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Abstract

Physics-informed neural networks (PINNs) have emerged as a promising approach to solv-1

ing partial differential equations (PDEs) using neural networks, particularly in data-scarce2

scenarios, due to their unsupervised training capability. However, limitations related to con-3

vergence and the need for re-optimization with each change in PDE parameters hinder their4

widespread adoption across scientific and engineering applications. This survey reviews ex-5

isting research that addresses these limitations through transfer learning and meta-learning,6

focusing on strategies to improve the efficiency of solution approximation by PINNs. These7

methods have the potential to enhance training efficiency, allowing faster adaptation to new8

PDEs with fewer data and computational resources. While traditional numerical methods9

solve systems of equations directly to obtain solutions, neural networks learn solutions im-10

plicitly by adjusting their parameters. One notable advantage of neural networks is their11

ability to abstract away from specific problem domains, allowing them to retain, discard,12

or adapt learned representations to efficiently address similar problems. By exploring the13

application of these techniques to PINNs, this survey identifies promising directions for fu-14

ture research to facilitate the broader adoption of PINNs in a wide range of scientific and15

engineering applications.16

1 Introduction17

Advances in machine learning have led to important applications in various fields, such as computer vision18

(enabling technologies like self-driving cars), natural language processing (powering intelligent agents and19

chatbots), and image generation (facilitating media creation). With such success, there has been growing20

interest in developing Machine Learning (ML) solutions to solve problems in science and engineering. How-21

ever, unlike many other fields where data is abundant or easily obtained, science and engineering often face22

data constraints due to the high costs associated with generating data through expensive experiments or23

simulations. Therefore, to facilitate the development of ML approaches in these disciplines, intelligent meth-24

ods that are data-efficient and computationally efficient need to be created. To this end, other domains have25

tackled similar problems with techniques such as transfer learning, meta-learning, and few-shot learning,26

indicating significant potential for applying these techniques in science and engineering.27

One specific application in science and engineering where these efficient ML models can be particularly28

beneficial is to determine the approximate solutions of PDEs. PDEs are fundamental for modeling and29

describing natural phenomena in various scientific and engineering domains. Traditionally, these equations30

are solved numerically, which (in some cases) can become prohibitively expensive, especially when dealing31

with nonlinear and high-dimensional problems (Han et al., 2018). This challenge limits their application32

in areas where a fast evaluation of a PDE is required. Recognizing this challenge, neural networks have33

been explored as a potential solution, offering advantages in effectively modeling complex nonlinearities34

(Raissi et al., 2019; Khoo et al., 2021; Sirignano & Spiliopoulos, 2018; Cuomo et al., 2022), presenting the35

potential for faster evaluation compared to classical iterative solvers, as well as offering mesh-free solutions36

not constrained to computational grids (Jiang et al., 2023; Li et al., 2020; Raissi et al., 2019; Cuomo et al.,37

2022). Moreover, machine learning techniques provide an approach to solving inverse problems, where the38

goal is to infer unknown parameters or initial/boundary conditions from observed data, a task challenging39

for numerical methods (Arridge et al., 2019; Cai et al., 2021). In addition, machine learning implementations40

are simpler than numerical methods, allowing faster development and easy maintenance (Cai et al., 2021).41
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ML methods for approximating PDE solutions can broadly be categorized into two types: neural surrogates42

and neural PDE solvers12. Neural surrogates, including physics-guided neural networks (Faroughi et al.,43

2023) and neural operators, function by training neural networks in a regression manner using data generated44

from numerical solvers. The most popular among these are neural operators, which approximate nonlinear45

mappings between infinite-dimensional function spaces using datasets of input-output pairs from solvers or46

observations. Examples include Fourier Neural Operators (Li et al., 2020) and DeepONet (Lu et al., 2019).47

On the other hand, neural PDE solvers directly incorporate physical laws by embedding the governing48

equations into the learning process. A key example is PINNs (Raissi et al., 2019), which approximate49

solutions by minimizing the residuals of the governing equations, the initial conditions, and the boundary50

conditions. Figure 1 illustrates the relationship between data requirements and scientific knowledge between51

different methods.52
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Figure 1: Data and scientific knowledge requirements
for different modeling approaches.

Considering the challenges associated with data ac-53

quisition in the scientific and engineering domains,54

this study suggests the use of PINNs to solve55

such problems. Neural operators typically require56

large datasets, often derived from costly simulations,57

and do not explicitly incorporate governing physics58

equations, which can lead to generalization prob-59

lems and physical inconsistencies outside the train-60

ing data distributions(Négiar et al., 2022). In con-61

trast, PINNs integrate governing equations directly62

into the training process, ensuring that the solutions63

adhere to the underlying physics while reducing the64

reliance on pre-existing datasets, making them par-65

ticularly effective for data-scarce applications (Né-66

giar et al., 2022).67

Nevertheless, PINNs have some known limitations.68

They can struggle with convergence, particularly for69

high-dimensional or complex physics problems Né-70

giar et al. (2022), resulting in long training times.71

The computation of residuals, which requires deriva-72

tive evaluation through automatic differentiation,73

becomes computationally expensive for PDEs with74

higher-order derivatives. Additionally, PINNs’ con-75

vergence is sensitive to hyperparameters. Further-76

more, PINNs are typically trained on a per-PDE77

instance basis, meaning they can only solve one specific problem at a time and must be re-trained from78

scratch for each change in parameters. These drawbacks hinder their adoption in diverse data generation79

tasks involving different PDEs.80

To address these limitations, this survey explores the integration of advanced ML techniques, such as transfer81

learning and meta-learning, into PINNs to maximize knowledge reuse, reduce adaptation time, and mini-82

mize data requirements. In addition, these methods show potential in addressing some of the convergence83

challenges associated with PINNs. This survey highlights the idea of efficient model adaptivity for PINNs84

and its potential to facilitate broader adoption in real-world applications where data are scarce and fast85

evaluation is essential.86

The key contributions of this work include:87

1A surrogate model can be thought of as a "regression" to a set of data, where the data is a set of input-output parings
obtained by evaluating a black-box model of a complex system Eason & Cremaschi (2014); Caballero & Grossmann (2008). In
contrast, a solver is an algorithm or method used to find a solution to a mathematical model

2While some authors use the terms "Neural Surrogates" and "Neural PDE Solvers" interchangeably, this work makes a
distinction to highlight the specific requirements for obtaining the solution to a PDE.
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• An introductory overview of PINNs, highlighting their connections to traditional numerical methods88

for solving PDEs and how certain techniques, such as reduced-order modeling (ROM), reuse solution89

data across similar PDE problem instances.90

• A review of recent advancements in PINNs, focusing on techniques like transfer learning and meta-91

learning that enhance model adaptivity and performance.92

• Identification of potential metrics and benchmarks to assess the adaptivity of the model.93

• Insights into future research directions and potential applications of adaptive PINNs across various94

domains.95

The paper is structured as follows. First, key concepts and terminology are introduced. Section 3 provides96

an overview of how transfer learning and meta-learning enhance the adaptivity of PINNs. Section 4 examines97

benchmarking methodologies and metrics to assess adaptation efficiency. Section 5 explores real-world ap-98

plications, discusses limitations and areas for improvement, and outlines future research directions. Finally,99

Section 6 presents the conclusions.100

2 Background101

2.1 Initial Boundary Value Problem102

In science and engineering, a problem is often framed as an Initial Boundary Value Problem (IBVP), which103

encompasses a wide range of phenomena. An IBVP is typically represented as:104

N [u(x, t; µ)] = f(x) ∀ x ∈ Ω , t ∈ [t0, T ],
B[u(x, t)] = g(x) ∀ x ∈ δΩ , t ∈ [t0, T ],
I[u(x, t)] = h(x) ∀ x ∈ Ω, t = t0,

(1)

where, N represents the differential operator acting on the function u, which depends on parameters denoted105

by µ. f(x) represents the source term defined in the domain Ω. The operator B imposes the boundary106

conditions g(x) on u at the boundary ∂Ω of the domain. Lastly, I sets the initial conditions h(x) for the107

function u(x, t0), representing the initial state of u within Ω at the initial time t0. The differential operator108

N can take the form N [u(x, t; µ)] = F (x, u, ∂u
∂t , ∂u

∂x , ∂2u
∂x2 , . . .), where F is some given function that describes109

the dynamics of the system.110

The objective in solving an IBVP is to find the function u(x, t; µ) that satisfies the differential equation, the111

boundary conditions, and the initial conditions simultaneously.112

To solve such IBVP problems numerically, three methods are often used - the Finite Element Method, the113

Finite Difference Method, and the Finite Volume Method. These methods differ in their mathematical114

formulation and approach, but all work by discretizing the domain into smaller subdomains (elements, cells,115

or grid points) and performing local approximations to obtain the global solution.116

2.2 Physics-Informed Neural Networks117

Physics-informed Neural Networks approximate the solution u by using a neural network uθ and incorporating118

IBVP information directly into the training process. Although various methodologies exist, this explanation119

focuses on one of the most common approaches, which involves incorporating the residual of the IBVP into120

the loss function Raissi et al. (2019).121

Considering the definition of the IBVP (1), the equation can be reformulated in terms of its residuals. These122

residuals are computed at collocation points within the corresponding domain (Ω, δΩ, or [t0, T ]), sampled123

at discrete locations denoted NPDE, NBC, and NIC.124
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Figure 2: Schematic representation of PINNs. The network combines data and physical laws by minimizing a
loss function based on the residuals of the PDE, boundary and initial conditions, and data points. Gradients
of the PDE are computed via automatic differentiation, and the corresponding residuals are evaluated at the
collocation points.

N [uθ(x, t; µ)] − f(x) = rPDE ∀ x ∈ {xi}NPDE
i=1 , t ∈ {ti}NPDE

i=1 ,

B[uθ(x, t)] − g(x) = rBC ∀ x ∈ {xi}NBC
i=1 , t ∈ {ti}NBC

i=1 ,

I[uθ(x, t)] − h(x) = rIC ∀ x ∈ {xi}NIC
i=1 , t = t0.

(2)

Here, the derivatives of the differential operator N [·] are computed using automatic differentiation.125

The loss function is defined as a weighted sum of the individual loss terms, where each term is given by126

L(.) = MSE(r(.)), with the placeholder (.) representing the residuals of PDE, the boundary condition (BC)127

or the initial condition (IC). The weights balance the contribution of each term to the overall loss.128

L(uθ) = wPDE LPDE + wBC LBC + wIC LIC. (3)

By optimizing the network parameters θ with respect to the loss function, the network uθ aims to learn129

a solution u that approximates the true solution. If partial observation data are available, such as from130

experiments or sensors, an additional regression loss term can be incorporated into Equation (3).131

2.3 Weighted Residuals: Collocation Method132

To highlight the similarities between PINNs and numerical methods, this paper compares the method of133

collocation, a numerical approach to solving PDEs, with the PINN approach. For simplicity, a steady 1-D134

case will be considered. The residual of an IBVP is formulated as:135

N [u(x; µ)] − f(x) = R(x) ∀ x ∈ Ω (4)

An approximate solution ũ is devised in such a form that it is possible to approximate a wide range of136

functions:137

ũ(x) =
N∑

i=1
ai · ϕi(x), (5)

where, given a good choice of basis ϕ, the task is to find the expansion coefficients a such that the residual138

is minimized. Since the problem is defined over a continuous domain, minimizing the residual requires139
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integrating it over the domain. To account for the spatial variation of the residual, the residual is weighted140

by ω(x), leading to the weighted residual formulation:141 ∫ xf

x0

ω(x) · R(x) dx = 0. (6)

Here, ω(x) is a weighting (or test) function chosen to enforce the orthogonality of the residual R(x). Com-142

mon choices include piecewise polynomials (as in finite element methods) or Dirac delta functions (as in143

collocation).144

The collocation method is a special case of the weighted residual formulation (6), where ω(x) is chosen as a145

Dirac delta function: ω(x) = δ(x − xi). This allows direct evaluation of the residual at specific locations. By146

selectively minimizing the residual at these points, a system of equations can be constructed to approximate147

the solution.148

The basis functions ϕi(x) are selected based on the requirements of the problem and play a crucial role in149

determining the precision and effectiveness of the approximation. Typically, they are chosen to satisfy the150

boundary conditions and ensure linear independence. These basis functions should possess properties that151

allow them to accurately capture the behavior of the solution within the problem domain.152

2.4 Reduced Order Modeling: A numerical approach for reusing information153

In the pursuit of efficient model adaptation, it is valuable to explore numerical methods that leverage154

previously obtained solutions to infer new similar solutions, thus reducing computational demands. ROM155

encompasses a class of numerical techniques that aim to construct a simplified version of the original model by156

reducing its computational complexity. This is achieved by constructing a low-dimensional approximation157

that captures the essential behavior of the high-fidelity model or simulation but with significantly fewer158

degrees of freedom. The key objective of ROM is to enable efficient adaptation to new scenarios by leveraging159

known information from existing simulations, experimental data, or solutions to similar problems.160

One such approach is the Galerkin method combined with Proper Orthogonal Decomposition (POD), often161

referred to as the Galerkin-POD method. This approach uses the known information from existing solutions162

(snapshots) to construct a reduced basis consisting of POD basis functions that capture the essential dynamics163

of the system in various scenarios. This diverse set of snapshots, obtained from multiple tasks or parameter164

configurations, encapsulates the shared knowledge and dominant features of the system’s behavior. By165

performing Proper Orthogonal Decomposition (POD) on these snapshots, the method extracts the dominant166

POD basis functions that serve as a compact representation of the solution manifold.167

Considering the IBVP problem defined in Section 1, the goal of the Galerkin-POD method is to find an168

approximate solution ũ(x, t; µ) expressed as a linear combination of the extracted POD basis functions169

ϕi(x):170

ũ(x, t; µ) =
N∑

i=1
ai(t; µ) · ϕi(x), (7)

where ai(t; µ) are the time-dependent modal coefficients and N is the number of retained POD basis functions.171

The reduced basis is then used to project the governing equations onto a reduced subspace, yielding a172

reduced system of equations for the modal coefficients. Consequently, when faced with a new task or173

scenario, the Galerkin-POD method can efficiently adapt the solution by solving this reduced system. By174

reducing the dimensionality, the resulting reduced-order model becomes computationally less expensive to175

solve or simulate while maintaining an acceptable level of accuracy.176

2.5 Relationship with PINNs177

Both PINNs and the collocation method leverage residual information to guide the approximated solution178

toward the ground-truth solution of the governing equations. However, they differ in their approach to179
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constructing the solution ansatz. PINNs exploit the universal approximation theorem, using neural networks180

as the ansatz solution, with the ability to capture local behavior and sharp gradients dependent on the choice181

of the activation function. In contrast, the collocation method builds the solution as a linear combination182

of linearly independent basis functions and expansion coefficients. The selection of basis functions, whether183

global or piecewise, involves a trade-off between accuracy and computational efficiency. Piecewise basis184

functions, with their compact support and ability to capture local behavior, can provide higher accuracy for185

problems with localized features or complex geometries, but at the cost of increased computational complexity186

and larger systems of equations. Global basis functions, on the other hand, are generally smoother and require187

fewer basis functions, leading to smaller systems and simpler implementation, but may struggle to accurately188

represent sharp gradients or complex geometries.189

The POD-Galerkin method takes a different approach by building a global basis that generalizes to several190

PDE instances, resulting in fewer equations to solve. By projecting the governing equations onto the reduced191

space spanned by the global basis, the POD-Galerkin method transmits information from other solutions192

through the basis functions, enabling efficient and accurate approximations for a range of PDE instances.193

It is worth noting that the linear combination of basis functions in the collocation and POD-Galerkin methods194

provides a structured and lower-dimensional representation of the solution space, improving computational195

efficiency. However, this structured approach inherently limits expressibility compared to the more flexible196

function approximation enabled by PINNs under the universal approximation theorem. This trade-off has197

motivated recent efforts to frame PINNs in a similar linear combination form to balance efficiency and198

expressibility (Chen & Koohy, 2024; Desai et al., 2021; Peng et al., 2020; Penwarden et al., 2023; Bischof &199

Kraus, 2022).200

2.6 Efficient Model Adaptivity201

Efficient model adaptivity refers to the ability of a machine learning model to quickly and effectively adjust202

to new, previously unseen tasks using knowledge gained from previous tasks. Given a model pre-trained on203

one or multiple source tasks Ts ⊂ T , the goal is to adapt this model to an arbitrary novel target task sampled204

from t ∼ Tt or several target tasks Tt ⊂ T where Tt ∩ Ts = ∅. It is assumed that all tasks from T share some205

common characteristics. In the context of PINNs, a model is typically trained per task, where each task206

corresponds to an instance of the IBVP subject to different parameters µ, which can be a material property,207

boundary condition, or initial condition. Figure 3 illustrates two examples of IBVP. The first example208

corresponds to the 2D heat equation, where the task-defining parameter is the diffusivity coefficient. The209

second example corresponds to the Burgers’ equation, where the task is defined by the initial condition.210

Key aspects that affect efficient model adaptivity include computational efficiency and data efficiency. Com-211

putational efficiency refers to the model’s ability to adapt quickly with minimal computational resources. It212

encompasses the speed of adaptation, the amount of processing power required, and the overall time needed213

to adjust the model for new tasks. Computational efficiency is influenced by several factors, primarily the214

number of model parameters, the complexity of the model, and the optimization steps required for adapta-215

tion. These elements directly impact the overall training time and computational resources needed. Data216

efficiency, on the other hand, refers to the effectiveness with which a model can learn from limited data sam-217

ples. This data can encompass various types: collocation points (evaluation points), partial observations,218

or the pre-training tasks needed for generalization. To achieve efficient model adaptation, this work surveys219

the application of transfer learning and meta-learning to physics-informed neural networks.220

2.7 Transfer Learning and Parameter-Efficient Fine-Tuning221

Transfer learning is a machine learning approach that transfers knowledge gained from a source domain to a222

different but related target domain. The fundamental principle is to leverage a model pre-trained on a source223

task or dataset and adapt its learned representations to a new target task. By fine-tuning the pre-trained224

model on the target data, transfer learning aims to accelerate the learning process and improve generalization225

performance compared to training from scratch. This technique is particularly beneficial when the target226

task has limited labeled data.227
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Figure 3: Illustration of IBVP as Tasks: a) Heat equation tasks with varying material properties. b) Burgers’
equation tasks with different initial conditions (adapted from Takamoto et al. (2022)).

Parameter-Efficient Fine-Tuning (PEFT) is an advancement in transfer learning that aims to make the228

fine-tuning process even more efficient and scalable. Unlike traditional fine-tuning, which updates all the229

parameters of the pre-trained model, PEFT introduces a small number of trainable parameters that modulate230

the pre-trained model’s behavior. These additional parameters are trained to adapt the pre-trained model231

to the target task, while the vast majority of the original model parameters remain frozen. Although PEFT232

is often associated with large-scale models, such as large language models, in this work, the term is used to233

describe the selective fine-tuning of smaller models, such as those used in PINNs. This interpretation focuses234

on the principle of updating only a subset of parameters to achieve efficient adaptation, regardless of model235

size.236

A Brief History on Transfer Learning

The initial research in transfer learning dates back to the 1970s and 1980s, as described in the work
of Bozinovski (2020).
Some years later, Pratt et al. (1991) conducted pioneering studies that explored how a neural network
can be recycled, coining this the "transfer problem". Sharkey & Sharkey (1993) also investigated
transfer learning, focusing on using prior knowledge to improve the performance of new tasks and
understanding when knowledge can be transferred between networks. The work of Sharkey suggests
that the concept of transfer learning has strong roots in psychology.
In 1995, the fundamental motivation for transfer learning was discussed in the NIPS-95 workshop on
"Learning to Learn" by Baxter et al. (1995), as referenced by Pan & Yang (2009).
The first comprehensive survey on transfer learning was published by Pan & Yang (2009). More
recently, Zhuang et al. (2020) offered an extensive survey covering more than 40 representative transfer
learning approaches from both the data and the model perspectives.

237

2.8 Meta-learning238

Meta-learning is a field in machine learning that encompasses the notion of "learning to learn". The core idea239

is to leverage an external architecture or algorithm beyond single-task learning models, which can capture240

the relationships and shared knowledge across different tasks. By learning the correlations between various241
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tasks during a meta-training phase, this external meta-learner can then modify, e.g., the structure of the base242

learning algorithms, their hyperparameters, and/or the model architectures. This allows the meta-learner243

to adapt and transfer the acquired meta-knowledge to new, unseen tasks more efficiently, facilitating rapid244

learning and generalization. This distinguishes itself from traditional transfer learning, which focuses on245

adapting between a source and target domain. Meta-learning aims to extract task-general knowledge from246

a distribution of tasks, enabling systematic adaptation to any task within that distribution.247

A Brief History on Meta-learning

The foundations of meta-learning in machine learning trace back to several pivotal works. For in-
stance, Schmidhuber (1987) introduced the concept of "self-referential learning", a technique where a
network receives its own weights as inputs and predicts new updates for such weightsa. Bengio et al.
(1990) hypothesized that it is possible to learn algorithms for synaptic learning rules and that these
rules could be constrained such that the resulting neural networks are capable of solving complex AI
tasks. Later, Hochreiter et al. (2001) demonstrated how gradient-based optimization can be leveraged
to automatically discover effective algorithms tailored to specific tasks, such as time series forecasting.
Expanding on these foundational ideas, Finn et al. (2017) introduced Model-Agnostic Meta-Learning
(MAML), a technique designed to enable fast adaptation to new tasks with minimal fine-tuning.
MAML employs bi-level optimization: in the inner loop, task-specific parameters are updated through
a few gradient steps; in the outer loop, the initialization itself is optimized to minimize the loss across
multiple tasks. This approach ensures that the learned initialization is well-suited for rapid adapta-
tion. However, MAML’s reliance on second-order derivatives in the outer-loop optimization introduces
significant computational overhead. To overcome this limitation, Nichol et al. (2018) introduced Rep-
tile, a simplified first-order approximation to MAML that avoids second-order derivatives. Instead of
explicitly computing these gradients, Reptile updates the initialization by directly using the difference
between task-specific parameters after inner-loop updates. This approach retains much of MAML’s
effectiveness while being computationally efficient.
These foundational developments have significantly influenced subsequent meta-learning techniques,
which continue to play a pivotal role in enabling efficient and adaptable learning across diverse tasks.

a(Hospedales et al., 2021)
248

3 Methods249

3.1 Transfer Learning in PINNs250

Transfer learning has emerged as a valuable technique to enhance the efficiency and scalability of PINNs. By251

leveraging knowledge from pre-trained models, transfer learning addresses the computational challenges and252

convergence issues often encountered when training PINNs from scratch. This section reviews key advances253

in the application of transfer learning to PINNs, with an overview of the literature discussed provided in254

Table 1.255

3.1.1 Full Fine-tuning256

Full model fine-tuning (FFT) is a transfer learning strategy that adapts a pre-trained model to a new task257

by updating all its parameters. FFT facilitates the efficient adaptation of PINNs, particularly when the258

source and target tasks are similar. This approach is especially useful in computationally intensive scenarios259

where training a PINN from scratch for each new task would be prohibitively expensive.260

An example of full model fine-tuning in PINNs is the TL-PINN method introduced by Prantikos et al.261

(2023), which addresses the Point Kinetic Equation3, a critical tool for real-time reactor analysis. TL-262

PINN employs transfer learning to accelerate training by pre-training a PINN on a source task, such as263

3The Point Kinetic Equation is a simplified model used to analyze the behavior of nuclear reactors over time (reactor
transients). It consists of a system of stiff nonlinear ordinary differential equations that model the kinetics of reactor variables.
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simulating reactor behavior under nominal conditions or controlled parameter variations (e.g., temperature264

shifts). The pre-trained model is then fine-tuned for a target task involving distinct transients, such as265

different reactivity insertion schedules. TL-PINN has been shown to reduce training iterations by an order266

of magnitude compared to conventional PINNs. Performance improvements correlate with task similarity,267

measured using geometric metrics like the Hausdorff distance. This framework provides a practical guideline:268

when source and target tasks share dynamical features (e.g., temporal profiles of neutron flux), TL-PINN269

significantly improves efficiency without sacrificing accuracy.270

Zhou & Mei (2023) proposed a method that combines the smoothed finite element method (S-FEM) with271

PINNs to address inverse problems, specifically the inversion of material parameters in scarce data regimes. In272

such regimes, a common strategy is to pre-train on solver data and fine-tune with limited, partial observations.273

The authors use S-FEM to generate high-quality data for pre-training the PINN, and then, as a proof of274

concept, they fine-tune the model with additional S-FEM data to infer new parameters and evaluate their275

approach. S-FEM is preferred over FEM as it generates higher-quality data, which, as demonstrated in their276

results, enhances the pre-trained model and ultimately improves fine-tuning accuracy. Their findings indicate277

that using transfer learning with PINNs increases computational efficiency by a factor of two compared to278

standard PINNs. The authors emphasize the importance of addressing negative transfer in transfer learning,279

noting that the success of transfer learning depends on the assumption that the source and target domains280

share similarities.281

Table 1: Transfer Learning in Physics-informed Neural Networks.

Transfer Learning Strategies in PINNs
FS. Literature Task PT PType Benchmark Equations
FFT Prantikos et al. (2023) ODE ST Fwd. *Point Kinetic (PKEs)

†Zhou & Mei (2023) PDE ST Inv. *Elastoplastic2D

PEFT Desai et al. (2021) PDE/ODE MT Fwd. Pois.2D, Schr.1D, 1st/2nd-order ODEs
Goswami et al. (2020) PDE ST Fwd. *Fracture Mechanics2D

Gao et al. (2022) PDE ST Fwd. Linear Parabolic10D, Allen Cahn10D

Pellegrin et al. (2022) ODE MT Fwd. Stochastic Branched Flow2D

†Chakraborty (2021) PDE/ODE ST Fwd. Stochastic ODE, Burgers1D

CTL Lin & Chen (2024) PDE ST Inv. Schrödinger1D

†Xu et al. (2022) PDE MT Inv. *Elastic2-3D, Hyperelastic2D

†Mustajab et al. (2024) ODE/PDE ST Fwd. Harmonic Oscillator, Wave
Equation1D

Note: Fine-tune Strategy (FS), Pre-train type (PT), Problem Type (PType), Full Fine-tune (FFT),
Parameter-efficient Fine-tuning (PEFT), Curriculum Transfer Learning (CTL), Single-task Learning (ST),
Multi-task Learning (MT). Equations with (*) are domain-specific problems. References marked with (†)
indicate the use of few-shot learning techniques. Abbreviations: Poisson = Pois., Schrödinger = Schr.

3.1.2 Parameter-Efficient Fine-tuning282

PEFT techniques were originally introduced as a method to fine-tune large-scale pre-trained models while283

minimizing computational and memory requirements. These methods typically introduce a small set of284

trainable parameters, such as adapters or low-rank updates, allowing efficient adaptation. In this context,285

the term PEFT is adapted to describe selective fine-tuning strategies within PINNs that aim to reduce286

computational costs by limiting the number of updated parameters. Although the scale of PINNs may not287

align with the large models typically associated with PEFT, the underlying principles of parameter efficiency288

and adaptability remain relevant. The studies discussed here illustrate how these principles can enhance the289

scalability and performance of PINNs, particularly in data-scarce or resource-constrained scenarios.290

In the context of PINNs, Desai et al. (2021) proposed a pre-training and fine-tuning strategy for PINNs to291

efficiently solve linear ODEs and linear PDEs. During the pre-training phase, the method learns a set of292
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shared bases, represented as ϕ(x), which is derived from the hidden layers (HL−1 ◦ HL−2 ◦ · · · ◦ H0)(x), by293

training on multiple source tasks involving ODEs or PDEs. During the fine-tuning phase, the focus shifts294

to determining the expansion coefficients, represented by the weights of the output layer α = Wout, for a295

new problem instance. If α can be obtained analytically in closed form, it is computed by solving a linear296

system of equations, reducing the computational cost to a matrix inversion. For more complex cases, α is297

optimized through gradient descent, where only the output layer α is updated, while the shared bases ϕ(x)298

remain frozen. The final solution ũ(x) is expressed as:299

ũθ(x) = α · ϕ(x). (8)

This approach enables efficient transfer of the shared bases ϕ(x) between tasks and significantly reduces300

training overhead. The accuracy of the final solution depends on how well the bases ϕ(x) cover the solution301

space of the target problem. By calculating the coefficients α in closed form for linear systems, this method302

achieves one-step adaptation, allowing the shared bases ϕ(x) to be adapted to new problems without iterative303

training or updates to the hidden layers. Future directions of this work include extending the method to304

incorporate real-world observational data, expanding the framework to non-linear PDEs, and exploring the305

characteristics of shared bases to provide better generalization and adaptability across tasks.306

Goswami et al. (2020) proposed a method for phase-field fracture modeling using PINNs enhanced with307

transfer learning. Unlike conventional residual-based PINNs, this approach minimizes the variational energy308

of the system, with boundary conditions enforced as hard constraints. This formulation offers two key309

advantages: 1) imposing boundary conditions is simpler and more robust, and 2) the resulting equations310

involve lower-order derivatives, making training faster. The fracture modeling process involves iteratively311

updating the displacement field u, which describes material deformation, and the phase field ϕ4 by minimizing312

the total energy at each small displacement step. To overcome the high computational cost of retraining313

the PINN at every step, transfer learning is employed: only the last layer’s weights and biases are retrained,314

using the previous step’s parameters as initialization. This transfer-learning approach significantly improves315

computational efficiency compared to standard PINNS by requiring fewer iterations to achieve convergence316

and substantially reducing the time required for each iteration.317

Chakraborty (2021) proposed a transfer learning approach to approximate high-fidelity models using PINNs.318

The method begins by training a PINN on a low-fidelity model of a given IBVP task. Then, a transfer319

learning technique is applied, where only the last one or two layers of the network remain trainable. This320

pre-trained model is subsequently fine-tuned to approximate a higher-fidelity model using limited high-321

fidelity observations of the same task. The approach is particularly useful in scenarios where the exact322

high-fidelity model is not known a priori, allowing efficient adaptation to different boundary conditions or323

initial conditions.324

Gao et al. (2022) introduced SVD-PINNs, a transfer learning method designed to solve high-dimensional325

PDEs efficiently. The core idea involves pre-training a PINN, which consists of a three-layer MLP, on an326

arbitrary PDE task. During fine-tuning for a new PDE, the weight matrix of the middle layer is decomposed327

using SVD (Singular Value Decomposition). The singular vectors, which capture intrinsic patterns from the328

source task, are kept frozen, while the singular values and weights of the initial and final layers are adapted.329

The authors demonstrated the effectiveness of SVD-PINNs on 10-dimensional linear parabolic equations330

and Allen-Cahn equations, showing superior performance in terms of relative error and convergence speed331

compared to vanilla PINNs and other transfer learning methods. A notable advantage of SVD-PINNs is332

their efficiency in solving multiple related PDEs with identical differential operators but different right-hand333

side functions. However, the main challenge lies in optimizing the singular values during training. Successful334

optimization of these values leads to better performance than methods that freeze the first layer, as seen in335

previous transfer learning approaches for PINNs. In contrast, biased or inaccurate singular values can result336

in worse outcomes than prior methods.337

Pellegrin et al. (2022) introduced a multi-task learning strategy aimed at improving training efficiency and338

performance by leveraging knowledge from related tasks. Their approach employs a multi-head architecture339

4Phase-field modeling tracks fracture using a continuous scalar field ϕ. This scalar field represents the damage state of
the material, smoothly transitioning from intact to fractured material, and models the evolution of cracks without sharp
discontinuities.
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with two primary phases: pre-training and fine-tuning. Initially, during the pre-training phase, the multi-340

head model, comprising a shared base neural network along with multiple task-specific heads, is trained341

concurrently on various related PDE tasks. Through training on these interrelated tasks concurrently, the342

shared base network learns to extract relevant features and representations that encapsulate the underlying343

dynamics common across the tasks. In the subsequent fine-tuning phase, the weights of the pre-trained344

base network are fixed, and a new task-specific head is introduced and fine-tuned for the target transfer345

learning task. This fine-tuning phase enables the model to adjust the learned shared representations to346

the specific requirements of the new task while leveraging the knowledge gained from related tasks during347

pre-training. By leveraging the shared base network learned from multiple related tasks, the model can348

potentially converge faster and achieve better performance on the target task than training a PINN from349

scratch.350

3.1.3 Curriculum Transfer Learning351

Curriculum Transfer Learning involves progressively increasing the complexity of tasks during the transfer352

process, starting with simpler tasks and moving towards more complex ones. An example of this approach353

is the work of Mustajab et al. (2024), who employed a curriculum transfer learning strategy to address354

high-frequency and multi-scale problems. The method begins by training on relatively simple low-frequency355

problems, which are easier to solve, and then gradually escalates to more challenging high-frequency tasks,356

transferring knowledge gained from the lower-frequency problems. Through full-weight transfer learning,357

this strategy successfully enabled the model to learn high-frequency solutions that traditional PINNs cannot358

achieve without increasing the number of layers. However, the authors highlight the importance of under-359

standing the limitations of transfer learning, particularly in terms of when it succeeds and when it may360

fail. Overall, this approach enhances the convergence speed and robustness of PINNs for high-frequency and361

multi-scale PDEs.362

Gradient-enhanced PINNs (gPINNs), introduced by Yu et al. (2022), improve standard PINNs by incorpo-363

rating the gradient of the residual as an auxiliary loss term. This approach captures local information around364

collocation points, enhancing accuracy but increasing computational overhead due to added optimization365

complexity. To address this limitation, Lin & Chen (2024) proposed TL-gPINNs, an extension of gPINNs366

tailored for inverse problems with variable coefficients, such as time-dependent boundary conditions. TL-367

gPINNs adopt a two-step optimization strategy: they first train a standard PINN on a simplified objective368

and then fine-tune the whole model using the gPINN loss. This approach reduces both error and computa-369

tional cost compared to training gPINNs from scratch. Notably, experiments demonstrated that for PDEs370

involving multiple loss terms, standard PINNs can sometimes outperform gPINNs, as the additional loss371

terms increase optimization complexity. By progressively introducing complexity through the gPINN objec-372

tive, TL-gPINNs employ a curriculum learning framework to balance computational efficiency and solution373

accuracy.374

Xu et al. (2022) addressed the challenge of inverse analysis in engineering structures, where acquiring data for375

structural components is often expensive. To this end, the authors sought to improve the training efficiency376

and accuracy of PINNs for inverse problems through a multi-task transfer learning approach. Their proposed377

solution involves a two-stage learning process. Initially, in the pre-training stage, a simplified loading scenario378

is used to pre-train the PINN model, including both the model weights and task-independent loss balancing379

weights. Subsequently, in the fine-tuning stage, the pre-trained model is partially fine-tuned with data from380

real engineering problems, with only the last two layers updated. The method was applied to 2D linear381

and hyperelasticity problems in solid mechanics. Combining layer freezing with inherited multi-task weights382

from pre-trained models significantly accelerated training convergence.383

3.2 Meta-learning in PINNs384

The integration of meta-learning techniques with physics-informed neural networks has shown promise in385

enhancing model adaptivity and generalization. Table 2 presents the taxonomy used to study these tech-386

niques in the context of PINNs, focusing on the meta-learning representation ("what is being meta-learned")387

(Hospedales et al., 2021). In the following section, various studies are introduced according to this taxonomy.388
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Table 2: Meta-learning Strategies in Physics-informed Neural Networks.

Meta-learning Strategies in PINNs
Type Approach Literature PType Equation

Weight
Init.

FFT

Liu et al. (2022) Both Pois.1-2D, [Burg., Schr.]1D

Zhong et al. (2023) Fwd. *Plasma Sim.1D

Penwarden et al. (2023) Fwd. [Burg., Heat]1D, [A-C, D-R]2D

†Cheng & Alkhalifah (2024) Fwd. Wavefield2D

Qin et al. (2022) Fwd. Burg.1D, [Pois., Hyp.-elast.]2D

PEFT Cho et al. (2024b) Fwd. C-D-R1D, Helm.2D

Net.
Struct.

Lay./Neur. Chen et al. (2021) Inv. A-D-R1D

Activations Bischof & Kraus (2022) Fwd. Pois.2D

†Chen & Koohy (2024) Fwd. [Burg., K-G, A-C]1D

Input

Sampling
Points/Params

†Toloubidokhti et al. (2023) Fwd. [Burg., Conv., R-D]1D, Helm.2D

Tang et al. (2023) Fwd. Ellip.2-10D, Nonlinear PDE10D

Latent Rep. Huang et al. (2022) Fwd. Burg.1D, [Max., Laplace.]2D

Iwata et al. (2023) Fwd. Arbitrary Param. PDE1D

Loss Param. Loss Psaros et al. (2022) Both [Adv., Burg.]1D, SS R-D2D

Loss Attention Song et al. (2024) Fwd. Burg.1D, [LDC Flow, Pois.]2D

Note: Problem Type (PType), Forward Problem (Fwd.), Inverse Problem (Inv). Equations marked with
(*) represent domain-specific problems. References marked with (†) indicate the use of few-shot learning
techniques. Abbreviations: Poisson = Pois., Burgers = Burg., Schrödinger = Schr., Simulation = Sim.,
Allen-Cahn = A-C, Diffusion-Reaction = D-R, Convection-Diffusion-Reaction = C-D-R, Helmholtz = Helm.,
Advection-Diffusion-Reaction = A-D-R, Klein-Gordon = K-G, Reaction-Diffusion = R-D, Elliptic = Ellip.,
Hyper-elasticity = Hyp.-elast., Maxwell = Max., Parametric = Param., Advection = Adv., Steady State =
SS, Lid-driven Cavity = LDC.

3.2.1 Learning the Weight Initialization389

Starting from a good weight initialization can lead to faster convergence, better accuracy, and reduced390

computational costs—a key factor for real-time applications. A well-informed initialization not only cuts391

training time but also improves generalization, making it a central focus in many studies. Meta-learning392

for weight initialization, building on transfer learning principles, extends this by learning from the training393

process across multiple tasks. Techniques such as MAML, Reptile, and hypernetworks identify or generate394

optimal starting weights, enhancing efficiency and adaptivity. Using these approaches, PINNs can achieve395

scalable, resource-efficient performance across diverse problem domains. This section reviews these strategies396

and their impact on advancing the effectiveness of PINNs.397

Liu et al. (2022) employed the Reptile algorithm (Nichol et al., 2018) to find a good initialization of the398

parameters and compares it against other initialization techniques, such as Xavier initialization, in unsuper-399

vised, supervised, and semi-supervised settings for the forward and inverse problems. In their experiments,400

their Reptile weight initialization outperformed Xavier initialization, with the unsupervised Reptile approach401

performing the best. The authors point out that this initialization can be used with other PINN architectures402

and that, in addition to finding a good initialization of the network parameters, this method could serve to403

provide good starting points for works that use adaptive activation functions or losses.404

Zhong et al. (2023) and Cheng & Alkhalifah (2024) both adapted the MAML approach by Finn et al. (2017) to405

PINNs, aiming to reduce the training steps required for new tasks by leveraging a meta-network for weight406

initialization. However, their implementations and benchmark problems differ slightly. Both approaches407

utilize a support set in the inner loop to update the network for a specific task and a query set in the outer408

loop to optimize the weight initialization. The key distinction lies in how these sets are constructed: Zhong409
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et al. (2023) uses the same PDE task for both the support and query sets, evaluated at different collocation410

points, whereas Cheng & Alkhalifah (2024) employs different PDE tasks for the two sets. In terms of411

benchmark problems, Zhong et al. (2023) applied their approach to plasma simulations, demonstrating that412

generalization performance strongly depends on the similarity between source and target tasks. In contrast,413

Cheng & Alkhalifah (2024) focused on seismic wave equations, showcasing faster convergence and higher414

prediction accuracy compared to vanilla PINNs. However, both methods rely on an initial meta-training415

phase to establish robust network parameters. This phase involves two gradient computations, one for the416

inner task and one for meta-initialization, making the process memory-intensive and computationally costly.417

Cheng & Alkhalifah (2024) further emphasized the importance of task diversity during meta-learning, finding418

that incorporating more tasks helped capture a broader range of distribution features, leading to improved419

generalization. They also observed that using 20 iterations in the inner loop yielded better performance420

compared to fewer iterations. Finally, they highlighted the potential for combining their approach with421

other PINN architectures to further enhance adaptability and efficiency.422

Qin et al. (2022) compared MAML and LEAP (Flennerhag et al., 2018) weight initialization with PINNs,423

extending tasks to different geometries and boundary conditions. LEAP, similar to MAML and Reptile, is424

a general meta-learning framework. However, instead of finding a good initialization based solely on the425

final state of the weights from different tasks, LEAP considers the entire optimization path. The objective426

is to minimize the expected length of the path traveled during the training process, allowing more efficient427

knowledge transfer between learning processes. In their work, they found that MAML outperforms LEAP428

in accuracy for a given runtime and requires less hyperparameter tuning. However, LEAP’s meta-training429

is faster and less memory intensive.430

Penwarden et al. (2023) compared different weight initialization strategies to improve the optimization of431

PINNs in terms of both time and accuracy. The methods included random initialization, MAML, center432

initialization, and initialization via interpolation of pre-trained PINN weights. Center initialization involves433

starting with the pre-trained weights at the center of the parameter space, assuming that this central position434

is a reasonable initial point for optimization. For the interpolation method, several pre-trained PINN weights435

were interpolated to infer a general weight initialization that would lead to a more accurate and faster436

convergence. The conclusions of this work were that the interpolation methods provided good initial weights,437

enhancing the optimization performance in terms of accuracy and time. However, no definitive conclusion438

could be drawn regarding the superior interpolation method, as performance varied across different PDEs439

between Spline, RBF (cubic, Gaussian, and multiquadratic), and polynomial interpolation. One surprising440

finding was that initializing the weights with those of a pre-trained PINN, trained at the center of the441

parameter space, produced results comparable to the interpolation methods for higher-dimensional PDEs442

and, for the 1D-task, outperformed MAML. The authors note that their approach assumes that the parameter443

space is well-behaved, meaning it does not change drastically between parameters, and emphasize that for444

future work, identifying the boundaries of these regions is important.445

Cho et al. (2024b) developed the Hyper-Low-Rank PINN, which combines meta-learning with PEFT to446

address parametric PDEs more efficiently. The method features a two-phase training process. In the pre-447

training phase, the weights of the hidden layers of the base model are constructed using an SVD approach,448

W = UΣV , where Σ (the singular values) are provided by the meta-network and the singular vectors U and449

V are part of the base model. The first and last layers of the base model are kept as standard linear layers.450

During the fine-tuning phase, the meta-network generates adaptive weights for new tasks and trims less451

significant weights to maintain a compact, hyper-low-rank structure. In addition, the first and last layers are452

optimized along with the adaptive weights. The authors conclude that their method improves efficiency and453

accuracy by leveraging meta-learning and low-rank approximations, reducing computational and memory454

costs. It effectively handles varying PDE parameters, mitigates failure modes, and outperforms standard455

PINNs. According to the authors, future work should focus on extending the framework to handle more456

general settings, such as parameters that define initial / boundary conditions or different domain shapes,457

and improving the expressiveness of the bases for greater adaptability across a broader range of PDEs.458
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3.2.2 Learning the Network Structure459

Learning the Network Structure involves tailoring the architecture of neural networks, such as the number460

of layers, hidden dimensions, and activation functions, to specific tasks or domains of problems. In the461

context of PINNs, meta-learning strategies have been employed to dynamically adapt the network structure462

to the unique requirements of different PDE tasks, enhancing the convergence and performance of PINNs,463

as demonstrated in the following works.464

Chen et al. (2021) developed a method to solve the mixed problem (forward/inverse) of the advection-465

diffusion-reaction (ADR) system using sparse measurements. Given the stochastic nature of the problem,466

they utilized a PINN architecture called sPINN (Zhang et al., 2019). This composite network comprises467

several sub-networks, each corresponding to different fluid flow frequencies (modes). Due to the complexity of468

determining the optimal number of layers and neurons for each sub-network, Meta-bayesian optimization was469

employed to automate the selection process. The study focuses on realistic scenarios with limited or sparse470

data, addressing both forward and inverse problems common in engineering, where some material properties471

and sensor measurements are known. According to the authors, future work should address uncertainty472

quantification and explore other optimization methods, such as genetic algorithms, greedy methods, or473

reinforcement learning, to improve NN architecture.474

Bischof & Kraus (2022) proposed a method that combines Mixture-of-Experts (MoE) and PINNs to solve a475

single task. In this approach, multiple expert PINNs are trained on different partitions of the input space,476

and a gating network learns the optimal weighting of their predictions. This allows the experts to specialize477

in different regions of the input space, potentially improving overall accuracy. The meta-learning aspect lies478

in modulating the gating mechanism to balance the contribution of each expert PINN, thereby enhancing the479

accuracy and convergence of the overall model. Some key remarks of this work are that when having different480

experts with different architectures, the gating mechanism discarded the networks with tanh activation and481

favored sine activation. Another takeaway is that the regularization that weights the importance of each482

expert is crucial; in this case, the optimal solution was achieved with three learners. With this method,483

the focus was on improving convergence and accuracy. This study indicates that future research should be484

concerned with increasing performance, efficiency, robustness, and scalability.485

Chen & Koohy (2024) introduced GPT-PINN, which combines meta-learning with a task sampling strategy486

that dynamically expands a shared basis dictionary. This method aims to solve new parameter instances487

u(x, t; µ) by approximating them as a weighted sum of pre-trained PINNs:488

u(x, t; µ) ≈
n∑

i=1
αi(µ)ϕθi

NN (x, t)

Here, ϕθi

NN represents pre-trained PINNs at different parameter configurations, and αi(µ) are parameter-489

dependent coefficients learned by a meta-network. The meta-network modulates the influence of each pre-490

trained PINN basis ϕθi

NN through the coefficients αi(µ) for a given PDE instance. If the approximation fails491

to meet the accuracy criterion, a new full PINN is trained individually for that parameter instance, and its492

solution is added to the set of basis functions ϕθi

NN , thus continuously expanding the generalization range of493

the overall structure. The approach enables efficient adaptation to new parameter instances while continu-494

ously improving the model’s generalization capabilities by expanding the shared basis dictionary, ultimately495

reducing the computational cost and enhancing the performance of PINNs across diverse parameter spaces.496

3.2.3 Learning the Loss Function497

Meta-learning techniques have also been employed to optimize loss functions for PINNs, offering an approach498

to significantly enhance their performance. These strategies go beyond traditional fixed loss formulations by499

adaptively learning loss functions tailored to the specific needs of diverse PDE tasks. By dynamically adjust-500

ing the weighting of errors, meta-learning enables better handling of challenging problem regions, improving501

convergence and enhancing the generalization capabilities of PINNs. The following works demonstrate how502

these meta-learning strategies have been successfully applied to discover effective loss functions and improve503

PINN performance across a variety of problem domains.504
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Psaros et al. (2022) proposed a gradient-based meta-learning algorithm that discovers effective loss functions505

for various PDE problems. The algorithm operates in two phases: meta-training and meta-testing. During506

the meta-training phase, a parametric loss function is optimized over a distribution of PDE tasks, learning the507

optimal parameter values that generalize well across the task distribution. In the subsequent meta-testing508

phase, the meta-learned loss function is employed to train PINNs on unseen PDE tasks that may differ509

from the original task distribution and PINN architectures used during meta-training. This meta-learning510

approach significantly improves the generalization performance of PINNs, enabling them to achieve high511

accuracy even on out-of-distribution scenarios and PINN architectures that were not encountered during512

meta-training.513

Another recent work that uses meta-learning for the loss function is the Loss-Attentional PINN (LA-PINN)514

by Song et al. (2024). LA-PINN treats the loss function as a learnable component employing multiple loss-515

attentional networks (LANs) that are adversarially trained alongside the main PINN model. While the main516

network minimizes the loss via gradient descent, the LANs use gradient ascent to meta-learn point-wise517

weights for the loss terms, effectively discovering an "attentional function" to distribute different weights to518

each collocation point error. This loss-attentional meta-learning framework allows tailoring the loss function519

per problem by leveraging experience from related tasks, potentially enhancing PINN performance over fixed520

hand-crafted losses. The adversarial training process, inspired by Generative Adversarial Networks (GANs),521

enables the LANs to assign higher weights to stiff or hard-to-fit regions, aiding convergence by emphasizing522

the challenging areas during optimization.523

3.2.4 Learning the input524

Learning the input involves adapting the input data provided to neural networks. In the context of Physics-525

Informed Neural Networks, this can refer to selecting and adjusting the number and locations of collocation526

points. Additionally, during a two-phase training process, another strategy is to adapt the task sampling527

strategy in the pre-training phase. A third approach involves self-referential learning, where the meta-learner528

dynamically adapts parts of the input based on the specific task requirements.529

Toloubidokhti et al. (2023) indicates that many existing meta-learning strategies neglect the varying difficulty530

levels across different tasks and propose that depending on the difficulty, different collocation point positions531

and densities should be employed accordingly. To address this, they developed a Difficulty-Aware Task532

Sampler (DATS) for meta-learning of PINNs, which aims to optimize the task sampling probabilities during533

meta-training to minimize the average performance across all tasks during meta-validation. DATS employs534

two strategies: adaptively weighting PINN tasks based on their difficulty, allowing more challenging tasks535

to contribute more to the meta-learning process, and dynamically allocating the optimal number of residual536

points (collocation points) across tasks, ensuring that more difficult tasks receive a higher collocation point537

budget. The evaluation of DATS against uniform and self-paced task-sampling baselines on two meta-PINN538

models across four benchmark PDEs demonstrates that it improves the accuracy of meta-learned PINN539

solutions and reduces performance disparity among different tasks while using only a fraction of the residual540

sampling budget required by the baseline methods.541

Another significant contribution is made by Tang et al. (2023), who proposed a Deep Adaptive Sampling542

(DAS) method for solving high-dimensional PDEs using PINNs. The key innovation is treating the residual543

of the PINN as a probability density function, approximated by a deep generative model called KRnet.544

The DAS method involves two main components: solving the PDE by minimizing the residual loss on the545

current set of collocation points and adaptive sampling, where new collocation points are sampled from546

the KRnet distribution. This method places more points in regions with high residuals, similar to classical547

adaptive methods like adaptive finite elements. By iteratively refining the training set, the PINN retrains548

on an updated set with a focus on high-error regions. The KRnet model is meta-learned to approximate549

the residual distribution, enabling adaptive sampling tailored to the current PINN solution. The approach550

is particularly effective for low regularity and high-dimensional PDEs, where uniform sampling is inefficient.551

The authors provide a theoretical analysis showing the DAS method can reduce error bounds, with numerical552

experiments demonstrating significant accuracy improvements compared to uniform sampling.553
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Self-referential meta-learning approaches have also been combined with PINNs. The Meta-Auto-Decoder554

(MAD) introduced by Huang et al. (2022) utilizes a self-referential approach to learn parametric PDEs. This555

approach involves pre-training a neural network uθ(x, z) to approximate parametric PDE solutions using a556

physics-informed loss, where z is a tunable input latent vector that implicitly encodes PDE parameters µ.557

After pre-training, the network is fine-tuned for new PDEs by either fixing weights θ and tuning z or tuning558

both z and θ, allowing it to search for solutions on or near the learned solution manifold.559

Instead of learning the latent representation implicitly within the same PINN network, Iwata et al. (2023)560

proposed to leverage multiple meta-networks to encode the governing equations and boundary conditions561

into a latent vector z. The fine-tuning strategy involves initializing the latent vector z with the help of the562

meta-networks while keeping these meta-networks frozen. The initialized latent vector z is then set to be563

tunable, and both the PINN weights θ, and the latent vector z are fine-tuned for the new PDE task. In both564

MAD and Iwata et al. (2023), the PINN weights are initialized according to the final pre-training phase.565

3.3 Few-shot Learning in PINNs566

Few-shot learning is a machine learning paradigm that enables models to generalize effectively from very567

limited training examples, emphasizing data efficiency and adaptivity to new tasks or domains with minimal568

supervision. In the context of PINN adaptivity, this involves addressing three key aspects: the number569

of pre-training tasks, the number of collocation points required for training, and, when data is used, its570

reduction. By strategically selecting and sampling tasks, the model can achieve optimal performance during571

fine-tuning with fewer samples, thereby enhancing its ability to generalize across tasks. Another approach572

focuses on optimizing the spatial or temporal distribution of collocation points, reducing computational573

costs while maintaining reliable predictions in under-sampled regions. Additionally, in semi-supervised or574

supervised settings, methods leverage sparse observations (e.g., sensor data) to reconstruct full solution575

fields or solve inverse problems, making them particularly suitable for real-world applications where data is576

inherently scarce. This section highlights works that integrate meta-learning and transfer learning (marked577

with the "†" symbol in Tables 1 and 2) to achieve few-shot learning, prioritizing adaptable, generalizable,578

and data-efficient methods for solving diverse PDE problems.579

For example, Chen & Koohy (2024) focuses on reducing pre-training samples by gradually selecting tasks with580

the highest residuals, thus optimizing task sampling for improved performance during fine-tuning. Similarly,581

Cheng & Alkhalifah (2024) investigates the impact of pretraining sample sizes, finding that increasing the582

number of samples improves performance, likely due to the greater feature diversity captured in larger583

datasets.584

On the other hand, Toloubidokhti et al. (2023) develops a technique that not only optimizes task sampling585

based on task difficulty but also dynamically allocates collocation points according to the complexity of586

the task. This dual approach enhances the efficiency of meta-learning for PINNs by addressing both task587

sampling and collocation point allocation.588

Finally, high-frequency problems often require a denser distribution of collocation points. In the work of Mus-589

tajab et al. (2024), the authors demonstrate that training with a curriculum—starting from a low-frequency590

problem and gradually progressing to a high-frequency problem—enables the final model to successfully591

learn the high-frequency problem without increasing the number of collocation points. This highlights how592

curriculum-based approaches can reduce the need for high-density collocation points, benefiting few-shot593

learning scenarios.594

Building on the goal of reducing data requirements in real-world applications, several studies have developed595

strategies to use sparse observations effectively. These methods aim to reconstruct solutions or tackle inverse596

problems with limited supervision. The following studies are particularly relevant in this context:597

Zhou & Mei (2023) explored whether a PINN could be pre-trained using a small dataset generated by a598

solver and then fine-tuned with limited observational data to solve inverse problems, which is a key aspect599

of few-shot learning. They used solver-generated data during the fine-tuning phase rather than relying on600

real-world observations. Their work highlights the potential of transfer learning in data-scarce scenarios,601

offering valuable insights for applications with limited data availability and minimal supervision.602
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Chakraborty (2021) frames his work around the assumption that field data is scarce in practice. To address603

this, their work blends concepts from PINNs and data-driven learning. The primary idea is to first train604

a low-fidelity model based on the PINN loss and then apply transfer learning to update the model using605

high-fidelity data. With this approach, the pre-trained model is trained without data, while fine-tuning is606

performed with only a few data samples.607

Similarly, Xu et al. (2022) addressed the challenge of limited data availability by employing multitask pre-608

training on simplified tasks solvable with numerical solvers, effectively implementing a few-shot learning609

approach. This strategy enabled the model to leverage abundant and low-cost data for the fine-tuning610

phase, thereby reducing the number of samples needed for real-world inverse problems with sparse obser-611

vational data. Their study underscores the potential of transfer learning to significantly minimize sample612

requirements, a core principle of few-shot learning.613

Though some of these studies did not explicitly benchmark few-shot learning, they collectively demonstrate614

how transfer learning and meta-learning can address limited-data problems, ultimately reducing the number615

of samples required for model training and fine-tuning. This highlights the potential of these approaches to616

enable efficient learning in scenarios with scarce data, a central tenet of few-shot learning.617

4 Metrics & Benchmarks618

This section introduces the benchmarks and metrics relevant to efficient model adaptation. Section 4.1619

presents the common benchmark PDE problems used throughout the works herby surveyed, Section 4.2620

outlines error quantification methods for single-task and multi-task scenarios, and Section 4.3 presents key621

metrics for assessing efficient adaptivity, crucial for evaluating model performance.622

4.1 Benchmark PDE Problems623

Several methods evaluate their performance using a variety of benchmark problems to ensure robustness and624

reliability. Tables 1 and 2 compile the specific equations adopted in individual studies, providing a compre-625

hensive overview of the problem domains explored. Building on this, Table 4 (available in Appendix A.1)626

synthesizes the broader landscape of benchmark usage, categorizing equations by their complexity, key drivers627

of difficulty and prevalence in the literature. This table serves as a practical guide for selecting appropriate628

benchmarks based on specific requirements for complexity and solution characteristics.629

The most commonly used equations in this survey are Burgers’ equation (featured in 9 studies) and the630

Poisson equation (5 studies), which represent intermediate and baseline levels of complexity, respectively.631

Less frequently used benchmarks include the Allen-Cahn and Schrödinger equations (each used in 3 studies),632

while the A-D-R and Navier-Stokes equations, due to their higher complexity, are each utilized only once.633

The popularity of Burgers’ equation can be attributed to its balanced combination of manageable com-634

putational demands and challenging nonlinear dynamics, making it particularly well-suited for evaluating635

time-dependent models.636

4.2 Error Quantification in PINNs637

The quantification of errors in PINNs has traditionally relied on the relative L2 error, which measures638

deviations from ground-truth solutions but does not assess generalization across tasks. While effective639

in single-task scenarios, multi-task settings require a focus on task similarity—a key factor in evaluating640

interpolation and extrapolation within the parametric space, as well as generalization through knowledge641

transfer. To address this, Chen et al. (2021) presented the errors in Table 3, incorporating not only single-642

task errors and losses but also the ’Worst-Case’ error, which captures the largest error within a set of tasks.643

Additionally, they visualize results as cross-task distributions, such as candlestick plots, providing a more644

comprehensive view of error variation. Optimizing with respect to the ’Worst-Case’ loss further aids training645

by reducing worst-case errors and enhancing generalization in multi-task scenarios.646

A central challenge in benchmarking task similarity lies in rigorously quantifying it. Current methods exhibit647

key trade-offs. For instance, Huang et al. (2022) pre-train models on PDE parameters drawn from divergent648
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distributions, but this heuristic does not guarantee task dissimilarity, as differing PDE parameters may still649

result in similar solutions. In contrast, Prantikos et al. (2023) uses geometric metrics such as the Hausdorff650

distance to measure the dissimilarity between solutions across tasks. This approach involves comparing the651

solutions of a set of tasks to identify OOD tasks, which are primarily used for benchmarking purposes.652

However, this method requires finalized solutions, limiting its applicability to scenarios where solutions are653

already available. Alternatively, adaptive frameworks, such as GPT-PINN (Chen & Koohy, 2024), bypass654

explicit similarity metrics by identifying OOD tasks based on the initial task-specific loss and retraining655

models when this loss exceeds predefined thresholds, prioritizing practicality over formal guarantees.656

These insights emphasize the importance of integrating task similarity, error distributions, and extreme-value657

analysis into error assessment frameworks. Such integration is essential for robust model development and658

for gaining a deeper understanding of generalization, particularly in multi-task settings where knowledge659

transfer and interpolation/extrapolation within the parametric space are key considerations.660

Table 3: Evaluation Metrics for Multi-Task PINNs. "Worst-case" metrics compute the maximum over tasks
(parameterized by µ), while "Task-wise" metrics are evaluated per task at the final iteration.

Metric Description Equation
Worst-Case Loss Maximum loss across tasks max

µ∈T
L(uθ; µ)

Terminal Loss Task-specific loss at final iteration L(uθ; µ)

Worst-Case Rel. L2 Error Maximum relative error across tasks max
µ∈T

∥uθ(µ) − ugt(µ)∥2

∥ugt(µ)∥2

Terminal Rel. L2 Error Task-specific relative error at final iteration ∥uθ(µ) − ugt(µ)∥2

∥ugt(µ)∥2
Terminal Abs. Error Task-specific absolute error at final iteration ∥uθ(µ) − ugt(µ)∥1

Figure 4: Example of efficient model adaptation through meta-learning. The blue-circled metrics represent
key factors that efficient adaptivity aims to reduce, influenced by the other metrics in the radar chart. On
the far right is the predicted solution after only 100 epochs.

4.3 Efficient Adaptivity Metrics661

Evaluating the adaptivity and efficiency of PINNs is crucial for practical applications. Key metrics assess662

data requirements and computational efficiency, focusing on minimal data usage and reduced training time.663

Figure 4 compares a vanilla PINN, trained from scratch for each task, with a meta-learning PINN that664

employs a hypernetwork-based adaptation strategy to leverage prior knowledge (Cho et al., 2024b). The665

radar chart provides a normalized comparison of key factors influencing efficient adaptation, including the666
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number of epochs, model parameters, collocation points, model complexity, and end metrics such as average667

convergence time, final loss, and final error. The reported values were obtained by training the models until668

either a target loss of 0.05 or a maximum of 1,200 epochs was reached. The results demonstrate that meta-669

learning significantly reduces training time, epochs, and collocation points, thereby lowering computational670

overhead.671

4.3.1 Data Efficiency672

Collocation Point Budget. The number of collocation points significantly impacts the convergence speed673

and accuracy of PINNs. Some studies use a fixed number of collocation points, while others employ adaptive674

sampling strategies, allocating more points to regions with higher PDE losses (Toloubidokhti et al., 2023).675

A useful evaluation strategy is to measure the accuracy of different sampling techniques given varying676

collocation point budgets (Wu et al., 2023). By examining the trade-off between the number of collocation677

points and the resulting accuracy, it is possible to optimize the sampling strategy to suit specific problems678

and computational constraints, enhancing the training performance and accuracy of PINNs.679

Observation Point Budget. In many applications, only a limited number of observation points are680

available for analysis. Rather than relying solely on unsupervised loss, it is important to make the most681

of these scarce observations. To address this, a metric is designed to assess the relationship between the682

number of observation points and the accuracy of the analysis. Specifically, it evaluates the accuracy that683

can be achieved given a fixed budget of N observation points. This is particularly crucial for real-world684

scenarios where data availability is constrained.685

Task Sampling Strategy. Several PINN techniques employ a two-phase training process consisting of a686

pre-training phase and a fine-tuning phase. The pre-training phase can be conducted using either a single687

instance or multiple instances of PDEs. To achieve better generalization across a distribution of tasks, it688

is crucial to pre-train on multiple tasks distributed along a given parameter range. However, determining689

the optimal sampling strategy for selecting pre-training tasks is a challenging task. The goal is to identify690

the fewest number of pre-training tasks that yield the best results, as the number of pre-training tasks691

influences both the pre-training resources and the final fine-tuning accuracy. Recent works, such as in the692

work of Toloubidokhti et al. (2023), have attempted to address this problem. One approach is to measure693

the "performance disparity" within a given range of tasks, defined as the performance difference between the694

worst-performing and the best-performing PINN. If a network architecture generalizes well across the range695

of tasks, both the accuracy and the performance disparity should be low. This analysis can also serve as a696

tool to assess which PDE parameters an architecture struggles with, providing valuable insights for further697

improvements.698

4.3.2 Computational Efficiency699

To evaluate computational efficiency, four key metrics are commonly reported. First, the parameter count700

provides a measure of the model size, which impacts memory usage. Second, the number of MACs (Multiply-701

Accumulate Operations) directly reflects the computational complexity, influencing processing speed. Third,702

the epoch count assesses convergence by either reporting the final accuracy within a set epoch budget or703

the number of epochs required to reach a target error threshold. Fourth, training time offers a direct704

quantification of computational cost by measuring the duration needed to achieve the desired accuracy.705

These metrics collectively provide a comprehensive view of the computational demands associated with706

different PINN architectures and training strategies, facilitating informed decisions for their deployment in707

resource-constrained environments.708

5 Applications & Discussions709

Transfer learning and meta-learning techniques have shown considerable promise in enhancing the adaptivity710

of PINNs. These techniques offer promising solutions for both forward and inverse problems, extending711

beyond traditional benchmarks to real-life applications in various engineering and scientific domains. This712
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trend highlights how adaptive PINNs are increasingly bridging theoretical advancements with practical713

utility, as evidenced by the works marked (*) in Tables 1 and 2.714

In forward problems, efficient adaptivity focuses primarily on adaptation speed and retrieval of previously715

unseen solutions from similar tasks. This ability is invaluable in applications requiring fast queries within716

a specific task range, such as real-time adaptive systems and design optimization. Reducing the number717

of collocation points and training time is a crucial factor in this context. Another promising application of718

PINN adaptivity is function discovery, where a pre-trained PINN, initially trained on an easy-to-solve PDE,719

is fine-tuned using sparse measurements obtained from experiments or sensors, as demonstrated by Chen720

et al. (2021).721

Despite their adaptive capabilities, PINNs must be rigorously evaluated as forward solvers through direct722

comparisons with conventional numerical methods. Studies such as Qin et al. (2022) have shown that723

while PINNs offer a flexible, mesh-free, and data-free approach beneficial for complex geometries, they often724

struggle to compete with highly optimized PDE solvers in terms of computational efficiency. For instance,725

despite leveraging meta-learning to accelerate PINN optimization, Qin et al. found that their meta-solver726

remained slower than a strong JAX baseline using the finite volume method with Godunov flux. This727

highlights the significant speed advantage that conventional PDE solvers—particularly those implemented728

in high-performance computing frameworks—can achieve. However, it is important to note that Qin et al.’s729

comparison focused on a single benchmark problem, and broader testing across diverse scales and PDE types730

is needed to fully characterize the strengths and limitations of adaptive PINNs versus optimized traditional731

solvers. Additionally, other works surveyed here lack systematic comparisons, limiting conclusive insights732

into PINNs’ practical viability.733

Beyond adaptive PINNs, emerging fast differentiable solvers, combined with active learning, present an734

alternative for creating surrogate models tailored to specific solution distributions. A fast differentiable735

solver could iteratively refine a surrogate model by aligning it with a desired solution range, using active736

learning to prioritize critical regions of the domain. In this context, transfer learning and meta-learning737

techniques could further enhance these approaches by enabling efficient adaptation to new tasks or domains,738

reducing the need for extensive retraining. However, these methods are still in development, and their739

broad adoption remains uncertain. Advancing these methodologies will require systematic comparisons to740

determine their trade-offs in accuracy, generalization, and computational cost, particularly in relation to741

adaptive PINNs.742

The idea of adaptive PINNs extends to inverse problems, where they excel at inferring unknown parameters743

and minimizing data dependencies. In these cases, efficient model adaptivity plays a key role in reducing the744

number of data samples needed to infer initial or boundary conditions, making PINNs especially valuable for745

real-time adaptive systems. For instance, Xu et al. (2022) demonstrated the effective use of transfer learning746

in PINNs for real-world problems like tunneling, where the model is pre-trained on an easily solvable task747

and then fine-tuned using limited real-world data, highlighting their effectiveness in inverse applications.748

Despite these promising advancements, challenges remain that could hinder the continued progress of adap-749

tive PINNs. One such challenge is the variety of benchmarking strategies employed across different studies,750

which complicates the process of directly comparing methods. Without standardized evaluation frameworks,751

it becomes difficult to draw meaningful conclusions about the effectiveness of different approaches. As future752

research, it is necessary to ground these strategies to facilitate easier comparison between different methods.753

Establishing standardized evaluation guidelines, as proposed in Section 4, is crucial for ensuring fair com-754

parisons and assessing generalization capabilities. The diversity in benchmarking strategies currently makes755

it difficult to determine the most effective technique. This challenge is reflected in the contradictory conclu-756

sions drawn by different works. For example, Penwarden et al. (2023) found that MAML weight initialization757

only marginally improves performance compared to random initialization, whereas Qin et al. (2022) and Liu758

et al. (2022) reported opposite findings. Establishing a common ground for evaluating these techniques is759

essential. Additionally, refining the definitions of terms such as ’in-distribution,’ ’out-of-distribution’ tasks,760

and ’related’ or ’similar’ PDEs can facilitate meaningful comparisons and help identify suitable applications761

for each method.762
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Nevertheless, a comparison of adaptivity benefits, using a standard PINN as the baseline, reveals significant763

improvements in accuracy and training efficiency when adopting weight initialization methods. The full764

details of this comparison, including the specific equations evaluated, are provided in Appendix B. This765

comparison underscores the effectiveness of weight initialization approaches in enhancing adaptivity, with766

the works of Liu et al. (2022), Penwarden et al. (2023), and Cho et al. (2024b) demonstrating particularly767

promising results in this regard. These methods enable rapid adaptation by leveraging pre-trained models,768

making them especially well-suited for tasks that require fast adaptation. However, for these methods to769

be truly effective, their pre-training phase must capture a broad range of shared representations, ensuring770

generalizability across different tasks. Similarly, techniques that use basis function expansions, such as those771

in Chen & Koohy (2024), Cho et al. (2024b), and Gao et al. (2022), offer efficient fine-tuning by reducing772

the required number of parameters. By restricting the hypothesis space to a smaller set of expressive basis773

functions, these methods can achieve faster convergence compared to unstructured parameter optimization,774

provided the selected bases align well with the task structure. Yet, like weight initialization methods, shared775

bases—often frozen during fine-tuning—must be expressive enough to capture a wide variety of tasks.776

An alternative strategy to further enhance adaptivity involves incorporating adaptive basis functions or a777

library of pre-trained basis weights, as suggested by Mustajab et al. (2024). Combining this approach with778

a mixture-of-experts framework could significantly boost the model’s ability to generalize. Furthermore,779

while explicit basis function methods, such as GPT-PINN (Chen & Koohy, 2024) and One-shot PINN Desai780

et al. (2021), construct global basis functions, exploring smaller local subdomains within the PDE domain781

may offer further improvements in both efficiency and task-specific adaptability. These strategies highlight782

potential avenues for future research focused on improving adaptability and efficiency in PINNs.783

In addition to these approaches, another promising method is the self-referential learning technique intro-784

duced by Huang et al. (2022). This approach achieved training speeds up to nearly nine times faster than785

traditional PINNs when applied to the medium-difficulty Burgers equation and about five times faster for786

the more complicated Maxwell equations. By using task-specific inputs and keeping the weights trainable,787

their results suggest that this method holds particular promise for OOD settings, where adaptivity to new788

tasks is crucial. Moreover, the adaptive loss function approach of Song et al. (2024), as previously discussed,789

is particularly notable for being one of the few methods benchmarked on the complex Lid-driven cavity790

flow equation. This method moves away from traditional weight initialization techniques by dynamically791

adjusting error weights through an attentional mechanism, demonstrating its potential for challenging fluid792

dynamics problems. Exploring such innovative loss function strategies could be another promising direction793

for future research, with the aim of further improving optimization and adaptability in PINNs.794

While recent advancements in adaptive PINNs are encouraging, there are substantial opportunities for fur-795

ther improvement. Future research should focus on developing optimizers tailored for PINNs and more796

efficient methods for approximating the derivatives of the PDE components, such as those proposed by797

Shi et al. (2024), to accelerate training. Another promising direction is learning multiple tasks together798

through parametric PINNs, as explored by Cho et al. (2024a), which could enable a shared representation799

across tasks and improve generalization. Additionally, creating pre-trained weight libraries tailored to spe-800

cific problem classes may enhance adaptability and reduce computational overhead. Addressing inefficiencies801

during adaptation through strategies to mitigate negative transfer learning could prove crucial for robust-802

ness. Incorporating advanced techniques, such as gradient-based attention mechanisms or gradient-weighted803

loss functions, might dynamically prioritize critical regions within the domain, enabling PINNs to allocate804

resources more effectively. These advancements are poised to further enhance the adaptability and efficiency805

of PINNs, making them applicable to a broader range of scientific and engineering problems.806

6 Conclusion807

This study highlights the potential of enhancing the adaptivity of PINNs through meta-learning and transfer808

learning techniques. By enabling the reuse of learned information, these approaches can improve the efficiency809

of PINNs, particularly in applications where repeated evaluations of similar tasks are required. Instead of810

solving each PDE from scratch, adaptive PINNs aim to leverage prior knowledge, making them a promising811

direction for reducing computational effort in solving families of related problems.812
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The works presented in this survey support the idea of adaptive PINNs, demonstrating progress while also813

highlighting areas that require further development. Additionally, this survey provides insights into method-814

ologies for assessing efficient model adaptation, including relevant metrics and benchmarks. Standardizing815

evaluation practices is essential for facilitating meaningful comparisons across studies and advancing the816

field.817

Adaptive PINNs have the potential to expand the applicability of PINNs in scientific and engineering prob-818

lems, particularly in scenarios where limited data is available, and rapid evaluations are necessary. However,819

challenges such as computational overhead and generalization across diverse problem domains remain open820

areas for further investigation. Continued research in optimizing adaptation techniques, loss function design,821

and multi-task learning has the potential to further advance adaptive PINNs within the broader landscape822

of computational methods for PDEs.823
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A Benchmark Equations969

A.1 Equation Classification970

Table 4 synthesizes the broader landscape of benchmark usage, categorizing partial differential equations971

(PDEs) by three critical dimensions: computational complexity, key technical challenges, and adoption972

frequency in the surveyed literature. This structure enables systematic comparison of problem difficulty and973

helps researchers select appropriate benchmarks for specific evaluation needs.974

The "Complexity" column rates equations from 1 to 5 stars (⋆ to ⋆⋆⋆⋆⋆), reflecting relative com-975

putational demands. For example, the Poisson equation (1 star) serves as a low-complexity baseline due976

to its linear, steady-state nature, while the Navier-Stokes equations (5 stars) represent the upper complex-977

ity extreme, requiring resolution of coupled velocity-pressure fields with nonlinear advection and complex978

boundary conditions.979

Key Drivers of Complexity identify the primary technical challenges for each PDE:980

• Time dependence: Critical in transient problems (e.g., Burgers’, Wave equations)981

• Nonlinearity: Dominates shock-forming systems (e.g., Allen-Cahn, A-D-R)982
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• High-frequency oscillations: Challenges resolution limits (e.g., Schrödinger, Helmholtz)983

• Multi-variable coupling: Increases system dimensionality (e.g., Navier-Stokes)984

The "Used By" column quantifies benchmark prevalence in this survey, revealing distinct adoption pat-985

terns. Burgers’ equation emerges as the most popular intermediate benchmark (9 studies), offering balanced986

complexity through its nonlinear shock dynamics. In contrast, high-complexity systems like A-D-R and987

Navier-Stokes appear only once each, reflecting their specialized computational requirements.988

Table 4: Complexity of Different Models

Model Complexity
Model Used by Complexity Key Drivers of

Complexity
Characteristics

Poisson 5 ⋆⋆⋆⋆⋆ Geometric/boundary
complexities

Linear, steady-state, single
scalar field with fixed boundary
values

Helmholtz 2 ⋆⋆⋆⋆⋆ High-
frequency/oscillatory
solutions

Linear, oscillatory, high wave
numbers require fine-scale reso-
lution

Wave 1 ⋆⋆⋆⋆⋆ Time dependence Describes wave propagation and
behavior over time

Burgers’ 9 ⋆⋆⋆⋆⋆ Nonlinearity, Time
dependence, Shocks

Nonlinear advection, shock for-
mation (low viscosity), sharp
gradients

Allen-Cahn 3 ⋆⋆⋆⋆⋆ Nonlinearity, Time
dependence

Nonlinear reaction-diffusion for
phase transitions; stiff, time-
dependent dynamics

Schrödinger 3 ⋆⋆⋆⋆⋆ High-
frequency/oscillatory
solutions

Complex-valued solutions, time-
dependent, possibly nonlinear

A-D-R 1 ⋆⋆⋆⋆⋆ Nonlinearity, Time
dependence, Stiffness

Combines advection, diffusion,
and nonlinear reaction; stiff gra-
dients

Navier-Stokes (LDC) 1 ⋆⋆⋆⋆⋆ Nonlinearity, Time
dependence, Multi-
variable

Coupled PDEs (velocity and
pressure), nonlinear advection,
complex boundaries (sharp cor-
ners)

Note: Abbreviations: Advection-Diffusion-Reaction = A-D-R, Lid-driven Cavity = LDC.

A.2 Poisson Equation989

The Poisson equation is a second-order elliptic PDE appearing in many fields, such as electrostatics, steady990

heat transfer, and many others. This equation has the following form:991

−∆u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(9)

where ∆(·) is the Laplace operator. A common feature among all works is that the domain is 2D, specifically992

Ω ⊆ [−1, 1] × [−1, 1], except for Bischof & Kraus (2022), which uses an L-shaped domain. The forcing or993

source term f(x) changes among works:994
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Table 5: Different forms of f(x, y) used in various studies. Desai et al. (2021) employs a different forcing
term during testing. In the work of Liu et al. (2022), n represents the number of heat sources, and U denotes
uniform sampling.

Literature f(x, y) Parameters
Desai et al. (2021) sin(kπx) sin(kπy) k ∈ {1, 2, 3, 4}

Liu et al. (2022)

∑n
i=1 ci · exp

(
− (x−ai)2+(y+bi)2

0.01

)
ai, bi ∼ U(0.1, 0.9),
ci ∼ U(0.8, 1.2)

Bischof & Kraus (2022) 1 -
Song et al. (2024) 2π2 sin(πx) sin(πy) -

A.3 Burgers’ Equation995

Burgers’ equation is a time-dependent PDE that models a system consisting of a moving viscous fluid. The996

1D form of the equation models the fluid flow through an ideal thin pipe. The Burgers’ equation is given by:997

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2 = 0, x ∈ Ω, t ∈ [0, T ],

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],
u(x, 0) = u0(x), x ∈ Ω,

(10)

The unknown u(x, t) is the speed of the fluid, and ν the fluid viscosity. When the viscosity is low, then the998

fluid flow develops a shock wave.999

Most of the works presented here treat ν as the parameter that defines a task, the initial condition as1000

u0(x) = − sin(πx), and the computational domain as Ω ∈ [−1, 1]; t ∈ [0, 1]. The table below shows the1001

different choices of ν across various works.

Table 6: Different choice of νforBurgers′Equation1D used in various studies.

Literature Parameters
Liu et al. (2022) ν ∈ [0, 0.1/π]
Penwarden et al. (2023) ν ∈ [0.005, 0.05]
Chen & Koohy (2024) ν ∈ [0.005, 1/π]
Toloubidokhti et al. (2023) ν ∈ [0.001, 0.1]
Chen & Koohy (2024) ν ∈ [0.005, 1/π]
Psaros et al. (2022) ν ∈ [0.001, 0.002] & ν ∈ [0.01, 1.0]
Song et al. (2024) ν = 0.01/π

1002

A.3.1 Allen-Cahn Equation1003

The Allen-Cahn equation is given by:1004

∂u

∂t
− λ∆u + ϵ(u3 − u) = f(x, t), x ∈ Ω, t ∈ [0, T ],

u(x, t) = 1, x ∈ ∂Ω, t ∈ [0, T ],
u(x, 0) = x2 cos(πx), x ∈ Ω,

(11)
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where in Ω = [−1, 1] represents the spatial domain, and T = 1 denotes the final time. The coefficient λ is1005

chosen from the interval [0.0001, 0.001], while the parameter ϵ, which controls the strength of the nonlinear1006

term, is selected from the range [1, 5]. The forcing term f(x,t) is set to zero for this study, focusing on the1007

intrinsic dynamics of the Allen-Cahn equation. This represents an initial-boundary value problem (IBVP)1008

as per Chen & Koohy (2024). An alternative formulation of the IBVP exists in other works that derive a1009

forcing term based on an exact solution, such as Penwarden et al. (2023) and Xu et al. (2022).1010

A.4 Wave Equation1011

The wave equation for a scalar wave function u(x, t) is given by:1012

∂2u

∂t2 = c2∇2u, (12)

where c is the wave speed and ∇2 is the Laplacian operator in three dimensions.1013

A.5 Helmholtz Equation1014

The Helmholtz equation for a scalar field u(r) is given by:1015

∆u + k2u = 0, (13)

where k is the wave number related to the wavelength λ.1016

A.5.1 Schrödinger Equation1017

The time-dependent Schrödinger equation for a single particle in three-dimensional space is given by:1018

iℏ
∂Ψ(r, t)

∂t
= − ℏ2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t), (14)

where Ψ(r, t) is the wave function, r = (x, y, z) are the spatial coordinates, t is time, ℏ is the reduced1019

Planck’s constant, m is the mass of the particle, ∇2 is the Laplacian operator, and V (r) is the potential1020

energy function.1021

A.6 Advection-Reaction-Diffusion1022

Advection-reaction-diffusion equations, as considered in this section, are known to be stiff problems when the1023

advection term dominates over the diffusion one. In such cases, sharp transition layers appear in the solution,1024

which are difficult to capture by traditional numerical schemes." Baty (2024) The advection-reaction-diffusion1025

equation is given by:1026

∂u

∂t
+ v · ∇u = D∇2u + R(u), (15)

where u = u(r, t) is the dependent variable (scalar field), t is time, r = (x, y, z) represents spatial coordinates,1027

v = (vx, vy, vz) is the velocity field (advection term), D is the diffusion coefficient, ∇2 is the Laplacian1028

operator, and R(u) is the reaction term.1029

A.6.1 Lid-driven Cavity Flow1030

The lid-driven cavity flow equations are:1031

∂u

∂x
+ ∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν∇2u + Fx,

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν∇2v + Fy,

(16)
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with boundary conditions:1032

u(x, 0) = 0, u(x, 1) = 1 (lid),
v(0, y) = v(1, y) = 0 (walls),
u(x, y) = v(x, 0) = v(x, 1) = 0 (other boundaries).

Here, u(x, y) and v(x, y) are the velocity components, p(x, y) is the pressure, ρ is the fluid density, ν is the1033

kinematic viscosity, and Fx, Fy are additional body forces.1034

B Method Comparison1035

This table provides a comparison of various Physics-Informed Neural Network (PINN) methods across differ-1036

ent problem types, training approaches, and improvements in accuracy and speed. It highlights the accuracy1037

improvement (%) and speed-up/slowdown (%) achieved by each method compared to the baseline PINN.1038

The table includes key details such as the author, short name, problem type, and training strategy (pre-1039

train/fine-tune), along with the data type used in each case. It also reports the end accuracy (for both the1040

PINN and method) and the number of epochs and time required for training. The improvement percentages1041

are calculated based on the following formulas:1042

Accuracy Improvement (%) =
(

PINNaccuracy − Methodaccuracy

PINNaccuracy

)
× 100

Speed Up/Slowdown (%) =
(

PINNepochs

Methodepochs
− 1

)
× 100

Where speed-up is calculated in terms of either the number of epochs or total training time (* denotes1043

training time).1044

In terms of Table 7, the following can be observed: TL-gPINN (Lin & Chen, 2024) enhances accuracy over1045

gPINN but remains slower than the baseline PINN. Reptile (Liu et al., 2022) outperforms PINN in the1046

Burgers’ inverse problem, achieving faster convergence with fewer epochs. SVD-PINN (Gao et al., 2022)1047

demonstrates a negative performance compared to the standard PINN for the Allen-Cahn equation. Curricu-1048

lum (Mustajab et al., 2024) accelerates convergence by 50%, though final accuracy is comparable to PINN.1049

Interpolation (Penwarden et al., 2023) improves convergence speed through superior weight initialization1050

but does not significantly boost accuracy. GPT-PINN (Chen & Koohy, 2024) converges more quickly but1051

does not surpass PINN in final accuracy, potentially due to the limited expressiveness of its basis functions.1052

MAD-PINN (Huang et al., 2022) offers a 30% accuracy improvement and a 362% speed-up over PINN for1053

the Maxwell equation, a complex problem. LA-PINN (Song et al., 2024) meta-learns the loss function, out-1054

performing PINN on both simple and complex equations, though the performance gains are less pronounced1055

for more difficult problems. Hyper-lr-PINN (Cho et al., 2024b) excels in both accuracy and speed for the1056

Helmholtz equation, although the speed increase may stem from the similarity between the target and source1057

tasks.1058

Note: The values presented in the table are approximated, as some were extracted from graphical data.1059
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