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Abstract

We investigate whether self-supervised learning (SSL) can improve online rein-
forcement learning (RL) from pixels. We extend the contrastive reinforcement
learning framework (e.g., CURL) that jointly optimizes SSL and RL losses and con-
duct an extensive amount of experiments with various self-supervised losses. Our
observations suggest that the existing SSL framework for RL fails to bring meaning-
ful improvement over the baselines only taking advantage of image augmentation
when the same amount of data and augmentation is used. We further perform
evolutionary searches to find the optimal combination of multiple self-supervised
losses for RL, but find that even such a loss combination fails to meaningfully
outperform the methods that only utilize carefully designed image augmentations.
After evaluating these approaches together in multiple different environments in-
cluding a real-world robot environment, we confirm that no single self-supervised
loss or image augmentation method can dominate all environments and that the
current framework for joint optimization of SSL and RL is limited. Finally, we
conduct the ablation study on multiple factors and demonstrate the properties of
representations learned with different approaches.

1 Introduction

Learning to act from image observations is crucial in many real-world applications. One popular
approach is online reinforcement learning (RL), which requires no human demonstration or expert
trajectories. Since all training samples are collected by the agent during policy learning in online RL,
the collected data often has strong correlations and high variance, challenging the policy learning.
Meanwhile, the cost of interacting with environments requires the RL algorithms to have higher
sample efficiency. Compared to RL using state-based features, pixel-based RL continuously takes
images as inputs, which usually come with a much higher dimensionality than numerical states. Such
properties pose serious challenges to image representation learning in RL.

Several recent works studied such challenges from various directions, including: (1) Inspired by
the great success of self-supervised learning (SSL) with images and videos (e.g., [7, I8}, [10} [12, [16),
17,119} 231134, 1351, 140, 1431 1551 157, 158l 164 [73]]), some RL methods [} 145 49, 162, 166\ [71} 184} 90]
take advantage of self-supervised learning. This is typically done by applying both self-supervised
loss and reinforcement learning loss in one batch. In this paper, we dub such joint optimization of
the self-supervised loss and the RL loss as the joint learning framework. (2) On the other hand,
many papers [31}, 46l 51,161} 163 78}, 183, I85] investigate how online RL can take advantage of image
augmentations. Among them, RAD [46] and DrQ [83}85] show significant improvements by applying
relatively simple image augmentations to observations of RL agents.

Our objective is to study how well a single or combination of self-supervised losses and augmentations
work under the current joint learning framework and to empirically identify their impact on RL
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systems. In this paper, we extend such joint (SSL + RL) learning framework, conduct experiments
comparing multiple self-supervised losses with augmentations, and empirically evaluate them in
many environments from different benchmarks. We confirm that a single self-supervised loss
under such a joint learning framework typically fails to bring meaningful improvements to existing
image augmentation-only methods. We also computationally search for a better combination of
losses and image augmentations for RL with the joint learning framework. The experiments in
different environments and tasks show inconsistency in self-supervised learning’s capability to
improve reinforcement learning. Given a sufficient amount of image augmentations, under the current
framework, self-supervision failed to show benefits over augmentation-only methods regardless how
many self-supervised losses are used.

With all our findings, we present this work as a thorough reference for investigating better frameworks
and losses for SSL + RL and inspiring future research. Our contributions can be summarized as
follows:

1. We conduct an extensive comparison of various self-supervised losses under the existing
joint learning framework for pixel-based reinforcement learning in many environments from
different benchmarks, including one real-world environment.

2. We perform evolutionary searches for the optimal combination of multiple self-supervised
losses and the magnitudes of image augmentation, and confirm its limitations.

3. We conduct the ablation study on multiple factors and demonstrate the properties of repre-
sentations learned by different methods.

2 Preliminaries

2.1 Reinforcement Learning

In this paper, we extend the configurations of previous work [45] 84]] and exploit SAC (Soft Actor
Critic) [27, 28] and Rainbow DQN [36]] for the environments with continuous action space and
discrete action space respectively.

Soft Actor Critic [27, 28] is an off-policy actor-critic algorithm that takes advantage of the
maximum entropy to encourage the agent to explore more states during the training. It maintains a
policy network 7y, and two critic networks ), and @, . The goal of 7y, is to maximize the expected
sum of rewards and a ~y-discounted entropy simultaneously, where the entropy encourages the agent
to explore during learning.

Rainbow DQN [36] is a variant of DQN [54] with a bag of improvements such as double Q-
learning [32} [74], prioritized sampling [65], noisy net [21]], distributional RL [5], dueling net-
works [80] and multi-step reward.

2.2 Pairwise Learning

We coin the term “pairwise” learning for the frameworks that learn visual representations based on
semantic invariance between dual-stream encoder representations. A general pairwise learning method
first generates multiple augmented views by applying a series of random image augmentations to the
input sample, then clusters views with the same semantics in the representation space. Optionally in
such frameworks, methods using contrastive losses repel samples with different semantics. In this
paper, we focus on four representative pairwise learning methods, MoCo [13| [14} 34], BYOL [24]],
SimSiam [12] and DINO [8]. We have a detailed explanation and comparison of these methods in
Appendix A.1.

2.3 Representation Learning for Pixel-based RL

Previous works explore the possibility of learning better visual representation which may finally
benefit policy learning. One direction is using image augmentation for policy learning [311 146l 51}
61,163, 78} 1831 185], where RAD [46] and DrQ [83\ [85] achieve significant performance using simple
image augmentation. Another direction is to combine SSL with RL [[1} 45} 1491162} 166} [711 184, 90]], in
which there are two representative methods, SAC+AE [84]] and CURL [45]].
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Figure 1: General joint learning framework for SSL + RL. The red solid arrow represents the RL
flow; the blue one represents the SSL flow and the black one means a shared flow for both; sg stands
for stop gradients.

RAD (Reinforcement Learning with Augmented Data) [46] investigates the impact of different
types of image augmentations for both image and state inputs. By applying random translation or
random crop to the input image, RAD significantly improves data efficiency solely through image
augmentation without any auxiliary losses.

DrQ (Data-regularized Q) [83] further investigates the possibilities of utilizing image augmentation.
DrQ applies image augmentation twice on the input images and averages the Q value over two
augmented images which is assigned as the Q value of the input images. DrQ v2 [85]], which is the
successor of DrQ, switches to DDPG (Deep Deterministic Policy Gradient) [50] as the RL method,
brings scheduled exploration noise to control the levels of exploration at different learning stages,
and introduces faster implementations of the image augmentation and the replay buffer.

SAC+AE [84] takes advantage of a RAE (deterministic Regularized AutoEncoder) [22], in
replacement of 5—VAE [37] to improve learning stability. The RAE is jointly trained with SAC by
performing both SAC update and RAE update alternatingly in one batch.

CURL (Contrastive Unsupervised Representations for Reinforcement Learning) [45]] combines
contrastive learning with an online RL algorithm by introducing an additional contrastive learning
head at the end of the image encoder. Similar to the aforementioned SAC+AE, here the contrastive
loss and reinforcement learning loss are applied alternatively at training.

3 Self-supervision for Reinforcement Learning

To effectively evaluate different self-supervised losses, we extend the well-known joint learning
framework widely used in previous papers [, 45 149|166, |84]] by adding a general self-supervised
learning head to the RL framework. We keep the same RL method in CURL [45]: we use SAC [28]]
in tasks with continuous action space and use Rainbow DQN [36]] in tasks with discrete action space.

3.1 General Joint Learning Framework

With SAC  Fig.[Ta|shows a general joint learning framework, using SAC as the RL method. The
unmodified SAC contains an online encoder f,, a target (or momentum) encoder fj,, and an actor
head Ap. Each encoder is also followed by two critic heads. Besides that, we attach an additional
self-supervised head g, after the online encoder. For pairwise learning losses, we concatenate a
momentum SSL head g, after the target encoder when needed.

For every sampled batch of transitions, we first apply image augmentation to both the current state s
and the next state s’ and update the SAC model (f,, Q;:m, A,) using the augmented images. Note
that for stability concerns, we do not update the parameters of the image encoder when updating



the actor head A,. Then, the target networks are updated by Exponential Moving Average (EMA).
This is followed by also performing an EMA update of the SSL head if required. Finally, the online
encoder f,; and the self-supervised head g, are updated by the self-supervised loss. By alternatingly
performing RL and SSL in every batch, we jointly train all the components in the framework. The
pseudo-code of SAC update alternating RL and SSL is provided in Algorithm T}

Algorithm 1 Update SAC with Self-supervised Losses
Green: additional operations for SSL;

procedure UPDATESACWITHSSL(s: current state, s’: next state, a: action, r: reward, d: done signal,
step: model update step counter, fq: online encoder, fy: target/momentum encoder, A,: actor head, Qg:
online critic head, Q"*: target critic head, 7 : target/momentum network update rate, g,: online SSL head,
)

Sa, 5y < IMAGEAUGMENTATION(s), lMAGl:AL’GJ\’IEN'I‘;\'l'l(’)N(;,s’/)

Sp, Sp <~ IMAGEAUGMENTATION(s), IMAGEAUGMENTATION(s")

fa, Qi "%, Ay < UPDATESOFTACTORCRITIC s, 5., a, 7, d)

fo, Q=12 4 7(f, QiEVA) + (1 — 1) (fr, @712) > EMA update of SAC

>

Ja»9q < UPDATESSL(Sq, Si, Sp, Sp, @, T)

end procedure

With Rainbow DQN Fig. [Ib] demonstrates how to jointly apply SSL to Rainbow DQN. The
unmodified Rainbow DQN maintains an online encoder f, and a target encoder f’, followed by two
state value heads (), and ()’. We introduce an additional momentum encoder fj, and self-supervised
heads g, and g, as suggested in CURL. For each batch, the self-supervised losses are computed
using augmented images, while the RL loss is computed using the original data. Finally, the online
encoder f; and the self-supervised head g, are updated by the self-supervised loss. The pseudo-code
of Rainbow DQN update can be found at Algorithm 2]

Algorithm 2 Update Rainbow with Self-supervised Losses
Green: additional operations for SSL;

procedure UPDATERAINBOWDQNWITHSSL(s: current state, s’: next state, a: action, r: reward, d: done,
step: model update step counter, f,: online encoder, f': target encoder, Q,: online value head, Q': target value
head, N , gq: online SSL head,
, wssr: weights of self-supervised losses)

Sa, Sy < IMAGEAUGMENTATION(S), IMAGEAUGMENTATION(s")

Sp, Sp <~ IMAGEAUGMENTATION(S), IMAGEAUGMENTATION(s")

Lssr < CALCULATESSLOSS(Sq, S, Sp, Sp, G, T)

LRainbow <~ CALCULATERAINBOWLOSS(s, 5", a, 7, d)

L Lrainbow + WssLLSSL

fa, Qq, g < ONLINENETWORKSUPDATE(L)

,Q «+ f4,Qq > Copy parameters from online networks to target networks

>
end procedure

3.2 Losses for Self-supervised Learning

The self-supervised losses we investigated can be categorized into four classes: pairwise learning,
transformation awareness, reconstruction, and reinforcement learning context prediction.

Pairwise Learning We investigate three representative pairwise learning methods: BYOL [24]],
DINO [8] and SimSiam [[12]], along with existing CURL whose framework is similar to MoCo [34].
BYOL, DINO, and SimSiam only explicitly pull positive samples closer without the need for a large
number of negative samples. CURL uses a contrastive loss taking both positive and negative samples
into consideration.

Given the general joint learning framework described in Sec.[3.1] by substituting the self-supervised
head and loss, we can easily formulate different agents w.r.t. self-supervised losses. For BYOL, as



shown in Fig. 10a, a projector and a predictor are appended to the online encoder sequentially while a
momentum projector is attached on top of the target/momentum encoder. DINO (Fig. 10c) maintains
only projector in both online and target branches. Similar to BYOL, the momentum projector in
DINO is also updated by EMA. The two encoders in BYOL and DINO operate on two augmented
views of the data respectively whereas SimSiam (see Fig. 10b), uses only the online network and a
projector for processing both the augmented views.

We also test two methods that introduce RL-specific variables to this pairwise learning framework,
CURL-w-Action and CURL-w-Critic. CURL-w-Action is based on CURL while the contrastive loss is
applied to the concatenation of image representation and output of the actor network, instead of the
image representation only. Similarly, CURL-w-Critic concatenates the critic network output with the
existing image representation for contrastive loss.

Transformation Awareness Recent works (e.g., [[15} 23] [39] 142} 48| I55]]) have shown that the
awareness of transformations (like rotation, Jigsaw puzzle, and temporal ordering) improves many
downstream tasks in computer vision like image classification and action recognition. Typically such
awareness can be acquired by explicitly asking a classifier to identify the applied transformation
from the pixel representation. Therefore, we investigate two simple classification losses, rotation
classification (RotationCLS) and shuffle classification (ShuffleCLS), and set a two-layer MLP classifier
as the self-supervised head in the joint learning framework.

RotationCLS represents the methods that encourage spatial transformation awareness. Inspired by
RotNet [23]] and E-SSL [15], we rotate the input image after augmentation by 0°, 90°, 180°and
270°. The classifier predicts the rotation angle from the visual representation and it is trained by
cross-entropy loss.

Shuffle Tuple [53] encourages the encoder to develop an awareness of action causality by predicting
if two frames appear in order. We adapt Shuffle Tuple by randomly shuffling the current state image
and next state image in a state transition tuple and predicting whether it is shuffled or not. The
classifier also takes action into consideration because some of the transitions are reversible. The
overall architecture of ShuffleCLS is shown in Fig.

Reconstruction Reconstructing the input image with an hourglass architecture has been shown
to be an effective way to learn image representation [22, 37, 143]]. We simply extend SAC+AE by
changing the input and reconstruction target to be augmented images. The reconstruction loss and
regularization from RAE [22]] are left untouched.

Recent study on Masked AutoEncoder [35] (MAE) adapts the reconstruction task for patch-based
Vision Transformers [20]. The objective in MAE includes reconstructing the entire image from
input masked image patches. Inspired by this, we adapt SAC+AE into SAC+MAE by replacing the
augmented input image with its masked version and only penalizing the reconstruction error for the
masked patches.

RL Context Prediction Besides the self-supervised learning methods that are specifically designed
for pixels, we investigate the losses using attributes naturally collected during the RL process. For
any state transition that is not the end of a trajectory, it contains four components: current state s, next
state &', action a and reward r, with the trajectory termination signal omitted. Inspired by Shelhamer
et al. [70l], we concatenate the visual representation of the current state s and another representation
h as the input. Without loss of generality, the second input representation h can be any of these
three representations of s’, a, and r. Then, we predict the remaining components using a two-layer
MLP. For continuous outputs, mean-squared error (MSE) loss is applied, while for the discrete target
(e.g., action in discrete action space), we use cross-entropy loss. The architecture of this group of
self-supervised losses is shown in Fig.[3] From the combination of inputs and outputs, we define nine
losses whose I/O specifications are provided in Table[I] For those losses whose outputs include two
components, two target prediction networks share the same SSL head except the last task-specific
layer.

3.3 Evolving Multiple Self-supervised Losses

Besides a single self-supervised loss or handcrafted combination of two losses, we further investi-
gate how multiple self-supervised losses affect the policy learning together with the joint learning
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Table 1: I/O of RL context prediction losses
Extract-A  Extract-R  Guess-A  Guess-F  Predict-F  Predict-R  Extract-AR  Guess-AF  Predict-FR

Rep. of s’ Input Input - Output Output - Input Output Output
Action a Output - Output - Input Input Output Output Input
Reward r - Output Input Input - Output Output Input Output

framework. In such a configuration, the agent maintains multiple SSL heads at the same time and
we apply losses to their corresponding head individually. We formulate the combination of multiple

losses as a weighted sum Lcombo = Zf\ll w; - L; where w; is the weight of a specific loss £; and
N, is the total number of losses in the search space. In the joint learning framework, we apply both
self-supervised Lcombo and RL losses jointly to the networks for every mini-batch. Considering that
the policy learning is quite sensitive to hyper-parameters, it is non-trivial to find each weight for every
SSL loss.

ELo (Evolving Losses) [60]] shows promising results in unsupervised video representation learn-
ing [38, [73]], by using evolutionary search to automatically find optimal combination of many
self-supervised losses. In the spirit of ELo, we turn to evolutionary search to automatically find
the optimal solution. Assume an unknown objective function whose inputs are weights of multiple
losses w; and the magnitudes of image augmentation m;—1 o for the online encoder and momentum
encoder. The function output is the score achieved by the trained agent in its environment with a
certain random seed: R;f@d(mj:l’% w;=12,...n, ) Essentially, the objective function maps a set of w;
and m; to the reward achieved by a corresponding agent, and w; and m; stay unchanged during the
agent learning process. The optimization algorithm approaches the maximum value of the objective
function by repeatedly updating w; and m; and testing the value of the objective function, which
in our case is the training and evaluation of an agent with the given parameters (i.e., the input of
the objective function). We choose an off-the-shelf optimization algorithm PSO (Particle Swarm
Optimization) [41] for its simplicity. For each set of inputs, we find it critical to run with multiple
random seeds and report IQM (interquartile meanﬂ for a stable and robust search. The optimization
process is presented as:

argmax  IQM(RE3(miq 9, wim1. N,)) (D

Note that we are also implicitly searching for the balance between the self-supervised loss and
the RL loss by performing this search, as it has the capability to adjust the absolute weights of
the self-supervised losses overall. We search on DMControl [72]] with SAC using three different
configurations named ELo-SAC, ELo-SACv2 and ELo-SACv3 respectively. ELo-Rainbow performs
a search on Atari with Efficient Rainbow. Please refer to Sec. A.2.4 for our detailed configurations
and search results.

'Mean using only the data between the first and third quartiles [S1]



4 Experiments

We conduct experiments in three major directions, in order to better understand how we should
integrate SSL with RL. First, we demonstrate how different self-supervised losses affect the RL
process, by trying them on multiple challenging tasks. Then, we dive into detailed ablations on
multiple factors, and finally, we perform empirical analysis on the visual representations learned with
the joint learning framework (Sec. A.6). In addition, we benchmark a pretraining framework as an
alternative to the joint learning framework (Sec. A.7).

Evaluation Scheme Thorough evaluation of reinforcement learning algorithms is challenging due
to the high variances between each run and the extensive requirement of computation. Consequently,
we run all experiments with multiple different random seeds and report the interquartile mean and the
standard deviation of the scores as suggested by Agarwal et al. [2]]. For a quantitative comparison
of the different methods mentioned in Section [3.2] in addition to the absolute scores, we assign a
Relative Score to each method. We denote the interquartile mean of scores achieved by agent A in
environment e € E as IQM“*® and denote the collection of all interquartile mean scores achieved
in environment e by different agents as IQM®. The Relative Score of agent A is computed as

Sl?elative = ZeGE (IQMA’E - mean(IQMe))/std(IQMe).

DMControl Experiments DMControl (DeepMind Control suite) [[72] contains many challenging
visual continuous control tasks, which are widely utilized by recent papers. We evaluate all the
methods introduced in Sec. [3| along with two important baselines, SAC-NoAug and SAC-Aug(100),
in six environments of DMControl that are commonly used in previous papers [45, 46, [83] [84].
Other methods that only take advantage of image augmentation, like RAD [46] and DrQ [83]]
are also benchmarked for comparison. In the case of SAC+AE [84], we provide the augmented
images for a fair comparison, which is a different configuration to the original paper. Please refer to
Appendix A.2.5 for a detailed comparison of method variants and the exact data augmentation they
applied.

We mainly follow the hyper-parameters and the test environments reported in CURL, except that we
use the same learning rate 10~ in all environments for simplicity. All the methods are benchmarked
at 100k environment steps, with training batch size 512 under 10 random seeds, and they share
the same capacity of policy network. The relative score of each tested algorithm on DMControl is
reported as Fig.[d] We also strongly encourage readers to check full results at Table 11 and results in
two additional harder environments at Table 12 for a full picture.

From the first glance at Fig. @] no tested SSL-based method within the joint learning framework
achieves better performance than DrQ and RAD which are carefully designed to take the best
advantage of specific image augmentations. Compared to the baseline SAC-Aug(100), approaches
with a self-supervised loss frequently (11 out of 19) fail to improve reinforcement learning. Some SSL
methods (like SimSiam, ShuffleCLS) ruin the policy learning resulting in performance even worse
than SAC-NoAug, which suggests that improper use of self-supervised loss can damage the benefits
brought by image augmentation. Then, regarding combining losses, Guess-AF and Predict-FR, which
are manually designed to combine two individual losses, are not better than the single self-supervised
loss in their combinations (check Guess-Action and Predict-Reward in Fig. [).

ELo-SAC and ELo-SACv2 find the desired combination by searching in one task. Such combination
generalizes to other environments on DMControl with better overall performance than any approach
in the search space. In the ‘cheetah run’ where the search was performed, they obtained the best
result among the approaches with SSL (Table 12). This demonstrates the feasibility of ELo-SAC and
implies that the obtained combination through evolutionary search has the potential to generalize to
other environments in DMControl. However, weaker performance in ‘finger, spin’ and ‘reacher, easy’
made ELo-SAC relatively worse than DrQ (which does not use any self-supervision) on average.
Interestingly, there is a similar performance pattern between ELo-SAC and ELo-SACv2 though
they have different search spaces. By contrast, ELo-SACv3 finds an overall better combination by
searching in six environments simultaneously. Though it achieves highest score in ‘walker, walk’
and ‘reacher, easy’, it performs worse in ‘cartpole, swingup’ and ‘cheetah, run’ than ELo-SAC and
ELo-SACv2. Such observations could be a clue to the properties of different tasks and self-supervised
methods.
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Figure 4: Relative Scores on six DMControl tasks, environment step=100k, batch size=512, Number
of seeds=10. SAC-NoAug uses no image augmentation, while all the other methods benefit from
image augmentation; The methods in blue (like DrQ) only take advantage of image augmentation
without any SSL; the methods in black (like CURL) apply one self-supervised loss; the methods in
orange (like ) manually combines two self-supervised losses; ELo-SAC, ELo-SACv2
and ELo-SACv3 combine multiple self-supervised losses with specific weights from an evolutionary
search. From this figure, No existing SSL-based method with the joint learning framework achieves
better performance than DrQ which only use well-designed image augmentation. ELo-SAC methods
achieve higher Relative Scores than all the self-supervised methods, but it still performs worse than
DrQ and RAD, with an exception of ELo-SACvV3 which is marginally better than RAD.
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Figure 5: Ablation on encoder backbone Figure 6: Ablation on random crop augmentation

Ablations Our observations with SAC-Aug(88), SAC-Aug(100), and RAD suggest the importance
of augmentation hyper-parmeters, given the only difference between these three methods is the
augmentation applied. We conduct an ablation study on the image augmentation random crop in
cheetah run, DMControl. All the hyper-parameters are as noted in Table 2 except that the environment
step is set to 400k and the batch size is reduced to 128. Fig. [f] shows how the magnitudes of random
crop and translate contribute to the score that the agent achieved. The image size before the random
crop is linear to the magnitude of the random crop when using a fixed crop size: the larger the image
size, the stronger the augmentation. There is a trend that the score first increases and then decreases
as the image augmentation gets stronger. In summary, it is critical to engineering image augmentation
carefully when designing an RL system with or without SSL.

Then we investigate a different visual encoder backbone ResNet [33] by replacing the last two
convolutional layers with a residual block that has the same number of layers and channels as the
CNN baseline. The ResNet backbone slightly improves all these methods (see Fig. [5). We also
encourage the readers to check more ablations regarding image augmentation (e.g. random translate),
learning rate, encoder layers, and activation function in Appendix A.3.

Atari Game Experiments Atari 2600 Games are also challenging benchmarks but with discrete
action space [4]. We choose seven games in this benchmark for selected methods. All the methods
use Efficient Rainbow [[73]] as the RL method, which is a Rainbow [36] variant with modifications for
better data efficiency. Note that Efficient Rainbow, as a baseline, does not take advantage of image
augmentation. Therefore, we also benchmark Rainbow-Aug which is essentially Efficient Rainbow
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Figure 7: Relative Scores on seven Atari games, environment step=400k, batch size=32, Number
of seeds=20. The color of a method reflects its category same as Fig. il The overall results show
that image augmentation for RL does not benefit policy learning on Atari which is quite different
from DMControl. Most of the self-supervised losses fail to bring improvements even given more
computation and extra model capacity from the SSL head. Only Rainbow+AE outperforms Efficient
Rainbow, which is inconsistent with SAC+AE. ELo-Rainbow achieves worse results even than some
of the SSL-based methods in the search space like BYOL and Rainbow+AE. The high variance and
the image domain gap between different games make it extremely challenging for ELo-Rainbow to
find the combined loss that generalizes to all environments.

taking the augmented images for policy learning instead. We use the same image augmentation
and hyper-parameters reported by CURL for all applicable methods. For a fair comparison, the
augmentation for DrQ¥* is also adopted from CURL, which is different from what the original DrQ
paper suggested. We denote our setting as DrQ* to distinguish it from the original DrQ. Similarly,
Rainbow+AE takes augmented images. For each game, we run 20 random seeds and benchmark the
agent at 400K environment steps (100K model steps with a frame skip of 4). We report interquartile
mean, standard deviation, and Relative Scores same as DMControl (See Table 13).

Figure[7)shows a summary of the seven different tasks in Relative Score. Firstly, compared to vanilla
baseline Efficient Rainbow which does not have any image augmentation or self-supervised learning,
Rainbow-Aug performs worse overall with additional image augmentation for RL. This suggests
that the image augmentation used for self-supervised learning in CURL does not easily transfer.
Similarly, DrQ* achieves compromised performance than Efficient Rainbow, showing that using
image augmentation for Rainbow on Atari does not benefit policy learning unlike SAC on DMControl.
Based on the inconsistent impacts of image augmentation, further investigation is required when
applying image augmentation to RL on Atari.

As for the self-supervised losses, BYOL, Rainbow+AE, Extract-Reward, and Predict-Reward gain
better performance than CURL. However, only Rainbow+AE shows significant improvement on
Efficient Rainbow and outperforms all the other tested methods, which interestingly is inconsistent
with SAC+AE on DMControl. Predict-FR-Balanced, which shows considerable improvements
on DMControl by manually combining two self-supervised losses, even fails to surpass Predict-
Reward on Atari. ELo-Rainbow, which searches in Frostbite, improves the baseline only in demon
attack and frostbite. The high variance on this benchmark made the evolutionary search extremely
difficult. Further, there are huge image domain gaps between games, which makes it even harder for
ELo-Rainbow to work across multiple games on Atari.

Real Robot Experiments We further conduct experiments in a real-world robot environment,
uArm reacher. Similar to Burgert et al. [6]], the goal is to move the actuator close to a target object
as fast as possible. Our autonomous training environment and results are shown in Figs. [8] and [9]
(Please check Appendix A.5 for environment setup details). We benchmark all methods with ten
different random seeds, using the same hyper-parameters as DMControl experiments unless reported
in Table 3. Results are shown as Fig.[0] where ELo-SAC uses the optimal combination found in
cheetah run shown as Table 6.
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Figure 9: Scores on real robot uArm, reacher, environ-
ment step=100k, batch size=512. The agent fails to
learn effective policy without image augmentation.

Figure 8: Real robot environment setup

Surprisingly, in this real-world environment, the agent fails to learn an effective policy without
any image augmentation. The image augmentation alone (i.e., SAC-Aug(100)) was sufficient to
outperform other methods including CURL and ELo-SAC using self-supervision. SAC-Aug(100)
performs even better than DrQ, which is quite different from our previous observations on DMControl.
From all three methods only relying on image augmentation (blue in Fig.[9), we conclude that it
requires a careful design of image augmentation that helps in a specific task/environment.

5 Related Works

Self-supervised learning can fit in robot policy learning in multiple fashions and at different stages.
Some works [26}67H69] 71}, 176, 182, |88]] use SSL for representation learning in a pre-training stage
before policy learning. Others [25} 29} 38 145,47, 149,152} 157,166} 184! 186, 87, 189, |90]] jointly optimize
the self-supervised loss with policy learning. Specifically, Transporter [44] and VAI [79] train an
unsupervised keypoint detector to discover critical objects in the image for control. RRL [[68]] and
VRL3 [76] also benefit from pre-training a deeper visual encoder on large datasets like ImageNet [18]].
TCN [67] and CURL [45] take advantage of contrastive learning. After the agent is deployed, SSL can
be used to continuously improve the policy [30]. Shelhamer et al. [70]] study several self-supervised
losses within both the pretraining framework and the joint learning framework, while their selection
of losses, the number of runs, and test environments are limited from a current point of view. Chen
et al. [11] focus on imitation learning and test multiple SSL objectives for representation learning in
various environments. They confirmed the critical role of image augmentation in imitation learning
and showed inconsistencies in performance across environments. Our investigation supports some of
their observations, beyond that, our evolving loss, real robot environment, and representation analysis
provide unique perspectives for online reinforcement learning.

6 Discussion

From DMControl and the real robot experiments, we empirically show that compared to the image
augmentation, the role of existing self-supervised losses with the joint learning framework is usually
limited, even with the help of evolutionary search. While results on Atari show a different trend
from DMControl, once again we confirm that there is no golden self-supervised loss or image
augmentation that generalizes across environments. At the same time, it is usually challenging to
conclude a consistent trend that one method is meaningfully better than others across multiple tasks.
One should cautiously decide the design choice of image augmentation or self-supervised loss for
a specific RL task. We are excited to see future works that introduce more self-supervised losses
designed specifically for RL, as well as novel training frameworks that can benefit policy learning.
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