
Published as a conference paper at ICLR 2024

AN INTERPRETABLE ERROR CORRECTION METHOD
FOR ENHANCING CODE-TO-CODE TRANSLATION

Min Xue∗ Artur Andrzejak Marla Leuther
Heidelberg University, Germany
{min.xue, artur.andrzejak, Leuther}@uni-heidelberg.de

ABSTRACT

Transformer-based machine translation models currently dominate the field of
model-based program translation. However, these models fail to provide inter-
pretative support for the generated program translations. Moreover, researchers
frequently invest substantial time and computational resources in retraining mod-
els, yet the improvement in translation accuracy is quite limited. To address these
issues, we introduce a novel approach, kNN-ECD, which combines k-nearest-
neighbor search with a key-value error correction datastore to overwrite the wrong
translations of TransCoder-ST (Roziere et al., 2022). This provides a decision-
making basis for interpreting the corrected translations. Building upon this, we
further propose kNN-ECSm, a methodology that employs a distributed structure
with m sub-datastores connected in series, utilizing m diverse experts for multi-
round error correction. Additionally, we put forward a unified name rule, encour-
aging the datastore to focus more on code logic and structure rather than diverse
rare identifiers. Our experimental results show that our approach improves the
translation accuracy from 68.9% to 89.9% of TransCoder-ST (for translation from
Java to Python). This error correction method augments program translation, over-
coming the inherent limitations of Transformer-based code translation models,
such as resource-intensive retraining requirements and uninterpretable outcomes.

1 INTRODUCTION

Transformer-based large language models (LLMs) (Vaswani et al., 2017), such as BERT (Devlin
et al., 2018), XLM (Lample & Conneau, 2019) and XLNet (Yang et al., 2019), have been widely
used in the field of program translation. In recent work, researchers have attempted to enhance
Transformer-based program translation by incorporating compiler intermediate representations, but
the improvements remain limited (Szafraniec et al., 2023; Rozière et al., 2021). These methods lever-
age large amounts of data collected from public repositories such as GitHub and GitLab, combining
unsupervised and self-supervised learning to overcome the need for parallel corpora. Neverthe-
less, these techniques often require substantial investments in computational resources for retraining
translation models, while yielding only marginal improvements in return. Compared to retraining
the LLMs, Error Correction emerges as a more efficient alternative, enhancing accuracy through
repairing wrong translations produced by the program translation model. This approach holds sig-
nificant practical value, making it possible to enhance program translation accuracy at a low cost.

The internal workings of Transformer-based models are relatively complex, making it challenging
to track and identify which snippets in the training dataset contribute to each output token. In other
words, the Transformer-based program translation model cannot provide an intuitive interpretation
for the output. A common approach is to exploit knowledge neurons and causal effects to explain
the output of the transformer model (Dai et al., 2022; Vig et al., 2020). In the recent research,
Meng et al. (2023) revealed the crucial role of middle-layer feed-forward modules in storing factual
associations, but it has been so far applied only to simple subject-predicate-object sentences. In con-
trast, the k-nearest-neighbor machine translation (kNN-MT) combined with a large-scale datastore
has demonstrated a remarkable capacity in optimizing and interpreting natural language transla-
tions (Khandelwal et al., 2020; Zhang et al., 2018; Tu et al., 2017). Compared with traditional

∗Corresponding author.

1



Published as a conference paper at ICLR 2024

Transformer-based models, datastore possesses inherent interpretability. The kNN retrieval method
can provide a clear inference path and decision-making basis through tracking and identifying which
snippet in the training dataset contribute to each generated token, without the need to analyze com-
plex neural network hierarchies. Based on this, we consider integrating the kNN-MT method with
error correction, which exhibits great potential in providing an interpretable correction analysis.

In modern source code datasets, among millions of unique identifiers, only less than 1% of the
identifiers appear frequently (Karampatsis et al., 2020). Diverse rare identifiers, such as function
names, variable names, and parameter names, often increase perturbations during the model training
and inference phases (Chirkova & Troshin, 2020b). This phenomenon is akin to introducing noise
into the process of information transmission, making it difficult to focus on the key information.
Notably, although these different rare identifiers tend to introduce noise in program translation and
error correction, only a few researchers have paid attention to this issue. For this problem, we
propose a unified name rule to replace diverse rare identifiers during the training and testing phases ,
minimizing the emphasis on rare identifiers and focusing more on code logic and structure (as shown
in Figure 2).

Our work builds upon the Transformer-based code translation models proposed in the TransCoder
(Roziere et al., 2020) and TransCoder-ST (Roziere et al., 2022) projects. TransCoder employed
self-supervised learning across multiple programming languages (between Java, C++, and Python),
and then TransCoder-ST extended it by introducing a rigorously tested parallel corpus. In this paper,
we propose to extract error correction information from TransCoder-ST to guide the error correc-
tion model in learning repair knowledge. More specifically, we create unit tests for the Java source
dataset, and then use TransCoder-ST to generate multiple Python functions with unit tests for each
Java function. Subsequently, we conduct unit testing on the Python functions, and then extract
the first failed Python function and the first successful Python function to form an error correction
language pair for each Java function. Based on this, we establish two alternative error correction
models, kNN-ECD and kNN-ECSm, to improve the translation accuracy of TransCoder-ST by cor-
recting wrong translations. Overall, our contributions are as follows:

• We propose kNN-ECD, which leverages kNN search to retrieve correction information
from the error correction datastore, thereby repairing wrong translations in TransCoder-ST.
Notably, the error correction process is interpretable, overcoming the opaque defects of
Transformer-based program translation.

• We introduce kNN-ECSm, an approach that employs a distributed structure with m small
datastore units, capturing comprehensive repair information by using multiple datastore
variants for multi-round error correction. This approach promotes the traditional kNN-MT
technique, effectively improving the data retrieval capabilities by trying diverse data flows.

• We introduce a unified name rule, which ignores the differences in rare identifiers and
focuses more on the logic and structure of the code, thus avoiding interference caused by
irrelevant identifiers on similarity retrieval.

• We evaluate our approach, showing that the translation accuracy of TransCoder-ST
(Java→Python) significantly improves from 68.9% to 89.9% after employing kNN-ECD/
kNN-ECSm. Without the necessity of retraining Transformer-based models, our approach
still achieves substantial improvements in program translation.

2 RELATED WORK

Transformer-based Program Translation. In recent years, Transformer-based unsupervised learn-
ing methods have become the mainstream approach in the field of program translation (Shi et al.,
2022; Zhang et al., 2023). TransCoder (Roziere et al., 2020), as the first work that combined an
unsupervised model with programming translation, pioneered automatic program translation in the
field of software development. Benefitting from the structural characteristics of programming lan-
guages, Rozière et al. (2021) introduced a new pre-training objective, DOBF, to recover the original
version of the obfuscated source code by pre-training a model. Based on this, Roziere et al. (2022)
developed TransCoder-ST, which utilizes an automated unit testing system to filter out invalid trans-
lations, and then uses a well-tested parallel corpus to fine-tune the unsupervised model (Radford
et al., 2018; Yang et al., 2019; Raffel et al., 2019; Pan et al., 2023). Subsequently, Szafraniec et al.

2



Published as a conference paper at ICLR 2024

Figure 1: Training process: Construction workflow of kNN-ECD and kNN-ECSm. The work-
flow consists of three phases. (1) After deduplication, we can get the error correction dataset. If
we intend to build kNN-ECD, we use the error correction dataset directly; if we intend to build
kNN-ECSm, we divide the error correction dataset into m small datasets. (2) For the error cor-
rection dataset/small dataseti∈[1,m], we process it into corresponding datastore and introduce the
kNN retrieval. Here, we can get the corresponding kNN-ECD/kNN-sub ECDi∈[1,m], respectively.
(3) For kNN-ECD, we directly conduct unit testing on the output; for kNN-ECSm, we connect
sub ECD1, . . . , sub ECDi, . . . , sub ECDm in series and carry out unit testing on the output of each
sub ECDi∈[1,m].

(2023) proposed TransCoder-IR, which leverages lower-level compiler intermediate representations
to advance code translation. Due to the success of pre-trained language models, Feng et al. (2020)
introduced CodeBERT, a neural architecture combining BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019) and a bidirectional Transformer (Vaswani et al., 2023), trained with a hybrid objec-
tive function that incorporates both natural language and programming language. Further, in order
to accommodate multilingual representations, Ahmad et al. (2021) employed bidirectional and au-
toregressive transformer (Lewis et al., 2019) for pre-training on unlabeled natural language and
programming language data. Currently, almost all program translation models are based on retrain-
ing the Transformer model. However, the complex internal workings of Transformer models leads
to uninterpretable translations. Furthermore, this process usually consumes a significant amount of
computational resources, yet the gains in translation accuracy are quite limited.

kNN-MT Method. As a method for providing interpretable results, the datastore-based kNN re-
trieval approach is a promising alternative to Transformer-based translation models. Khandelwal
et al. (2020) pioneered the concept of kNN-MT, which augments natural language translation by
retrieving (key, value) pairs from an external datastore without updating the model. However, large-
scale datastores often suffer from high-latency data retrieval. To address this problem, Wang et al.
(2021b) introduced a hierarchical clustering strategy (Kanungo et al., 2002), aiming to improve re-
trieval efficiency by approximately querying the distance between data points in a datastore. On
this basis, Wang et al. (2022) proposed to use the cluster-based compact network and cluster-based
pruning solution to compress a datastore, thereby reducing the kNN retrieval latency. Based on the
traditional kNN-MT method, researchers have initiated the exploration of more adaptive kNN-MT
paradigms. Zheng et al. (2021) introduced the concept of adaptive kNN-MT, dynamically customiz-
ing the number of nearest neighbors for each target token. Furthermore, in order to achieve a more
interactive and efficient learning method, Wang et al. (2021a) proposed the kNN-over-kNN (KoK)
method as a plug-and-play solution for online learning combined with human feedback. However,
existing works only focus on the retrieval speed and context adaptation while overlooking the limited
search capability, failing to capture global information in a large datastore space.

Diverse Rare Identifiers. Various rare identifiers often introduce noise in program translation, dis-
tracting attention from critical information such as code structure and logic. Modern source code

3



Published as a conference paper at ICLR 2024

Figure 2: Testing process: Implementation workflow for kNN-ECD and kNN-ECSm. First,
we apply the unified name rule on wrong translations and store (replacement, name) pairs. Subse-
quently, we perform the unit testing on the processed wrong translations, and then feed the failed
translations to the error correction model. If necessary, we can recover the masked names in the
corrected translations using the (replacement, name) pairs.

datasets contain millions of unique identifiers, but less than 1% of them occur more than 5 times,
despite using open vocabulary approaches like BPE (Karampatsis et al., 2020). To address this
issue, Chirkova & Troshin (2020b) presented an identifier-anonymization-based approach to han-
dle Out-of-Vocabulary identifiers, which significantly improves Transformer’s performance in code
completion (Svyatkovskiy et al., 2020) and bug fixing (Gupta et al., 2017; Li et al., 2020). Addition-
ally, Xu et al. (2019) also recognized the limitation of Out-of-Vocabulary terms, proposing to replace
all class/variable names with corresponding placeholders. For unfamiliar identifiers, Ahmed et al.
(2018) proposed the TRACER method, which handles these cases by replacing all identifiers with
their recommended abstract types. Furthermore, by incorporating a more versatile value anonymiza-
tion process, Chirkova & Troshin (2020a) explored the effectiveness of anonymization across a
broader range of tasks based on the Transformer architecture. In previous works, researchers have
ignored the possibility of unifying diverse identifiers in both training and test datasets. Also, existing
methods are extremely simple, often breaking the code structure and neglecting to avoid replacing
special identifiers such as built-in functions.

3 APPROACH

In this paper, we aim to enhance code translation through error correction, rather than retraining the
program translation model. As shown in Figure 1, following data processing, we create the corre-
sponding datastore and perform kNN retrieval on two variants of error correction dataset, construct-
ing two alternative error correction models to enhance TransCoder-ST: kNN-ECD and kNN-ECSm.

3.1 CREATION OF ERROR CORRECTION DATASET

Generating error correction language pairs. We intend to extract error correction language pairs
from TransCoder-ST, guiding kNN-ECD and kNN-ECSm in learning correction knowledge. First,
we download the Java source dataset from Google BigQuery and process it using the TransCoder-
ST preprocessing pipeline. Subsequently, we employ EvoSuite (Dinella et al., 2022) to create high-
quality Java unit test cases, and then feed the processed Java functions with the test cases into
TransCoder-ST (Java → Python, beam size = N ). For each Java function, we can get N Python
functions with their corresponding unit test cases, followed by executing the Python unit tests. If
both ‘success’ and ‘failure’ occur in N test results, we combine the first failed Python function with
the first successful Python function to form an error correction language pair.

Unified name rule. Inspired by OOV anonymization method (Chirkova & Troshin, 2020b), we
propose a unified name rule to standardize the diverse rare identifiers in the training dataset and
test dataset, thus reducing noise in the retrieval process. First, we categorize non-built-in identifiers
into three groups: variable names, function name, and parameter names, where each function has
only one function name. Then, we replace the identifiers initially used in the code with identifiers
following a homogeneous schema of naming, as follows:

4



Published as a conference paper at ICLR 2024

Unified name rule: For non-built-in identifiers in a function, we sequentially replace parameter
names with a0, a1, . . . , aj , function name with func, and variable names with b0, b1, . . . , bj . During
this process, the (replacement, name) pairs of each function are recorded. If needed, the original
name can be recovered.

In Figure 2, we give an example of a unified name rule used for identifier replacement. By imple-
menting the unified name rule, we can filter out extraneous information from rare identifiers, thereby
channeling attention toward essential code elements such as logic and structure. Besides, this rule fa-
cilitates preliminary error correction within the test dataset, repairing errors resulting from identifier
confusion in the code, such as the overlap between function names and variable names.

3.2 ERROR CORRECTION USING kNN-ECD

Creating error correction datastore (ECD). The ECD is generated from the error correction
dataset, which mainly includes two primary storage components. The first component is designed
to store error correction knowledge in the format of (key, value) pairs, where the generation of
(key, value) pair follows kNN-MT method (Khandelwal et al., 2020). The second component is
used to store source functions and target function prefixes ⟨src func, tgt func pref⟩, as well as
their corresponding ground truth target tokens tgt tok. More specifically, we use the pre-trained
Transformer model as a coding tool, where key = f(⟨src func, tgt func pref⟩) is the repre-
sentation of ⟨src func, tgt func pref⟩ obtained from the last hidden layer of the decoder, and
value = h(tgt tok) is the tokenization of tgt tok (Ferrando et al., 2022). For each token gener-
ated from (key, value) pairs, users can obtain a detailed explanation by accessing the corresponding
⟨src func, tgt func pref⟩ → tgt tok, where ⟨src func, tgt func pref⟩ serves as the decision-
making basis for the generated token tgt tok.

Performing kNN retrieval on ECD. Combined with the ECD, we utilize kNN retrieval to correct
the wrong translations of TransCoder-ST. The kNN method conducts the similarity search on a
large-scale datastore, retrieving relevant (key, value) pairs to generate error correction results. In the
code correction process, when generating the next token yi, at each step, we utilize the representation
f(x, ŷ1:i−1) as a query, based on the test input x. Following this, we retrieve the k nearest neighbors
to the query from the error correction datastore, where ŷ represents the generated token. Then, we
calculate the distance d() between the key and the query as a weight to regularize the probability of
the value. On the basis of kNN-MT (Khandelwal et al., 2020), we define the probability distribution
of the next token as follows:

p (yi|x, ŷ1:i−1) =
∑

(kj ,vj)∈N

1yi=vjexp

(
−d(kj , f(x, ŷ1:i−1))

T

)

where T is the temperature, used to prevent overfitting in the retrieval context. When the temperature
value T > 1, it tends to make the distribution more uniform, preventing deviations towards the most
similar retrieval results and ensuring diversity in the retrieved data.

3.3 ERROR CORRECTION USING kNN-ECSm

Creating error correction system (ECSm). As shown in Figure 1, ECSm consists of m
sub-datastores, which are connected in sequential order. To build ECSm, we first randomly
divide the error correction dataset into m equal parts {small dataset1, . . . ,small dataseti,. . . ,
small datasetm}, where each small dataseti∈[1,m] contains the same number of error correc-
tion language pairs. It means that ECD and ECSm are generated from the same error cor-
rection dataset. Then, we follow the ECD creation process to generate the correspond-
ing {sub ECD1, . . . , sub ECDi, . . . , sub ECDm}, where these sub ECDs are linked sequentially.
Here, each sub ECDi∈[1,m] contains two primary storage components. The first components
is dedicated to storing (key, value) pairs, while the second components is designed for storing
⟨src func, tgt func pref⟩ → tgt tok records.

Performing kNN retrieval on ECSm. Within the framework of ECSm, we repeatedly feed incor-
rected wrong translations into subsequent sub ECDi∈[1,m] and perform kNN retrieval, using diverse
data flows for multiple rounds of error correction. Specifically, for each sub ECDi∈[1,m], we employ
kNN retrieval to generate outputs and conduct unit testing on the generated results. If the unit testing

5



Published as a conference paper at ICLR 2024

result is successful, it means that the wrong translation has been corrected. In this case, we output
the corrected code. However, if the unit testing result failed, it means that the wrong translation has
not been adequately corrected. In response, we re-enter the wrong source translation into the next
sub-datastore. By adopting a distributed structure with multiple sub-datastores, kNN retrieval can
capture more comprehensive repair information, effectively enhancing the kNN search capability.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Model architecture. The implementation of kNN-ECD/kNN-ECSm is conducted under the guid-
ance of oracle (Loney & McClain, 2004), where oracle represents a group of manual unit testers. By
reviewing the output and providing feedback, oracle assists us in determining whether the corrected
results make sense. As shown in Figure 2, we implement the unified name rule on the test input
for preliminary error correction before feeding it into kNN-ECD/kNN-ECSm. Then, we execute
unit testing on the processed test dataset. If successful, it means that the wrong translation is due to
identifier confusion. If failed, we feed the failed test samples into ECD/ECSm. (Here, we define the
model as kNN-ECD∗/kNN-ECS∗

m when the unified name rule is not employed during the training
and testing phases.)

Training dataset & test dataset. We download the Java source code from Google BigQuery and
implement the TransCoder-ST preprocessing pipeline for dataset filtering. Next, we set the maxi-
mum runtime of 20 seconds for each process and employ EvoSuite to create Java test cases. Here, the
unit test cases are created based on two criteria: mutation score over 0.9 and at least two assertions.
In this process, we collect 82,665 Java functions with unit test cases.

Subsequently, we feed the above processed Java function into TransCoder-ST (beam size = 10), and
set the target language as Python. In this step, 82, 665 × 10 Python functions with unit test cases
are generated. For each Java function, we perform unit testing on the corresponding 10 Python
functions. If ‘success’ and ‘failure’ both appear in 10 test results, we merge the first failed Python
function and the first successful Python function into an error correction language pair. Ultimately,
we can get a preliminary error correction dataset with 26,230 language pairs for TransCoder-ST.

After that, we employ the unified name rule to standardize diverse rare identifiers within the prelim-
inary error correction dataset. By removing duplicate entries from the processed dataset, an error
correction dataset with 21,385 correction pairs is built. Then, we divide the error correction dataset
into a training dataset and a test dataset with a ratio of 9 : 1. Among them, the training dataset
consists of 19,368 error correction language pairs, and the test dataset consists of 2,017 wrong
translations, each with unit test cases and (replacement, name) pairs1.

Training details & fine-tuning details. During the training phase, we introduce the previous ver-
sion of TransCoder-ST as a coding tool for error correction language pairs, mainly because its en-
coder and decoder can simultaneously process codes in the same programming language, which
conforms to the data properties of error correction language pairs (Qi et al., 2018). Based on this,
we feed the error correction language pair into the coding tool, where we treat the correct translation
as target and the wrong translation as source. Then, we extract the cross-attention output as key, and
the tokenization of the ground truth target token as value.

During the fine-tuning phase, we evaluate the performance of ECD and ECSm with different
numbers of sub-datastores, where m ∈ {3, 6, 9, 12, 15, 18}. We consider the following param-
eters: neighbor (p0) and temperature (p1). When more neighbors are retrieved, noise may be
introduced, which can lead to worse results. Meanwhile, properly adjusting the temperature pa-
rameters can prevent excessive bias towards a single neighbor, thus ensuring the diversity of re-
sults. In this case, we test the performance of ECD and ECSm under p0 ∈ {1, 4, 8, 12, 16, 32},
p1 ∈ {1, 10, 100, 1000}, and select the optimal parameter combination. Experiments show that
for ECD, when p0, p1 = {4, 10}, the best error correction rate can be achieved. For ECSm with
m = 3, 12, 15, the optimal parameter combination is p0, p1 = {8, 10}. ECSm with m = 6, 18
attains the highest effectiveness with the parameter combination p0, p1 = {16, 10}. As for ECSm

with m = 9, the most effective parameter combination is p0, p1 = {2, 10}.

1https://github.com/minxue29031/Error Correction

6



Published as a conference paper at ICLR 2024

4.2 RESULTS AND DISCUSSION

Translation performance. In Table 1, we compare the translation performance of TransCoder-ST
after combining ECD/ECSm or ECD∗/ECS∗

m. In the comparison, we focus on the translation from
Java to Python, where the performance of our models is measured against j2py2, TransCoder, DOBF,
TransCoder-ST (TC-ST). As shown in Table 1, it is clear that when TransCoder-ST utilizes the error
correction model, the translation performance improves significantly, increasing from 68.9% to a
range of 82.4% ∼ 89.9%. This improvement stems from the datastore, which stores a large amount
of error correction information generated from TransCoder-ST. By systematically retrieving relevant
(key, value) pairs, we can correct relative errors in the wrong translations. Moreover, comparing
kNN-ECD/kNN-ECSm with kNN-ECD∗/kNN-ECS∗

m, the former shows superior performance.
This difference is attributed to the unified name rule, which reduces the interference caused by rare
identifiers during datastore construction and implementation.

Table 1: Translation performance of TransCoder-ST with kNN-ECD/kNN-ECSm (Java → Python).
kNN-ECS18/
kNN-ECS∗

18

kNN-ECS15/
kNN-ECS∗

15

kNN-ECS12/
kNN-ECS∗

12

kNN-ECS9/
kNN-ECS∗

9

kNN-ECS6/
kNN-ECS∗

6

kNN-ECS3/
kNN-ECS∗

3

kNN-ECD/
kNN-ECD∗

j2py 38.3% 38.3% 38.3% 38.3% 38.3% 38.3% 38.3%
TransCoder 49.0% 49.0% 49.0% 49.0% 49.0% 49.0% 49.0%
DOBF 52.7% 52.7% 52.7% 52.7% 52.7% 52.7% 52.7%
Pure TC-ST (Online) 68.9% 68.9% 68.9% 68.9% 68.9% 68.9% 68.9%
TC-ST+ECD∗/ECS∗

m 89.4% 89.1% 88.7% 87.9% 87.1% 85.1% 82.4%
TC-ST + ECD/ECSm 89.9% 89.6% 89.3% 89.1% 87.9% 86.5% 84.5%

* We cannot directly compare our results with the latest research, TransCoder-IR, because it is not suitable for translating from Java to Python.

Interpretability of error correction model. During the testing phase, the traditional Transformer
model cannot track and identify which snippets in the training dataset contributed to each gener-
ated token. However, kNN-ECD/kNN-ECSm can address this issue, providing an intuitive and
readable decision-making basis for each output token. When building the datastore, we store the
(key, value) pairs and the corresponding snippets ⟨src func, tgt func pref⟩ → tgt tok from the
training dataset, where the coding of ⟨src func, tgt func pref⟩ is key, the coding of tgt tok is
value, and ⟨src func, tgt func pref⟩ serves as the decision-making basis for the generated token
tgt tok. Consequently, when generating each output token, we will return both (key, value) pair
and ⟨src func, tgt func pref⟩ → tgt tok. In APPENDIX Table 7, we show a detailed decision-
making process for generating a corrected translation. For clarity, we only focus on the correction
process of the wrong token ‘/’ → ‘//’ in Table 2, where the (key, value) pair used to correct the
wrong token ‘/’ → ‘//’ is a string of numbers, making it challenging to extract valid intuitive infor-
mation. In such cases, the uncoded form ⟨·, ·⟩ → ‘//’ of (key, value) pair can provide more intuitive
information.

Table 2: Interpretable error correction process for repairing incorrect tokens in wrong translations

Wrong translation Corrected translation Decision-making basis

def func ( a0 ) :
return 9 * a0 / 5 + 32

def func ( a0 ) :
return 9 * a0 // 5 + 32

⟨ ‘def func ( a0 ) : NEW LINE INDENT return a0 / 6
NEW LINE DEDENT’, ‘def func ( a0 ) : NEW LINE
INDENT return a0’⟩ → ‘//’

def func ( a0 ) :
b = list ( a0 )
b . sort ( )
return b [ len ( b ) / 2 ]

def func ( a0 ) :
b = list ( a0 )
b . sort ( )
return b [ len ( b ) // 2 ]

⟨ ‘def func ( a0 ) : NEW LINE INDENT a0 . sort ( )
NEW LINE return a0 [ len ( a0 ) / 2 ] NEW LINE
DEDENT’, ‘def func ( a0 ) : NEW LINE INDENT a0 .
sort ( ) NEW LINE return a0 [ len ( a0 )’⟩ → ‘//’

def func ( a0 ) :
b = 0
while a0 > 0 :

if a0 % 10 == 2 :
b += 1

a0 = a0 / 10
return b

def func ( a0 ) :
b = 0
while a0 > 0 :

if a0 % 10 == 2 :
b += 1

a0 = a0 // 10
return b

⟨ ‘def func ( a0 ) : NEW LINE INDENT sum = 0
NEW LINE while a0 > 0 : NEW LINE INDENT sum +=
( a0 % 10 ) ** 2 NEW LINE a0 = a0 / 10 NEW LINE
DEDENT return sum NEW LINE DEDENT’, ‘def func (
a0 ) : NEW LINE INDENT sum = 0 NEW LINE while a0
> 0 : NEW LINE INDENT sum += ( a0 % 10 ) ** 2
NEW LINE a0 = a0’⟩ → ‘//’

* ⟨·, ·⟩ → ‘//’ : ⟨·, ·⟩ represents the decision-making basis of the correction process ‘/’ → ‘//’, ⟨·, ·⟩ indicates ⟨src func, tgt func pref⟩, and ‘//’ indicates
tgt tok.

Generalizability analysis. To explore the generalization of the error correction model, first, we
analyze the overlap of code text between the test dataset and the training dataset. Following data
preprocessing, we observe that there are no duplicated codes between the two datasets. Addition-
ally, comparing the wrong code fragments (i.e., code fragment containing the wrong token) in the

2https://github.com/natural/java2python

7



Published as a conference paper at ICLR 2024

test dataset with those in the training dataset, we still cannot find any identical wrong code frag-
ments. It means that the kNN-ECD/kNN-ECSm can learn how to correct wrong tokens, rather than
accidentally correcting wrong tokens due to the test dataset containing duplicate ‘codes’ or ‘wrong
code fragments’ with the training dataset. Second, we show the interpretable decision-making basis
for wrong token fixing in Table 2, where ⟨src func, tgt func pref⟩ → tgt tok is retrieved to fix
the wrong token ‘/’ → ‘//’. We find that the text of the wrong translation is quite different from
the text of ⟨src func, tgt func pref⟩. It indicates that the error correction model can well apply
the knowledge learned from the error correction dataset to new samples. In summary, the above
error correction behavior demonstrates that the error correction model can extend the repair knowl-
edge acquired from the training dataset to new wrong translations, rather than merely relying on
straightforward comparisons of similar code texts.

Error correction performance of kNN-ECD∗ and kNN-ECS∗
m. In Table 3, we compare the error

correction performance of kNN-ECD∗ and kNN-ECS∗
m. It is worth noting that kNN-ECD∗ and

kNN-ECS∗
m are generated from the same error correction dataset, which means that both contain

the same error correction information. Surprisingly, in this case, kNN-ECS∗
m achieves 65.8% error

correction rate, showing a substantial 22.3% improvement compared to kNN-ECD∗. Besides, as
shown in Figure 4(a), with the increase in the number of sub-datastores under the error correction
system, we observe an improvement in error correction performance. The main reason is that tradi-
tional kNN methods usually suffer from insufficient retrieval capabilities in a large datastore, which
tends to focus on high-density regions while failing to capture potential correlations in low-density
regions. In contrast to kNN-ECD∗, the improvement of kNN-ECS∗

m is primarily attributed to its dis-
tributed structure, which includes diverse datastore variants. By employing different data flows for
multiple rounds of error correction, it can capture more comprehensive error correction information.

Table 3: Correction performance of kNN-ECD∗/kNN-ECS∗
m on TransCoder-ST wrong translations

kNN-ECS∗
18 kNN-ECS∗

15 kNN-ECS∗
12 kNN-ECS∗

9 kNN-ECS∗
6 kNN-ECS∗

3 kNN-ECD∗

sub ECD∗
1 25.4% 26.4% 27.3% 28.5% 30.7% 33.9% 43.5%

sub ECD∗
2 26.5% 27.2% 28.6% 30.0% 33.0% 36.3% -

sub ECD∗
3 26.5% 27.4% 28.0% 28.7% 32.0% 35.9% -

sub ECD∗
4 26.1% 27.9% 30.4% 29.3% 30.9% - -

sub ECD∗
5 25.0% 26.2% 29.5% 28.0% 31.4% - -

sub ECD∗
6 26.0% 26.6% 28.6% 29.5% 32.1% - -

sub ECD∗
7 25.4% 29.1% 28.7% 28.4% - - -

sub ECD∗
8 24.1% 26.7% 26.8% 26.9% - - -

sub ECD∗
9 25.9% 27.0% 26.8% 30.2% - - -

sub ECD∗
19 27.9% 27.6% 27.3% - - - -

sub ECD∗
11 26.9% 26.8% 28.5% - - - -

sub ECD∗
12 25.7% 24.9% 27.8% - - - -

sub ECD∗
13 27.7% 26.0% - - - - -

sub ECD∗
14 27.1% 27.0% - - - - -

sub ECD∗
15 26.0% 27.6% - - - - -

sub ECD∗
16 26.2% - - - - - -

sub ECD∗
17 26.0% - - - - - -

sub ECD∗
18 26.3% - - - - - -

sub ECD∗
avg 26.1% 27.0% 28.2% 28.8% 31.7% 35.4% 43.5%

ECD∗/ECS∗
m 65.8% 64.9% 63.8% 61.1% 58.4% 52.1% 43.5%

Impact of the unified name rule. In Figure 4, we show the error correction performance of
kNN-ECD and kNN-ECSm after applying the unified name rule. Comparing Table 3 and Table 4,
we observe that implementing the unified name rule can effectively enhance the error correction rate,
ranging from 1.7% ∼ 6.5%. The main reason is that, during the training and testing phases, using the
unified name rule can ignore the diversity of function names, parameter names, and variable names
as much as possible, while paying more attention to the logic and structure of the code. By adopt-
ing the unified name rule, we can minimize the emphasis on rare identifiers, thereby eliminating
the interference produced by diverse rare identifiers during the process of datastore construction and
implementation. Furthermore, it is worth mentioning that employing the unified name rule alone can
achieve 5.1% preliminary error corrections before feeding the wrong translation into ECD/ECSm,
where the errors mainly arise from identifier confusion within the code.

Ablation analysis. In Table 5, we investigate the importance of adjacent tokens in the process of
identifying and correcting wrong tokens within the input. Our approach is to progressively remove
the adjacent tokens near the target wrong token in the input. This systematic approach provides a

8



Published as a conference paper at ICLR 2024

Table 4: Correction performance of kNN-ECD/kNN-ECSm on TransCoder-ST wrong translations
kNN-ECS18 kNN-ECS15 kNN-ECS12 kNN-ECS9 kNN-ECS6 kNN-ECS3 kNN-ECD

sub ECD1 29.0% 29.4% 30.4% 32.1% 35.5% 42.5% 48.7%
sub ECD2 26.3% 27.1% 29.9% 32.8% 37.1% 37.8% -
sub ECD3 26.0% 26.1% 27.3% 33.8% 33.1% 37.1% -
sub ECD4 25.3% 28.4% 27.9% 29.0% 33.7% - -
sub ECD5 25.3% 29.7% 30.9% 30.4% 33.2% - -
sub ECD6 28.1% 25.8% 32.0% 30.0% 32.5% - -
sub ECD7 28.3% 26.9% 31.0% 28.4% - - -
sub ECD8 26.3% 29.9% 28.0% 30.9% - - -
sub ECD9 25.0% 29.4% 29.8% 29.2% - - -
sub ECD10 25.7% 28.5% 28.1% - - - -
sub ECD11 26.7% 28.0% 28.1% - - - -
sub ECD12 26.5% 25.8% 26.7% - - - -
sub ECD13 29.1% 27.1% - - - - -
sub ECD14 27.8% 29.3% - - - - -
sub ECD15 27.3% 27.2% - - - - -
sub ECD16 25.2% - - - - - -
sub ECD17 25.8% - - - - - -
sub ECD18 28.0% - - - - - -
sub ECDavg 26.8% 27.9% 29.2% 30.7% 34.2% 39.2% 48.7%
Unified name rule 5.1% 5.1% 5.1% 5.1% 5.1% 5.1% 5.1%
ECD/ECSm 67.5% 66.7% 65.7% 64.8% 61.2% 56.5% 50.0%

deeper understanding of how adjacent tokens contribute to the identification and correction of wrong
tokens, depending on whether the wrong token is successfully corrected in the output. In Table 5,
the wrong token ‘/’ in the wrong translation should be corrected to ‘//’. Initially, when we feed the
original input to the error correction model, it can effectively correct the wrong token ‘/’. However,
as we systematically remove the adjacent tokens one by one, we encounter challenges in rectifying
the wrong token. It means that adjacent tokens are key to identifying and correcting wrong tokens.
The identification and correction of wrong tokens relies on the internal relationships among adjacent
tokens, rather than directly pinpointing the wrong tokens. In essence, the error correction method
corrects wrong translations by learning and understanding the internal relationships between tokens
within a function.

Table 5: The impact of adjacent tokens in the error correction process
Input (original format) Input (remove len ( )) Input (remove b) Input (remove return)

Input

def func(a0):
b = 0
for c in a0:

b += c
return b / len(a0)

def func(a0):
b = 0
for c in a0:

b += c
return b / a0

def func(a0):
b = 0
for c in a0:

b += c
return / len(a0)

def func(a0):
b = 0
for c in a0:

b += c
b / len(a0)

Output

def func(a0):
b = 0
for c in a0:

b += c
return b // len(a0)

def func(a0):
b = 0
for c in a0:

b += c
return b / a0

def func(a0):
b = 0
for c in a0:

b += c
return b / len(a0)

def func(a0):
b = 0
for c in a0:

b += c
b / len(a0)
return b

5 CONCLUSION

In real-world scenarios, the interpretability of outputs plays a crucial role in gaining users’ trust.
Currently, Transformer-based models are widely used for program translation. However, even with
researchers investing significant time and computational resources in retraining models, the im-
provement in translation accuracy remains relatively limited. Furthermore, due to the complex
internal workflow of the Transformer model, it is difficult to track and identify which snippet in
the training dataset contribute to each output token. In this paper, we employ the kNN retrieval
on an error correction datastore to enhance the translation capability of TransCoder-ST through
code correction. This approach provides a decision-making basis for each generated token, laying
a solid research foundation for the subsequent improvement of error correction. Importantly, by
simply integrating additional error correction datastore, the datastore-based kNN retrieval approach
significantly enhances the translation performance of TransCoder-ST, without the need to consume
significant computational resources to retrain the Transformer-based model.

9



Published as a conference paper at ICLR 2024

REFERENCES

Hindle A. 2015 Aggarwal K, Salameh M. Using machine translation for converting python 2 to
python 3 code. PeerJ PrePrints 3:e1459v1, 2015. URL https://doi.org/10.7287/
peerj.preprints.1459v1.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training
for program understanding and generation. CoRR, abs/2103.06333, 2021. URL https://
arxiv.org/abs/2103.06333.

Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit Gulwani. Compi-
lation error repair: For the student programs, from the student programs. In 2018 IEEE/ACM
40th International Conference on Software Engineering: Software Engineering Education and
Training (ICSE-SEET), pp. 78–87, 2018.

Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program transla-
tion. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
d759175de8ea5b1d9a2660e45554894f-Paper.pdf.

Nadezhda Chirkova and Sergey Troshin. Empirical study of transformers for source code. CoRR,
abs/2010.07987, 2020a. URL https://arxiv.org/abs/2010.07987.

Nadezhda Chirkova and Sergey Troshin. A simple approach for handling out-of-vocabulary identi-
fiers in deep learning for source code. CoRR, abs/2010.12663, 2020b. URL https://arxiv.
org/abs/2010.12663.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. pp. 8493–8502, 01 2022. doi: 10.18653/v1/2022.acl-long.581.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri. TOGA. In Proceedings
of the 44th International Conference on Software Engineering. ACM, may 2022. doi: 10.1145/
3510003.3510141. URL https://doi.org/10.1145%2F3510003.3510141.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and
natural languages. CoRR, abs/2002.08155, 2020. URL https://arxiv.org/abs/2002.
08155.

Javier Ferrando, Gerard I. Gállego, Belen Alastruey, Carlos Escolano, and Marta R. Costa-jussà.
Towards opening the black box of neural machine translation: Source and target interpretations
of the transformer, 2022.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish K. Shevade. Deepfix: Fixing common C lan-
guage errors by deep learning. In Satinder Singh and Shaul Markovitch (eds.), Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, Cal-
ifornia, USA, pp. 1345–1351. AAAI Press, 2017. URL http://aaai.org/ocs/index.
php/AAAI/AAAI17/paper/view/14603.

Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and
Angela Y. Wu. An efficient k-means clustering algorithm: Analysis and implementation. IEEE
Trans. Pattern Anal. Mach. Intell., 24(7):881–892, 2002. doi: 10.1109/TPAMI.2002.1017616.
URL https://doi.org/10.1109/TPAMI.2002.1017616.

Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea Janes. Big
code != big vocabulary: Open-vocabulary models for source code. CoRR, abs/2003.07914, 2020.
URL https://arxiv.org/abs/2003.07914.

10

https://doi.org/10.7287/peerj.preprints.1459v1
https://doi.org/10.7287/peerj.preprints.1459v1
https://arxiv.org/abs/2103.06333
https://arxiv.org/abs/2103.06333
https://proceedings.neurips.cc/paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf
https://arxiv.org/abs/2010.07987
https://arxiv.org/abs/2010.12663
https://arxiv.org/abs/2010.12663
http://arxiv.org/abs/1810.04805
https://doi.org/10.1145%2F3510003.3510141
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603
https://doi.org/10.1109/TPAMI.2002.1017616
https://arxiv.org/abs/2003.07914


Published as a conference paper at ICLR 2024

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Nearest neigh-
bor machine translation. CoRR, abs/2010.00710, 2020. URL https://arxiv.org/abs/
2010.00710.

Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. CoRR,
abs/1901.07291, 2019. URL http://arxiv.org/abs/1901.07291.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. CoRR, abs/1910.13461,
2019. URL http://arxiv.org/abs/1910.13461.

Yi Li, Shaohua Wang, and Tien N Nguyen. Dlfix: Context-based code transformation learning for
automated program repair. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, pp. 602–614, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019.

Kevin Loney and Lisa McClain. Oracle Database 10g The Complete Reference. McGraw-Hill, Inc.,
USA, 1 edition, 2004. ISBN 0072253517.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt, 2023.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi,
Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. Under-
standing the effectiveness of large language models in code translation, 2023.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics - ACL '02. Association for Computational Linguistics, 2001. doi:
10.3115/1073083.1073135. URL https://doi.org/10.3115/1073083.1073135.

Ye Qi, Devendra Singh Sachan, Matthieu Felix, Sarguna Janani Padmanabhan, and Graham Neubig.
When and why are pre-trained word embeddings useful for neural machine translation? CoRR,
abs/1804.06323, 2018. URL http://arxiv.org/abs/1804.06323.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. CoRR, abs/1910.10683, 2019. URL http://arxiv.org/abs/1910.10683.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsupervised
translation of programming languages. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 20601–
20611. Curran Associates, Inc., 2020.

Baptiste Rozière, Marie-Anne Lachaux, Marc Szafraniec, and Guillaume Lample. DOBF: A deob-
fuscation pre-training objective for programming languages. CoRR, abs/2102.07492, 2021. URL
https://arxiv.org/abs/2102.07492.

Baptiste Roziere, Jie M. Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve, and Guillaume
Lample. Leveraging automated unit tests for unsupervised code translation. arXiv:2110.06773
[cs], Feb 2022. URL http://arxiv.org/abs/2110.06773. arXiv: 2110.06773.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer, and Sida I. Wang. Natural
language to code translation with execution, 2022.

11

https://arxiv.org/abs/2010.00710
https://arxiv.org/abs/2010.00710
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1910.13461
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1804.06323
http://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2102.07492
http://arxiv.org/abs/2110.06773


Published as a conference paper at ICLR 2024

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. Intellicode compose:
Code generation using transformer. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
pp. 1433–1443, 2020.

Marc Szafraniec, Baptiste Roziere, Hugh Leather, Francois Charton, Patrick Labatut, and Gabriel
Synnaeve. Code translation with compiler representations. 2023.

Zhaopeng Tu, Yang Liu, Shuming Shi, and Tong Zhang. Learning to remember translation history
with a continuous cache. CoRR, abs/1711.09367, 2017. URL http://arxiv.org/abs/
1711.09367.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer,
and Stuart Shieber. Investigating gender bias in language models using causal mediation
analysis. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 12388–12401. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf.

Dexin Wang, Kai Fan, Boxing Chen, and Deyi Xiong. Efficient cluster-based k-nearest-neighbor
machine translation, 2022.

Dongqi Wang, Haoran Wei, Zhirui Zhang, Shujian Huang, Jun Xie, Weihua Luo, and Jiajun Chen.
Non-parametric online learning from human feedback for neural machine translation. CoRR,
abs/2109.11136, 2021a. URL https://arxiv.org/abs/2109.11136.

Shuhe Wang, Jiwei Li, Yuxian Meng, Rongbin Ouyang, Guoyin Wang, Xiaoya Li, Tianwei Zhang,
and Shi Zong. Faster nearest neighbor machine translation. CoRR, abs/2112.08152, 2021b. URL
https://arxiv.org/abs/2112.08152.

Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Hanghang Tong, and Jian Lu. Commit message
generation for source code changes. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, pp. 3975–3981. International Joint Conferences
on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/552. URL https:
//doi.org/10.24963/ijcai.2019/552.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. Xlnet: Generalized autoregressive pretraining for language understanding. CoRR,
abs/1906.08237, 2019. URL http://arxiv.org/abs/1906.08237.

Jingyi Zhang, Masao Utiyama, Eiichiro Sumita, Graham Neubig, and Satoshi Nakamura. Guiding
neural machine translation with retrieved translation pieces. CoRR, abs/1804.02559, 2018. URL
http://arxiv.org/abs/1804.02559.

Jiyang Zhang, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. Multilingual code co-evolution using
large language models, 2023.

Xin Zheng, Zhirui Zhang, Junliang Guo, Shujian Huang, Boxing Chen, Weihua Luo, and Jiajun
Chen. Adaptive nearest neighbor machine translation. CoRR, abs/2105.13022, 2021. URL
https://arxiv.org/abs/2105.13022.

12

http://arxiv.org/abs/1711.09367
http://arxiv.org/abs/1711.09367
http://arxiv.org/abs/1706.03762
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://arxiv.org/abs/2109.11136
https://arxiv.org/abs/2112.08152
https://doi.org/10.24963/ijcai.2019/552
https://doi.org/10.24963/ijcai.2019/552
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1804.02559
https://arxiv.org/abs/2105.13022


Published as a conference paper at ICLR 2024

A APPENDIX

A.1 EVALUATION

Most program translation studies employ BLEU scores to assess the quality of the results (Papineni
et al., 2001; Chen et al., 2018; Aggarwal K, 2015). However, a wrong translation typically involves
only a few wrong tokens, which means that the BLEU score tends to remain relatively high, regard-
less of the correctness of the translation. Inspired by computational accuracy in TransCoder (Roziere
et al., 2020), we introduce functional equivalence to measure the quality of code correction.

Functional equivalence: Given the same input, the source code and the corrected code produce the
same output, i.e., both the source code and the corrected code succeed under the same unit test cases.

This metric emphasizes the correctness and functionality of the code, rendering it better suited for
evaluating the quality of corrected translations. For example, some wrong translations occur not due
to bugs in the code, but because the source code and the translated code fail to produce the same
output when given the same input.

A.2 GENERATION OF PYTHON UNIT TEST DATASET

Why do we need to use translated Python unit tests? Firstly, in the process of generating the error
correction training dataset, we translate a Java function to multiple Python functions (beam size >
1), and then combine the first failed Python function with the first successful Python function to
form an error correction language pair. Therefore, it is crucial to ensure that the Java function and
its corresponding multiple Python functions have equivalent unit test dataset, as well as multiple
Python functions under the same Java function have the same unit test dataset. Secondly, during the
testing phase, we need to verify that the wrong Python function, the corrected Python function, and
its source Java function have an equivalent unit test dataset, as well as the wrong Python function
and the corrected Python function have the same unit test dataset. Based on the above two cases,
directly translating Java unit tests into Python unit tests is a simple and effective approach.

How to ensure the feasibility of the translated unit test dataset? For the translation process3 from
Java unit test dataset to Python unit test dataset and the screening process of source Java functions,
we refer to the work of TransCoder-ST (Roziere et al., 2020). In Table 6, we show the process of
using the error correction model to rectify the wrong Python function generated by TransCoder-
ST, where Python unit tests are the translations of Java unit tests. In our training dataset and test
dataset, each wrong Python function has a matching correct function (ground truth) that passes the
corresponding unit test dataset, and almost every unit test dataset contains 3∼6 unit tests. This
ensures that in the training dataset, the wrong function and the correct function under the same error
correction language pair use the same unit test dataset. It also guarantees that during the testing
phase, if the wrong function can be corrected, the corrected function will successfully pass all unit
tests. More importantly, multiple unit tests under each unit test dataset assure the reliability of the
final unit test result.

Table 6: Translation process from Java unit tests to Python unit tests

Type Details

Source Java function public static double clamp (double value, double min, double max) {
if (value < min) {

return min;
}
if (value > max) {

return max;
}
return value;

}

Continued on next page

3https://github.com/facebookresearch/CodeGen/blob/main/codegen_sources/
test_generation/evosuite_tests_translators/evosuite_to_python.py

13

https://github.com/facebookresearch/CodeGen/blob/main/codegen_sources/test_generation/evosuite_tests_translators/evosuite_to_python.py
https://github.com/facebookresearch/CodeGen/blob/main/codegen_sources/test_generation/evosuite_tests_translators/evosuite_to_python.py


Published as a conference paper at ICLR 2024

Type Details

Wrong Python function def func (a0, a1, a2):
if a0 < a1:

return min
if a0 > a2:

return max
return a0

Corrected Python
function

def func (a0, a1, a2):
if a0 < a1:

return a1
if a0 > a2:

return a2
return a0

Java unit test dataset # This file was automatically generated by EvoSuite
# Thu Jan 26 21:55:01 GMT 2023

import org.junit.Test;
import static org.junit.Assert.*;
import org.evosuite.runtime.EvoRunner;
import org.evosuite.runtime.EvoRunnerParameters;
import org.junit.runner.RunWith;

@RunWith(EvoRunner.class) @EvoRunnerParameters(mockJVMNonDeterminism = true, useVFS =
true, useVNET = true, resetStaticState = true, separateClassLoader = true)

public class CLASS_64ef580337f1_ESTest extends CLASS_64ef580337f1_ESTest_scaffolding {

@Test(timeout = 4000)
public void test0() throws Throwable {

double double0 = CLASS_64ef580337f1.clamp((-1275.777374486698),
(-72868.4857075), 42848.99);

assertEquals((-1275.777374486698), double0, 1.0E-4);
}

@Test(timeout = 4000)
public void test1() throws Throwable {

double double0 = CLASS_64ef580337f1.clamp(44640.610466346, (-42604.8), (-1.0));
assertEquals((-1.0), double0, 1.0E-4);

}

@Test(timeout = 4000)
public void test2() throws Throwable {

double double0 = CLASS_64ef580337f1.clamp((-2306.1415894012503),
44640.610466346, (-1.0));

assertEquals(44640.610466346, double0, 1.0E-4);
}

@Test(timeout = 4000)
public void test3() throws Throwable {

double double0 = CLASS_64ef580337f1.clamp(0.0, 0.0, (-1.0));
assertEquals((-1.0), double0, 1.0E-4);

}

@Test(timeout = 4000)
public void test4() throws Throwable {

double double0 = CLASS_64ef580337f1.clamp((-84626.14348206822), 0.0, 0.0);
assertEquals(0.0, double0, 1.0E-4);

}

@Test(timeout = 4000)
public void test5() throws Throwable {

CLASS_64ef580337f1 cLASS_64ef580337f1_0 = new CLASS_64ef580337f1();
}

}

Continued on next page

14



Published as a conference paper at ICLR 2024

Type Details

Python unit test dataset import numpy as np
import math
from math import *
import collections
from collections import *
import heapq
import itertools
import random
import sys
import unittest

#TOFILL
class CLASS_64ef580337f1(unittest.TestCase):

def test0(self):
double0 = f_filled((-1275.777374486698), (-72868.4857075), 42848.99)
assert abs((-1275.777374486698) - double0) <= 1.0E-4

def test1(self):
double0 = f_filled(44640.610466346, (-42604.8), (-1.0))
assert abs((-1.0) - double0) <= 1.0E-4

def test2(self):
double0 = f_filled((-2306.1415894012503), 44640.610466346, (-1.0))
assert abs(44640.610466346 - double0) <= 1.0E-4

def test3(self):
double0 = f_filled(0.0, 0.0, (-1.0))
assert abs((-1.0) - double0) <= 1.0E-4

def test4(self):
double0 = f_filled((-84626.14348206822), 0.0, 0.0)
assert abs(0.0 - double0) <= 1.0E-4

if __name__ == ’__main__’:
unittest.main()

A.3 ITERATIVE CODE CORRECTION

To verify the error correction capability of kNN-ECD, we conduct multi-round experiments on
kNN-ECD, trying to perform iterative code correction on the same datastore. We carry out ex-
periments from the following two aspects. On one hand, we iteratively input the wrong source
translations into kNN-ECD and compare the overlap of the outputs. The results reveal a significant
overlap in corrected translations across multiple trials, with only minor differences in error correc-
tion rates ranging from 0.012% to 0.047%. On the other hand, we also attempted to repeatedly feed
the wrong output of kNN-ECD back into kNN-ECD for multiple rounds. The experimental results
indicate that only 2.5% of wrong functions are re-corrected in the first round. In subsequent rounds,
no more than 0.4% of wrong functions are re-corrected each time. The above experiments illustrate
that kNN-ECD usually corrects all errors in wrong translation at once, with little additional gain
from iterative error correction.

A.4 STABILITY ANALYSIS.

We analyze the stability of the error correction model in terms of both construction and implementa-
tion. In the construction phase, we randomly and evenly divide the error correction training dataset
into m sub-datasets, and then generate the corresponding sub ECDi∈[1,m]. In Figure 3, we sepa-
rately test the independent error correction performance of sub ECDi∈[1,m] under the ECSm, where
{sub ECD1, sub ECD2, . . . , sub ECDm} show close error correction rates within the same system.
Meanwhile, comparing sub ECDavg of different kNN-ECSm in Figure 5, we find that the larger the
sub-datastore, the higher the error correction performance. The above observations indicate that the
datastore can stably learn correction information from the error correction dataset during the con-
struction process. Moving on to the implementation phase, we repeatedly feed the same test dataset
into kNN-ECD, and then compare the overlap of the outputs. The results demonstrate a significant
overlap in the corrected translations across multiple trials, with only slight differences in error cor-
rection rates ranging from 0.012% to 0.047%. This implies that the error correction model exhibits
strong stability during the implementation process, enabling users to trust the output of the model.

15



Published as a conference paper at ICLR 2024

Figure 3: Independent error correction performance of kNN-sub ECDi∈[1,m] under kNN-
ECSm. In the same error correction system, where sub ECDs have similar memory storage, we
compare their independent error correction performance respectively. We find that sub ECDs with
approximate information storage capacity exhibit close error correction capabilities. This indicates
that datastore can stably learn and apply error correction information from error correction language
pairs.

16



Published as a conference paper at ICLR 2024

Table 7: The decision-making basis for each generated token in the corrected translation.
Type Details
Java function public static void foo ( int [ ] buf ) for ( int i = 0 ; i ¡ buf . length ; i ++ ) buf [ i ] = 7 ;
Wrong Python function def func ( a0 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b = 7 NEW LINE DEDENT DEDENT
Corrected function def func ( a0 ) : NEW LINE INDENT for b in range ( len ( a0 ) ) : NEW LINE INDENT a0 [ b ] = 7 NEW LINE DEDENT

DEDENT
Decision-making basis ⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for ( b , b ) in enumerate ( a0 ) : NEW LINE INDENT a0 [ b ] = a1 NEW LINE

DEDENT DEDENT’, ”⟩ → ‘def’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in range ( a1 ) : NEW LINE INDENT yield a0 NEW LINE DEDENT
DEDENT’, ‘def’⟩ → ‘func ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in range ( a1 ) : NEW LINE INDENT yield a0 NEW LINE DEDENT
DEDENT’, ‘def func’⟩ → ‘( ’
⟨ ‘def func ( a0 ) : NEW LINE INDENT b = 0 NEW LINE for c in a0 : NEW LINE INDENT b = b + 3 NEW LINE DEDENT
return b NEW LINE DEDENT’, ‘def func (’⟩ → ‘a0 ’
⟨ ‘def func ( a0 ) : NEW LINE INDENT sum = 0 NEW LINE for b in a0 : NEW LINE INDENT sum += b NEW LINE
DEDENT c = d = sum NEW LINE for b in a0 : NEW LINE INDENT d -= b NEW LINE if c == d : NEW LINE INDENT return
b NEW LINE DEDENT c += b NEW LINE DEDENT return - 1 NEW LINE DEDENT’, ‘def func ( a0’⟩ → ‘) ’
⟨ ‘def func ( a0 ) : NEW LINE INDENT b = 0 NEW LINE for c in a0 : NEW LINE INDENT b += c NEW LINE DEDENT
return sum NEW LINE DEDENT’, ‘def func ( a0 )’⟩ → ‘: ’
⟨ ‘def func ( a0 ) : NEW LINE INDENT for ( b , c ) in enumerate ( a0 ) : NEW LINE INDENT if not c . isalnum ( ) :
NEW LINE INDENT return b - 1 NEW LINE DEDENT DEDENT return len ( a0 ) - 1 NEW LINE DEDENT’, ‘def func ( a0 )
:’⟩ → ‘NEW LINE ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE’⟩ → ‘INDENT ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT’⟩ → ‘for ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for’⟩ → ‘b ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b’⟩ → ‘in ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b in’⟩ → ‘range ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b in range’⟩ → ‘( ’
⟨ ‘def func ( a0 ) : NEW LINE INDENT sum = 0 NEW LINE for b in a0 : NEW LINE INDENT sum += b NEW LINE
DEDENT c = d = sum NEW LINE for b in a0 : NEW LINE INDENT d -= b NEW LINE if c == d : NEW LINE INDENT return
b NEW LINE DEDENT c += b NEW LINE DEDENT return - 1 NEW LINE DEDENT’, ‘def func ( a0 ) : NEW LINE INDENT
sum = 0 NEW LINE for b in range (’⟩ → ‘len ’
⟨ ‘def func ( a0 ) : NEW LINE INDENT sum = 0 NEW LINE for b in a0 : NEW LINE INDENT sum += b NEW LINE
DEDENT c = d = sum NEW LINE for b in a0 : NEW LINE INDENT d -= b NEW LINE if c == d : NEW LINE INDENT return
b NEW LINE DEDENT c += b NEW LINE DEDENT return - 1 NEW LINE DEDENT’, ‘def func ( a0 ) : NEW LINE INDENT
sum = 0 NEW LINE for b in range ( len’⟩ → ‘( ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b in range ( len (’⟩ → ‘a0 ’
⟨ ‘def func ( a0 ) : NEW LINE INDENT sum = 0 NEW LINE for b in a0 : NEW LINE INDENT sum += b NEW LINE
DEDENT c = d = sum NEW LINE for b in a0 : NEW LINE INDENT d -= b NEW LINE if c == d : NEW LINE INDENT return
b NEW LINE DEDENT c += b NEW LINE DEDENT return - 1 NEW LINE DEDENT’, ‘def func ( a0 ) : NEW LINE INDENT
sum = 0 NEW LINE for b in range ( len ( a0’⟩ → ‘) ’
⟨ ‘def func ( a0 ) : NEW LINE INDENT sum = 0 NEW LINE for b in a0 : NEW LINE INDENT sum += b NEW LINE
DEDENT c = d = sum NEW LINE for b in a0 : NEW LINE INDENT d -= b NEW LINE if c == d : NEW LINE INDENT return
b NEW LINE DEDENT c += b NEW LINE DEDENT return - 1 NEW LINE DEDENT’, ‘def func ( a0 ) : NEW LINE INDENT
sum = 0 NEW LINE for b in range ( len ( a0 )’⟩ → ‘) ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b in range ( len ( a0 ) )’⟩ → ‘: ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b in range ( len ( a0 ) ) :’⟩ → ‘NEW LINE ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b in range ( len ( a0 ) ) : NEW LINE’⟩ → ‘INDENT ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b in range ( len ( a0 ) ) : NEW LINE INDENT’⟩ → ‘a0 ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b in range ( len ( a0 ) ) : NEW LINE INDENT a0’⟩ → ‘[ ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b in range ( len ( a0 ) ) : NEW LINE INDENT a0 [’⟩ → ‘b ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b in range ( len ( a0 ) ) : NEW LINE INDENT a0 [ b’⟩ → ‘] ’
⟨ ‘def func ( a0 ) : NEW LINE INDENT [ a0 ] = 0 NEW LINE DEDENT’, ‘def func ( a0 ) : NEW LINE INDENT a0 [ 0 ]’⟩ →
‘= ’
⟨ ‘def func ( a0 ) : NEW LINE INDENT b = a0 . find ( b’ ¿ ’ ) NEW LINE c = 7 NEW LINE return a0 [ c : b ] NEW LINE
DEDENT ¡/s¿”, ”def func ( a0 ) : NEW LINE INDENT b = a0 . find ( ’ ¿ ’ ) NEW LINE c = ’ ⟩ → ‘7 ’
⟨ ‘def func ( a0 = None ) : NEW LINE INDENT return 8 if a0 is None else 7 NEW LINE DEDENT’, ‘def func ( a0 ) :
NEW LINE INDENT return 8 if a0 == 256 else 7’⟩ → ‘NEW LINE ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b in range ( len ( a0 ) ) : NEW LINE INDENT a0 [ b ] += a1 NEW LINE’⟩ →
‘DEDENT ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b in range ( len ( a0 ) ) : NEW LINE INDENT a0 [ b ] += a1 NEW LINE
DEDENT’⟩ → ‘DEDENT ’
⟨ ‘def func ( a0 , a1 ) : NEW LINE INDENT for b in a0 : NEW LINE INDENT b += a1 NEW LINE DEDENT DEDENT’, ‘def
func ( a0 , a1 ) : NEW LINE INDENT for b in range ( len ( a0 ) ) : NEW LINE INDENT a0 [ b ] += a1 NEW LINE DEDENT
DEDENT’⟩ → ‘EOS ’

* ⟨·, ·⟩ → ‘* ’ : ⟨·, ·⟩ represents the decision-making basis for each generated token ‘* ’ in the corrected Python function.
* NEW LINE, INDENT, DEDENT represent newline, indentation, dedent in code formatting, respectively.
* EOS: end of sentence.

17



Published as a conference paper at ICLR 2024

(a) Correction performance (b) Translation performance

Figure 4: The influence of diverse datastore distributed structures. We find that the distributed
architecture can effectively enhance the error correction performance by efficiently learning and
applying massive error correction information, thereby improving translation accuracy. Meanwhile,
we also explore the impact of the unified name rule on the error correction model. This approach
exhibits a positive gain effect, effectively improving the model’s error correction capabilities.

Figure 5: The influence of datastore capacity on translation accuracy. We observe a positive
correlation between the sub-datastore capacity and error correction performance. The larger the
sub-datastore, the higher the error correction capability of the sub-datastore. This finding suggests
that the datastore can robustly acquire and integrate correction information from the error correction
language pairs.

18


	Introduction
	Related Work
	Approach
	Creation of Error Correction Dataset
	error correction using kNN-ECD
	error correction using kNN-ECSm

	experiments
	experimental details
	results and discussion

	Conclusion
	Appendix
	Evaluation
	Generation of Python unit test dataset
	Iterative code correction
	Stability analysis.


