by applying
K-means clustering and the comparison operation to the confidence scores ĉ.

To achieve maximal granularity, RemoveDup(·) is applied to retain only the finest-grained nodes
along each tree path while pruning redundant ancestor nodes. Besides, as some leaf nodes in S ′

coarse
cannot be further split and therefore lack corresponding fine-grained segments, Complete(·) function
replicates these critical nodes to ensure comprehensive coverage. Crucially, the nodes in both
S ′

coarse and S ′

fine can guarantee complete video representation. The details of RemoveDup(·) and
Complete(·) along with the proof of comprehensive coverage are provided in A.2.
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3.2 Generic Event-centric Anomaly Scoring and Refining

Prior-infused Node Scoring When humans recognize behavior, well-learned societal scripts
inherently trigger cognitive associations [29]. Building on this foundation, we consider these
observed patterns as priors for anomaly analysis, which can be systematically categorized along
three dimensions: event scene bscene, specific characters/objects bobj , and actions/behaviors bact.
Particularly, we explicitly exclude two categories of ill-posed semantic cues for VLMs: (1) micro-
expressions (e.g., distracted gaze indicating theft intention) that demand prohibitively high image
resolution, and (2) audio-dependent semantic triggers (e.g., loud sounds suggesting explosions)
that are unavailable in visual-only surveillance systems. According to the above findings, the LLM
processes both generation instructions Pb and constraint instructions Pc to derive multidimensional
priors as Eq. 5:

B = (bscene, bobj , bact) = f LLMgen
(Pb ◦ Pc). (5)

These priors are then injected into VLMs to facilitate human-like reasoning during video content
description. For the HGTree T ′

= {S ′

coarse,S
′

fine}, let V g
u represent the sampled frames at node u

in S ′

g . The VLM generates content captions via Eq. 6:

dgu = fVLM(V g
u , B ◦ Pd). (6)

Following LAVAD [55], we instruct an LLM to quantify anomaly likelihood through discrete scoring
a ∈ {0, 0.1, ..., 1}, with 0 and 1 encoding normal and anomalous extremes respectively. The score
derivation from prompt Ps follows:

agu = f LLM(dgu, Ps). (7)

Intra-cluster Node Refinement The score derived from Eq. 7 only examines a partial interval
in the entire video without considering long-term context, which is prone to local false positive
anomalies caused by mutations. To alleviate this issue, we refine the initial anomaly score by taking
into account the context of intra-cluster event nodes. Obviously, within the same cluster, nodes with
high semantic similarity should logically exhibit converging anomaly scores. To quantify semantic
similarity between different nodes, we compute cosine similarity sim(·, ·) based on their feature
representations extracted from a pre-trained vision encoder [12]. For the V g

u of node u in S ′

g, let

κu = [κ
(1)
u , . . . , κ

(K)
u ] index the top-K most similar nodes. As shown in Eq. 8, the refined anomaly

score âu is computed as an ensemble of initial scores of top-K nodes relevant to V g
u .

âgu =

K∑
i=1

a
κ
(i)
u︸ ︷︷ ︸

Initial scores

· exp(sim(u, κ
(i)
u )/τ)∑K

j exp(sim(u, κ
(j)
u )/τ)︸ ︷︷ ︸

Softmax weights

(8)

Inter-cluster Node Correlation Previous VAD studies [62, 60] have demonstrated the significance
of multi-scale learning, given the varying temporal durations of anomalies and the influence of
contextual lengths on anomaly determination. This observation aligns with our experimental findings
that abnormal event cues exhibit cluster-specific variations. Therefore, we elucidate a cohesion-driven
fusion mechanism for multi-granularity decision fusion based on coarse and fine cluster nodes in the
hierarchical granularity-aware tree T ′

. To integrate multi-granularity anomaly cues while suppressing
hierarchical inconsistencies, this mechanism dynamically weights the contributions of parent and
child nodes through intra-cluster cohesion metrics.

Specifically, parent nodes and child nodes come from the coarse and fine clusters of the event tree,
respectively. For each parent node Ni containing m child nodes {Ni1, ...,Nim}, we compute the
intra-cluster cohesion wi as the variance of their denoised anomaly scores via Eq. 9:

wi =
1

m

m∑
j=1

(
ânij
− µi

)2
, where µi =

1

m

m∑
j=1

ânij
. (9)

Subsequently, we conduct normalization within the coarse clustering process to obtain the ŵi. A
lower ŵi signifies strong semantic consistency among child nodes, implying that the parent node
should dominate the fusion process. Conversely, higher ŵi implies conflicting child node evidence,
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Table 1: Results on UCF-Crime dataset
show that VADTree substantially outperforms
all Training-free , one-class, and unsuper-
vised methods, even surpassing some weakly-
supervised approaches.

Method Supervision AUC (%)
Non-Explainable VAD Methods

Sultani et al. [34] Weakly Supervised 75.41
Sultani et al. [34] Weakly Supervised 77.92
IBL [61] Weakly Supervised 78.66
GCL [53] Weakly Supervised 79.84
GCN [65] Weakly Supervised 82.12
MIST [10] Weakly Supervised 82.30
Wu et al. [43] Weakly Supervised 82.44
CLAWS [54] Weakly Supervised 83.03
RTFM [37] Weakly Supervised 83.31
RTFM [37] Weakly Supervised 84.03
Wu & Liu et al. [44] Weakly Supervised 84.89
MSL [19] Weakly Supervised 85.30
MSL [19] Weakly Supervised 85.62
S3R [42] Weakly Supervised 85.99
MGFN [4] Weakly Supervised 86.67
MGFN [4] Weakly Supervised 86.98
SSRL [17] Weakly Supervised 87.43
CLIP-TSA [16] Weakly Supervised 87.58
GS-MoE [7] Weakly Supervised 91.58
UR-DMU [66] Weakly Supervised 86.97
UMIL [25] Weakly Supervised 86.75
π-VAD [26] Weakly Supervised 90.33
SVM [34] One Class 50.00
SSV [32] One Class 58.50
BODS [40] One Class 68.26
GODS [40] One Class 70.46
GCL [53] Unsupervised 74.20
Tur [38] Unsupervised 66.85
DyAnNet [36] Unsupervised 79.76

Explainable VAD Methods
VADor [24] Fine-tuning 88.13
Holmes-VAD [59] Fine-tuning 89.51
Holmes-VAU [60] Fine-tuning 88.96
VERA [50] Verbalized Learning 86.55
Blip2 [18] Training-free 46.42
ZS CLIP [27] Training-free 53.16
ZS ImageBind (Image) [12] Training-free 53.65
ZS ImageBind (Video) [12] Training-free 55.78
LLaVA-1.5 [20] Training-free 72.84
Video-Llama2 [58] Training-free 74.42
LAVAD [55] Training-free 80.28
SUVAD [11] Training-free 83.90
MCANet [9] Training-free 82.47
EventVAD [30] Training-free 82.03
VADTree(Ours) Training-free 84.74

Table 2: Results on XD-Violence dataset demon-
strate that VADTree achieves significantly superior
performance over current Training-free approaches
in terms of AUC ROC, while also outperforming
all one-class and unsupervised methods. The best
results among training-free methods are highlighted
in bold. * denotes the method that incorporates an
additional audio modality. VADTree* employs Kimi-
Audio-7B-Instruct to extract audio captions and en-
ables the LLM to perform anomaly reasoning based
on the multimodal text information.

Method Supervision AP (%) AUC (%)
Non-Explainable VAD Methods

Wu et al. [43] Weakly Supervised 73.20 -
Wu et al.* [43] Weakly Supervised 78.64 -
MSL [19] Weakly Supervised 75.53 -
Wu and Liu [44] Weakly Supervised 75.90 -
RTFM [37] Weakly Supervised 77.81 -
RTFM* [37] Weakly Supervised 78.54 -
MSL [19] Weakly Supervised 78.28
MSL [19] Weakly Supervised 78.58 -
S3R [42] Weakly Supervised 80.26 -
MGFN [4] Weakly Supervised 79.19 -
MGFN [4] Weakly Supervised 80.11 -
CLIP-TSA [16] Weakly Supervised 82.19 -
GS-MoE [7] Weakly Supervised 82.89 94.52
MACIL-SD* [52] Weakly Supervised 83.40 -
UR-DMU* [26] Weakly Supervised 81.77 -
π-VAD* [26] Weakly Supervised 85.37 -
Hasan et al. [14] One Class - 50.32
Lu et al. [22] One Class - 53.56
BODS [40] One Class - 57.32
GODS [40] One Class - 61.56
RareAnom [35] Unsupervised - 68.33

Explainable VAD Methods
Holmes-VAD [59] Fine-tuning 90.67 -
Holmes-VAU [60] Fine-tuning 87.68 -
VERA [50] Verbalized Learning 70.54 88.26
Blip2 [18] Training-free 10.89 29.43
ZS CLIP [27] Training-free 17.83 38.21
ZS ImageBind (Image) [12] Training-free 27.25 58.81
ZS ImageBind (Video) [12] Training-free 25.36 55.06
LLaVA-1.5 [20] Training-free 50.26 79.62
Video-Llama2 [58] Training-free 53.57 80.21
LAVAD [55] Training-free 62.01 85.36
SUVAD [11] Training-free 70.10 -
MCANet* [9] Training-free 69.72 87.43
EventVAD [30] Training-free 64.04 87.51
VADTree (Ours) Training-free 67.82 90.44
VADTree* (Ours) Training-free 68.85 90.55

and the parent node may have missed some instantaneous cue, necessitating greater reliance on the
child node’s fine semantics.

By adjusting the initial fusion weight of the 0.5 through the control coefficient β ∈ [−1, 1], the final
frame-wise anomaly score ā for each segment is determined based on the anomaly scores of final fine
cluster nodes ānij

:

ānij =
1

2
(1− βŵi)âni

+
1

2
(1 + βŵi)ânij

. (10)

4 Experiments

We validate the performance of VADTree on three datasets against state-of-the-art VAD methods
trained with different types of supervision, as well as other training-free baselines. To verify the
necessity of each core module, we conduct systematic ablation studies to demonstrate the rationality
and effectiveness of VADTree’s proposed components. In the following, we first describe the
experimental setup in terms of datasets and performance metrics. We then present and discuss the
results in Section 4.1, followed by the ablation studies in Section 4.2, and conclude with qualitative
experiments in Section 4.3. For more experimental analysis and qualitative results, please refer to the
Appendix C.
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Table 3: Results on MSAD dataset demonstrate that training-
free approach VADTree delivers competitive performance
against existing state-of-the-art weakly-supervised methods.

Method Supervision AUC (%) AUCa (%) AP (%) APa (%)
RTFM [37] Weakly Supervised 86.65 - - -
MGFN [4] Weakly Supervised 84.96 - - -
TEVAD [3] Weakly Supervised 86.82 - - -
UR-DMU [26] Weakly Supervised 85.78 67.95 67.35 75.30
GS-MoE [7] Weakly Supervised 87.72 69.54 68.26 76.68
π-VAD [26] Weakly Supervised 88.68 71.25 71.26 77.86
VADTree (Ours) Training-free 89.32 67.85 71.41 75.49

Table 4: Results of VADTree on
UCF-Crime dataset with different
HGTree construction configuration.
γmin Cluster Tool Clusters AUC (%)

0.3 - Fine 80.89
0.4 - Fine 82.81
0.5 - Fine 80.85
0.3 K-Means Coarse + Fine 83.74
0.4 K-Means Coarse + Fine 84.74
0.5 K-Means Coarse + Fine 82.40
0.4 K-Medoids Coarse + Fine 85.24

Table 5: Effect of different compo-
nents on UCF-Crime dataset.

Module AUC (%)
HGTree Fine Cluster 71.57
+ Prior-infused Node Scoring 75.67
+ Intra-cluster Node Refinement 83.05
+ Inter-cluster Node Correlation 84.74

Table 6: Comparison of performance of VADTree under
different VLM and LLM on UCF-Crime dataset.

VLM LLM AUC (%)
LLaVA-NeXT-Video-7B DeepSeek-R1-Distill-Qwen-14B 84.74
InternVL2_5-8B DeepSeek-R1-Distill-Qwen-14B 83.74
LLaVA-NeXT-Video-7B t5gemma-9B-2B 84.00
InternVL2_5-8B t5gemma-9B-2B 83.56

Datasets We evaluate our method using three commonly used VAD datasets featuring real-world
surveillance scenarios, i.e., UCF-Crime [34], XD-Violence [43], and MSAD [67]. UCF-Crime is a
large-scale dataset comprising 1900 long untrimmed real-world surveillance videos with 13 types
of anomalies. The training set consists of 800 normal and 810 anomalous videos, while the test
set includes 150 normal and 140 anomalous videos. XD-Violence is another large-scale dataset for
violence detection, comprising 4754 untrimmed videos with audio signals and weak labels that are
collected from both movies and YouTube. XD-Violence captures 6 categories of anomalies and it is
divided into a training set of 3954 videos and a test set of 800 videos. We also evaluate VADTree on
MSAD dataset, which provides a greater diversity of real-world scenarios than existing benchmarks.

Performance Metrics We measure the VAD performance using the area under the curve (AUC)
of the frame-level receiver operating characteristics (ROC) as it is agnostic to thresholding for the
detection task. For XD-Violence dataset, we also report the average precision (AP), which refers to
the area under the frame-level precision-recall curve, following the established evaluation protocol
in [43].

Implementation Details We use EfficientGEBD [64] as the model fGEBD for generic event bound-
ary knowledge acquisition, and the overlapping sampling window length lraw follows the 10s window
of Kinetics-GEBD [31]. The video description model fVLM and the anomaly reasoning model fLLM
use LLaVA-Video-7B-Qwen2 [63] and DeepSeek-R1-Distill-Qwen-14B [8] respectively. In all
experiments, the VLM input is configured to a maximum of 64 frames, with the LLM having the
thinking mode turned on by default. Although the “Think” mode of DeepSeek-R1-Distill-Qwen-14B
incurs additional inference overhead, we still intentionally retain it because it generates valuable
intermediate reasoning steps that significantly enhance anomaly interpretation. The video encoder
fVE is provided by ImageBind [12].

4.1 Comparison with State of the Art

Most videos in UCF-Crime dataset have low resolution, with mild semantic changes between
events within the same video and few shot transitions. Table 1 demonstrates that VADTree achieves
a substantial superiority over all training-free methods. In particular, its performance exceeds
LAVAD [55] by 4.5% and surpasses EventsVAD [30] by 2.7%.

The videos in XD-Violence dataset are primarily sourced from films and TV shows. Consequently,
the content is more deliberately composed and contains significantly more frequent shot transi-
tions. Table 2 reveals that VADTree achieves an AUC ROC 5.1% higher than LAVAD [55]. And
it shows a 2.9% gain over EventsVAD [30], thereby establishing a new state-of-the-art. Further-
more, VADTree exhibits superior anomaly detection performance compared to all single-class and
unsupervised methods on UCF-Crime and XD-Violence datasets.
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Surprisingly, VADTree achieves state-of-the-art performance on MSAD dataset (as shown in Table 3)
and attaining the highest scores in overall metrics. This demonstrates that our training-free approach
outperforms even weakly-supervised methods that rely on extensive training data. While π-VAD
shows a slight advantage on anomaly-specific metrics AUCa and APa, likely due to its supervised
fine-tuning on anomalous segments, VADTree’s competitive performance without any dataset-specific
training highlights its superior generalization capability.

4.2 Ablation Study

In this section, we present the ablation study conducted on UCF-Crime dataset. We first ablate
the effectiveness of each proposed component of VADTree, and then elaborate on the effect of the
HGTree on the final detection accuracy under different construction parameters. Finally, we discuss
the impact of different pre-trained model combinations on the performance of VADTree .

Effect of Each Proposed Component We ablate different modules of our proposed method
VADTree to prove the effectiveness of the four proposed components, including HGTree fine cluster,
prior-infused node scoring, intra-cluster node refinement and inter-cluster node correlation. As
shown in Table 5, we first use HGTree fine cluster to express the entire video and build a baseline.
When we input the prior knowledge for the prompt of VLM, the AUC ROC of the method is further
improved, indicating that the understanding and accurate description of anomalies can benefit from
the prior information of anomalies. If we further refine the initial anomaly scores of each node
within intra-cluster, the AUC ROC will be significantly improved; this is because the module can
effectively suppress the inference noise and hallucination of VLM and LLM, and introduce references
for independent reasoning of each segment. Finally, inter-cluster node correlation further increased
the AUC ROC to 84.7%, indicating that the HGTree based parent-child node structure information
can effectively guide multi-granularity scores fusion.

Effect of Different HGTree Construction Configurations The empirical analysis systematically
examines how HGTree’s configuration parameters govern VAD performance. As illustrated in Table 4,
varying the γmin directly modulates the granularity of segmented videos; lower thresholds(γmin =
0.3) induce noisy event boundaries due to over-segmentation, whereas higher thresholds(γmin = 0.5)
restrict hierarchical results diversity. Our framework achieves optimal balance at γmin = 0.4, which
consistently delivers peak performance across benchmarks. Crucially, ablation studies reveal that
using only leaf nodes reduces HGTree to a single cluster structure, yielding a 1.9% lower AUC ROC
compared to the hierarchical two clusters architecture. This indicates the importance of hierarchical
granularity-aware representation and decision correlation. Furthermore, replacing K-Means with
K-Medoids for clustering produces an additional performance gain, demonstrating the advantage of
using more robust centroid selection when dealing with potential outliers in generic event boundary.

Effect of Different VLM and LLM Configurations To comprehensively evaluate the generalizabil-
ity, we conduct tests with alternative model architectures. Specifically, we select InternVL2_5-8B [5]
as an additional VLM with distinct input specifications of 32 frames at 448×448 resolution, contrast-
ing with LLaVA-NeXT-Video-7B’s 64 frames, 384×384 inputs. This means that InternVL2_5-8B
focuses more on perceiving spatial details rather than the temporal continuity of actions. Furthermore,
we incorporate t5gemma-9B-2B [56] as additional LLM variant featuring a unique 9B-encoder
and 2B-decoder configuration. This differs from DeepSeek-R1-Distill-Qwen-14B’s autoregressive
architecture. As evidenced by the results in Table 6, the performance fluctuation of VADTree is
acceptable under different model combinations, which demonstrates the strong generalization ability
of our framework.

4.3 Qualitative Analysis

Figure 3 presents qualitative results of VADTree using sample videos from UCF-Crime and XD-
Violence. Benefiting from its flexible granularity-aware tree video representation, VADTree accurately
segments the boundaries between anomalous and normal events. Additionally, due to the scoring
stability brought by inter-cluster node correlation, the anomaly scores generated by our method are
overall smoother. In addition, we observe that the same video can obtain divergent anomaly scores
across its coarse and fine cluster representations. This divergence stems primarily from the lack of a
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It's nighttime, which can be a 
factor because some criminal 

activities happen at night. That's a 
bit concerning because hooded 

clothing can help hide identities... 

 Putting it all together, the scene 
has several red flags: nighttime, 

dark clothing, possible attempt to 
break in, using a flashlight.

 It‘s a standard scene of a person 
performing their job duties in a 

retail store. Therefore, it should be 
rated as a 0.

The person is wearing a pink polo 
shirt, which isn't unusual. They're 
holding a small object, maybe a 

wallet or phone. That doesn't 
immediately raise any red flags.

First, the scene is described as a 
man with dark hair and a blue shirt 
standing in an indoor setting. The 
background has a window with a 

blurred view outside.

The first individual is aggressive, 
grabbing the second, using a white 

cloth to cover their face. The 
second is struggling and resisting.

Protests with police presence can 
be standard, especially in urban 

areas. However, the use of batons 
and rubber bullets might indicate a 

higher level of conflict. 

The user has provided a specific 
scenario where a man in a suit is 

being interviewed by several 
reporters with different logos. 

Figure 3: Qualitative results from VADTree on four test videos: two from UCF-Crime (top row)
and two from XD-Violence (bottom row). The hierarchical video segment representations and
corresponding anomaly scores are visualized alongside their key language explanations, with cyan
and rose rectangles denoting coarse cluster and fine cluster nodes respectively. Each video’s
final anomaly scores (blue solid line) are computed by inter-cluster node correlation. Ground-truth
anomalies are highlighted by red regions.

uniform standard for the independent inference of nodes by VLMs and LLMs, which inevitably leads
to scoring fluctuations. Our inter-cluster correlation can reduce the impact of such instability.

5 Conclusion

This paper presents a novel training-free framework VADTree for adaptive multi-granularity VAD. By
constructing a hierarchical granularity-aware tree to achieve node-wise anomaly understanding and
score refinement based on tree structure information, our method overcomes the limitation of poor
flexibility in anomaly detection based on fixed-length sliding temporal window sampling in existing
methods. The elimination of domain-specific training requirements and explicit explainability through
pre-trained model reasoning make our framework particularly suitable for real-world surveillance
applications.
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For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The proof is provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We discuss the details required to reproduce the experiments in this paper in
the Experiments and Appendix sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide code in the appendix to reproduce our results, and link our code
release in the anonymous github in section abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We use standard datasets and splits, we provide hyperparameters in experi-
mental details along with ablations in experiment sections and appendix to understand the
contribution of each component in our algorithm.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Considering the limitation of computing resources, we repeated the main
experiments and reported the mean and standard deviation in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided details about compute resources used in supplemental
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the ethics guidelines and confirm that we do not use human
subjects, use existing datasets, explicitly discuss social impacts.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential social impact of this paper is discussed in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No new datasets or generative models are released, and public datasets are
used, so no protection measures are required.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: UCF-Crime and XD-Violence are cited appropriately.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] ,

Justification: We provide code and instructions.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This article does not involve subjects and related approval requirements.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our core methodology integrates large language models (LLMs) as a non-
standard component for semantic anomaly reasoning in video analysis.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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The appendix begins by detailing the algorithmic process underlying the construction of the HGTree
and establishing the proof of its representational completeness. Furthermore, it presents additional
experimental details, including extensive ablation studies and comparative analyses. Finally, the
appendix examines the limitations of this work and its potential societal impact.

A Hierarchical Granularity-aware Tree

A.1 TreeInit: Granularity-Aware Binary Tree Construction

Algorithm 1 TreeInit: Granularity-Aware Binary Tree Construction Algorithm (Section 3.1)

Require:
Video V1:T with T frames,
Confidence scores Ĉ = {(τi, ĉi)}Ni=1,
Confidence threshold γmin

Ensure: Binary tree T = {([sj , ej ], [ĉjs, ĉje])}Mj=1

1: T ← ∅, U ← ∅ ▷ Result set & consumed split points
2: Push root node D ←

[
[1, T ]

]
▷ DFS stack initialization

3: while D ̸= ∅ do
4: [l, r]← D.pop()
5: ĉl ← I(l = 1) · 1 + I(l > 1) · ĉl ▷ Left boundary confidence
6: ĉr ← I(r = T ) · 1 + I(r < T ) · ĉr ▷ Right boundary confidence
7: T .add ([l, r], [ĉl, ĉr])
8: Find split τ∗ ← argmax

τ∈(Ψ\U)∩(l,r)

ĉτ ▷ Select the highest remaining confidence point

9: if ĉτ∗ ≥ γmin then
10: U .add(τ∗)
11: D.push([τ∗, r]) ▷ Right child
12: D.push([l, τ∗]) ▷ Left child
13: end if
14: end while
15: return Sort(T , lj ↑) ▷ Sort by start time

A.2 Proof of Coverage Completeness in Hierarchical Coarse-Fine Clustering

Theorem 1 (Coverage Completeness). Based on the method described in Section 3.1, we get
T ′ = (S ′coarse,S ′fine), where |S ′coarse| = M ′

c and |S ′fine| = M ′
f . Then:

The original video sequence V1:T can be exactly reconstructed through temporal concatenation of
segments from either the coarse cluster S ′coarse or the fine cluster S ′fine:⋃

Ni∈S′
coarse

[li, ri] = [1, T ],
⋃

Ni∈S′
fine

[li, ri] = [1, T ]. (11)

Notations:

• Ni = ([li, ri], [ĉ
(i)
l , ĉ

(i)
r ]): A tree node represents a generalized event video segment, with

boundary frames and their confidences as [li, ri] and [ĉ
(i)
l , ĉ

(i)
r ] respectively.

• ≺: Parent-child relation in T (Nj ≺ Ni ⇐⇒ Ni is a child of Nj)

• Tleaf ≜ {Ni ∈ T |∄ Nj ≺ Ni}: Leaf node set of T

Proof. Part 1: Initial Coverage Guarantee The root node N0 = ([1, T ], [1, 1]) ∈ T spans
the full video by definition. Through iterative splitting in Algorithm 1, each parent node Np =

([lp, rp], [ĉ
(p)
l , ĉ

(p)
r ]) is partitioned into non-overlapping child nodes:

NL
c = ([lp, τ

∗], [ĉ
(c)
l , ĉ

(c)
τ∗ ]), NR

c = ([τ∗, rp], [ĉ
(c)
τ∗ , ĉ(c)r ]) (12)
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where τ∗ ∈ (lp, rp). This implies: ⋃
Ni∈Tleaf

[li, ri] = [1, T ] (13)

Part 2: Coarse Cluster Guarantee The RemoveDup operator filters nodes through:

S ′coarse = {Ni ∈ Scoarse | ∄ Ni ≺ Nj} (14)

As the above operation exclusively targets non-leaf nodes in Scoarse and leaves leaf nodes unchanged.
Therefore, the current leaf nodes satisfies the expression completeness of the original video shown in
Eq. 13, and then satisfies the first item of Eq. 11:

⋃
Ni∈S′

coarse
[li, ri] = [1, T ].

Part 3: Fine Cluster Guarantee

The Complete operator ensures coverage via two mechanisms:

1. Boundary alignment: For edge cases:

if min
Ni∈S′

fine

li > 1 : insert N1 from S ′coarse (15)

if max
Ni∈S′

fine

ri < T : append NM ′
c

from S ′coarse

2. Bridge the gap between nodes: For any adjacent nodes Ni = ([li, ri], [ĉ
(i)
l , ĉ

(i)
r ]) and Ni+1 =

([li+1, ri+1], [ĉ
(i+1)
l , ĉ

(i+1)
r ]) in S ′fine with ri < li+1:

∃ {Nc} ⊂ S ′coarse s.t.
⋃
c

[lc, rc] = [ri, li+1] (16)

Through Eq. 15 and Eq. 16, the second term of Eq. 11 is satisfied:
⋃

Ni∈S′
fine

[li, ri] = [1, T ].

Conclusion: Both coarse and fine cluster maintain complete temporal coverage through Section 3.1
process.

B Generic Event-centric Anomaly Scoring and Refining

B.1 Prior-infused Node Scoring

This section mainly supplements the prompt details used by VLM and LLM. First, by employing
Pb ◦ Pc (as demonstrated in Section B.1.1), we input the prompt into the LLM [8] 2 to derive prior
knowledge that excludes ill-posed semantic cues. The prior knowledge B is shown in Table 7 and
Table 8 respectively.

The model configuration details of the VLM for describing video content and the LLM for scoring
anomalies are consistent with their open-source repositories 3 4.

B.1.1 Multidimensional Prior Knowledge Generation Prompt

UCF-Crime "To help video anomaly detection agent review the occurrence of abnormal events, it
is now necessary to pre-analyze possible anomalies to establish a prior knowledge base that matches
abnormal events. The video taken has no sound, and may have a long distance or a blurry picture.
There may be Abuse, Arrest, Arson, Assault, Burglary, Explosion, Fighting, RoadAccidents, Robbery,
Shooting, Shoplifting, Stealing and Vandalism 13 types of events. Please carefully analyze these scenes.
Then point out the characteristics of each abnormal event from the following three perspectives: the
scene environment, characters or specific objects, actions or behaviors that occurred."

2https://chat.deepseek.com/
3https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2
4https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
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XD-Violence “To help video anomaly detection agent review the occurrence of abnormal events, it
is now necessary to pre-analyze possible anomalies to establish a prior knowledge base that matches
abnormal events. The video taken has no sound, and may have a long distance or a blurry picture.
There may be Abuse, Explosion, Fighting, Car Accident, Shooting and Riot 6 types of events. Please
carefully analyze these scenes. Then point out the characteristics of each abnormal event from
the following three perspectives: the scene environment, characters or specific objects, actions or
behaviors that occurred.”

B.1.2 Multidimensional Prior Knowledge

The prior knowledge B generated for the UCF-Crime and XD-Violence datasets are shown in Table 7
and Table 8 respectively.

UCF-Crime

Table 7: Multidimensional Prior Knowledge of UCF-Crime Dataset.

Abnormal Event Type Scene Environment
Features

Character/Object
Features

Action/Behavior
Features

Abuse Secluded spaces (in-
doors/corners), non-
public areas (private
locations)

Two parties in physi-
cal conflict (perpetra-
tor/victim), dragging
tools (ropes/clubs)

Shoving/dragging, re-
peated hitting, re-
straining movement
(pinning down)

Arrest Public areas (street-
s/squares), zones
with police vehicles
or officers

Uniformed police,
handcuffs, batons or
firearms

Forced restraint,
frisking, escorting to
vehicles, lying on the
ground

Arson Areas with
flammable materials
(warehouses/ve-
hicles), abnormal
smoke/flames

Individuals holding
flammable containers
(gasoline bottles), ig-
nition tools (lighters)

Throwing incendiary
objects, fleeing
quickly, repeatedly
checking the fire

Assault Narrow passages,
crowded areas with
sudden dispersion
(subway stations/bar
entrances)

Armed individu-
als (knives/blunt
weapons), victims
struggling on the
ground

Sudden lunging,
weapon swinging,
victims adopting
defensive postures

Burglary Damaged doors/win-
dows, unlit buildings
at night, surveillance
blind spots (back al-
leys)

Masked/dark-clothed
individuals, lock-
picking tools (pliers),
backpacks (for loot)

Peering through win-
dows, picking locks,
rummaging through
items

Explosion Smoke spreading, fly-
ing debris, crowds
fleeing outward from
a central point

Suspicious pack-
ages/vehicles, post-
explosion wreckage
(metal fragments)

Throwing motions,
sudden flash of
flames, crowds
crouching/running

Fighting Public spaces (restau-
rants/stadiums) with
concentrated physical
conflicts, overturned
furniture

Multiple people
entangled, bleeding
faces, torn clothing

Punching/kicking,
hair-pulling, siege
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Road Accidents Collision points (in-
tersections/curves),
skid marks, scat-
tered debris, traffic
congestion

Deformed vehicles,
deployed airbags,
paramedics (uniform-
s/stretchers)

Sudden braking, ve-
hicle rollovers, pedes-
trians being hit

Robbery Streets/ATM areas,
fast-moving vehicles
(motorcycles/cars)

Threats with gun-
s/knives, motorcycle
helmets (face con-
cealment), stolen
items (bags)

Snatching and flee-
ing, threatening
gestures, vehicles
abruptly stopping/ac-
celerating

Shooting Crowds suddenly
ducking/fleeing,
vehicles braking
abruptly, bullet holes
in windows

Gun-wielding in-
dividuals, gunshot
victims falling, spent
shell casings

Aiming firearms, con-
tinuous firing, seek-
ing cover

Shoplifting Loitering near
shelves, surveillance
blind spots (cor-
ners), suspicious
concealment (coats)

Frequently observing
staff, hiding items (in
bags/under clothing)

Concealing items in
clothing, glancing
around nervously,
quickly leaving
shelves

Stealing Crowded areas (sub-
ways/markets), sud-
den disappearance of
target items (wallets/-
phones)

Close proximity to
victims, distractions
(e.g., bumping), rapid
transfer of stolen
goods

Pickpocketing (hands
reaching into pock-
ets), passing loot to
accomplices

Vandalism Graffiti-covered
walls, shattered
glass, toppled pub-
lic facilities (trash
cans/fences)

Spray paint cans,
hammers/stones, tar-
gets (cameras/glass)

Smashing motions,
spraying walls,
kicking facilities

Table Notes:
1. Scene environment features capture spatial anomalies (e.g., secluded corners) and physical damage patterns
2. Character/object features focus on suspicious entities and high-risk items
3. Action/behavior features characterize motion dynamics critical for low-quality video analysis
Recognition Tips:
1. Blurry footage: Track group behavior changes (crowd fleeing patterns)
2. Long-distance: Monitor environmental dynamics (smoke/glass shattering)
3. Silent videos: Analyze action intensity (repeated hitting motions)

XD-Violence

Table 8: Multidimensional Prior Knowledge of XD-Violence Dataset.

Abnormal Event Type Scene Environment
Features

Character/Object
Features

Action/Behavior
Features

Abuse Secluded or private
settings (alleyways,
dimly lit rooms), lack
of bystanders

Dominant/submissive
individuals with in-
distinct blunt objects
(belts, sticks)

Sudden aggressive
movements (hitting/-
grabbing), victim
recoiling/fleeing,
prolonged physical
contact
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Explosion Sudden bright flash
with smoke/fire,
structural damage
(collapsed walls)

Chaotically moving
people, objects near
blast source (vehicles,
trash bins)

Rapid light/smoke
expansion, crowd
scattering, lingering
smoke/flames

Fighting Public areas with
bystanders (streets,
bars), overturned
furniture

Aggressive postures,
broken objects
nearby (bottles,
chairs)

Repetitive punch-
ing/kicking, high-
intensity movements,
bystander reactions

Car Accident Roads with sudden
traffic stops, skid
marks/debris (broken
glass)

Collided vehicles
(distorted shapes),
injured individuals

Rapid decelera-
tion/impact, post-
crash behaviors
(crowd gathering,
emergency services)

Shooting Public spaces with
visible escape routes
(malls, streets)

Shooter’s stance (arm
extended), collapsing
victims

Crowd panic (duck-
ing/sprinting),
post-shooting pat-
terns (bodies, law
enforcement)

Riot Large crowds with
fires/smoke, bro-
ken infrastructure
(smashed windows)

Protesters with
makeshift weapons,
riot police/armored
vehicles

Group violence
(throwing objects),
chaotic dispersal
patterns (wave-like
movements)

Low-quality Analysis Guidelines:
• Focus on movement patterns (sudden scattering/aggressive postures)

• Detect environmental changes (smoke/debris) over fine details

• Analyze group dynamics (crowd panic/clustering)

• Prioritize spatiotemporal anomalies (light flashes/vehicle stops)

B.1.3 Video Content Description Prompt

If directly driving the VLM to describe the video, its prompt Pd is as follows:

"Please describe the content in the video in detail."

If prior knowledge B is incorporated, the form of B ◦ Pd is adopted.

B.1.4 Abnormal Scoring Prompt

The prompt Ps used in this section is divided into two parts: Scoring Criteria and Output Format
Control.

Scoring Criteria "How would you rate the scene described on a scale from 0 to 1, with 0 represent-
ing a standard scene and 1 denoting a scene with suspicious or potentially criminal activities?"

Output Format Control "Please provide the response in the form of a Python list and respond
with only one number in the provided list below [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
without any textual explanation. It should begin with ‘[’ and end with ‘]’."

C More Results

C.1 More Experimental Details

Based on the experimental details described in Section 4, the γmin = 0.4 and K-Means clustering
algorithm are used to generate the HGTree for inference. In the inter-cluster node refinement process,
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we implemented a top-K control for the final weighted neighborhood node numbers. Additionally, this
process also includes the temperature parameter τ of softmax. In the Inter-cluster Node Correlation,
the hyperparameter β affects the weight of coarse and fine clusters in the final anomaly score.

C.2 Effect of Different GEBD Methods

As shown in Section 3.1, we suppress the negative impact of low-quality generalized event boundaries
on VAD performance in several ways. In addition, we select different GEBD models trained on
Kinetics-GEBD dataset [59] to demonstrate the stability of the above strategies. Table 9 reveals
a direct correlation between their VAD performance on UCF-Crime and their original Kinetics-
GEBD [31] dataset results. This confirmation highlights two key findings: (1) The quality of GEBD
models remains an influential factor, as improved GEBD implementations consistently yield better
performance; (2) Our architectural innovations demonstrate robust adaptability to boundary quality
variations.

From a domain shift perspective, Kinetics-GEBD’s open-world diversity provides transferable
representations superior to those of constrained anomaly datasets (UCF-Crime, XD-Violence, and
MSAD). This GEBD-based pre-training aligns with established transfer learning paradigms, boosting
cross-domain detection robustness.

Table 9: Results of VADTree based on different GEBD models on UCF-Crime dataset.
GEBD Method Kinetics-GEBD-Val F1(%) Kinetics-GEBD-Test F1(%) UCF-Crime AUC(%)

SceneDetect5 - - 80.00
BasicGEBD-ResNet50 73.70 76.80 82.85
EfficientGEBD-ResNet18-L4 78.20 - 84.70
EfficientGEBD-ResNet50-L4 (Ours) 78.64 78.70 84.74

C.3 Effect of Intra-cluster Node Refinement Configuration

The neighborhood size parameter K in Eq. 8 governs the trade-off between localized feature precision
and noise suppression. Table 10 demonstrates substantial AUC gains from neighborhood node
refinement: 9.88% for VADTree-Fine and 7.14% for VADTree-Coarse when expanding K from 0
to 10. Both clusters exhibit maximal improvements within this critical initialization range. Perfor-
mance stabilizes between K=10 and K=15, with the fine and coarse clusters maintaining AUC of
83.03–83.05% and 82.55–82.81%, respectively. A gradual degradation when K exceeds 15 indicates
that the optimal balance between contextual integration and noise suppression has been reached
within this range.

Table 10: Influence of top-K weighted neighborhood nodes on AUC (%).
K 0 5 10 15 20 25

VADTree-Coarse 75.67 81.84 82.81 82.55 81.96 81.73
VADTree-Fine 73.17 79.77 83.05 83.03 82.65 82.43

The temperature coefficient τ in Eq. 8 regulates the entropy characteristics of Softmax-derived distri-
butions while maintaining ordinal relationships between elements. Our empirical analysis (Table 11)
reveals that as τ approaches zero (τ = 0.001), the distribution collapses into a degenerate form
concentrated solely on the maximal element, equivalent to a non-weighted selection. Progressively
increasing the parameter to moderate values produces an AUC plateau of 83.05% for the VADTree-
Fine exhibiting minimal variance. Notably, excessive temperature values (τ = 100) induce uniform
distributions, degrading performance to 82.43% AUC for VADTree-Fine. This analysis indicates
that the optimal parameter range is τ ∈ [0.01, 1], where an optimal balance is achieved between
distribution sharpness and model stability. For the experiments of VADTree-Coarse, we can get
similar conclusions.

5https://github.com/Breakthrough/PySceneDetect
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Table 11: Influence of softmax temperature τ on AUC (%).
τ 0.001 0.01 0.1 1 10 100

VADTree-Coarse 78.72 80.68 82.81 82.42 82.21 82.20
VADTree-Fine 77.83 80.72 83.05 83.05 83.02 83.02

Table 13: Ablation study of VADTree components on the UCF-Crime dataset. The upper and lower
panels present experiments using HGTree and 10 seconds fixed-length sliding temporal window (TW)
sampling respectively.

HGTree Fine Cluster Prior-infused fVLM Refinement Correlation AUC (%)

✓ ✗ ✓ ✓ 83.08
✓ ✓ ✗ ✓ 77.97
✓ ✓ ✓ ✗ 83.05
✓ ✓ ✓ ✓ 84.74

✗ ✗ ✗ ✗ 72.93
✗ ✓ ✗ ✗ 75.21
✗ ✗ ✓ ✗ 80.62
✗ ✓ ✓ ✗ 82.81

C.4 Effect of Inter-cluster Node Correlation Configuration

The β coefficient regulates parent-child node interplay in our cohesion-driven correlation (Eq. 10).
Notably, when β = 0, the correlation operation degenerates to a simple average of anomaly scores
from parent and child nodes. As quantified in Figure 4, the optimal control coefficient β = 0.4
delivers peak AUC performance at 84.74% for UCF-Crime dataset, indicating an effective equilibrium
between parent node contextual integration and child nodes semantic specificity. Additionally, limited
AUC fluctuation demonstrates the hierarchy’s inherent noise suppression capability. This validates
our weighted design as an effective strategy for multi-granularity fusion.

Table 12: Performance comparison demon-
strating the efficacy of inter-cluster correla-
tion. The integration of hierarchical clusters
in VADTree yields the highest AUC.

Datasets UCF-Crime XD-Violence MSAD
VADTree-Fine 83.05 90.04 86.71
VADTree-Coarse 82.81 89.36 87.01
VADTree 84.74 90.44 89.32

Figure 4: Influence of inter-cluster-correlation control
coefficient β on AUC.

C.5 More Ablation Experiments

Our additional ablation analysis examines the contribution of each component in VADTree , namely
the HGTree fine cluster, prior-infused node scoring, intra-cluster node refinement, and inter-cluster
node correlation, to assess their individual impact on performance. We also evaluate the effectiveness
of our components on the 10s fixed-length sliding temporal window (TW) sampling method. Table 13
shows the results of all ablated variants of VADTree. The experiment shows that each component has
a significant impact on our final results. At the same time, these components are still effective for
methods using fixed-length sliding temporal window sampling.

C.6 Comparison of VADTree and Different Video Sampling Methods

In this experiment, we conducted a comparative analysis of VADTree against mainstream video
sampling approaches, focusing on final anomaly detection performance and computational efficiency.
The fixed-length sliding temporal window (TW) method, employed by LAVAD and VERA [55, 50],
serves as our primary comparison method. Additionally, we propose three metrics to evaluate video
sampling efficiency: (1) Number of Segments (NoS), defined as the total number of video segments
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sampled from the test dataset; (2) Mean Intersection over Union (mIoU), computed by first identifying
the maximum temporal IoU between each anomalous event and all sampled segments within a video,
then averaging these maximum values across all events; (3) Mean Intersection Frames (mIF), similar
to mIoU, replaces the IoU metric with the number of intersecting frames between sampled video
segments and ground truth abnormal segments.

Table 14: Results of VADTree variants with different video sampling methods on the UCF-Crime
Dataset. 16f represents a stride of 16 frames. NoS indicates the number of generated video segments.
mIoU and mIF are used to measure the quality of video sampling.

Method TW Length Stride NoS↓ mIoU↑ mIF↑ AUC (%)

sliding TW 5s 5s 7558 0.41 122 82.06
sliding TW 10s 10s 3852 0.40 191 82.81
sliding TW 20s 20s 1994 0.33 265 81.33
sliding TW 10s 16f [55, 50] 69634 0.51 210 82.87

VADTree-Coarse - - 2248 0.37 369 82.81
VADTree-Fine - - 6365 0.40 233 83.05

VADTree - - 8613 0.47 343 84.74
VADTree + Redundant - - 12440 0.52 456 -

As demonstrated in Table 14, non-overlapping implementations of the TW strategy exhibit poor
alignment with anomalous events. While dense overlapping sampling with short strides (16
frames) [55, 50] marginally improves AUC ROC it produces 8× more segments than VADTree,
incurring significant computational costs without commensurate performance benefits. Our proposed
VADTree achieves superior anomaly detection performance while maintaining comparable computa-
tional efficiency to non-overlapping TW baselines, demonstrating effective balance between precision
and resource utilization.

C.7 Computational Analysis

According to the performance report by LAVAD, its VLM Caption module integrates the results
of five BLIP-2 models. The parameter counts used by LAVAD are 3.6 times that of our method
VADTree (as shown in Table 15) . We display the total inference time (GPU hours) of LAVAD and
VADTree on two NVIDIA GeForce RTX 3090 GPUs in Table 16. The time consumption of the VLM
Caption, LLM Summary, and LLM Scoring parts of LAVAD is estimated.

A closer examination of Table 16 reveals the following key observations: (1) VADTree-Coarse
requires less than 30% of LAVAD’s GPU hours (16.5 vs. 55.9) while achieving a 2.53% higher
AUC (82.81 vs. 80.28) on UCF-Crime. This confirms that our method achieves a better trade-off
between computational efficiency and detection accuracy compared to LAVAD. (2) Our VADTree
framework is highly flexible, with the core HGTree construction process being computationally
efficient. Both the VLM and LLM components are modular, allowing for adjustments based on
computational constraints. Importantly, high-cost inference models are not essential for VADTree’s
effectiveness. (3) The default VADTree’s inference time is primarily influenced by the reasoning
phase of DeepSeek-R1-Distill-Qwen-14B-think in the LLM scoring module. Replacing it with
faster variants (e.g., DeepSeek-R1-Distill-Qwen-14B-no-think or t5gemma-9B-2B) significantly
reduces inference time. We intentionally preserve the "Think" process because it generates valuable
intermediate reasoning steps that significantly enhance anomaly interpretation. Even without this
phase, our variants outperform LAVAD in AUC performance while maintaining lower inference times
in all cases.

Table 15: Component-level parameter analysis of VADTree and LAVAD.
Methods HGTree

Construction
Video/Text
Encoding

VLM
Caption

LLM
Summary

LLM
Scoring Total

LAVAD - ImageBind_Huge-1.2B
OPT-6.7B × 2 +

FLAN-T5XL-3B × 2 +
FLAN-T5XXL-33B

Llama-2-13B-chat Llama-2-13B-chat 79.6B

VADTree ResNet50-25.6M ImageBind_Huge-1.2B LLaVA-NeXT-Video-7B - DeepSeek-R1-Distill-Qwen-14B 22.2B
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Table 16: Component-level inference time consumption analysis of VADTree and LAVAD on UCF-
Crime dataset. The bold font indicates that VADTree’s total GPU hours is lower than that of LAVAD.

Methods HGTree
Construction

Video/Text
Encoding

VLM
Caption

LLM
Summary

LLM
Scoring

Total
(GPU hours) AUC(%)

LAVAD - 5.1h 20h 7.7h × 2 7.7h × 2 55.9 80.28
VADTree-Coarse 0.3h 0.2h 5.2h × 2 - 2.8h × 2 16.5 82.81
VADTree-Fine 0.3h 0.4h 14.8h × 2 - 7.9h × 2 46.1 83.05
VADTree 0.3h 0.6h 20.0h × 2 - 10.7h × 2 62.3 84.74
VADTree-Coarse 0.3h 0.2h 5.2h × 2 - 0.6h × 2 (no Think) 12.1 82.83
VADTree-Fine 0.3h 0.4h 14.8h × 2 - 1.2h × 2 (no Think) 32.7 82.72
VADTree 0.3h 0.6h 20.0h × 2 - 1.8h × 2 (no Think) 44.5 84.65
VADTree-Coarse 0.3h 0.2h 5.2h × 2 - 0.1h × 2 (t5gemma-9B-2B) 11.1 82.21
VADTree-Fine 0.3h 0.4h 14.8h × 2 - 0.2h × 2 (t5gemma-9B-2B) 30.0 82.19
VADTree 0.3h 0.6h 20.0h × 2 - 0.3h × 2 (t5gemma-9B-2B) 41.5 84.00

C.8 Stability Analysis

We conduct error analysis of VADTreeon UCF-Crime dataset and report their mean and variance.
The randomness of the experimental results mainly comes from the randomness of the generated
content during VLM and LLM inference. As shown in Table 17, the δ across all configurations is
statistically insignificant compared to the performance gaps between different methods (Table 1 and
Table 2). This confirms that the observed performance is robust against experimental randomness.

Table 17: Stability analysis of VADTree with different HGTree configurations.
Method Exp-1 Exp-2 Exp-3 Mean Results δ

VADTree-Coarse 82.81 82.75 82.92 82.83 0.17
VADTree-Fine 83.05 82.86 83.05 82.99 0.19

VADTree 84.74 84.49 84.73 84.65 0.25

C.9 Additional Case Studies and Qualitative Results

For complex anomalies such as arrests and burglaries, the fixed temporal sampling used in LAVAD
and frame-level caption aggregation can lead to missed long-range semantic dependencies, resulting in
inaccurate or incomplete interpretations of abnormal events. To show the superiority of our VADTree,
we conduct a qualitative analysis using two video samples from the UCF-Crime dataset. The Figure 5
displays some key inference information. LAVAD’s frame-level semantic aggregation often leads to
hallucinations and struggles to accurately identify long-range abnormal events. In contrast, VADTree
excels at detecting sub-events (e.g., "chased by another person," "attempted break-in") while also
synthesizing long-range contextual clues (e.g., "putting it all together"). The above qualitative results
will be added to our revision.

In the example shown in Figure 6, the overall score of fine clusters fluctuates greatly ([0.7, 0.9, 0.9,
0.9, 0.6] in 2 and [0.9, 0.6, 0.9, 1.0] in 3 ), while the anomaly score of coarse cluster 2 node is
low. After refinement, the above situation is improved, but the correct anomaly score is suppressed
( 3 : 0.8→0.64). In addition, the anomaly reasoning of each node is independent and lacks mutual
reference and dimensions; this may lead to unstable anomaly scores in the same video segment. The
final inter-cluster correlation resolves these shortcomings well. This example indicates that VADTree
can significantly enhance the robustness of training-free VAD inference.

D Limitations

Like existing training-free VAD methods, VADTree’s performance relies heavily on the visual
perception capabilities of VLMs. Most VLMs mainly focus on more complex semantic understanding
and reasoning, and there are still significant limitations in accurately obtaining various small shallow
abnormal semantics (such as the flame of a lighter after an explosion). This constraint may hinder
accurate anomaly detection. If essential visual characteristics are not captured during the encoding
stage, it becomes unlikely for VADTreeto effectively carry out abnormal reasoning or perform
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A man runs across a street in front of cars, and a motorcycle drives down a highway with other cars and motorcycles... 
soldiers shoot at a car in the street.

The scene described is a busy street with traffic, then a person in dark clothes running across the street, being chased by 
another person... The environment seems tense, possibly involving law enforcement because there's a person in a uniform 
approaching the car.

LAVAD

VADTree

A man walks through a parking garage for approximately 10 seconds, as shown by a security camera...A man is shown 
walking in a parking garage on a security camera for several minutes before he exits the garage and walks down the 
sidewalk.

The debris on the ground adds to the suspicious vibe because it might be from an attempted break-in or something else 
illegal...Putting it all together: an open vehicle, someone with a tool, another person inside moving around, nighttime, 
debris, tense atmosphere. These factors add up to a scene that's quite suspicious.

LAVAD

VADTree

Arrest024_x264.mp4

Burglary079_x264.mp4

Figure 5: Case studies of complex anomalies: arrests and burglaries. VADTree excels in generating
accurate explanations by modeling hierarchical events and long-range dependencies, whereas LAVAD
produces incomplete descriptions due to frame-level limitations.

temporal inter-cluster corrections. Therefore, a primary challenge for VLM based VAD is to guarantee
that both visual and temporal features are adequately captured.

E Broader Societal Impacts

Our training-free paradigm enables efficient video anomaly detection with minimal computational
costs, yet its deployment in safety-critical scenarios (e.g., public surveillance) requires careful
consideration of privacy-preserving mechanisms. While avoiding explicit biometric data processing,
the prior knowledge base could theoretically retain sensitive environmental patterns. We advocate
transparency audits to mitigate potential privacy risks in real-world implementations.
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Scoring

Refinement

①          ②       ③          ④                    ⑤                   ⑥

The presence of multiple locations is normal for international news coverage. 
There's no indication of anything unusual or criminal happening in the scene 
itself. The content is about protests, which is a common news topic and not 

inherently suspicious. Therefore, this scene doesn't suggest any criminal 
activity; it's just a regular news broadcast.

The presence of injuries and deaths indicates a serious situation, so a high 
score is justified. armored vehicles and a tense crowd with weapons make it 

look like a riot or clash, which is definitely criminal. So, putting it all together, 
the scene has significant elements of violence and potential criminal activity, 

so the rating should be high on the scale. 

 The scene shows signs of unrest, with people raising their hands and holding 
objects that could be weapons. That's concerning because raised hands could 

indicate either surrender or aggression, and objects as weapons suggest a 
potential for violence.  Given the violence and the context, it's definitely a high 

score. 

The tense atmosphere and unrest definitely add to the suspicion level. So, 
considering all these factors, the scene isn't just a standard protest; it's a violent 

one with casualties. Maybe around 0.9 because it's quite serious but not the 
absolute worst case. 

The text is centered and takes up the upper half of the frame. There are no 
other visual elements or changes. There's no evidence of anything out of the 

ordinary that would suggest criminal activity.

Injuries and deaths are significant indicators of potential violence or unrest. So, 
considering the scale, 0.8 seems appropriate. It's not the highest because it's 

not showing ongoing criminal acts, just the results of a violent protest.

 This scene isn't just a regular protest; there's violence involved, people with 
protective gear and weapons, and a volatile situation. It's definitely not 

standard. It shows signs of potential criminal activity due to the violence and 
the chaotic setting. it's a situation with clear signs of danger and possible 
illegal activities. So, I'd rate it higher than 0.5, maybe around 0.7 or 0.8. 

If the video shows people fighting with weapons, that's a clear sign of criminal 
activity. So, putting it all together, the scene depicts active violence with 

weapons, casualties, and tension. Therefore, it's a high score. I think 0.9 is 
suitable because it's very suspicious and potentially criminal

Those are usually considered suspicious because they can lead to criminal 
activities. On the scale from 0 to 1, I think 0.6 might be appropriate because 

there are clear signs of tension and aggressive behavior, which could indicate 
potential criminal activities, but without actual violence, it's not the highest 

level.

The presence of injuries and deaths as per the text overlay indicates that 
violence has occurred. So, putting it all together, the scene shows a violent 

protest with confirmed fatalities and injuries, which is definitely on the higher 
end of suspicious and criminal activities. Therefore, the rating should be 1.0.

The atmosphere is tense and agitated, with people raising their hands or 
holding objects. The scene is extremely suspicious with significant violence, 
but without explicit criminal actions like theft or clear evidence of organized 

crime, 0.9 seems fitting.

⑥

①

②

③

④  

  ⑤

The background has multiple screens, which is 
typical for a live broadcast. The lower third shows 
"LIVE INDONESIA PROTEST," along with RT 
logo and website. The content is about protests, 
which is a common news topic. Since this is a 

normal news broadcast, it should be 0.

There's no clear evidence of criminal activities 
being depicted, just the coverage of an ongoing 

event. Maybe around 0.2 or 0.3 because it's more 
than a standard scene but not showing clear signs 
of criminality. The tension is there, but it's still a 

news event. The options are 0, 0.1, up to 1.0. Since 
the scene is a bit more than standard but not 

criminal, maybe 0.2 is appropriate.

I'm trying to think if there are any signs of criminal 
activities. The fact that people are holding sticks 

could be for protection or could be used as 
weapons. Since there are confirmed injuries and 

deaths, and the scene is chaotic with possible 
weapon use and police presence, it's more than just 
a tense protest. It's leaning towards a 0.7 or higher. 

The presence of text overlays about casualties adds 
to the severity. Given that there are injuries and 
deaths, the scene is beyond a standard protest. 

Therefore, it's not a 0 but closer to the higher end 
of the scale. However, it's not necessarily the most 

extreme scenario, so maybe around 0.8 or 0.7.

 Now, looking at the scene described: it's static, no 
movement, just text. It's just advertising their own 
videos, which is normal. There's no indication of 

anything wrong, so it's a standard scene. 

There's a mix of clothing, some running 
around, and the background has a modern 

building with streetlights and maybe 
emergency vehicles. 

Correlation

Coarse Cluster Reasoning Fine Cluster Reasoning

Figure 6: Qualitative results of VADTree on a test video, showcasing anomaly explanation and scoring
based on HGTree representation. The scoring and text explanation include initial anomaly scores
(Scoring), refined scores (Refinement), and final anomaly scores (Correlation) Based on HGTree
for video representation, the different granularity reasoning results of coarse and fine clusters on
anomalies can complement each other.
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