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ABSTRACT

This paper investigates two techniques for developing efficient self-supervised
vision transformers (EsViT) for visual representation learning. First, we show
through a comprehensive empirical study that multi-stage architectures with sparse
self-attentions can significantly reduce modeling complexity but with a cost of
losing the ability to capture fine-grained correspondences between image regions.
Second, we propose a new pre-training task of region matching which allows the
model to capture fine-grained region dependencies and as a result significantly
improves the quality of the learned vision representations. Our results show
that combining the two techniques, EsViT achieves 81.3% top-1 accuracy on
the ImageNet linear probe evaluation, outperforming prior arts with around an
order magnitude of higher throughput. When transferring to downstream linear
classification tasks, EsViT outperforms its supervised counterpart on 17 out of 18
datasets. The code and pre-trained models are released at: https://github.
com/microsoft/esvit

1 INTRODUCTION

Self-supervised learning (SSL) with Transformers (Vaswani et al., 2017) has become a de facto
standard of model choice in natural language processing (NLP). The dominant approaches such as
GPT (Radford et al., 2018) and BERT (Devlin et al., 2019) are pre-training on a large text corpus
and then fine-tuning to various smaller task-specific datasets, showing superior performance. Larger
Transformers pre-trained with larger-scale language datasets often lead to a stronger generalization
ability, demonstrated by improved performance in downsteam tasks (with no sign of performance
saturation yet), as exemplified in GPT-3 (Brown et al., 2020).

In computer vision (CV), however, self-supervised visual representation learning is still dominated
by convolutional neural networks (CNNs). Sharing a similar goal/spirit with NLP, SSL in CV aims
to learn general-purpose image features from raw pixels without relying on manual supervisions,
and the learned networks are expected to serve as the backbone of various downstream tasks such as
classification, detection and segmentation. Recently, impressive performance have been achieved by
CNN-based SSL, outperforming state-of-the-art (SoTA) fully-supervised pre-training methods (He
et al., 2020; Caron et al., 2020) on tasks with a limited number of labels. The key to success is
view-level learning: maximizing agreement of learned representations between differently augmented
views of the same example. Recent works, including SimCLR-v2 (Chen et al., 2020d), BYOL (Grill
et al., 2020) and SwAV (Caron et al., 2020), have scaled up the CNN-based models to hundreds of
millions of parameters. However, SSL has not enjoyed the same scaling success in CV as that in NLP.

Several attempts have been made to close the gap by combining SSL with Transformer and self-
attention architectures. Early works include Selfie (Trinh et al., 2019), which generalizes the concept
of masked language modeling of BERT for images. The idea has been recently revisited in Vision
Transformer (ViT) (Dosovitskiy et al., 2021) via pre-training on a much larger scale dataset, e.g., JFT-
300M. ImageGPT (iGPT) (Chen et al., 2020b) generalizes the concept of auto-regressive language
modeling of GPT for images, showing encouraging ImageNet recognition accuracy with a large
model size. Contrastive learning with ViT has also been studied very recently in DINO (Caron
et al., 2021) and MoCo-v3 (Chen et al., 2021), where new SoTA result by linear probe evaluation on
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Figure 1: Efficiency vs accuracy comparison under the linear classification protocol on ImageNet.
Left: Throughput of all SoTA SSL vision systems, circle sizes indicates model parameter counts;
Right: performance over varied parameter counts for models with moderate (throughout/#parameters)
ratio. EsViT pre-trained with and without the region-matching task are shown before and after the
arrows, respectively. Please refer Section 4.1 for details.

ImageNet-1K is achieved, by exhaustively consuming computation resource on full self-attention
operators with long sequences of split image patches.

Aiming to improve the efficiency of Transformer-based SSL, this paper presents Efficient self-
superivsed Vision Transformers (EsViT), by using a multi-stage architecture and a region-based
pre-training task for self-supervised representation learning. Our main findings and contributions can
be summarized as follows:

(1) An intriguing property of self-supervised monolithic Transformers is firstly reported in our paper:
automatic discovery of semantic correspondence between local regions.

(2) We present the first comprehensive empirical study to show the pros and cons of multi-stage
vision Transformer architectures for SSL. Though greatly reducing compute complexity, we find
that the multi-stage architecture causes the loss of the property in (1).

(3) A region matching pre-train task is proposed to alleviate the issue in (2), and further improve the
learned representations and attentions.

(4) We validate the new EsViT, which combines the two techniques, on a range of tasks. It sig-
nificantly reduces the cost in building SoTA SSL vision systems, as summarized in Figure 1,
and shows better scaling performance on accuracy vs. throughput and model size. Under the
linear evaluation protocol, EsViT achieves 81.3% top-1 accuracy, showing the best performance
compared with all systems, and is 3.5× parameter-efficient and has at least 10× higher through-
put than previous SoTA (81.0%, MoCo-v3 with ViT-BN-L/7 (Chen et al., 2021)). Compared
with its supervised counterpart Swin Transformers (Liu et al., 2021), EsViT shows superior
performance on 17 out 18 datasets, when transferring the learned representations to downstream
linear classification tasks.

2 METHODS

Transformer-based SSL methods emerge very recently to lead the state-of-the-art performance on
the ImageNet linear probe task (Chen et al., 2021; Caron et al., 2021). It inherits the successes
from (1) monolithic Transformer architectures that dominate in NLP (Devlin et al., 2019; Radford
et al., 2018), and (2) instance-level contrastive learning objectives that demonstrate arguably the
best SSL performance in computer vision (Chen et al., 2020c). Though simple and effective, the
existing Transformer-based SSL methods require a large amount of compute resources (e.g., >1.7
TPU years of training) to reach SoTA performance. We believe that the SSL system efficiency is
highly related to two ingredients: the network architecture and the pre-train task. To strike for a better
tradeoff between accuracy and efficiency, we present EsViT, showing better synergy of networks (a
multi-stage Transformer architecture) and pre-train tasks (a non-contrastive region-matching task).

2.1 NETWORK ARCHITECTURES: FROM MONOLITHIC TO MULTI-STAGE VIT BACKBONE

Multi-stage ViT. This paper presents the first empirical study of multi-stage Transformer architec-
tures (Vaswani et al., 2021; Wang et al., 2021; Liu et al., 2021; Zhang et al., 2021; Wu et al., 2021)
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for SSL. Each stage consists of a patch merging/embedding module, and a Transformer with sparse
self-attention module. (i) The patch merging module plays a slightly different roles in different
stages. In the first stage, it splits an input RGB image into non-overlapping patches. Each patch is
treated as a “token”, constructed as a concatenation of the raw pixel RGB values, which is further
projected into a C-dimension feature. In the later stage, the patch merging module concatenates the
features of each group of 2× 2 neighboring patches, and applies a linear layer on the 4C-dimensional
concatenated features. This reduces the number of tokens by a multiple of 2× 2 = 4, and the output
dimension is set to 2C. (ii) A Transformer with sparse self-attention module are then employed to
enable interactions among the merged features. The two modules above are repeated for multiple
times, typically 4 times, resulting in a multi-stage ViT. As a result, a hierarchical representation is
generated: the number of tokens is reduced and the feature dimension (and the number of heads in
self-attentions) of each token is increased, as the network gets deeper. An overview comparison of the
monolithic and multi-stage Transformer architectures for SSL is illustrated in Figure 7 in Appendix.

An intriguing property of self-supervised monolithic ViT. Though straightforward in implemen-
tation, changing from monolithic to multi-stage architecture without careful treatments may lose
some desirable properties of self-supervised Transformers In out study, we first empirically note an
intriguing property of self-supervised monolithic ViT(Caron et al., 2021): the pre-trained model
exhibits a very strong ability to automatically discovers correspondences, even without a region-level
matching objective specified in training.

We quantitatively evaluate the correspondence learning to illustrate this property, as discussed in
the following process. (i) Simulated benchmark. Based on 50K images in the ImageNet validation
dataset, we create a simple evaluation benchmark with mild augmentations: For a center-crop image,
we apply HorizontalFlip, then ColorJitter and RandomGrayscale to create a new
augmented view. In this way, ground-truth correspondences are created. (ii) Evaluation process.
Given two views of the same image, we use the pre-trained backbone to extract the top-layer features,
and find the feature vector in one view that best matches the other in terms of highest cosine similarity.
The accuracy is measured as the averaged percentage of correctly identifying the region-to-region
correspondences. Please see details in Section C.7 in Appendix. (iii) Results. We quantitatively
show that a self-supervised monolithic ViT yields 95% accuracy. However, simply replacing the
network with a multi-stage Transformer yields only 66% accuracy. This significant degradation
(absolute 29% accuracy drop) reveals the loss of the correspondence learning property. We first raise
this critical problem, and believe that it has a large impact on the pre-trained model’s performance in
various downstream tasks.

2.2 PRE-TRAINING TASKS: DELVING INTO VIEWS WITH REGIONS

We employ a non-contrastive learning framework to build our SSL method. Specifically, Self-
distillation with no labels (DINO) (Caron et al., 2021) is considered. It leverages the knowledge
distillation learning paradigm where a student network gθs

is trained to match the output of a given
teacher network gθt

, parameterized by θs and θt respectively. The neural network g is composed of
a backbone f (e.g., Transformers or ConvNets), and of a projection head h: g = h ◦ f . The features
used in downstream tasks are the output of backbone f . In SSL, different augmented views x̃ of an
image x are fed into backbone network to obtain feature maps z = f(x̃). Two MLP heads followed
by softmax per network further convert the feature vectors z ∈ z into probability vectors p = h(z);
one head for view-level and the other head for region-level, respectively.

More precisely, from a given image, we generate a set V of different views1 following (Caron et al.,
2021). The resulting feature map at the top layer for each view is z = [z1, . . . , zT ], where T is the
sequence length, and zi is a region-level representation for the local patch at position i. Average
pooling is applied to obtain the view-level representation z̄ = avg-pool(z).

View-level task Given the augmented view set for student V and teacher V∗, a set of pairs P =
{(s, t)|x̃s ∈ V, x̃t ∈ V∗ and s 6= t } is constructed to perform cross-view prediction tasks. We

1This set often contains views of two different resolutions V = [Vg,Vl], where Vg = {x̃gi |i = 1, 2} is a
global-view set of higher resolution, and Vl = {x̃li |i = 1, . . . , 8} is a local-view set of lower resolution. All
views V are passed through the student while only the global views Vg are passed through the teacher.
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consider the pre-training task at the view level proposed by (Caron et al., 2021):

LV =
1

|P|
∑

(s,t)∈P

MV (s, t), with MV (s, t) = −ps log pt, (1)

where ps = h(z̄s) and pt = h(z̄t) are the probability output of an MLP head h over the view-level
representations z̄s and z̄t, learned by student and teacher, respectively. In DINO, ViT/DeiT are
considered, hence the view-level representation is the feature of the [CLS] token.

Region-level task In (Caron et al., 2021), the LV encourages “local-to-global” correspondences
only at a coarse level: the large crop and the small crop are matched in the view level, leaving
region-to-region correspondence unspecified. In monolithic Transformers, the drop paths and skip
connections from low-level features to high-level features help the the latter to remain discriminative,
thus maintain good region-matching performance. However, such a property gets diluted due to
the merging operators in multi-stage Transformers. As shown in our experiments later, training a
multi-stage network with LV only indeed results in sub-optimal representations.

Further, it could be a waste of computation not to leverage region-level features z that are computed
in the process of extracting view-level feature. Inspired by the success of masked language modeling
task in BERT, we argue that it is important to have region-level pre-training task for computer vision,
so that the model can (1) amortize the computation and fully leverage the extracted region-level
features, and (2) take into account the co-occurrences/structures between local features. Unfortunately,
directly performing masked patch prediction (MPP) for the multi-stage Transformer architecture is
infeasible, as the one-to-one correspondences between the input visual tokens and output features get
diluted due to the merging operation. Even for monolithic architectures, MPP has not been proved
effective in computer vision, as empirically shown in (Dosovitskiy et al., 2021).

To address this problem, we propose a non-contrastive, region-matching method that directly works
at the level of local features by taking into account their correspondences:

LR =
1

|P|
∑

(s,t)∈P

MR(s, t), with MR(s, t) = − 1

T

T∑
i=1

pj∗ log pi, j
∗ = arg max

j

zTi zj
‖zi‖‖zj‖

, (2)

where pi = h′(zi) and pj = h′(zj) are the probability outputs of a new MLP head h′ over the local
features of student zi ∈ zs and teacher zj ∈ zt, respectively. j∗ is the index of the feature in zt that
best matches the i-th feature in zs, in the sense of highest cosine similarity. Note that zi and zj∗ are
contextualized features of two best matched regions from different augmentated views, minimizing
LR encourages different contexts (i.e., surrounding regions) to learn invariant features, and thus
captures the region-dependency.

Global Token Local Tokens (Top-layer feature maps)

MLP
Head

MLP
Head

View-level
Prediction

Region-level
Prediction
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Figure 2: Pre-training objectives, including view-
level (left) and region-level (right) prediction.

The overall pre-training objective of EsViT is
L = LR + LV , we learn to match the fea-
ture distributions at both the view and region
levels by minimizing the cross-entropy loss
w.r.t. the parameters of the student network
gθs . A visual illustration is in Figure 2, and
the full algorithm is in Appendix. We updates
teacher/student network alternatively: (i) Given
a fixed teacher network, the student network is
updated by minimizing the full cross-entropy
loss: θs ← arg minθs

L(s, t;θs). (ii) The
teacher model is updated as an exponential mov-
ing average (EMA) of the student weights θt ← λθt + (1−λ)θs, with λ following a cosine schedule
from 0.996 to 1 during training. By default, the full objective L is used from the beginning. One can
also load a checkpoint trained by LV only, and add LR for continual pre-training, which is shown
effective in boosting performance in our experiments.

Computational overhead Note that applying LR on the traditional monolithic Transformer archi-
tecture can be prohibitively computationally expensive, as it requires O(T 2) to compute LR. For a
typical image of resolution 224×224, the feature map length of ViT/DeiT (with patch size 16) at
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the top layer is T = 196, while the multi-stage architecture yields T = 49, which requires 3 times
less compute in computing LR. To empirically illustrate this, we show in Appendix Section C.2 that
LR adds acceptable extra memory and computational cost (around 1.2 and 1.05 ×, respectively) for
multi-stage Transformers, while it will quickly go out-of-memory for monolithic Transformers when
the batch size is increased.

3 RELATED WORKS

Relation to mask prediction tasks We can consider the proposed LR as a proxy to mimick masked
language modeling in BERT, where the “ground-truth” local token is a soft label provided by the
teacher network, while the student network makes predictions to match that target, based on the
context of regions in a different augmented view. Importantly, our LR considers softmax with
cross-entropy in the objective, rather than MSE as in MPP. A very sharp teacher distribution is used
by choosing small temperatures. This encourages the model to focus on the salient dimensions,
rather than waste modeling capability on training short-range dependencies and high-frequency
details (Ramesh et al., 2021).

Relation to DenseCL The proposed LR mostly related to DenseCL (Wang et al., 2020b) in that
the region correspondences in both methods are determined as the two most similar grid features.
One critical difference is that DenseCL is a contrastive region-matching task, while our LR is a
non-contrastive region-matching task, where no negative samples/queue is needed. This technical
difference has a significant impact on the downstream task performance. We find that LR is particu-
larly effective in serving our goal to improve image classification performance and build efficient &
affordable SoTA SSL system; In contrast, DenseCL degrades the classification performance.

Relation to other region-level tasks The ideas of leveraging local region-level pre-training tasks
for visual representation learning have been explored for ConvNets (Misra & Maaten, 2020; Xiong
et al., 2020; Wang et al., 2020b; Xie et al., 2021a; Yang et al., 2021; Xie et al., 2021c). We summarize
the differences in three aspects: (i) Motivation. Our region-matching task LR aims to recover the lost
property of automatic correspondence learning in self-supervised monolithic Transformers, while
most existing region-level tasks aim to improve dense visual prediction tasks. (ii) Technical differ-
ence. Our LR is a non-contrastive region-matching task, while others are contrastive learning. (iii)
Empirical performance. Most region-level tasks improve dense visual prediction tasks but sacrifice
their image classification performance, while LR consistently improves classification performance.
Among them, EsViT training method achieves the best ImageNet linear probe performance with
minimum computational overhead. For detailed comparisons, please refer to Table 7 in Appendix.

Self-supervised vision Transformers. The research on Transformer-based self-supervised repre-
sentation learning just scratches the tip of the iceberg, and only a few attempts are made on this
topic. ImageGPT (Chen et al., 2020b) and MoCo-v3 (Chen et al., 2021) dedicate huge compute
resource with large models to exploring the frontier. DINO (Caron et al., 2021) achieves comparable
performance of large self-supervised ConvNets using small/medium-size Transformers. The proposed
EsViT further pursues efficient and affordable solutions to self-supervised vision Transformers. For
more general related works on Transformers for vision tasks and self-supervised ConvNets, please
refer to Section B in Appendix.

4 EXPERIMENTAL RESULTS

We describe the experimental settings in Appendix Section C.3, and evaluate the proposed EsViT to
answer three questions: Q1: How does EsViT perform on standard ImageNet benchmark compared
to SoTA methods? Q2: How effective EsViT is when transferring to downstream tasks? Q3: What
are the design choices and empirical contributions of LR? Q4: When does the intriguing property of
self-supervised Transformers exist, including learned correspondence and attentions?

4.1 COMPARISONS WITH PRIOR ART ON IMAGENET

We report top-1 linear probe and k-NN accuracy on the ImageNet validation set. Table 1 presents
comparisons with SoTA SSL systems across various architectures. Please refer to Figure 1 for
comparisons over scaling parameter counts and throughput. Our findings are summarized below.

Comparisons with self-supervised Transformers. The DINO- and MoCo-based ViT has higher
accuracy and smaller models than iGPT, under the same linear probing protocol and training data.
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Method #Parameters ↓ Throughput ↑ Linear ↑ k-NN ↑
SoTA SSL methods with Big ConvNets
SwAV, RN50w5 (Caron et al., 2020) 586 76 78.5 67.1
BYOL, RN200w2 (Grill et al., 2020) 250 123 79.6 73.9
SimCLR-v2, RN152w3+SK (Chen et al., 2020d) 794 46 79.8 73.1

Skyline methods with excessively long sequences for self-attentions
DINO, DeiT-S/8 (Caron et al., 2021) 21 180 79.7 78.3
DINO, ViT-B/8 (Caron et al., 2021) 85 63 80.1 77.4
MoCo-v3, ViT-B-BN/7 (Chen et al., 2021) 85 ∼63 79.5 -
MoCo-v3, ViT-L-BN/7 (Chen et al., 2021) 304 ∼17 81.0 -
iGPT, iGPT-XL (Chen et al., 2020b) 6801 - 72.0 -
EsViT, Swin-T/W =14 28 660 78.7 (77.9) 77.0 (75.5)
EsViT, Swin-S/W =14 49 383 80.8 (79.4) 79.1 (77.3)
EsViT, Swin-B/W =14 87 254 81.3 (80.5) 79.3 (78.3)

Transformer-based SSL, with moderate sequence length for self-attentions
Masked Patch Pred., ViT-B/16 (Dosovitskiy et al., 2021) 85 312 79.9† -
DINO, DeiT-S/16 (Caron et al., 2021) 21 1007 77.0 74.5
DINO, ViT-B/16 (Caron et al., 2021) 85 312 78.2 76.1
MoCo-v3, ViT-B/16 (Chen et al., 2021) 85 312 76.7 -
MoCo-v3, ViT-H-BN/16 (Chen et al., 2021) 632 ∼32 79.1 -
MoBY, Swin-T (Xie et al., 2021b) 28 808 75.1 -
EsViT, Swin-T 28 808 78.1 (77.0) 75.7 (74.2)
EsViT, Swin-S 49 467 79.5 (79.2) 77.7 (76.8)
EsViT, Swin-B 87 297 80.4 (79.6) 78.9 (77.7)

Table 1: Comparison with SoTA across different architectures on ImageNet linear probing. EsViT
with LL +LR is reported, while EsViT with only LR is shown in parentheses. W = 14 is the window
size, otherwise the default W = 7. ViT-BN is ViT that has BatchNorm (Frankle et al., 2020), and
“/P ” denotes a patch size of P×P . “∼” indicates through-puts estimated by comparing different
papers, detailed in Appendix. † The mask patch prediction in (Dosovitskiy et al., 2021) is pre-trained
on JFT-300M and end-to-end fine-tuned in ImageNet, which we append as a reference.

At the similar level of model size and compute complexity, the proposed EsViT improve SoTA
methods DINO/MoCo-v3 by a large margin: EsViT (Swin-B) outperforms DINO (ViT-B/16) by
2.2% linear probe accuracy and 2.8% k-NN accuracy in absolute values. EsViT (Swin-B) even
performs slightly better than DINO (ViT-B/8) (0.3% higher linear probe accuracy and 1.5% higher
k-NN accuracy), with 4× higher throughput. MoBY (Xie et al., 2021b) is a con-current work that
investigates multi-stage ViT in SSL. With the same architecture Swin-T, our EsViT pre-training
tasks significantly outperform MoBY, showing 3% higher accuracy. In EsViT, longer sequences in
self-attention is implemented by increasing the window size. We experiment this by considering a
window size of W =14. Overall, the proposed EsViT (Swin-B/W=14) shows the best performance
(top-1 accuracy 81.3%, top-5 accuracy 95.5%, k-NN accuracy 79.3%), compared with all systems,
and is 3.5× parameter-efficient and has at least 10× higher throughput than previous SoTA MoCo-v3.

Comparisons with big ConvNets. We compare with the SoTA big ResNets reported by SimCLR-
v2 (Chen et al., 2020d), BYOL (Grill et al., 2020) and SwAV (Caron et al., 2020). Among them, the
best accuracy 79.8% under the linear probing protocol is reported by SimCLR-v2 with SK-ResNet,
where Selective Kernel (SK) (Li et al., 2019c) is a form of attention to enhance CNNs. It is clear
in Figure 1 (b) that all ConvNets-based SSL methods show an envelope in the regime of scaling up
model sizes after passing 500M. EsViT achieves better accuracy than their highest envelope, with
16× less model parameters and 8× higher throughput.

4.2 TRANSFER LEARNING

We also conduct transfer learning in downstream tasks to evaluate the quality of learned representa-
tions. Two sets of tasks are considered:

• Classification on a suite of 18 small datasets. As exemplified in (Radford et al., 2021), it is a
common and clean approach to evaluate a learned representation by fitting a linear classifier
on the representation and measuring its performance across multiple datasets. We study 18
datasets used in (Radford et al., 2021). Automatic hyper-parameter tuning is considered to
ensure fairness of comparison. Besides averaged scores, we report # wins as the number of
datasets on which the model outperforms its supervised counterpart. Detailed dataset description
and settings are in Appendix.
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Figure 3: Linear probing on 18 downstream datasets. Averaged scores are reported for each method.
EsViT outperforms its supervised counterpart on 17 out of 18 datasets.

APbb APbb
50 APbb

75
Sup. 46.0 68.1 50.3
EsViT 46.2 (46.2) 68.0 (67.9) 50.6 (50.5)

APmb APmb
50 APmb

75
Sup. 41.6 65.1 44.9
EsViT 41.6 (41.7) 64.9 (64.8) 44.8 (45.1)

Table 2: COCO Detection & Segmentation.

Pre-train Data ImageNet-1K 18 Datasets
Linear k-NN Scores # Wins

Supervised - - 77.29 -
ImageNet-1K 78.0 (77.1) 75.7 (73.7) 80.66 16
WebVision-v1 75.9 (75.4) 71.2 (69.4) 80.00 14
OpenImages-v4 70.6 (69.6) 62.0 (60.3) 77.97 10
ImageNet-22K 75.0 (73.5) 67.9 (66.1) 81.03 17

Table 3: Impact of the pre-train datasets.
• Detection and segmentation on COCO. Different from previous monolithic self-supervised ViT,

the multi-stage architecture in EsViT can be readily used for dense visual tasks that require
hierarchical feature representations.

Comparison with supervised counterparts. We compare with the supervised-learning Swin,
whose checkpoints are downloaded from the official codebase2. Figure 3 shows the classification
results of Swin-S, EsViT consistently outperforms its supervised variant, often by a large margin.
Similar conclusions are drawn for other model sizes. On COCO detection and segmentation task,
however, EsViT shows comparable results with the variant with LV only (shown in parentheses) and
the supervised counterpart (Swin-T trained with 3× schedule), as shown in Table 2. We hypothsize
this is related to the non-constrastive nature of EsViT, as explained later.

Effects of larger, less-curated pre-train datasets. The performance of Transformer-based SSL
research has thus far been limited to highly curated pre-train data such as ImageNet-1K. To push the
frontier in leveraging large amounts of unlabeled data, we explore the effects of pre-training from
larger, less-curated image datasets: WebVision-v1 (Li et al., 2017), OpenImages-v4 (Kuznetsova
et al., 2020) and ImageNet-22K (Deng et al., 2009), described in Appendix. The pre-train epochs
on different datasets are adjusted so that all models see a similar number of augmented views. We
summarize the results in Table 3 and would like to emphasize the following findings. First, LR

improves LV (shown in parentheses) on all datasets. Second, all EsViT pre-trained checkpoints
outperform supervised checkpoint in downstream classification tasks, but performance varies a lot,
with ImageNet-22K checkpoint showing the best transfer ability. Third, ImageNet-1K pre-trained
model shows the best ImageNet-1K linear probe performance. We hypothesize that it is not only the
size of pre-train dataset matters, but also the distribution of image classes matters: more diverse and
well-balanced distribution results in a stronger generalization ability.

4.3 DISCUSSION ON THE NON-CONTRASTIVE REGION-MATCHING TASK

Compatibility with various network architectures. We investigate ResNet-50 and different effi-
cient sparse Transformers in Table 4. DeiT is shown as a baseline reference. Batch size = 1024 in
this experiment. To ensure fair comparison, we modify all into a 4-stage architecture with the number
of Transformer layers in each stage as 2-2-6-2. We see that LR improves all network architectures,
including ResNet-50, Swin (Liu et al., 2021), ViL (Zhang et al., 2021), CvT (Wu et al., 2021)
and PvT (Wang et al., 2021). Though directly adding LR to monolithic ViT is computationally
infeasible, we uniformly sampled top-layer grid features of DeiT and then add LR, but did not
observe performance improvement. This is partly because the monolithic ViT itself already has a
good corresponding ability, an extra region-matching task does not provide new learning signals. As

2https://github.com/microsoft/Swin-Transformer
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Method #Param. Im./s Pre-train tasks Linear k-NN

DeiT 21 1007 LV 75.9 73.2

R-50 24 1237
LV 75.3† 67.5†
LV 75.0 69.3

LV +LR 75.7 71.2

Swin 28 808 LV 77.1 73.7
LV +LR 77.6 75.4

ViL 28 386 LV 77.3 73.9
LV +LR 77.5 74.5

CvT 29 848 LV 77.6 74.8
LV +LR 78.5 76.7

PvT 24 851 LV 75.4 72.0
LV +LR 76.3 72.9

Table 4: Different architectures with and without
LR. DeiT and ResNet-50 are shown as references.
† Numbers reported in (Caron et al., 2021).
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70

74
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78

k-
NN
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LV + LR (Small)

LV (Base)
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Figure 4: Learning curves of different pre-
training tasks. For Base model, LR is added
from the 200th epoch.

Pre-training ResNet50 in different settings ImageNet-1K COCO
Types Methods #Epochs #Views Linear k-NN APbb APmb

Supervised - - 38.2 33.3

Contrastive MoCo-v2 200 2 67.5 55.6 38.7 33.9
DenseCL 200 2 63.6 (-3.9) 48.6 (-7.0) 39.1 (+0.4) 34.2 (+0.3)

Non-Contrastive LV 200 2 69.2 59.9 37.8 33.1
LV +LR 200 2 69.9 (+0.7) 61.7 (+1.8) 38.0 (+0.2) 33.2 (+0.1)

Table 5: Comparison between contrastive and non-contrastive region-matching tasks.

compared in Appendix Table 12 with the ResNet-50 backbone, EsViT learning method shows the
highest accuracy, compared with existing SSL methods.

Model scaling with LR. We compare the pre-training objective with and without LR in Table 1.
Across different model scales and window sizes, the proposed region level LR can consistently
improve the performance. The gains can be clearly seen by k-NN accuracy (around 1-2%), where
no additional tuning is needed as in linear probe. Figure 4 demonstrates that LR helps model
convergence, and can be used as a drop-in to improve models trained with the view level task.

Contrastive vs Non-contrastive region-matching tasks. The proposed LR adds a non-contrastive
region-matching task to the non-contrastive view-level task LV ; On the contrary, DenseCL adds a
contrastive region-matching task to the contrastive view-level task MoCo-v2. In Table 5, we compare
four methods in the same setting with ResNet-50. DenseCL improves dense visual prediction perfor-
mance, but hurts classification performance. LR improves both tasks, especially the classification
performance. One limitation is that the non-contrastive methods show lower performance in dense
prediction tasks, this is consistent with the observations for BYOL in (Wang et al., 2020b). The
simple LR shows the best ImageNet accuracy compared with all sophisticated region-level tasks in
this 200-epoch setting in Appendix Table 7, and the best overall accuracy in Table 12. It indicates
that LR well serves our goal in building efficient SoTA SSL systems.

Design choices of LR. We ablate a couple of choices in constructing LR in Eq. (2). (i) Softmax
vs MSE. One alternative way to measure the distance between two projected vectors is MSE, as
employed in the popular non-contrastive SSL algorithm BYOL (Grill et al., 2020). When adding
region-matching tasks to BYOL and pre-training 50 epochs, Softmax and MSE yield k-NN accuracy
of 37.2% and 34.9%, while the baseline BYOL yields 33.1%. We also replace the region-matching
metric in EsViT as MSE, yielding k-NN accuracy 72.6%, which lower than the view-level task only
(74.2%). These results show that Softmax is essential in LR. (ii) Optimal Transport (OT) vs
Simple Argmax. To avoid heavy computational overhead, a simple feature-level argmax solution is
considered in Eq. (2) to pair two local regions. To study the impact of high region-matching quality,
we consider OT. Empirically, we observe OT yields slightly higher k-NN accuracy at the early stage,
but the gain is diminished in the end. Considering the extra computational cost of solving OT with an
inner loop in sinkhorn algorithm (Cuturi, 2013), we opt for simple argmax in our experiments.
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(a) DINO: DeiT-S (b) EsViT: LV (c) EsViT: LV +LR

Figure 5: The learned correspondences. Yellow lines are the top-10 correspondences between two
views, where the numbers indicates the rankings of similarity scores, yellow dots with the same
number are paired.

(a) DINO: DeiT-S (b) EsViT: LV (c) EsViT: LV +LR

Figure 6: Visualization of the the learned attention map for different heads in the last layer. The query
is the blue dot in the center of the images. We visualize masks (as red) obtained by thresholding
the self-attention maps to keep 60% of the probability mass. Note that all 6 heads are visualized
for DINO with DeiT-S, and 6 out of 24 heads in EsViT are chosen to visualize (ranked by entropy
values). Please see enlarged pictures with all heads in Appendix.

4.4 QUALITATIVE STUDIES

Visualization of correspondences. Given two views of the same image, we use the pre-trained
backbone to extract the top-layer features z1 and z2. For each feature vector in z1, we find the feature
vector in z2 that best matches it in terms of highest cosine similarity, as defined in Equation (2). In
Figure 5, we show the top-10 correspondences between two views for three methods. In Figure 5
(b), EsViT with LV tends to identify pairs in the background as the most matched ones (and in a
wrong way in this example). This could be a valid solution to LV , as the invariance in the level of
aggregated global features does not necessarily induce invariances in the local region level. This is
significantly alleviated with LR (shown in Figure 5 (c)), a task that implicitly requires local matching.

Surprisingly, DINO is able to learn good correspondences even without the region-level matching task.
To the best of our knowledge, this is a previously unreported intriguing property of self-supervised
Transformers with monolithic architectures: good semantic correspondences are automatically
learned. We hypothesize that features at lower layers (image patch itself in the extreme case)
can directly pass to higher layers, and the former regularizes the latter to remain discriminative.
Nevertheless, the proposed LR can dramatically reduce the issue, and is good remedy to rescue the
loss of semantic correspondence for the multi-stage architecture. In Appendix, we quantitatively
measures the correspondence learning ability of these SSL methods on ImageNet validation dataset,
the observations are consistent: LR improves the matching accuracy from 66% to 91%.

Visualization of attention maps. We look at the self-attention in the different heads of the last
layer in Figure 6. A local region on the edge of the main object is employed as query, and the
attended regions are highlighted in red for those the query’s top 60% mass are assigned. In Appendix,
we visualize more examples with different query positions. DINO tends to automatically learn
class-specific attention maps leading to foreground object segmentation, regardless of its query
located in foreground or background. This is probably because main objects remain as the major
invariance factor in different augmented views. This property is lost when a multi-stage architecture
is employed, as shown in EsViT with LV . These patterns are consistent for different heads. After
introducing LR for EsViT, we note that the attention maps become more diverse in different heads,
i.e., entropy values of attentions get more skewed, and attended regions are more different. This is
perhaps because LR requires each region to consider many matching tasks to regions in different
augmented views, each head automatically learns to distribute the tasks and complete a few of them.
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5 CONCLUSIONS

In this paper, we first discover the automatic correspondence learning property of self-supervised
monolithic Transformers. Inspired by this, we present efficient self-supervised vision Transformers
(EsViT) to with two major insights: a multi-stage Transformer architecture with sparse self-attentions,
and a non-contrastive region-matching pre-training task. The synergy of both helps EsViT reach the
SoTA performance of SSL vision systems with significantly less compute and smaller model size.
Our study also reveals that exploration of effective solutions to learn from larger and less curated
pre-training data in the wild is a key but less studied factor in paving the way toward the scaling
success of SSL vision systems.

ETHICS STATEMENT

Though self-supervised learning (SSL) has great potentials to learn powerful representation with-
out human annotation, the existing techniques to build SoTA SSL vision systems tend to be Red
AI (Schwartz et al., 2020): it could be environmentally unfriendly and the computational cost is
extensively high. The required training resource is typically not accessible for a lab environment
(thus raising barriers to participation in AI research). For example, the prior art MoCo-v3 has greatly
pushes the performance limit of SSL system (Chen et al., 2021). The authors kindly reported that
“it (MoCo-v3, ViT-H) takes 9.8 hours per 100 epochs using 512 TPUs. This is a gigantic scale of
training: for the 300-epoch ViT-H, this amounts to ∼625 TPU days, or ∼1.7 TPU years of training.”
The SoTA model MoCo-v3 with ViT-BN-L/7 should have a higher cost than this. Even for a smaller
model ViT-B, “it takes 24 hours in 128 GPUs (vs. 2.1 hours in 256 TPUs)”. Hence, improving the
efficiency of building SoTA SSL systems is of high value for the community and society to achieve
Green AI (Schwartz et al., 2020).

To this end, we propose EsViT to provide more affordable and efficient solutions for the community
to experiment and explore the directions of SoTA SSL in computer vision. Our EsViT model shows
the best ImageNet linear probe performance compared with all existing SSL vision systems, and is
3.5× parameter-efficient and has 10× higher throughput than previous SoTA. This efficiency gain can
significantly decrease its carbon footprint and increase its inclusivity, encouraging more researchers
to participate the study of the SSL topic.

REPRODUCIBILITY STATEMENT

Our paper provides comprehensive empirical studies on the EsViT algorithm. We provide PyTorch-
style pseudo-code in Appendix. We also include an example code with instruction as supplementary
material to ensure the reproducibility. For empirical results on both various network architecture
and large-scale datasets, we provide detailed hyper-parameter specifications. We will release the
pre-trained checkpoints and codebase for the research community for reproducible research.
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A METHODS

A.1 ALGORITHMS

We summarize the training algorithm procedure of EsViT with LV +LR in Algorithm 1. To clearly
outline the main idea of the algorithm, we show the algorithm for two augmented views. For the full
algorithm to deal with multi-crop, please refer to our codebase. In Algorithm 1, for a mini-batch of
size n, the teacher/student network consists of three output variables: (1) p ∈ Rn×K is the probability
vector for the view-level representation, output by an MLP head. (2) z ∈ Rn×T×P is the feature
map, containing T region-level features of dimension P . (3) pz ∈ Rn×T×K are probability vectors
of z, output by a different MLP head.

Algorithm 1: EsViT with LV +LR, pseudocode with 2-crop.
# gs, gt: student and teacher networks
# Cv, Cr: view and region center (K)
# tmp s, tmp t: student and teacher temperatures
# a, b: network and center momentum rates.
# n: batch size, K: MLP-head-projected probability vector length,
T: last layer feature map length, P: last layer feature vector
length

1 gt.params = gs.params
# The main training loop

2 for x in loader:
3 x1, x2 = augment(x), augment(x) # two random views
4

# student output, p:n×K, pz:n×T×K, z:n×T×P
5 p s1, pz s1, z s1 = gs(x1)
6 p s2, pz s2, z s2 = gs(x2)

# teacher output, p:n×K, pz:n×T×K, z:n×T×P
7 p t1, pz t1, z t1 = gt(x1)
8 p t2, pz t2, z t2 = gt(x2)
9

# view-level loss
10 loss v = Hv(p s1, p t2)/2 + Hv(p s2, p t1)/2

# region-level loss
11 loss r = Hr(pz s1, pz t2, z s1, z t2)/2 + Hr(pz s2, pz t1, z s2, z t1)/2
12 loss = loss v/2 + loss r/2
13 loss.backward() # back-propagate
14

# update student, teacher and centers
15 update(gs) # AdamW for student
16 gt.params = a ∗ gt.params+ (1− a) ∗ gs.params # EMA for teacher
17 Cv = b ∗ Cv+ (1− b) ∗ cat([p t1,p t2].mean(0)) # EMA for view center
18 Cr = b ∗ Cr+ (1− b) ∗ cat([pz t1,pz t2].mean(0)) # EMA for region center

19

# The view-level loss function
20 def Hv(s, t):
21 t = t.detach() # stop gradient
22 s = softmax(s / tmp s, dim=-1)
23 t = softmax((t - Cv) / tmp t, dim=-1)
24 return - (t * log(s)).sum(dim=-1).mean()

# The region-level loss function
25 def Hr(ps, pt, zs, zt):
26 pt = pt.detach() # stop gradient
27 ps = softmax(ps / tmp s, dim=-1) # n×T×K
28 pt = softmax((pt - Cr) / tmp t, dim=-1) # n×T×K
29 sim matrix = torch.matmul(zs , zt.permute(0, 2, 1)) # n×T×T
30 sim idx = sim matrix.max(dim=-1)[1].unsqueeze(2) # n×T×1
31 pt idxed = torch.gather(pt, 1, sim idx.expand(-1, -1, pt.size(2)))
32 return - (pt idxed * log(ps)).sum(dim=-1).mean()
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A.2 NETWORK ARCHITECTURE CONFIGURATIONS AND IMPLEMENTATION DETAILS

Inspired by great successes of the multi-stage ConvNet architecture such as VGG (Simonyan &
Zisserman, 2014)/ResNets (He et al., 2016) for computer vision, the multi-stage Transformer-based
networks have been explored very recently in the supervised learning setting (Vaswani et al., 2021;
Wang et al., 2021; Liu et al., 2021; Zhang et al., 2021; Wu et al., 2021). In multi-stage vision
Transformers, since a larger number of patches is often produced at the early stages, an efficient
Transformer with sparse self-attentions is considered to reduce the computational complexity. The
basic idea is to split the feature maps into non-overlapping local windows (with size W×W ), and
self-attention is performed within each local window. This however has one drawback that features
in different local windows cannot interact. Various methods have been proposed to best approximate
full-attention, with different trade-off between accuracy and efficiency.

We briefly describe three schemes as follows, and benchmark them in the experiments. (i) Swin
Transformer (Liu et al., 2021): A shifted window partitioning approach is proposed, which alternates
between two partitioning configurations in consecutive Transformer blocks, so that each local feature
is grouped into different windows in self-attentions. (ii) Vision Longformer (ViL) (Zhang et al., 2021):
Features in each local window are further allowed to attend all features in the 8-neighboring windows.
(iii) Convolution vision Transformer (CvT) (Wu et al., 2021): Features in neighboring windows are
considered in the convolutional projection in self-attentions.

The window size is set to W = 7 by default. The query dimension of each head in self-attentions is
d = 32, and the hidden layer width of each MLP is 4× of its input’s width, for all experiments. The
architecture configurations of model variants employed in the experiments are summarized in Table 6.
Some notable implementation detailed are described as follows:

• The three configurations Swin-T, Swin-S and Swin-B indicate Tiny, Small, and Base models,
respectively, which are almost identical to the original implementation (Liu et al., 2021), except
that we add special treatments to deal with input augmented views of different resolutions, when
the resolution (feature map size more specifically) is not divisible by the window size (i.e.,
resolution 96 and window size=7 or 14).

• Swin-T and Swin-S with window size W =14 are customized by us to allow full self-attention
in stage 3 (where the majority of model capacity is allocated to) and stage 4, to study the impact
of longer sequences in EsViT.

• In the original ViL (Zhang et al., 2021) and CvT (Wu et al., 2021) papers, different positional
embedding strategies and multi-stage network configurations were employed. We modify them
by only utilizing relative position bias and their proposed sparse self-attention mechanisms, and
create a similar 4-stage architecture with Swin-T for fair comparison.

Relative Position Bias. To facilitate SSL, we consider relative position bias (Liu et al., 2021) to
characterize the spatial information between features for the three efficient Transformers aforemen-
tioned, and do not use absolute position embeddings. This is because augmented views of varied
resolutions can be cropped from anywhere in an image in SSL, maintaining the relative positions is
easy in implementation, and is largely sufficient for invariance learning among these views.

B RELATED WORK

Self-supervised ConvNets. ConvNets-based SSL has been extensively studied in the literature.
Based on the pre-training tasks, they can be broadly categorized into three classes: Handcrafted
pretext tasks (Doersch et al., 2015; Noroozi & Favaro, 2016; Pathak et al., 2016; Gidaris et al., 2018;
Zhang et al., 2016; Larsson et al., 2016; Zhang et al., 2017; Pu et al., 2016; Donahue & Simonyan,
2019), contrastive learning (Dosovitskiy et al., 2015; Zhuang et al., 2019; Oord et al., 2018; Hjelm
et al., 2018; Bachman et al., 2019; He et al., 2020; Chen et al., 2020c; Grill et al., 2020) and prototype
learning (Caron et al., 2018; 2020; Li et al., 2020b; Xie et al., 2016; Yang et al., 2016; Ji et al., 2019;
Zhan et al., 2020). It is also known that data augmentations play a crucial role in SSL pipeline (Chen
et al., 2020e; Caron et al., 2020; Tian et al., 2020; Li et al., 2020a). The impact of pre-training dataset
size/quality is explored for ConvNets in SSL (Goyal et al., 2021; Yonglong et al., 2021). To date,
the search of best pre-taining tasks/datasets and augmentations are based on CNNs. Among them,
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(a) Baseline monolithic architecture (b) Proposed multi-stage architecture

Figure 7: Architecture comparison. (a) The monolithic transformer. For all layers, the transformer
blocks share the same network configurations and input token sequence sizes are the same. (b) The
multi-stage Transformer organizes an input image into a long sequence of smaller patches, sparse
self-attentions (S.A.) are utilized at early stages to maintain model expressiveness while reducing
computational complexity; The neighboring tokens at an intermediate layer are gradually merged,
constituting a short sequence to ease the compute burden of self-attention at late stages.

Stage 1 Stage 2 Stage 3 Stage 4

Merging Rate 4× 8× 16× 32×
Feature Map 56× 56 28× 28 14× 14 7× 7

Swin-T, W =7
concat 4× 4 , 96-d, LN concat 2× 2, 192-d, LN concat 2× 2, 384-d, LN concat 2× 2, 768-d, LN[
window size : 7× 7

96-d (3 heads)

]
×2

[
window size : 7× 7
192-d (6 heads)

]
×2

[
window size : 7× 7
384-d (12 heads)

]
×6

[
window size : 7× 7
768-d (24 heads)

]
×2

Swin-S, W =7
concat 4× 4 , 96-d, LN concat 2× 2, 192-d, LN concat 2× 2, 384-d, LN concat 2× 2, 768-d, LN[
window size : 7× 7

96-d (3 heads)

]
×2

[
window size : 7× 7
192-d (6 heads)

]
×2

[
window size : 7× 7
384-d (12 heads)

]
×18

[
window size : 7× 7
768-d (24 heads)

]
×2

Swin-B, W =7
concat 4× 4 , 128-d, LN concat 2× 2, 256-d, LN concat 2× 2, 512-d, LN concat 2× 2, 1024-d, LN[
window size : 7× 7
128-d (4 heads)

]
×2

[
window size : 7× 7
256-d (8 heads)

]
×2

[
window size : 7× 7
512-d (16 heads)

]
×18

[
window size : 7× 7
1024-d (32 heads)

]
×2

Swin-T, W =14
concat 4× 4 , 96-d, LN concat 2× 2, 192-d, LN concat 2× 2, 384-d, LN concat 2× 2, 768-d, LN[

window size : 14× 14
96-d (3 heads)

]
×2

[
window size : 14× 14

192-d (6 heads)

]
×2

[
window size : 14× 14

384-d (12 heads)

]
×6

[
window size : 7× 7
768-d (24 heads)

]
×2

Swin-S, W =14
concat 4× 4 , 96-d, LN concat 2× 2, 192-d, LN concat 2× 2, 384-d, LN concat 2× 2, 768-d, LN[

window size : 14× 14
96-d (3 heads)

]
×2

[
window size : 14× 14

192-d (6 heads)

]
×2

[
window size : 14× 14

384-d (12 heads)

]
×18

[
window size : 7× 7
768-d (24 heads)

]
×2

ViL-T, W =7
concat 4× 4 , 96-d, LN concat 2× 2, 192-d, LN concat 2× 2, 384-d, LN concat 2× 2, 768-d, LN[
window size : 7× 7

96-d (3 heads)

]
×2

[
window size : 7× 7
192-d (3 heads)

]
×2

[
window size : 7× 7
384-d (6 heads)

]
×6

[
window size : 7× 7
768-d (12 heads)

]
×2

CvT-T, W =7
concat 4× 4 , 64-d, LN concat 2× 2, 192-d, LN concat 2× 2, 384-d, LN concat 2× 2, 768-d, LN[
window size : 7× 7

64-d (1 head)

]
×2

[
window size : 7× 7
192-d (3 heads)

]
×2

[
window size : 7× 7
384-d (6 heads)

]
×6

[
window size : 7× 7
768-d (12 heads)

]
×2

Table 6: Model configurations considered in our experiments.

SimCLR-v2 (Chen et al., 2020d), BYOL (Grill et al., 2020) and SwAV (Caron et al., 2020) achieve
the highest ImageNet linear probe performance with large ConvNet architectures. The performance
tends to saturate with an increasingly growing model size, raising a question if ConvNets reach a
limit in SSL.

Transformers for vision. Vision Transformers (ViT) (Dosovitskiy et al., 2021) shows the great
potentials of generalizing Transformers for computer vision, by achieving compelling accuracy in
supervised learning, especially with large-scale data and high capacity models. DeiT (Touvron et al.,
2020) further provides an effective ViT training strategy to ease the adaption of Transformers for
practitioners. Transformers have also been applied to other vision tasks, ranging from low-level
tasks such as image generation (Parmar et al., 2018; Chen et al., 2020b) and enhancement (Chen
et al., 2020a; Yang et al., 2020), to high-level tasks such as object detection (Carion et al., 2020;
Zhu et al., 2020; Zheng et al., 2020; Dai et al., 2020) and segmentation (Wang et al., 2020a;c), and
to vision-language tasks (Lu et al., 2019; Tan & Bansal, 2019; Chen et al., 2019; Su et al., 2019;
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Name Framework Pre-train Task Description Major Motivation Major Downstream Task
Performance

ImageNet

PIRL Contrastive Jigsaw pretext task in a way
that encourages the image
representations to be invari-
ant to the image patch pertur-
bation

General-purpose visual
backbone learning
Mostly for image
classification.

Image classification 63.6%

DenseCL Contrastive A pairwise contrastive
(dis)similarity loss at the
patch level between two
views. A queue of negative
sample features from other
images is maintained

Improving dense visual
prediction task perfor-
mance

Improving object detection
performance.

63.6%

DetCo Contrastive Multi-level features with
three contrastive tasks be-
tween global images and
local patches are considered:
global-global, global-local,
local-local.

Improving dense visual
prediction task perfor-
mance

Improving object detec-
tion performance. DetCo
achieves the best perfor-
mance trade-off on both
classification and detection.

68.6%

PixPro Contrastive Features from the two views
are encouraged to be con-
sistent between a regular
patch representation and a
smoothed patch representa-
tion within the same image.

Improving dense visual
prediction task perfor-
mance

Mostly focusing on the im-
proved performance on de-
tection tasks.

66.3%

InstLoc Contrastive image instances are pasted
at various locations and
scales onto background im-
ages. The pretext task is
to predict the instance cat-
egory given the composited
images and the foreground
bounding boxes

Improving dense visual
prediction task perfor-
mance

Mostly focusing on the im-
proved performance on de-
tection tasks.

61.7%

EsViT (ours) Non-
contrastive

A pairwise cross-entropy
loss at the patch level be-
tween two positive views.
No need/interaction with
other images in the batch
(eg, no negative samples)

Recovering the auto-
matic correspondence
learning property of
self-supervised mono-
lithic transformers, and
thus improving learning
efficiency.

Consistently improving
image classification tasks.
It creates new SoTA 81.3%
on ImageNet linear probe
accuracy, showing 3.5x
parameter-efficient and has
10x higher throughput than
previous SoTA MoCo-v3.
Reporting 75.7% ImageNet
linear probe performance
for ResNet-50.

69.9%

Table 7: Discussion of related works on various region-level tasks. The last columns reports the
ImageNet linear probe performance for ResNet-50 trained with 2 augmented views for 200 epochs.

Li et al., 2019b;a; Zhou et al., 2020; Li et al., 2020c). Marrying Transformers with multi-stage
architectures (Vaswani et al., 2021; Wang et al., 2021; Liu et al., 2021; Zhang et al., 2021; Wu
et al., 2021) show higher classification accuracy in supervised learning, and enables applicability of
Transformers for a broader range of vision tasks. Given these properties, we believe multi-stage ViT
is a must-study baseline for SSL in computer vision.

Discussion with other region-level tasks. In Table 7, we compare LR against the existing region-
level tasks, including PIRL (Misra & Maaten, 2020), DenseCL (Wang et al., 2020b), DetCo (Xie
et al., 2021a), InstLoc (Yang et al., 2021), PixPro (Xie et al., 2021c). Most of these region-level
tasks improve object detection tasks, but hurt the ImageNet classification accuracy. DetCo achieves
the best trade-off: improving the performance of both tasks, but with a sophisticated multi-level,
global-local interaction algorithm. With the same number of pre-training epochs and augmented
views, EsViT achieve the best ImageNet linear probe accuracy among all region-level tasks, with as
minimum computational overhead as possible. This well serves our goal of building efficient SSL
SoTA image classification system.
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Data source Table 2 in
DINO (Caron
et al., 2021)

Table 3 in MLP-Mixer (Tol-
stikhin et al., 2021)

Table 1 in Swin (Liu
et al., 2021)

Our runs

DeiT-S / P =16 1007 940.4
DeiT-B / P =16 312 292.3
DeiT-S / P =8 180
DeiT-B / P =8 63
ViT-B / P =16 312 861
ViT-S / P =16 102 280
ViT-H / P =14 32 87
ViT-L / P =7 17 47†
Swin-T / W =7 808 755.2 726.13
Swin-S / W =7 467 436.9
Swin-B / W =7 297 278.1
Swin-T / W =14 660 593.24
Swin-S / W =14 383 344.20
Swin-B / W =14 254 228.36
ViL-T / W =7 386 346.72
CvT-T / W =7 848 761.89

Table 8: Throughput estimate and standardization. All numbers in orange are estimated/converted,
while numbers in blue are collected from the papers, and numbers in green are runs on our machines.
All papers report the throughput of ViT-B or DeiT-B, which are essentially the same model. We
use this fact to align the throughput reported in different papers. † This number is estimated via the
statement in (Chen et al., 2021) that “reducing the patch size to 7×7 keeps the model size unchanged,
but increases FLOPs to ∼ 6×”. All numbers are standardized into throughput reported by (Caron
et al., 2021).

C EXPERIMENTS

C.1 THROUGHPUT ESTIMATE AND CONVERSION

Since different papers report throughput on different hardwares, it is not ready to compare the numbers
directly. Noting that all papers report the throughput for ViT-B/DeiT-B, we use this number to align
and convert the throughput. In Table 8, we describe our process and results of standardizing the
throughput.

C.2 THE COMPUTATION AND MEMORY OVERHEAD OF THE PROPOSED LR

We emphasize that adding LR to the multi-stage transformer architectures yields acceptable extra
computational cost, while adding LR directly to the monolithic transformer architectures has a
huge computational overhead. To demonstrate this, we report the cost comparisons in Table 9. For
each setting, we report [Memory Usage (MB) / Running time per iteration (second/iteration)]. In
Table Table 9 (a), when the batch size is gradually increased (e.g., , batch-size=12), the memory
cost increases nearly 4 times for monolithic architectures, while increases 1.6 times for multi-stage
architectures. Similar trends are shown for training cost per iteration increase ratio (1.47 vs 1.15).
This indicates LR can more naturally fit multi-stage architectures.

Similarly, we compare computational cost comparisons [Memory Usage (MB) / Running time per
iteration (second/iteration)] in Table 9 (b), for other network architecture configurations . From the
increased cost ratio, we see that LR adds acceptable cost in terms of both memory and training time,
compared with the baseline.

C.3 EXPERIMENTAL SETTINGS OF PRE-TRAINING AND EVALUATION ON IMAGENET

We study unsupervised pre-training performed in ImageNet-1K dataset (Deng et al., 2009) without
labels. The default training details are described as follows, mostly following (Caron et al., 2021).
We train with the Adamw optimizer (Loshchilov & Hutter, 2018), a batch size of 512, and total
epochs 300. Linear warmup of the learning rate is used during the first 10 epochs, with its base value
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Batch-Size=1 Batch-Size=8 Batch-Size=12

Monolithic ViT-S LV 1391 / 0.209036 2735 / 0.234993 3533 / 0.238160
ViT-S LV +LR 2641 / 0.233150 10358 / 0.321155 14128 / 0.352339

Increased Cost Ratio 1.8986 / 1.1153 3.7872 / 1.3666 3.9988 / 1.4794

Multi-stage Swin-T LV 1704 / 0.285451 4229 / 0.323884 5611 / 0.366367
Swin-T LV +LR 2346 / 0.301672 6232 / 0.374634 8917 / 0.421135

Increased Cost Ratio 1.3767 / 1.0568 1.4736 / 1.2323 1.5889 / 1.1494

(a) Comparisons for increased batch sizes.

EsViT LV LV +LR Increased Cost Ratio
Tiny (W=7) 1704 / 0.285451 2346 / 0.301672 1.3767 / 1.0568
Small (W=7) 2685 / 0.501876 3132 / 0.535203 1.1664 / 1.0664
Base (W=7) 3726 / 0.516058 4374 / 0.550617 1.1739 / 1.0669
Tiny (W=14) 2159 / 0.288118 2801 / 0.310108 1.0890 / 1.0763
Small (W=14) 3518 / 0.496823 4153 / 0.521739 1.1805 / 1.0501
Base (W=14) 5032 / 0.511701 5681 / 0.537826 1.1289 / 1.0510

(b) Comparisons for various network architecture configurations.

Table 9: Computational cost comparisons in the format of [Memory Usage (MB) / Running time per
iteration (second/iteration)].

Dataset Classes Train size Test size Evaluation metric Source link

Food-101 102 75,750 25,250 Accuracy Tensorflow
CIFAR-10 10 50,000 10,000 Accuracy TensorFlow

CIFAR-100 100 50,000 10,000 Accuracy TensorFlow
SUN397 397 19,850 19,850 Accuracy Tensorflow

Stanford Cars 196 8,144 8,041 Accuracy Stanfold Cars
FGVC Aircraft (variants) 100 6,667 3,333 Mean-per-class FGVC website
VOC2007 classification 20 5,011 4,952 11-point mAP voc2007

Describable Textures 47 3,760 1,880 Accuracy TensorFlow
Oxford-IIIT Pets 37 3,680 3,669 Mean-per-class Oxford-IIIT Pet

Caltech-101 102 3,060 6084 Mean-per-class TensorFlow
Oxford Flowers 102 102 2,040 6,149 Mean-per-class TensorFlow

MNIST 10 60,000 10,000 Accuracy TensorFlow
Facial Emotion Recog. 2013 ∗ 8 32,298 3,589 Accuracy Kaggle fer2013

STL10 10 5,000 8,000 Accuracy TensorFlow
GTSRB ∗ 43 26,728 12,630 Accuracy GTSRB website

PatchCamelyon 2 294,912 32,768 Accuracy TensorFlow
UCF101 ∗ 101 9,537 3783 Accuracy TensorFlow

Hateful Memes 2 8,500 500 ROC-AUC FaceBook

Table 10: A suite of 18 datasets used in linear probe.∗ indicates dataset whose train/test size we
obtained is slightly different from Table 9 in (Radford et al., 2021).

determined with the linear scaling rule (Goyal et al., 2017): lr = 0.0005 ∗ batchsize/256. After
this warmup, the learning rate is decayed with a cosine schedule. We build our systems based on
Swin Transformers (Liu et al., 2021) in our experiments. Swin-B has a model size and computation
complexity similar to ViT-B/DeiT-B (patch size 16). We also considered Swin-T and Swin-S, which
have the complexity that are similar to those of ResNet-50 (DeiT-S) and ResNet-101, respectively.
The default window size is W =7.

One major common protocol to evaluate SSL is linear probe on ImageNet-1K, where features are
extracted from a frozen backbone, and a supervised linear classifier is trained. For all Transformer
models, we use the concatenation of view-level features z̄ in the last 4 layers (the results are similar
to the use of last 3 or 5 layers in our initial experiments).
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Methods CLIP Supervised Supervised‡ Supervised EsViT
ResNet-50 ResNet-50 ResNet-50 Swin-T Swin-T

Food-101 86.4 71.3 71.3 77.4 80.0
CIFAR-10 88.7 91.8 91.8 94.0 95.3

CIFAR-100 70.3 74.5 74.5 77.5 82.2
SUN397 73.3 60.5 60.3 64.3 67.6

Stanford Cars 78.3 49.9 50.1 55.3 66.4
FGVC Aircraft (variants) 49.1 48.5 48.4 51.5 61.1
VOC2007 classification 87.1 83.8 83.6 84.2 85.5

Describable Textures 76.4 72.3 72.6 73.1 78.1
Oxford-IIIT Pets 88.2 92.4 92.1 93.3 92.8

Caltech-101 89.6 90.8 90.4 90.8 93.0
Oxford Flowers 102 96.1 90.8 91.1 91.5 97.4

MNIST 98.3 98.3 98.3 98.3 98.3
Facial Emotion Recog. 2013 64.2 54.9 55.9 55.1 59.3

STL10 97.2 96.4 97.0 97.9 98.9
GTSRB 82.4 70.6 75.7 72.9 84.3

PatchCamelyon 82.7 82.5 82.6 84.0 84.6
UCF101 81.6 71.2 72.1 79.0 81.1

Hateful Memes 65.7 56.5 49.9 51.2 52.0

Average 80.86 75.39 75.43 77.29 80.99

Table 11: The linear probe results on 18 datasets at the scale of ResNet-50/Swin-T. ‡ indicates the
results reproduced by us, which verifies that our implementation pipeline is consistent with (Radford
et al., 2021).

Method View-level Region-level Top-1 Accuracy (%)

Performance comparison of ResNet-50 with 200 epochs and 2 augmented views
MoCo-v2 Contrastive - 67.5
DenseCL Contrastive Contrastive 63.6
DetCo Contrastive Contrastive 68.6
DINO Non-Contrastive - 69.2
EsViT Non-Contrastive Non-Contrastive 69.9
SoTA performance comparison of ResNet-50 with numbers and settings reported in each paper
MoCo-v2 (800 epochs) Contrastive - 72.2
SwAV (800 epochs, w/ multi-crop) Contrastive - 75.3
Barlow Twins (1000 epochs) - - 73.2
VICReg (1000 epochs) - - 73.2
SimSiam (800 epochs, 2 views) Non-Contrastive - 71.3
BYOL (1000 epochs, w/ multi-crop) Non-Contrastive - 74.3
DINO (300 epochs, w/ multi-crop) Non-Contrastive - 75.0
EsViT (300 epochs, w/ multi-crop) Non-Contrastive Non-Contrastive 75.7

Table 12: Linear probe performance of a ResNet-50 network with different SSL methods.

C.4 COMPARISON WITH A RESNET-50 BACKBONE

To compare our EsViT learning method with other SSL algorithms, we conduct experiments with a
ResNet-50 backbone, and show the results in Table 12.

C.5 LINEAR PROBE ON A SUITE OF SMALL DATASETS

Datasets. Table 10 shows details and source of all datasets used for linear probe, including the
number of classes, the size of training set and testing set, metrics used in evaluation, as well as a public
source of the dataset. Note that original UCF101 dataset is a video dataset. Here the middle frame of
each video is extracted to form a classification dataset. There are 3 train/val splits in Tensorflow, we
use the first one.
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Automatic hyper-parameter tuning. We rigorously follow (Radford et al., 2021) to conduct
training and evaluation for linear probe on the downstream datasets. We train a logistic regression
classifier using scikit-learn’s L-BFGS implementation, with maximum 1, 000 iterations, and report
the corresponding metric for each dataset. We determine the L2 regularization strength λ using
a hyperparameter sweep on the validation sets over the range between 10−6 and 106 , with 96
logarithmically spaced steps. To save compute required for the sweeps, we perform a parametric
binary search that starts with λ = [10−6, 10−4, 10−2, 1, 102, 104, 106] and iteratively halves the
interval around the peak until it reaches a resolution of 8 steps per decade. The hyperparameter
sweeps are performed on a validation split of each dataset. For the datasets that contain a validation
split in addition to a test split, we use the provided validation set to perform the hyperparameter
search, and for the datasets that do not provide a validation split or have not published labels for the
test data, we split the training dataset to perform the hyperparameter search. For the final result, we
combine the validation split back with the training split and report the performance on the unused
split.

Detailed results. Only the last layer feature is considered for all models for simplicity, though
adding features from more layers may potentially improve the results. Table 11 shows the results
for architectures at a similar scale of ResNet-50 or Swin-T. The first two columns are numbers
from (Radford et al., 2021). CLIP with ResNet-50 is pre-trained on 400 million image-text pairs.
Supervised ResNet-50 and Swin-T are pre-trained on ImageNet-1K, on which EsViT with Swin-T is
pre-trained as well (Batch Size=512). EsViT outperforms its supervised counterpart, and is on par
with the performance of CLIP in a similar image encoder architecture scale.

C.6 PRE-TRAINING DATASETS

We describe the statistics and training schedule on larger and less curated datasets in Table 13. The
pre-training epochs are chosen so that the model is trained with a similar number of augmented views.

Name Description Size (#Images) Epochs Warmup

ImageNet-1K (Deng et al., 2009) Images evenly distributed in 1K object concepts 1.2 million 300 10
WebVision-v1 (Li et al., 2017) Web images with 1K concept queries from ImageNet-1K 2.4 million 150 5
OpenImages-v4 (Kuznetsova et al., 2020) Diverse/complex scenes with several objects for detection 7.5 million 50 2
ImageNet-22K (Deng et al., 2009) Images distributed in 22K object concepts in a hierarchy 14.2 million 30 1

Table 13: Pre-train dataset statistics and training schedule.

C.7 RESULTS ON CORRESPONDENCE LEARNING

We first quantitatively evaluate the correspondence learning results with 50K images in the ImageNet
validation dataset. We create a simple evaluation dataset with mild augmentations. For a center-crop
image, we apply HorizontalFlip, then ColorJitter and RandomGrayscale to create
a new augmented view. In this way, ground-truth correspondences are created. Please see the 1st
row of Figure 9 for one such example. The top-10 correspondences are used for evaluation. Two
metrics are considered: (1) Accuracy measures the percentage of correctly matched region pairs,
(2) distance error indicates the averaged `2 distance between the predicted matched region and
ground-truth region (the value is 0 for perfect matching). The results are reported in Figure 8. DINO
with monolithic Transformers shows surprisingly good performance on correspondence learning.
The use of multi-stage Transformer architecture reduces this ability, shows a lack of good region
correspondence. With LR, the region matching ability is significantly recovered.

In Figure 9, we visualize the correspondences for more images. Overall, DINO with monolithic
Transformers is able to discover most salient correspondences of semantic meaning in the mild
augmentation conditions, even without an implicit region matching loss in training. We believe this
previously underestimated property is whole-noting, and has potentials to enable more applications.
However, this desired property gets dilated when changing from monolithic to multi-stage Transformer
architecture (from column 1 to column 2), then the proposed region level task can alleviate this issue
(from column 2 to column 3).

To more specifically analyze the correspondences, we note the following results. The first row shows
a simple case, where only images of left-to-right flipped views are presented. The ground-truth
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(a) Accuracy (b) Distance error

Figure 8: Quantitative evaluation on correspondence learning on ImageNet validation set. LR can
significantly improve correspondence learning quality for multi-stage architectures. As a reference,
DINO (LV with monolithic Transformer architecture) achieves 0.95 accuracy and 2.49 distance error,
which we believe is a strong evidence to identify the intriguing property of automatic correspondence
learning.

correspondences should be horizontal lines that link the two flipped regions. It reveals that the
view-level pre-train task alone is insufficient to learn good correspondences for the multi-stage
Transformer architecture, while region matching task can alleviate this issue significantly. Similar
observations are shown in row 3 and row 4.

We further study more cases that requires real-world correspondences in row 2, row 5 and row
6. These views are not generated with data augmentation (as in model pre-training), but are often
presented in more practical scenarios: one-to-many mappings, cartoon-to-toy, seasonal changing of
the scene, respectively. The proposed region matching task can work particularly well in those cases.

C.8 MORE VISUALIZATION RESULTS OF ATTENTION MAPS

We visualize attention maps at the top layer in Figure 10, 11, 12. With a monolithic Transformer
architecture, DINO can automatically identify the main foreground objects. Unfortunately, changing
from monolithic to the multi-stage Transformer architecture (From left column to middle column), this
property gets lost. There are more heads in the multi-stage architecture than monolithic architecture
(24 heads vs 6 heads in this case) in the last year. A fair number of heads in EsViT shows redundant
patterns, this issue can be reduced when the region-level matching task is added (From middle column
to right column).

We observed that DINO with monolithic Transformer architecture only learns to attend the fore-
ground objects, even when the query is a background region (see Figure 12). This is perhaps because
DINO models are trained to learn view-level invariance, the main objects in the pre-train dataset
ImageNet tend to be the principle factor that remains invariant across different augmented views.
Hence, all backgrounds are ignored, regardless of the query positions. This is improved in EsViT
with the region-level pre-train task, as the model is trained to match individual regions.

DINO shows high entropy values in all of 6 heads (perhaps a required condition to cover all regions
of the main object). In EsViT, LR plays an interesting role in modulating the entropy distributions
among heads: it increases those with larger entropy values, while decreasing those with lower entropy
values. In another word, it makes the attention patterns in different heads more diverse.

23



Published as a conference paper at ICLR 2022

(a) DINO: DeiT-S (b) EsViT: LV (c) EsViT: LV +LR

Figure 9: The learned correspondences. Yellow lines are the top-10 correspondences between two
views, where the numbers indicates the rankings of similarity scores, yellow dots with the same
number are paired. The blue dot and red triangle indicates the most similar local regions that
correspond to the global feature of the view itself and the other view, respectively. Please zoom in for
detailed correspondence mappings.
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(a) DINO: DeiT-S (b) EsViT: LV (c) EsViT: LV +LR

Figure 10: The learned attention maps for all heads at the top layer, ranked by the entropy of softmax
probability. Query is the blue dot in the top-left of the image. Top: Entropy of each heads. Middle:
top 60% probability mass. Bottom: full attention maps. LR shows more attention patterns than LV

only.
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(a) DINO: DeiT-S (b) EsViT: LV (c) EsViT: LV +LR

Figure 11: The learned attention maps for all heads at the top layer, ranked by the entropy of softmax
probability. Query is the blue dot in the center of the image. Top: Entropy of each heads. Middle: top
60% probability mass. Bottom: full attention maps. LR shows more attention patterns than LV only.
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(a) DINO: DeiT-S (b) EsViT: LV (c) EsViT: LV +LR

Figure 12: The learned attention maps for all heads at the top layer, ranked by the entropy of softmax
probability. Query is the blue dot in the top-left of the image. Top: Entropy of each heads. Middle:
top 60% probability mass. Bottom: full attention maps. DINO mainly attends the main object even
when the query is a background region.
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