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Abstract. In many critical computer vision scenarios unlabeled data
is plentiful, but labels are scarce and difficult to obtain. As a result,
semi-supervised learning which leverages unlabeled data to boost the
performance of supervised classifiers have received significant atten-
tion in recent literature. One representative class of semi-supervised
algorithms are co-training algorithms. Co-training algorithms lever-
age two different models which have access to different independent
and sufficient representations or “views” of the data to jointly make
better predictions. Each of these models creates pseudo-labels on un-
labeled points which are used to improve the other model. We show
that in the common case where independent views are not available,
we can construct such views inexpensively using pre-trained mod-
els. Co-training on the constructed views yields a performance im-
provement over any of the individual views we construct and perfor-
mance comparable with recent approaches in semi-supervised learn-
ing. We present Meta Co-Training, a novel semi-supervised learning
algorithm, which has two advantages over co-training: (i) learning
is more robust when there is large discrepancy between the infor-
mation content of the different views, and (ii) does not require re-
training from scratch on each iteration. Our method achieves new
state-of-the-art performance on ImageNet-10% achieving a ∼ 4.7%
reduction in error rate over prior work. Our method also outperforms
prior semi-supervised work on several other fine-grained image clas-
sification datasets.

1 Introduction

In many critical machine learning scenarios we have access to a large
amount of unlabeled data, and relatively few labeled data points for
a given task. For standard computer vision (CV) tasks there are large
well-known and open source datasets with hundreds of millions or
even billions of unlabeled images [47, 46]. In contrast, labeled data is
usually an order of magnitude more scarce and otherwise expensive
to obtain, requiring many human-hours to generate. In this context,
semi-supervised learning (SSL) methods are useful, as they rely on
training more performant models, using small amounts of labeled
data and large amounts of unlabeled data.

Not unrelated to and not to be confused with the idea of semi-
supervised learning, is self-supervised learning.1 In self-supervised
learning a model is trained with an objective that does not require a
label that is not evident from the data itself. Self-supervised learning

∗ Corresponding Author. Email: jay.c.rothenberger@ou.edu.
1 There is also an SSL technique called self-training. Recognizing the un-

fortunate similarity of these three terms, SSL will always mean semi-
supervised learning in this text and we will not abbreviate the other terms.

was popularized by the BERT model [18] for generating word em-
beddings for natural language processing (NLP) tasks. BERT gen-
erates its embeddings by solving the pretext task of masked word
prediction. Pretext tasks present unsupervised objectives that are not
directly related to any particular supervised objective we might want
to solve, but rather are solved in the hope of learning a suitable rep-
resentation to more easily solve a downstream task. These pretext
learners are often referred to as foundation models. Several pretext
tasks have been proposed for CV to train associated foundation mod-
els that solve them [27, 12, 34, 10, 41, 26]. The learned representa-
tions for images are often much smaller than the images themselves.
As a consequence, this yields the additional benefit of reduced com-
putational cost when using the learned representations.

SSL algorithms [33, 5, 43, 52, 42, 49, 51, 4] involve generating
pseudo-labels to serve as weak supervision on unlabeled data and
then learning from those pseudo-labels. This weak supervision can
either be used to perform consistency regularization, or entropy mini-
mization, or both. Consistency regularization is to enforce that differ-
ent augmented versions of the same instance are assigned the same
label. Entropy minimization is to enforce that all instances are as-
signed a label with high confidence. Typically consistency regular-
ization is achieved by minimizing a consistency loss between pairs
of examples that ought to have the same label [51, 4, 49, 3], and en-
tropy minimization is achieved by iterative re-training [33, 5, 43] or
sharpening labels [42, 4, 49, 3].

One particular class of SSL algorithms are co-training [5] algo-
rithms in which two different “views” of the data must be obtained
or constructed, and then two different models must be trained and re-
trained iteratively. These two views yield models which capture dif-
ferent patterns in their input and thus, informally speaking, are more
likely to fail independently. This independence of failure is lever-
aged so that each model can provide useful labels to the other. Stan-
dard benchmark problems in machine learning do not present two
views of the problem to be leveraged for co-training. If one hopes to
apply co-training, one needs to construct two views from the single
view that they have access to. We show that constructing views which
satisfy the conditions necessary for co-training is relatively simple.
Training different models on the two constructed views can boost
performance. Unfortunately, the classical co-training algorithm (CT)
fails to utilize pseudo-labels effectively on benchmark tasks.

We propose a novel SSL method which more effectively leverages
pseudo-labels. We call our algorithm Meta Co-Training (MCT), be-
cause it leverages two views to produce good pseudo-labels as part of
a bi-level optimization. In MCT each model is trained to provide bet-
ter pseudo-labels to the other model, given only its view of the data



and the performance of the other model on a labeled set. Similarly to
CT, our approach utilizes multiple views to train models which are
diverse. These models have an advantage when teaching (and learn-
ing from) each-other because they will learn different patterns from
their differing input data. We show that our approach provides an
improvement over both CT and the current state-of-the-art (SoTA)
method [36] on the ImageNet-10% dataset, as well as it establishes
new SoTA few-shot performance on several other fine-grained image
classification tasks.

Summary of Contributions.

1. We propose Meta Co-Training, an SSL algorithm which appears
to be more robust than co-training and does not require iterative
re-training from initialization.

2. We establish SoTA top-1 ImageNet-10% [17] accuracy and other
few-shot benchmark classification tasks.

3. We make our implementation publicly available:
https://github.com/JayRothenberger/Meta-Co-Training

Outline of the Paper. In Section 2 we establish notation and pro-
vide background information. In Section 3 we describe our proposed
method, meta co-training. In Section 4 we present our experimen-
tal findings on ImageNet [17] and discuss how our method com-
pares to relevant baseline approaches. We perform additional ex-
periments on Flowers102 [40], Food101 [6], FGVCAircraft [38],
iNaturalist [28], and iNaturalist 2021 [29] datasets. In Section 5
we discuss related work with emphasis on semi-supervised meth-
ods, including co-training methods. In Section 6 we conclude with
a summary and directions for future work. The interested reader
can find additional information (e.g., details on the training recipe)
in https://arxiv.org/abs/2311.18083 [45].

2 Background
Notation. The models that we learn are functions of the form
f : X → ∆|Y| where ∆|Y| is the |Y|-dimensional unit simplex. We
use f(x)|j to denote the j-th value of f in the output. When we
want to explicitly refer to a network f parameterized by θ (e.g., in
deep neural networks), we write fθ . For the entirety of this text ℓ will
refer to the cross-entropy loss which is defined as ℓ (y, fθ(x)) =
−
∑

ξ∈Y 1 {ξ = y} log (fθ(x)|ξ). We use η as the learning rate and
T as the maximum number of steps (or updates) in a gradient-based
optimization procedure. Finally, we use 1 {A} as an indicator func-
tion of an event A; that is, 1 {A} is equal to 1 when A holds, other-
wise 0.

Semi-Supervised Learning. We are interested in situations where
we have a large pool of unlabeled instances U as well as a small
portion L of them that is labeled. That is, the learning algorithm has
access to a dataset S = L ∪ U , such that L = {(xi, yi)}mi=1 and
U = {xj}uj=1. For L the instance part is denoted as XL and the
label part is denoted as YL. In this setting, semi-supervised learning
(SSL) methods attempt to first learn an initial model finit using the
labeled data L via a supervised learning algorithm, and in sequence,
an attempt is being made in order to harness the information that is
hidden in the unlabeled set U , so that a better model f can be learnt.

View Construction. A view, in the context of co-training meth-
ods, is a subset of the input features. A view typically has two prop-
erties: (i) it is sufficient for predicting the desired quantity, and (ii)
it is conditionally independent of other views given the label. Pre-
vious methods of view construction for co-training include manual
feature subsetting [19], automatic feature subsetting [11], random

feature subsetting [8], random subspace selection [7], and adversar-
ial examples [43]. We use self-supervised learning to construct views
for our experiments. However, if one has access to a dataset where
the instances have two different views, then one can still obtain use-
ful representations with this approach using the same self-supervised
model or none at all.

While our approach is more widely applicable, it is particularly
well-suited to computer vision. There are a plethora [23, 12, 10, 34,
44, 41, 27] of competitive learned representations for images. Choos-
ing foundation model representations as views makes our approach
lightweight enough to be feasible with limited hardware resources.

3 Proposed Method: Meta Co-Training

We propose a novel semi-supervised learning algorithm called Meta
Co-Training (MCT), which is described below. MCT operates within
a bi-level student-teacher optimization framework which is inspired
by Meta Pseudo Labels (MPL) [42] which we extend to two views
to perform co-training [5]. A student is optimized to replicate the la-
bels its teacher gives to a set of unlabeled points while a teacher is
optimized to provide labels to the same unlabeled points such that
its student learns to predict well on labeled data. We say that MCT
is a co-training algorithm because it operates on two views of the
data. However unlike the original co-training method [5] we do not
train multiple models for each view sequentially; CT incrementally
expands the labeled set with pseudo-labels and re-trains the models
for each view, whereas MCT simply learns to generate better labels
without expanding the labeled set. In MCT each view has exactly one
model which acts as both a teacher for the other view and a student
for its own view. That is to say that the model learning on view 1
will take an unlabeled instance from view 1 as input and provide
the pseudo-label prediction to the student for the same unlabeled in-
stance in view 2. The student – the model learning on view 2 – will
use the pseudo-label to learn to predict similarly.

The lower of the two levels of the optimization is the student opti-
mization (Equation 2). The student parameters θS are optimized as a
function of the teacher parameters θT :

Lu (θT , θS) = ℓ

(
argmax

ξ
fθT (U)|ξ, fθS (U)

)
(1)

θ′S = θPL
S (θT ) ∈ argmin

θS

Lu (θT , θS) . (2)

The teacher optimization (Equation 4) forms the upper level of the
optimization:

LL

(
θ′S

)
= ℓ

(
YL, fθ′

S
(XL)

)
(3)

θ′T = argmin
θT

LL

(
θ′S

)
. (4)

All together the objective of MCT from the perspective of the cur-
rent view model as the teacher is

min
θT
Lu (θT , θS) + LL

(
θ′S

)
. (5)

It is cumbersome to speak of teachers and students when each
model is both. We give the objective of MCT in Equation 6 as jointly
optimizing the following objectives with fθ1 the model learning on
view 1 and fθ2 the model learning on view 2.

min
θ1,θ2

Lu (θ1, θ2) + LL

(
θ′2
)
+ Lu (θ2, θ1) + LL

(
θ′1
)

(6)
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Figure 1: At each step t ∈ {1, . . . , T} of MCT the models that cor-
respond to the so-far learnt parameters θ1;t and θ2;t play the role of
the student and the teacher simultaneously using batches for their re-
spective views. Pseudo-labeling occurs on complementary views so
that the teacher can provide the student with labels on an unlabeled
batch. Labeled batches may, or may not, use complementary views
as the purpose that they serve is to calculate the risk of the student
model on the labeled batch and this result signals the teacher model
to update its weights accordingly.

Co-training algorithms are traditionally evaluated using the joint
prediction of the constituent models; i.e., the re-normalized element-
wise product of the individual predictions.

An overview of MCT is provided in Figure 1. At each step t ∈
{1, . . . , T} of MCT the models that correspond to the so-far learnt
parameters θ1;t and θ2;t participate in a student-teacher framework in
which each model plays the role of the student for their view and the
teacher for the other model simultaneously. The representations ob-
tained from the view construction process of Section 2 form different
views that are used by MCT.

By training two models on two views to collaborate we can take
advantage of the aspects of MPL and CT that make each algorithm
successful. CT is more effective when the two constituent models fail
(predict incorrectly) independently. During MCT the teacher model
will receive positive feedback precisely when it makes a prediction
that the other model would not have made which results in an im-
provement. MCT trains models in a way which encourages each
teacher to express independence while it teaches each student to in-
corporate the improvement. Naturally, once the two models predict
similarly then the gradient of the student parameters with respect to
the teacher’s labels is zero and they both cease to improve. This,
however, is also when MPL ceases to improve and it is unlikely to
have models which are as diverse as those which are trained from
independent views.

Algorithm Description. Algorithm 1 presents pseudocode for the
algorithm. The function SampleBatch, is sampling a batch from
the dataset. The function getOtherView returns the complementary
view of the first argument; the second argument clarifies which view
should be returned (“2” in Line 5). Instances for co-training methods
can be viewed as elements of a bipartite graph. Each edge and its
two endpoints form an instance. In Line 4 we are sampling from one
side of the bipartite graph and the function getOtherView returns the
connected elements from the second view. At each step t of the algo-

Algorithm 1 Meta Co-Training (Section 2 has notation)

1: Input: L(1), L(2), U (1), U (2), f (1), f (2), θ1, θ2, T, ℓ, η
2: for step t ∈ {1 . . . T} do
3: // Unlabeled views must be complementary
4: U

(1)
t ← SampleBatch(U (1))

5: U
(2)
t ← getOtherV iew(U

(1)
t , 2)

6: // Predict soft pseudo-labels
7: ŷ(1) ← f

(1)
θ1

(U
(1)
t )

8: ŷ(2) ← f
(2)
θ2

(U
(2)
t )

9: // Sample the pseudo-labels from the discrete distribution over
the classes

10: PL(1) ∼ ŷ(1)

11: PL(2) ∼ ŷ(2)

12: // MCT student update applied to both models
13: θ′1 ← θ1 − η · ∇θ1ℓ(PL(2), ŷ(1))
14: θ′2 ← θ2 − η · ∇θ2ℓ(PL(1), ŷ(2))
15: // Sample batches from L for the teacher updates
16: X

(1)
t , Y

(1)
t ← SampleBatch(L(1))

17: X
(2)
t , Y

(2)
t ← SampleBatch(L(2))

18: // MCT teacher update applied to both models
19: ŷ′(1) ← f

(1)

θ′1
(X

(1)
t )

20: ŷ′(2) ← f
(2)

θ′2
(X

(2)
t )

21: h(1) ← ∇θ′2
ℓ(Y

(2)
t , ŷ′(2))T · ∇θ2ℓ(PL(1), ŷ(2))

22: h(2) ← ∇θ′1
ℓ(Y

(1)
t , ŷ′(1))T · ∇θ1ℓ(PL(2), ŷ(1))

23: // Weights to be used in the next step
24: θ1 ← θ′1 − η · h(1) · ∇θ1ℓ(PL(1), ŷ(1))
25: θ2 ← θ′2 − η · h(2) · ∇θ2ℓ(PL(2), ŷ(2))
26: end for

rithm each model is first updated based on the pseudo-labels the other
has provided on a batch of unlabeled data (Lines 13-14). Then each
model is updated to provide labels that encourage the other to pre-
dict more correctly on the labeled set based on the performance of the
other (Lines 24-25). Lines 13-14 correspond to the student updates,
while Lines 24-25 correspond to the teacher updates. These updates
make tractable the optimization of Equation 6 since we approximate
the student and teacher optimizations using alternating iterations of
stochastic gradient descent. This is following the ideas of MPL and
further discussion is available in [42, 21, 45].

Each student model evaluates the performance of their new
weights on separate labeled batches. This performance provides
feedback to the teacher model. Geometrically, we can understand this
as updating the parameters in the direction of increasing the teacher’s
confidence on pseudo-labels, assuming those pseudo-labels helped
the student model perform better on the labeled set. Along these
lines, the teacher parameters are updated in the opposite direction
if it hurt the student’s performance on the labeled set.

In general, MCT does not require any preexisting method of view
construction to be applied. If a dataset naturally provides two views,
then there is no need to construct additional views. One can use any
pre-trained representation or none at all and then apply MCT as de-
scribed above. As an additional remark, for MCT and CT the labeled
datasets for each view do not need to have the same bipartite corre-
spondence as the unlabeled datasets. This is because the labeled data
used to evaluate the change in the performance of the student do not
need to have corresponding instances in the teacher’s view. In all of
our experiments in this work we use preexisting foundation models
to construct views for our co-training methods, and thus in all cases



there exist two views for each labeled example.
In Algorithm 1 it is illustrative to consider all versions of the pa-

rameters within a step and all of their gradients to exist simulta-
neously in memory. This is undesirable in practice given the large
size of common neural networks and their gradients. Instead, we
compute ∇θ2ℓ(PL(2), ŷ(2)) and ∇θ1ℓ(PL(1), ŷ(1)) (used in Lines
24-25) first, then we compute (and apply) ∇θ1ℓ(PL(2), ŷ(1)) and
∇θ2ℓ(PL(1), ŷ(2)) (used first in Lines 13-14 and reused inLines 21-
22), then we compute ∇θ′1

ℓ(Y
(1)
t , ŷ′(1))T and ∇θ′2

ℓ(Y
(2)
t , ŷ′(2))T

which we subsequently use to compute h(1) and h(2). We finish the
iteration with Lines 24-25 using the saved gradient from the first step.
With this approach we only have to compute the forward pass and
gradient for the student update once, and we only keep one version
of the model weights in memory at a time.

Relation to Ensemble Methods. As our approach utilizes multiple
models which collaborate during prediction, we acknowledge that it
bears similarity to the family of ensemble methods. Typically, co-
trained models are evaluated against other SSL approaches. In our
evaluation we compare our semi-supervised method to supervised
deep ensembles to illustrate the impact of MCT versus ensemble
methods. We show that when MCT works well, the performance ben-
efit cannot be attributed to simply utilizing multiple models.

4 Experimental Evaluation
Towards evaluating our proposed method we compare to other self-
supervised and semi-supervised learning algorithms using the Im-
ageNet [17] classification benchmark, as well as Flowers102 [40],
Food101 [6], FGVCAircraft [38], iNaturalist [28], and iNaturalist
2021 [29] datasets. To produce the views used to train the classifiers
during CT and MCT we used the embedding spaces of five represen-
tation learning architectures: The Masked Autoencoder (MAE) [27],
DINOv2 [41], SwAV [10], EsViT [34], and CLIP [44]. We selected
the models which produce the views as they have been learned in an
unsupervised way, have been made available by the authors of their
respective papers for use in PyTorch, and have been shown to pro-
duce representations that are appropriate for computer vision classi-
fication tasks. Hyperparameters used during training can be found in
[45] for CT, MCT, and deep ensembles.

Table 1 provides a description of the different datasets used for
training and testing, as well as the number of classes for each dataset.
Note that in the 10% experiments on the Flowers102 dataset each
class has only 1 label. All datasets are approximately class-balanced
with the exception of the iNaturalist dataset. In all cases we maintain
the original class distribution when sampling subsets. For ImageNet
we use the split published with the SimCLRv2 [13] repository. All
subsets are created with seeded randomness of a common seed (13)
which ensures a fair comparison between methods.

Table 1: Characteristics of datasets used.
Dataset #train #test #classes

FGVCAircraft 3333 3333 100
Flowers102 1020 6149 102
Food101 75,750 25,250 101
iNaturalist 175,489 29,083 1010
ImageNet 1,281,167 50,000 1000

4.1 Experimental Evaluation on ImageNet

As we discussed in Section 2 under the paragraph “View Construc-
tion”, CT relies on two assumptions about the sufficiency and inde-

Table 2: MLP performance on individual views. Top-1 accuracy on
different subsets of the ImageNet data are shown.

Model 1% 10%

MAE 23.4 48.5
DINOv2 78.4 82.7
SwAV 12.5 32.6
EsViT 71.3 75.8
CLIP 75.2 80.9

Table 3: Pairwise translation performance of linear probe on the Im-
ageNet dataset. A linear classifier is trained on the output of an MLP
which is trained to predict one view (columns) from another view
(rows) by minimizing MSE. The top-1 accuracy (%) of the linear
classifier is reported. Both the MLP and the linear classifier have ac-
cess to the entire embedded ImageNet training set.

MAE DINOv2 SwAV EsViT CLIP

MAE - 0.139 0.142 0.137 0.129
DINOv2 0.110 - 0.132 0.135 0.130
SwAV 0.116 0.147 - 0.137 0.126
EsViT 0.112 0.140 0.116 - 0.135
CLIP 0.110 0.146 0.136 0.156 -

pendence of the two views in our data. We conducted experiments to
verify these assumptions. Below we give a summary of our results.

On the Sufficiency of the Views. Sufficiency is fairly easy to ver-
ify. If we choose a reasonable sufficiency threshold for the task, for
ImageNet say close or above 75% top-1 accuracy, then we can train
simple models on the views of the dataset we have constructed and
provide examples of functions which demonstrate the satisfaction of
the property. We tested a single linear layer with softmax output to
provide a lower bound on the sufficiency of the views on the standard
subsets of the ImageNet labels for semi-supervised classification.

A simple 3-layer multi-layer perceptron (MLP) with 1024 neurons
per layer was evaluated (Table 2). These were the same models as
those used for CT and MCT. From these experiments, whose results
are shown in Table 2 we can see that if we were to pick a thresh-
old for top-1 accuracy around 75%, then CLIP and DINOv2 provide
sufficient views for both subsets the ImageNet 1% and 10% subsets.

On the Independence of the Views. To test the independence
of the views generated by the representation learning models, we
trained an identical MLP architecture to predict each view from each
other view; Table 3 presents our findings, explained below. Given
as input the view to predict from (rows of Table 3) the MLPs were
trained to reduce the mean squared error (MSE) between their output
and the view to be predicted (columns of Table 3). We then trained
a linear classifier on the outputs generated by the MLP given every
training set embedding from each view. Had the model faithfully re-
constructed the output view given only the input view then we would
expect the linear classifier to perform similarly to the last column
of Table 4. The linear classifiers never did much better than a ran-
dom guess on the ImageNet class achieving at most 0.156% accu-
racy. Thus, while we cannot immediately conclude that the views are
independent, it is clearly not trivial to predict one view given any
other. We believe that this is compelling evidence for the indepen-
dence of different representations.

Having constructed at least two strong views of the data, and sus-
pecting that these views are independent we hypothesize that MCT
and CT will work on this data.

Co-Training Baseline Experiments. At each iteration of CT the
models made predictions for all instances in U . We assigned labels



Table 4: Linear probe evaluation for views. Top-1 accuracy on differ-
ent subsets of the ImageNet data are shown.

Model 1% 10% 100%

MAE 1.9 3.2 73.5
DINOv2 78.1 82.9 86.3
SwAV 12.1 41.1 77.9
EsViT 69.1 74.4 81.3
CLIP 74.1 80.9 85.4

Figure 2: Top-1 accuracy of CT iterations on the CLIP and DINOv2
views for the ImageNet 10% dataset.

to the 10% of the most confident predictions in U for both mod-
els. When confident predictions conflicted on examples, we returned
those instances to the unlabeled set, otherwise their complementary
views were entered into the labeled set of the other model with the
assigned pseudo-label.

For CT, joint predictions yielded better accuracy than the predic-
tions of each individual model. In our experiments on ImageNet, as
CT iterations proceeded, top-1 accuracy decreased. Later we show
that this was not always the case (see Figure 4). The decrease was
less pronounced when the views perform at a similar level; see Fig-
ure 2. In contrast MCT does not exhibit performance degradation
after warmup. Figures 2 and 3 show results on ImageNet 10%. We
saw that while the CT performance decreases after the supervised
warmup, MCT performance increases.

Despite the poor performance of the pseudo-labeling during CT,
using the two best performing views CT performed as well as the
previous SoTA method for SSL classification on the ImageNet-10%;
see Co-Training in Table 5. Unfortunately, CT was unable to lever-
age pseudo-labels to improve the accuracy on this task. Given the
difficulty of translating between the views, and the fact that the ac-
curacy yielded by the joint prediction is greater than its constituent
views, we believe the poor performance of the pseudo-labeling step
in CT was due to imbalanced information content between views
rather than view-dependence.

Meta Co-Training Experiments. To draw fair comparisons, we
fixed the model architecture and view set from our experiments on
CT. As in MPL [42] a supervised loss was optimized jointly with
a loss on pseudo-labels. We found that beginning with a warmup
period in which the models for each view were trained in a strictly
supervised way expedited training. This warmup period occurred for
the same number of updates as the first training phase of CT, so each
method started with the same number of supervised updates before
pseudo-labeling. Details on the hyperparameters are given in [45].

Table 6 shows the results of MCT on all of the possible combi-

Figure 3: MCT using the CLIP and DINOv2 views as a function of
the training step. Models are trained on 10% of the ImageNet labels.

nations of views we used. With one exception, the better the perfor-
mance of the views, the better MCT performed compared to CT. In
nearly all cases in which both views were strong, MCT performed
better than CT. These were also the cases with the highest perfor-
mance overall. Comparing CT accuracy on ImageNet 10% (resp. 1%)
shown in Table 6a compared to MLP accuracy shown in Table 2,
we observed CT top-1 accuracy is on average 18.7% (resp. 16.8%)
higher than MLP accuracy. The best CT top-1 accuracy was 2.4%
(resp. 1.7%) higher compared to the best top-1 MLP accuracy. In Ta-
ble 6c we showed the performance of an ensemble of models trained
on concatenated view pairs. We provide more information on the
comparison between MCT and deep ensembles in a separate para-
graph below.

MCT and CT are compared on ImageNet 10% (resp., 1%) in Ta-
ble 5. We observed that MCT top-1 accuracy is 0.7% (resp., 0.6%)
higher overall. An ablation study for the views is given in Table 6.
On all view pairs in which MCT or CT provided no benefit over a
single view are cases in which one of the views was significantly
weaker than the other. This makes sense as one model has nothing to
learn from the other. For the experiments in which we had two strong
views, MCT always outperformed CT.

Comparison to Ensemble Methods. Ensemble methods are com-
mon in practice to boost the performance of supervised models. To
show that our method provided benefit outside of just adding an ad-
ditional model, we compared to a Deep Ensemble [32] of five models
for each individual view. In Table 7 we show the performance of en-
sembles trained on the individual views. We show the performance
of an ensemble trained on each view pair concatenated in Table 6c.
We show the performance of an ensemble trained on the concatena-
tion of all four views we used to achieve our best performing MCT
experiment in Table 8.

In some cases the CT models performed better than the ensem-
ble of models which all have the same input for each sample (the
concatenation of the CT views). We believe that CT before pseudo-
labeling (which is essentially an ensemble of two different views)
out-performed the deep ensembles because the CT models are fewer
but they are more diverse. The CT models were more diverse as
they were trained on different views, while the ensemble models are
trained on the concatenation of the views. The concatenation has the
same information but may not have produced meaningfully differ-
ent models in an ensemble. Ensuring diversity of ensemble members
is an important problem for ensembling methods, so it seems likely
that a less diverse ensemble would perform worse. If this is indeed
the case, then it would support our hypothesis that CT failed to im-



Table 5: Performance of different approaches on ImageNet dataset. An asterisk (*) indicates models that were trained on top of pre-trained
frozen backbone models. Models on the lower half of the table use unlabeled data during classification training.

Reference Model Method ImageNet-1% ImageNet-10%

[34] EsViT (Swin-B, W=14) Linear 69.1 74.4
[27] MAE (ViT-L) MLP 23.4 48.5
[44] CLIP (ViT-L) Fine-tuned 80.5 84.7
[41] DINOv2 (ViT-L) Linear 78.1 82.9
[13] SimCLRv2 (ResNet152-w2) Fine-tuned 74.2 79.4
[10] SwAV (RN50-w4) Fine-tuned 53.9 70.2

[43] Deep Co-Training (ResNet-18) Co-Training - 53.5
[51] UDA (ResNet50) UDA - 68.78
[49] FixMatch (ResNet-50) FixMatch - 71.46
[42] MPL (EfficientNet-B6-Wide) MPL - 73.9
[9] Semi-ViT (ViT-L) Self-trained 77.3 83.3
[36] REACT (ViT-L) REACT 81.6 85.1
[5] Co-Training (MLP)* Co-Training 80.1 85.1
[32] Deep Ensemble * Deep Ensemble 80.0 84.3

Meta Co-Training (MLP)* - ours Meta Co-Training 80.7 85.8

Table 6: CT, MCT, and ensemble top-1 accuracy of view combinations on 10% (1%) of ImageNet labels. As CT, MCT and the MLP ensemble
do not depend on the order of the views, we show only all unique combinations. In the case of the MLP ensemble these views are concatenated
in order to form a larger unified view.

(a) Co-Training

DINOv2 SwAV EsViT CLIP

MAE 81.8 (75.5) 30.5 (11.4) 77.1 (66.2) 78.8 (66.8)
DINOv2 78.5 (74.5) 83.3 (78.9) 85.1 (80.1)
SwAV 70.6 ( 64.9) 75.5 (67.4)
EsViT 82.3 ( 76.9)

(b) Meta Co-Training

DINOv2 SwAV EsViT CLIP

MAE 81.2 (73.8) 37.6 (8.1) 73.6 ( 63.8) 78.6 (63.5)
DINOv2 77.3 ( 70.7) 83.4 (79.2) 85.2 (80.7)
SwAV 74.4 (67.3) 77.1 (67.4)
EsViT 82.4 (77.5)

(c) MLP Ensemble

DINOv2 SwAV EsViT CLIP

MAE 83.0 (78.9) 38.1 (17.9) 75.0 ( 72.1) 79.4 (76.1)
DINOv2 83.7 ( 79.1) 81.2 (78.5) 84.2 (80.0)
SwAV 74.4 (72.5) 81.2 (76.8)
EsViT 78.7 (73.5)

Table 7: MLP ensemble performance on individual views. Top-1 ac-
curacy on different subsets of the ImageNet data are shown.

Model 1% 10%

MAE 1.7 3.8
DINOv2 79.2 82.8
SwAV 19.7 40.3
EsViT 72.1 75.0
CLIP 76.4 80.8

prove after pseudo-labeling due to an imbalance in the sufficiency of
views and not a lack of independence. MCT provided performance
gains over CT and the deep ensembles, so we can be confident that
these gains cannot be attributed solely to the use of multiple models.

4.2 Stronger Views by Concatenation

Finally, we took the four views which had the greatest performance
and constructed two views out of them by concatenating them to-
gether. We constructed one view CLIP | EsViT and the second DI-
NOv2 | SwAV and measured the performance of CT and MCT on
these views in Table 8. Interestingly, CT did not benefit from these
larger views; see Table 8.

The additional information may have allowed the individual mod-
els to overfit their training data quickly. During MCT we observed
that after one model reached 100% training accuracy, its validation
accuracy still improved by learning to label for the other model. Pos-
sibly due to the rapid overfitting due to the increased view size (and

Table 8: Co-training and MCT evaluated on the ImageNet dataset us-
ing the CLIP | EsViT and DINOv2 | SwAV views. The Deep Ensem-
ble is evaluated on the concatenation of all four views.

Method 1% 10%

Deep Ensemble 80.0 84.3
Co-Training 80.0 84.8

Meta Co-Training 80.5 85.8

consequently increased parameter count) the 1% split did not show
improvement for either model.

4.3 Experiments on Additional Datasets

We compared MCT and CT to existing SoTA approaches that lever-
age unlabeled data directly during training (e.g., not just part of a
pretext task). These experiments supported our hypothesis that the
primary cause of the failure of CT is that one or more of the views
is sufficient to learn a model that achieves high accuracy. The closer
to equivalent in performance individual views were, the less perfor-
mance suffered. When the two views perform similarly and well, the
performance improved. Tables 9 and 10 provide more information on
these additional datasets. Furthermore, Figure 4 provides an exam-
ple where CT performed as expected and accuracy increased across
CT iterations. In all but one case MCT outperforms the SoTA top-
1 accuracy. The main takeaway from these additional experiments,
apart from establishing new SoTA results in datasets beyond Ima-



Table 9: Additional comparisons to REACT. The authors include ex-
periments for zero-shot performance and 10% of available labels.
Results shown are for 10% of labels. For Flowers102 this is 1-shot
performance.

Dataset

Method Flowers102 Food101 FGVCAircraft

REACT (ViT-L) 97.0 85.6 57.1
Co-Training (MLP) 99.2 94.7 36.4
Meta Co-Training (MLP) 99.6 94.8 40.1

Table 10: Additional comparisons to Semi-ViT using 10% (1%) of
the available labels for training. For the iNaturalist task we used only
the 1010 most frequent classes.

Dataset

Method iNaturalist Food101

Semi-ViT (ViT-B) 67.7 (32.3) 84.5 (60.9)
Co-Training (MLP) 59.7 (29.5) 94.7 (83.9)
Meta Co-Training (MLP) 76.0 (58.1) 94.8 (91.7)

geNet, is that MCT was in general more robust to view imbalance
and provided better results than CT. The performance degradation
of co-training beyond the initial warmup period was not something
we expected. In [45] we provide full details on CT results including
charts similar to Figure 4 which instead exhibit that degradation.

5 Related Work

While SSL has become very relevant in recent years with the in-
flux of the data outpacing the availability of human labels, the
paradigm and its usefulness have been studied at least since the
1960’s; e.g., [25, 16, 48, 22]. Among the main approaches for SSL
that are not directly related to our work, one popular direction en-
courages entropy minimization and consistency regularization us-
ing data augmentation such as MixMatch [4], UDA [51], ReMix-
Match [3], FixMatch [49], and FlexMatch [53].

Self-Training and Student-Teacher Frameworks. One of the
earliest ideas for SSL is that of self-training [48, 22]. This idea
is still very popular with different student-teacher frameworks [55,
52, 42, 35, 24, 9]. This technique is also frequently referred to as
pseudo-labeling [33] as the student tries to improve its performance
by making predictions on the unlabeled data, then integrating the
most confident predictions to the labeled set, and subsequently re-
training using the broader labeled set. In addition, one can combine
ideas; e.g., self-training with clustering [30], or create ensembles via
self-training [31], potentially using graph-based information [37]. An
issue with these approaches is that of confirmation bias [1], where
the student cannot improve a lot due to incorrect labeling that occurs
either because of self-training, or due to a fallible teacher.

Co-training Algorithms. Co-training was introduced by Blum and
Mitchell [5] and their paradigmatic example was classifying web
pages using two different views: (i) the bags of words based on the
content that the webpages had, and (ii) the bag of words formed by
the words used in hyperlinks pointing to these webpages. In our con-
text the two different views are obtained via different embeddings
that we obtain when we use images as inputs to different foundation
models and observe the resulting embeddings.

Co-training has been very successful with wide applicability [20]
and can outperform learning algorithms that use only single-view
data [39]. Furthermore, the generalization ability of co-training is
well-motivated theoretically [5, 15, 2, 14]. There are several natural

Figure 4: The top-1 accuracy of the CT predictions for each iteration
of CT. 10% of available Food101 labels were used for training. The
method exhibited performance improvement over multiple iterations
of pseudo-labeling and retraining.

extensions of the base idea, such as methods for constructing differ-
ent views [50, 8, 11, 7], including connections to active learning [19],
methods that are specific to deep learning [43], and other extensions
that exploit more than two views on data; e.g., [54].

6 Conclusion and Future Work
We proposed MCT, a novel semi-supervised learning algorithm. We
showed that our algorithm outperforms co-training in general and
establishes a new SoTA top-1 classification accuracy on the Ima-
geNet 10%. We also tested the performance of deep ensembles on
ImageNet 10% and 1%. In both cases MCT achieved better results,
demonstrating that MCT provides utility beyond what can be at-
tributed to ensembling. In addition, using MCT, we were able to
achieve new SoTA few-shot top-1 classification accuracy on other
popular CV benchmark datasets, including one-shot top-1 classifica-
tion accuracy for the Flowers102 dataset. Furthermore, we presented
evidence that self-supervised learned representations are good can-
didates for views. We showed that the views constructed this way
likely contain independent information and that models trained on
these views, or concatenation of these views, can complement each
other to produce stronger classifiers.

Our experiments indicate that our method performs best when
it has access to enough labeled data to produce strong views for
pseudo-labeling. For some datasets this may preclude its application
in one-shot settings. Further, if no sufficient and independent views
are available and none can be constructed then we do not expect our
model to perform meaningfully better than MPL.

For future work we are interested in fine-tuning the frozen back-
bones that we used for CT and MCT. Furthermore, we did not make
use of the large available unlabeled datasets for CV in this study. We
are also interested in evaluating CT and MCT using unlabeled data
collected “in the wild” which may not follow the class distribution of
the labeled dataset.
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