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Abstract

Inference scaling can help LLMs solve complex reasoning problems through1

extended runtime computation. On top of targeted supervision for long chain-of-2

thought (long-CoT) generation, purely inference-time techniques such as best-of-N3

(BoN) sampling, majority voting, or more generally, minimum Bayes risk decoding4

(MBRD), can further improve LLM accuracy by generating multiple candidate5

solutions and aggregating over them. These methods typically leverage additional6

signals in the form of reward models and risk/similarity functions that compare gen-7

erated samples, e.g., exact match in some normalized space or standard similarity8

metrics such as Rouge. Here we present a novel method for incorporating reward9

and risk/similarity signals into MBRD. Based on the concept of optimal policy10

in KL-controlled reinforcement learning, our framework provides a simple and11

well-defined mechanism for leveraging such signals, offering several advantages12

over traditional inference-time methods: higher robustness, improved accuracy, and13

well-understood asymptotic behavior. In addition, it allows for the development14

of a sample-efficient variant of MBRD that can adjust the number of samples to15

generate according to the difficulty of the problem, without relying on majority16

vote counts. We empirically demonstrate the advantages of our approach on math17

(MATH-500) and coding (HumanEval) tasks using recent open-source models. We18

also present a comprehensive analysis of its accuracy-compute trade-offs.19

1 Introduction20

Recent progress in large language model (LLM) technologies has reignited interest in decoding21

methods, and in general in scaling laws for inference time compute. Reasoning models, such as22

OpenAI’s O1, O3 and O4-mini [Jaech et al., 2024, OpenAI, 2025], Alibaba’s Qwen with Questions123

and DeepSeek’s R1 [Guo et al., 2025], can learn to produce long chains of thought (long-CoT) that24

solve very hard problems by using reinforcement learning with verifiable rewards. At the same time,25

there is a general resurgence of interest in decoding methods beyond simple greedy decoding or26

sampling, see the recent NeurIPS tutorial [Welleck et al., 2024]. Among these are methods that rely27

on complex tree traversal, such as Monte Carlo tree search [Browne et al., 2012, Chen et al., 2024]28

and different variants of beam search. A second category includes best-of-N (BoN) decoding and29

self-ensembling techniques that can exploit additional signal such as process reward models [Uesato30

et al., 2022, Lightman et al., 2024] or some measure of consistency across multiple model outputs –31

these can be generally regarded as variants of minimum Bayesian risk decoding (MBRD) [Kumar32

and Byrne, 2004, Bertsch et al., 2023].33

A large body of recent research has focused on long-CoT inference scaling. Monte Carlo tree search34

has also received significant attention due to its success in other machine learning areas such as35

games. In this paper, we focus on the remaining category of BoN/MBRD methods, which offer a36

1https://qwenlm.github.io/blog/qwq-32b-preview/
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unique and complementary set of advantages over other approaches. First, these methods can be used37

with any model, irrespective of whether the latter was trained for long-CoT reasoning. Second, their38

implementation is relatively simple, often requiring only parallel decoding and a final integration of39

results, which gives more precise control over inference scaling budget. Finally, they are modular,40

allowing for the use of off-the-shelf reward models to support multiple domains, even beyond those41

where long-CoT is particularly advantageous. On the flip side, they typically provide a lower gain in42

accuracy for the same amount of compute2. Whether BoN or MBRD is the superior option in a given43

scenario is dependent on the quality of the generator relative to that of the reward model. Finally, the44

simplicity of BoN and MBRD leaves less room for modification and improvement.45

In this work, we propose an improvement to standard MBRD, termed Optimal Policy MBRD46

(OP-MBRD), with the following desirable properties:47

• Robust response and performance across different scenarios, outperforming or closely48

matching the better of BoN and MBRD, even when there is a large performance gap between49

the two.50

• Well-understood asymptotic behavior, converging to regular MBRD over a distribution that51

balances the contributions of a reward model and a reference generator.52

• A sample-efficient version of the algorithm that can adjust the number of generated samples53

depending on the difficulty of the prompt, relying on general string matching instead of54

exact match counts.55

• OP-MBRD retains most of the simplicity of BoN and MBRD, while introducing only a56

single new parameter and remaining compatible with standard MBRD (i.e., beyond the use57

of simple exact match as in ordinary majority voting).58

2 Related work59

The following approaches can be considered related to our work.60

Learned Chain-of-Thought Techniques: These inference scaling methods achieve high performance61

by training the generator to produce chain of thought to solve difficult problems. These CoTs often62

contain spontaneously appearing instances of self-reflection, backtracking, option enumeration,63

summarization and others. The most successful models are trained with reinforcement learning64

and verifiable rewards [Jaech et al., 2024, OpenAI, 2025, Guo et al., 2025]. There are however65

more structured approaches that consider specific types of skills in the CoT [Kumar et al., 2024,66

Gandhi et al., 2025]. Compared with the approach presented here, these techniques require specific67

generator training but no special decoding, besides support for long context. They can be considered68

complementary to the technique presented here.69

Majority Voting and Bayesian Risk: This concerns inference scaling methods that generate70

multiple outputs from a model and consolidate them into a final answer. Their main advantage is71

their simplicity, requiring only N independent generations, no specific generator training, or need of72

an external model such as reward models. Recent variants applied to LLMs include self-consistency73

[Wang et al., 2023], and conventional counts-based consensus in mathematical reasoning [Yang et al.,74

2024, Guo et al., 2025]. Minimum Bayes risk decoding [Kumar and Byrne, 2004] can be considered75

a generalization of majority voting (MV) that utilizes a risk or similarity function between pairs of76

outputs to select the output that has the lowest risk / highest similarity with regard to any other output.77

MBRD reduces to count-based MV by using exact match as similarity [Bertsch et al., 2023]. MBRD78

allows to extend MV to domains where exact match is not an option. A disadvantage of MV methods79

is that they often require large amount of samples to yield good gains.80

Reward-weighted Post-Processing: These can be seen as an enhancement of the previous. They81

generate N independent sentences in the same way, but utilize a separate model to score the completed82

outputs e.g. a reward model. Best-of-N (BoN) [Charniak and Johnson, 2005] is a very common83

and simple method with proven success to enhance LLM performance [Yang et al., 2024]. These84

methods also include combinations of majority voting with reward models, which provide improved85

performance with respect to plain majority voting, e.g., voting verifiers [Li et al., 2023]. These86

methods can also be expressed as a form of MBRD where pair-wise risk/similarity is enhanced with87

2Early DeepSeek-R1 release note https://api-docs.deepseek.com/news/news1120.
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the output reward. Reward post-processing compensates some of the limitations of pure MV while88

adding only the overhead of a call to to an external reward model. The method here presented falls into89

this category. As shown in the next sections it retains the simplicity advantage of similar counterparts90

such as BoN or voting verifiers, while being derived from well understood principles, providing more91

robust performance and an efficient version with better performance/compute trade-offs.92

Step-by-Step Decoding: This includes methods that generate N outputs in steps. After each step93

all partial completions are scored and combined together to produce the prefixes for the next step.94

This can be done through deterministic pruning of the worse options as in beam search [Graves,95

2012], or stochastic re-sampling of candidates as in [Deng and Raffel, 2023]. Scorers can be reward96

models [Deng and Raffel, 2023], but also attribute classifiers [Yang and Klein, 2021]. With the97

rise of reasoning LLMs and process reward models (PRMs) [Lightman et al., 2024], able to score98

partial reasoning chains, steps have grown fro single tokens to multiple, although the basic results99

are maintained 3. Compared to reward-weighted post-processing techniques, step-by-step additional100

complexity due to the need to synchronize intermediate steps and the extra communication overhead101

per step between generator and scorer. The technique introduced here could also be applied however102

to multi-step algorithms, but this is beyond the current scope of the manuscript.103

Efficient Inference Scaling Optimal allocation of inference compute can enable inference-time104

methods to outperform simply using a larger model Snell et al. [2024]. Given the recent success of105

inference scaling methods, several approaches have been proposed in this area. One category of meth-106

ods estimates task difficulty and performs budget allocation or input routing to different generators107

[Damani et al., 2024]. Other approaches focus on minimizing the number of samples generated or108

compared, based on the observed distribution of answers over multiple samples [Aggarwal et al.,109

2023] or pair-wise risk [Cheng and Vlachos, 2023].110

Optimal Policy in Reinforcement Learning The method introduced here is also related in its111

mathematical background to recent works in the reinforcement learning. Methods like proximal112

policy optimization (PPO) [Schulman et al., 2017], GDC++ [Korbak et al., 2022] and BRAIn113

[Pandey et al., 2024] optimize the KL-controlled reward maximization objective through different114

approximations. The solution to this problem is the intractable optimal policy, which is the basis of115

the decoding algorithm presented here. Direct preference optimization (DPO) [Rafailov et al., 2023]116

is also derived from the optimal policy and can be proven to be a special case of BRAIn. Rejection117

sampling from the optimal posterior is also considered in statistical rejection sampling optimization118

[Liu et al., 2024] as a method similar to DPO.119

3 Minimum Bayesian Risk Decoding120

We define an LLM as a neural network parameterizing a distribution p(y | x) over strings. Here121

x, y ∈ V + are input and output strings, respectively, and V + is the countably infinite set of all122

possible strings formed by concatenating tokens from a vocabulary V . Generating from an LLM123

generally corresponds to finding the most likely string124

ŷ = arg max
y∈V +

{
p(y | x)

}
(1)

which can only be approximately computed in practice using techniques such as greedy search.125

In recent years, the increase in performance of LLMs has made sampling also a viable option. For126

auto-regressive models, this is usually done using ancestral sampling, often with some re-shaping of127

the token distribution by setting the temperature or nucleus size [Holtzman et al., 2019].128

In this context, techniques that aggregate over multiple outputs of the same model have become129

a simple yet powerful way to further boost results. This is best exemplified by the resurgence of130

minimum Bayesian risk decoding (MBRD) and related methods applied to LLMs, such as self-131

consistency [Wang et al., 2023], as well as strong results for “consensus” in reasoning models such132

as OpenAI’s O1, O3 or DeepSeek’s R1, which can be interpreted as MBRD with exact match.133

MBRD solves an alternative decoding problem, where the goal is to find the output that minimizes134

the expected risk with respect to the LLM distribution. In the remainder of this manuscript, we will135

3For recent results combining step-by-step and post-processing see https://huggingface.co/spaces/
HuggingFaceH4/blogpost-scaling-test-time-compute
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refer instead to the mathematically equivalent problem of maximizing the expected similarity, which136

makes notation simpler. This problem can be expressed as137

ŷ = arg max
y′∈V +

{
Ep(y|x){M(y, y′, x)}

}
= arg max

y′∈V +

{
Q(y′, x)

}
(2)

where M(y, y′, x) is a similarity function between outputs y, y′ ∈ V +. 4. Exact MBRD is doubly138

intractable since it requires the same search over V + as greedy decoding, but also the computation of139

the expectation over that same domain. For this reason, MBRD is often approximated through Monte140

Carlo estimation by using a set of samples S(N) = {y1 · · · yN} ∼ p(y | x), both as the search space141

and to compute the expectation:142

Q(y′, x) = Ep(y|x){M(y, y′, x)} ≈ 1

N

∑
yn∈S(N)

M(yn, y
′, x). (3)

Often described as consensus or majority voting, MBRD using exact match similarity, henceforth143

referred to as MBRD (EM), is a well known and strong baseline144

M(y, y′) = δg(y,y′). (4)

Here g() is a function that extracts an answer from each model output (which may contain CoT and145

other tokens), compares them using some normalization, e.g., a symbolic representation, and returns146

1 if they are equal or 0 otherwise. This amounts to selecting the answer that occurs more often in this147

normalized space. Other forms of MBRD include using symbol-level distances such as Rouge [Lin,148

2004]. In some fields like machine translation, evaluation metrics like BLEU [González-Rubio149

et al., 2011] or COMET [Guttmann et al., 2024] are also used. For LLMs, it is straightforward to150

incorporate a reward model into the risk/similarity computation as151

M(y, y′, x) = δg(y,y′) ·R(y, x), (5)

which can substantially improve performance. This can also be viewed as an instance of a voting152

verifier [Li et al., 2023]. This setup will henceforth be referred to as MBRD (EM*R).153

4 Optimal Policy Minimum Bayesian Risk Decoding154

4.1 Definition155

We here propose another way of combining p(y | x) and R(y, x) that represents a minimum increase156

in complexity, while providing interesting properties. Borrowing from Reinforcement Learning, one157

can define a distribution q that maximizes a expected reward R(y, x) while being close to a reference158

distribution pR(y | x). This can be expressed as the objective159

L(q) = Eq(y|x) {R(y, x)} − β ·KL(q(y | x) || pR(y | x)) (6)

where β controls how much influence the reward has on q. This objective is the well known KL-160

controlled reward maximization, which is the basis for RL algorithms such as PPO [Schulman et al.,161

2017], GDC++ [Korbak et al., 2022], DPO [Rafailov et al., 2023] and BRAIn [Pandey et al., 2024].162

It is easy to see that the solution to this is given by the optimal policy 5163

p∗(y | x) = argmax
q

{L(q)} =
1

Z
· pR(y | x) · exp

(
1

β
R(y, x)

)
(7)

where the partition function Z requires an intractable sum over the space of sentences V +. Assuming164

that we could sample from this distribution, it’s trivial to do MBRD with this optimal posterior165

ŷ = arg max
y′∈V +

{Ep∗(y|x){M(y, y′, x)}} (8)

This formulation provides a well defined way of integrating a reward R(y, x), a similarity function166

M(y, y′, x), a reference model pR(y | x), and an available generator p(y | x).167

4For generality, we have also included the input in this function, since it does not alter the formulation.
5For a formulation, see for example Rafailov et al. [2023] Appendix A.1.
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4.1.1 Computing Expectations with respect to the Optimal Policy168

To approximate MBRD expectations we need to sample from an intractable energy model, in169

particular from the optimal policy. This has been addressed before in the literature but for the purpose170

of Reinforcement Learning training (DPG, GDC++, RSO [Liu et al., 2024], BRAIn). It can be shown171

that, given a sample from a proposal distribution, in this case assumed to be our generator p(y | x),172

the probability of the sample yn ∈ S(N) belonging to p∗(y | x) is given by6173

p(accept yn) = exp

(
R̃(yn, x)−max

y′
R̃(y′, x)

)
(9)

where174

R̃(y, x) =
R(y, x)

β
+ log

pR(y | x)
p(y | x)

(10)

It seems intuitive that just using the accepted samples to compute the expectation is the best option.175

However, it is well-known that the Rao-Blackwellized version [Casella and Robert, 1996]7 of this176

estimator can use all samples to provide a lower variance estimate. This can further be approximated177

via importance sampling to yield178

Q̂(y′, x)OP =
1

N

∑
yn∈S(N)

M(yn, y
′, x) · p(accept yn)∑

y′
n∈S(N) p(accept y′n)

(11)

Since softmax is invariant to shifting the logits by a constant, Rao-Blackwellized rejection sampling179

in Eq. 11 coincides with self-normalized importance sampling (SNIS) [Bengio and Senécal, 2008]180

with unnormalized weights pn. A bias subtracted version of SNIS is also used in BRAIn, but for the181

purpose of reinforcement learning. We term this last estimator Optimal Policy Minimum Bayesian182

Risk (OP-MBR) and its maximization OP-MBR Decoding (OP-MBRD).183

4.2 OP-MBRD with a Process Reward Model184

The method introduced here provides a well defined way to integrate a reward model R(y, x), a185

reference model pR(y | x), and a similarity function M(yn, y
′, x) into a decoding strategy for a186

generator p(y | x). It does not prescribe which values should these take. In the case of inference187

scaling, PRMs estimate the odds that a given partial reasoning leads to the correct answer. For these,188

the acceptance probability can thus be defined as the product of acceptance of every step, leading to189

T∏
t=1

p(accept yn<t+1) = exp

(
T∑

t=1

PRM(yn<t+1, x)

β
+ log

pR(yn | x)
p(yn | x)

−M

)
(12)

where M is the sum of maximum R̃ for each step that ensures we are multiplying probabilities.190

In practice we normalize the sum of PRM scores by the number of steps T . Note that this does191

not require step-by-step decoding. The outputs are fed to the PRM at the end of generation with192

appropriate markers i.e. double end of line, and the PRM returns scores for what it considers steps.193

Another possible interpretation of this formula is ancestral importance sampling of the optimal policy.194

4.3 Efficient OP-MBRD195

Since OP-MBRD Rao-Blackwellized rejection sampling and the importance sampling estimators196

coincide, it may seem that the rejection sampling formulation is redundant. Nevertheless, one can still197

derive a useful metric from it, the number of expected optimal policy samples for a sample set S(N)198

N̂OP =
∑

yn∈S(N)

pn =
∑

yn∈S(N)

exp

(
R̃(yn, x)−max

y′
R̃(y′, x)

)
. (13)

Under the rejection sampling interpretation of our estimator, this gives us a measure of how successful199

our sampling round was, with a higher N̂OP indicating more samples belong to p∗. We can use this to200

derive an efficient version of OP-MBRD, where we fix a desired number of optimal policy samples201

NOP and we sample repeatedly until N̂OP ≥ NOP. As it will be shown in the experimental setup, these202

yields a good prediction of task difficulty for generator-PRM pairs. We will describe those pairs has203

being well calibrated. We will henceforth refer to this proposed method as OPE-MBRD.204

6See e.g. RSO [Liu et al., 2024] Appendix A.1
7See https://andrewcharlesjones.github.io/journal/rao-blackwellization.html
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4.4 Formal Guarantees205

Unlike other methods that combine majority voting and reward models, like MBRD (EM*R),206

OP-MBRD has a clearly defined asymptotic behavior, trivially following from the properties of207

self-normalized importance sampling8. The proposed OP-MBRD estimator converges to the true208

MBRD with respect to the optimal policy with probability 1.209

p
(

lim
N→∞

Q̂(y′, x)OP = Ep∗(y|x){M(y, y′, x)}
)
= 1 (14)

Furthermore, we can examine in detail Eqs 9,10 to study what sampling from the optimal policy210

entails. For cases in which R = 0 only the log-ratio term remains and OP-MBRD reduces to MBRD211

from pR(y | x), as approximated by self-normalized importance sampling. If we use our generator as212

reference pR(y | x) = p(y | x), only the reward term R remains. For a PRM this now will represent213

MBRD with respect to an energy model proportional to the odds of reaching the correct answer. For214

an oracle PRM this would assign zero weight to any sample in S(N) not reaching the correct answer,215

which in the limit guarantees that OP-MBRD would always choose the right answer 9.216

5 Experimental Setup217

5.1 Models and Datasets218

To evaluate the methods proposed, we test small and medium LLMs on math and coding tasks. For219

reproducibility and completeness, we select recent open source models in the 1-20 billion parameter220

range. For math, we select Alibaba’s Qwen-2.5-math models [Abdin et al., 2024] sizes 1.5b and 7b221

as high performing math-specific models. These have a matching process reward model – Qwen-2.5-222

PRM-7b [Zhang et al., 2025] – that we also use in our experiments. We also select IBM’s Granite223

3.310 models sizes 2b and 8b. These are general models that also exhibit strong math performance224

compared to, e.g., LLaMa models of the same size [Grattafiori et al., 2024]. For the Granite models,225

we train our own PRM from Granite-3.3 for math. The model was trained with synthetically generated226

data. The training data consists of step-level correctness annotations, generated using the binary227

search method of Luo et al. [2024]. The input prompts are sampled from MathInstruct [Yue et al.,228

2023], MetaMathQA [Yu et al., 2023] and NuminaMath [Li et al., 2024] datasets – the responses229

are sampled from Granite-3.x, Mixtral-8x22B and Phi4-instruct models. After initial training of the230

PRM with this data, we use the trained PRM to further filter out low-quality step annotations. We231

discard samples where step-level correctness annotations do not match the PRM’s assessment of step232

quality. We then perform a second iteration of PRM training with this higher-quality filtered data.233

As the upper tier in size we select again Phi-4-instruct [Abdin et al., 2024] (14b) as an additional234

generator. Finally, we pair Phi4-instruct also with a Phi4-PRM trained the same way. We do not235

include long-CoT models since we are focusing here on approaches leveraging BoN and MBRD,236

which leverage independent samples rather than long contexts.237

We evaluate all models and methods on MATH-500 [Hendrycks et al., 2021, Lightman et al., 2024]238

and HumanEval [Chen et al., 2021]. MATH-500 is a collection of 500 math competition problems239

that require detailed step-by-step reasoning to solve. HumanEval consists of 164 programming240

problems, each asking to complete a standalone Python function from requirements specified in a241

docstring. Unit tests are included for each example for automatic evaluation. We use pass@1 scores242

to assess performance on both datasets.243

5.2 Baselines and Methods244

As inference scaling baselines we focus on well established single-step algorithms that ensemble245

multiple samples. We consider BoN using the average PRM score across steps, which was observed246

to be more performant than other aggregations like minimum in these datasets. We use also two247

variants of MBRD. First, variants not making use of a PRM or any other parametric scoring function.248

For MATH-500 we use exact match similarity, M(y, y′) = δg(y,y′). This is often also described249

as majority voting or consensus and is here referred as MBRD (EM). As text normalizer g() we250

8For a derivation see https://www.tuananhle.co.uk/notes/is.html
9Assuming a perfect PRM, limN→∞ and model assigning non zero probability to the solution

10https://huggingface.co/ibm-granite/granite-3.3-8b-instruct

6

https://www.tuananhle.co.uk/notes/is.html
https://huggingface.co/ibm-granite/granite-3.3-8b-instruct


extract the answer inside the a boxed command, including a prompt to force the model to adhere251

to such format. For code, exact match performs very poorly, we use Rouge [Lin, 2004] instead,252

M(y, y′) = rouge(y, y′). This performed better in our initial test than other alternatives such as253

Python’s difflib.SequenceMatcher [Ratcliff and Metzener, 1988, Wei et al., 2025]. We refer to254

this as MBRD (rouge). As parametric MBRD baseline, we used Voting Verifier [Li et al., 2023],255

which can be expressed as M(y, y′) = δg(y,y′) ·meanPRM(y, x) here referred to as MBRD (EM*R).256

As methods proposed, we introduce Optimal Policy variants of the non-parametric MBRD i.e. OP-257

MBRD (EM) and OP-MBRD (rouge). These use the Rao-Blackwellized rejection sampling (or258

equivalently importance sampling) to sample from the optimal posterior (see Section 4). All our259

experiments use pR(y | x) = p(y | x), which in practice nullifies the effect of the log-ratio term of260

OP-MBRD. Although the log-ratio term can be proved to equate rejection/importance sampling of261

pR (see Section 4.4), initial experiments did not show big advantages when using strong teachers for262

pR and we leave further exploration for future work. This also allowed to estimate the maximum263

reward in Eq. 9 as the maximum PRM value 1.0. In addition to the normal variants, we also used the264

efficient version proposed in Section 4.3, termed OPE-MBRD, which uses the expected amount of265

accepted samples to decide when to stop sampling. For this we iteratively sampled outputs one by266

one until a target budget of NOP = {1, 2, 4, 8, 16, 32, 64, 128, 256} optimal samples was met. These267

experiments are designed to measure the gains in throughput and not in wall-clock time. For the268

latter, a schedule would have to be designed that uses the observed probability of success to guess a269

fixed number of samples to be generated next. We leave this for future work.270

5.3 Hyperparameters and Variance Reduction271

For hyperparameter tuning, we construct a development set out of NuminaMath11. We include a272

random subset of 500 question-answer pairs in this set, discarding their CoTs, and making sure273

they (a) pass simple format check, and (b) are not in MATH-500. We set the KL-term weight β,274

representing the relative weight of the generator versus the PRM in this set. A value of β = 0.1275

was found to be robust across many scenarios and was selected for Qwen and Granite models both276

for math and code tasks. The only clear exception was Qwen-15b/Qwen-7B-PRM. Results on the277

dev set indicated that, for this pair, the PRM is much stronger than the generator, and a value of278

β = 0.001 was selected. Similarly a value of β = 0.01 was selected for Phi-4/Phi-4-PRM. For the279

OPE-MBRD a maximum number of samples was set as a ×10 multiplier of the number of optimal280

samples selected. For e.g. if we solicited 2 optimal samples, no more than 20 real samples would be281

sampled. This was a simple compromise that helped with badly calibrated generator-PRM pairs, that282

tend to have spikes in the number of samples solicited. We include the full dev details in Appendix B.283

To cover a wide range of inference scaling cases, we produce N = 256 samples for each input. To284

reduce variance of results, we always make use of the pool of 256 samples for all experiments, either285

for ensembling or experiment repetition. For example, for MBRD (EM) with 16 samples, we can286

repeat the experiment 256/16 = 16 times. We show the average performance for these 16 repetitions.287

Note that for the efficient version of OP-MBRD, OPE-MBRD, the number of samples that constitutes288

an experiment changes, since the algorithm can select a different number of samples for different289

generations. We consume blocks of samples of variable size until exhausting the sample pool to290

construct experiment repetitions. No sample is ever shared across experiments. Standard deviation291

across all conditions ranged from 0.3 to 0.5.292

5.4 Results Analysis293

Figure 1 shows the comparison of the different generator-PRM pairs. The left shows pass@1294

performance as a function of the real number of samples generated, averaged over all dataset295

examples. The right side shows study cases for specific optimal policy budgets of OPE-MBRD,296

signaled with a cyan star on the left side of the plot. Each marker on the right represents an example297

in the MATH-500 dataset, sorted from lower to higher difficulty. The difficulty is assessed by using298

the pass@1 of the normal generator p(y | x) and the full 256 samples. On the vertical axis we display299

the real number of samples N used by OPE-MBRD averaged over experiment repetitions. We color300

as green instances for which the OPE-MBRD attains higher pass@1 than OP-MBRD, red if lower,301

black if both match (typically both reach 1.0) and gray if both fail (0.0). We consider generator-PRM302

11https://huggingface.co/datasets/AI-MO/NuminaMath-CoT
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Figure 1: MATH-500 test results. Left: pass@1 score as a function of the number of samples per
input. Every dot marker is an average over multiple experiment repetitions. A star marker denotes the
efficient OP-MBRD represented on the right side. Right: Number of samples OPE-MBRD selects
for every example in the test set, sorted from easy to difficult by regular decoding pass@1. Largest
standard deviation among all experiments was less than 0.5.

pair as calibrated if the number of samples used increases with problem difficulty and this leads to303

performance improvements (green dot).304

Looking at Figure 1, left: In terms of pass@1 performance, OP-MBRD performs robustly across305

scenarios and is mostly above or equal to the best baseline, which alternates between BoN or MBRD306

(EM*R). For the stronger Qwen-7b-math/Qwen-PRM-7B, results match or slightly outperform307

the baseline MBRD (EM*R). For the efficient version OPE-MBRD, large gains in performance308

at attained at low numbers of samples- this is consistent with the excellent calibration where the309
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Figure 2: HumanEval test results: Left: pass@1 score as a function of the number of samples per
input. Every dot marker is an average over multiple experiment repetitions. A star marker denotes the
efficient OP-MBRD represented on the right side. Right: Number of samples OPE-MBRD selects
for every example in the test set, sorted from easy to difficult by regular decoding pass@1. Largest
standard deviation among all experiments was less than 0.5.

OPE-MBRD version select one real sample for all but the hardest 15% of all examples. In the smaller310

Qwen case the BoN baseline attains much better performance than MBRD (EM*R) baseline, but311

OP-MBRD closely matches it. Despite the worse calibration OPE-MBRD still provides a good312

advantage. For the Granite/Granite-PRM pairs, which are weaker at math, OP-MBRD provides an313

advantage over the baseline MBRD (EM*R), with particularly strong gains for the smaller model314

and high number of samples. Both results show reasonably good, but noisier, calibration which leads315

to OPE-MBRD providing gains over OP-MBRD. Phi-4/Phi-4-PRM presents the worst calibration,316

which leads to OPE-MBRD just matching OP-MBRD, but overall gaining a small advantage against317

the best baseline MBRD (EM*R). The lack of Phi-4/Phi-4-PRM calibration may stem from the fact318

that PRM development was mostly centered around the Granite models.319

Figure 2 shows additional results for Granite/Phi-4-PRM pairs12 on the the HumanEval coding task.320

All metrics and symbol meanings are same as before. Overall, OP-MBRD remains close to the best321

performing baseline, in this case BoN. Calibration in this case is non-existent, which can be explained322

by the fact that we use a PRM tuned on math data to judge a coding task, resulting in very low323

overall PRM scores and very pessimistic (high) number of samples solicited. As with MATH-500,324

OP-MBRD still provides an advantage for the smaller model and at higher sample counts.325

6 Conclusions326

We present Optimal Policy Minimum Bayesian Risk Decoding (OP-MBRD), a simple alternative327

to BoN and MBRD with rewards that performs more robustly across different generator-PRM328

combinations. OP-MBRD also has well-defined asymptotic behavior interpolating, in an interpretable329

way, between rejection/importance sampling from a target generator and sampling from an energy330

model associated to a reward model. Finally, the proposed formulation also yields an additional useful331

signal that can suggest a variable number of samples based on input difficulty. For well-calibrated332

generator-PRM pairs, this results in large gains in throughput for the same compute budget, without333

relying on answer counts or risk/value functions. Future work can expand on the role of the reference334

generator and look into efficient multi-step algorithms, for which the properties of the presented335

method are well-suited.336

12We paired Granite with Phi-4-PRM since it showed better overall performance on the coding task.
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A Limitations516

The work presented here has the following limitations: Although we cover a diverse set of 3517

generators and 3 PRMs covering 5 different sizes across the range of 1-20B parameters, this is not518

fully representative of all LLMs. In particular, larger models that are likely to have better generation519

capabilities would be interesting to look at. In this setting, MBRD could be expected to have520

additional advantages over BoN. Unfortunately, due to compute limitations, it was not possible to521

cover all such cases. Although we cover both math and coding tasks, we had to keep the scope limited522

due to both time and compute constraints. In particular, a separate development set for coding and523

a larger experimental setup would have provided better opportunity to explore the methods better.524

Other domains where MBRD is also well established, such as machine translation, could also have525

added value.526

B Development Set Results527

As stated in Section 5.3, we created a dev set for hyperparameter tuning based on NuminaMath13528

of the same size as MATH-500. We report full results on the development set under the same529

conditions as the MATH-500 test set in Figure 3. These results were used to tune beta for different530

generator/PRM pairs. As it can be observed from the results, this dataset is harder than Math-500,531

but model/PRM calibration is similar. Overall improvements with OP-MBRD are also larger, but this532

can be due to tuning effects.533

13https://huggingface.co/datasets/AI-MO/NuminaMath-CoT
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Figure 3: Development set (Numinamath-500) results.

C Hardware534

Runtime experiments were carried out on a private H100 cluster. The code was a fork of math-eval-535

harness, concretely the one in 14. Models were served using VLLM15. Some steps like computation536

of MBRD similarity were carried out on standard CPUs. The Phi-4 PRM model training was carried537

14https://github.com/QwenLM/Qwen2.5-Math
15https://github.com/vllm-project/vllm
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out on 8 H100 GPUs in a private cluster, and inference was done on a single H100 GPU using the538

Hugging Face Transformers library.539
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2. Limitations557
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Guidelines:561
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violations of these assumptions (e.g., independence assumptions, noiseless settings,566

model well-specification, asymptotic approximations only holding locally). The authors567

should reflect on how these assumptions might be violated in practice and what the568
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judgment and recognize that individual actions in favor of transparency play an impor-585

tant role in developing norms that preserve the integrity of the community. Reviewers586

will be specifically instructed to not penalize honesty concerning limitations.587
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a complete (and correct) proof?590

Answer: [Yes]591
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to in each section.594
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-597

referenced.598

• All assumptions should be clearly stated or referenced in the statement of any theorems.599

• The proofs can either appear in the main paper or the supplemental material, but if600

they appear in the supplemental material, the authors are encouraged to provide a short601

proof sketch to provide intuition.602

• Inversely, any informal proof provided in the core of the paper should be complemented603

by formal proofs provided in appendix or supplemental material.604
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4. Experimental result reproducibility606

Question: Does the paper fully disclose all the information needed to reproduce the main ex-607

perimental results of the paper to the extent that it affects the main claims and/or conclusions608

of the paper (regardless of whether the code and data are provided or not)?609

Answer: [Yes]610

Justification: We have provided all details needed to reproduce our experimental results in611

Section 5.612
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• The answer NA means that the paper does not include experiments.614
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well by the reviewers: Making the paper reproducible is important, regardless of616

whether the code and data are provided or not.617

• If the contribution is a dataset and/or model, the authors should describe the steps taken618

to make their results reproducible or verifiable.619

• Depending on the contribution, reproducibility can be accomplished in various ways.620

For example, if the contribution is a novel architecture, describing the architecture fully621

might suffice, or if the contribution is a specific model and empirical evaluation, it may622

be necessary to either make it possible for others to replicate the model with the same623

dataset, or provide access to the model. In general. releasing code and data is often624

one good way to accomplish this, but reproducibility can also be provided via detailed625

instructions for how to replicate the results, access to a hosted model (e.g., in the case626

of a large language model), releasing of a model checkpoint, or other means that are627

appropriate to the research performed.628

• While NeurIPS does not require releasing code, the conference does require all submis-629

sions to provide some reasonable avenue for reproducibility, which may depend on the630

nature of the contribution. For example631

(a) If the contribution is primarily a new algorithm, the paper should make it clear how632

to reproduce that algorithm.633

(b) If the contribution is primarily a new model architecture, the paper should describe634

the architecture clearly and fully.635

(c) If the contribution is a new model (e.g., a large language model), then there should636

either be a way to access this model for reproducing the results or a way to reproduce637

the model (e.g., with an open-source dataset or instructions for how to construct638

the dataset).639

(d) We recognize that reproducibility may be tricky in some cases, in which case640

authors are welcome to describe the particular way they provide for reproducibility.641

In the case of closed-source models, it may be that access to the model is limited in642

some way (e.g., to registered users), but it should be possible for other researchers643

to have some path to reproducing or verifying the results.644

5. Open access to data and code645
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• The answer NA means that paper does not include experiments requiring code.654

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/655

public/guides/CodeSubmissionPolicy) for more details.656

• While we encourage the release of code and data, we understand that this might not be657

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not658

including code, unless this is central to the contribution (e.g., for a new open-source659

benchmark).660

• The instructions should contain the exact command and environment needed to run to661

reproduce the results. See the NeurIPS code and data submission guidelines (https:662

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.663

• The authors should provide instructions on data access and preparation, including how664

to access the raw data, preprocessed data, intermediate data, and generated data, etc.665

• The authors should provide scripts to reproduce all experimental results for the new666

proposed method and baselines. If only a subset of experiments are reproducible, they667

should state which ones are omitted from the script and why.668

• At submission time, to preserve anonymity, the authors should release anonymized669

versions (if applicable).670

• Providing as much information as possible in supplemental material (appended to the671

paper) is recommended, but including URLs to data and code is permitted.672

6. Experimental setting/details673
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the675

results?676

Answer: [Yes]677

Justification: Please see Section 5.3.678
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• The answer NA means that the paper does not include experiments.680

• The experimental setting should be presented in the core of the paper to a level of detail681

that is necessary to appreciate the results and make sense of them.682

• The full details can be provided either with the code, in appendix, or as supplemental683

material.684

7. Experiment statistical significance685

Question: Does the paper report error bars suitably and correctly defined or other appropriate686

information about the statistical significance of the experiments?687

Answer: [Yes]688

Justification: We do not report error bars in the plots, as they would make the results689

hard to read. But we do report the range of standard deviations across experiments in690
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• The answer NA means that the paper does not include experiments.697
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-698

dence intervals, or statistical significance tests, at least for the experiments that support699

the main claims of the paper.700

• The factors of variability that the error bars are capturing should be clearly stated (for701

example, train/test split, initialization, random drawing of some parameter, or overall702

run with given experimental conditions).703

• The method for calculating the error bars should be explained (closed form formula,704

call to a library function, bootstrap, etc.)705

• The assumptions made should be given (e.g., Normally distributed errors).706

• It should be clear whether the error bar is the standard deviation or the standard error707

of the mean.708

• It is OK to report 1-sigma error bars, but one should state it. The authors should709

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis710

of Normality of errors is not verified.711

• For asymmetric distributions, the authors should be careful not to show in tables or712

figures symmetric error bars that would yield results that are out of range (e.g. negative713

error rates).714

• If error bars are reported in tables or plots, The authors should explain in the text how715

they were calculated and reference the corresponding figures or tables in the text.716

8. Experiments compute resources717

Question: For each experiment, does the paper provide sufficient information on the com-718

puter resources (type of compute workers, memory, time of execution) needed to reproduce719

the experiments?720

Answer: [Yes]721

Justification: Answer: Runtime experiments were carried out on commonly used hardware722

devices. An additional description of hardware has been included in Appendix C.723
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• The answer NA means that the paper does not include experiments.725

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,726

or cloud provider, including relevant memory and storage.727

• The paper should provide the amount of compute required for each of the individual728

experimental runs as well as estimate the total compute.729

• The paper should disclose whether the full research project required more compute730

than the experiments reported in the paper (e.g., preliminary or failed experiments that731

didn’t make it into the paper).732

9. Code of ethics733
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Justification: We have reviewed the NeuRIPS code of Ethics and are in compliance with it.737
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.739

• If the authors answer No, they should explain the special circumstances that require a740

deviation from the Code of Ethics.741

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-742
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10. Broader impacts744
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Justification: We propose a set of methods that attempt to find a high-quality answer from748

among a model’s output samples, not otherwise affecting its response in any way or along749

any specific dimensions.750
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Answer: [NA]833

Justification:834

Guidelines:835

• The answer NA means that the paper does not involve crowdsourcing nor research with836
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• Including this information in the supplemental material is fine, but if the main contribu-838
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