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ABSTRACT

Weakly supervised learning aims to construct effective predictive models from
imperfectly labeled data. The recent trend of weakly supervised learning has fo-
cused on how to learn an accurate classifier from completely unlabeled data, given
little supervised information such as class priors. In this paper, we consider a
newly proposed weakly supervised learning problem called multi-class classifica-
tion from multiple unlabeled datasets, where only multiple sets of unlabeled data
and their class priors (i.e., the proportion of each class) are provided for training
the classifier. To solve this problem, we first propose a classifier-consistent method
(CCM) based on a probability transition function. However, CCM cannot guar-
antee risk consistency and lacks of purified supervision information during train-
ing. Therefore, we further propose a risk-consistent method (RCM) that progres-
sively purifies supervision information during training by importance weighting.
We provide comprehensive theoretical analyses for our methods to demonstrate
the statistical consistency. Experimental results on multiple benchmark datasets
across various settings demonstrate the superiority of our proposed methods.

1 INTRODUCTION

Deep learning techniques have achieved great success in a variety of application domains (LeCun
et al., 2015), while they heavily rely on large-scale fully labeled training data. In real-world scenar-
ios, collecting such strong supervision could be costly, because accurate manual annotations are ex-
pensive and time-consuming. Such a challenge motivated extensive research on weakly supervised
learning, which aims to learn satisfactory predictive models with weak supervision. According to
the different types of weak supervision, various learning problems are included in the framework
of weakly supervised learning, such as semi-supervised learning (Miyato et al., 2018), noisy-label
learning (Han et al., 2018), and partial-label learning (Wang et al., 2022).

In this paper, we consider another challenging weakly supervised learning problem (Tang et al.,
2022) called multi-class classification from multiple unlabeled datasets (MCMU in short), where
the goal is to learn a multi-class classifier from multiple unlabeled datasets with only class-prior
probabilities (each probability indicates the proportion of examples belonging to each class). These
class-prior probabilities are essential and are the sole supervision information used in this work,
without which the MCMU problem becomes fully unsupervised. The MCMU problem could be
frequently encountered in many real-world scenarios. For example, it is important to predict the
demographic information of users in social networks for practical policy-making (Culotta et al.,
2015). But due to the data privacy, collecting the information of individual users may be prohibitive.
Fortunately, it is easier to obtain multiple unlabeled datasets, with their class priors collected from
pre-existing census data. In this case, the studied MCMU problem can be naturally suited.

This MCMU problem stems from a classical problem called learning from label proportions (LLP)
(Yu et al., 2014; Liu et al., 2019), while there are significant differences between our work and
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Table 1: Comparisons of our proposed method with previous studies on relevant problem settings.

Methods Deal with Deal with Theoretical No negative Risk
2` class 2` sets guarantee training risk measure

Lu et al. (2019) ˆ ˆ ✓ ˆ Classification risk
Menon et al. (2015) ˆ ˆ ✓ ˆ Balanced risk

Lu et al. (2020) ˆ ˆ ✓ ✓ Classification risk
Zhang et al. (2020b) ˆ ✓ ✓ ˆ Balanced risk
Tsai & Lin (2020) ˆ ✓ ˆ ✓ Proportion risk

Lu et al. (2021) ˆ ✓ ✓ ✓ Classification risk
Tang et al. (2022) ✓ ✓ ✓ ˆ Classification risk

Our proposed ✓ ✓ ✓ ✓ Classification risk

previous LLP studies. In the problem setting of our work, the unlabeled sets are sampled from
distributions with different class priors, while most previous LLP studies considered unlabeled sets
sampled from the same distribution (Liu et al., 2019; Tsai & Lin, 2020). Besides, most previous
deep LLP methods conducted empirical risk minimization (ERM) (Dery et al., 2017; Tsai & Lin,
2020) at the proportion level, while we aim to conduct ERM at the instance level so that the learning
consistency can be guaranteed. These differences make our studied MCMU more applicable than
LLP. For example, MCMU can learn from an extremely small number of unlabeled sets, while most
previous LLP methods that treat each set as a training unit cannot work well in this case.

The key challenge of MCMU is how to derive effective risk estimators for conducting ERM at the
instance level. To address this challenge, Tang et al. (2022) proposed an unbiased risk estimator for
MCMU so that the expected classification risk of fully supervised data can be unbiasedly estimated
by given training data, which is also the sole work on MCMU to the best of our knowledge. However,
this method results in an unreasonable training objective caused by the negative empirical risk.
Although a partial-risk regularization term is further proposed to alleviate the negative empirical
risk issue, the unbiasedness of the risk estimator is actually broken, hence the theoretical guarantee
cannot hold, and thus the performance is still suboptimal.

To address the above limitations, we first propose a classifier-consistent method (CCM) based on a
probability transition function. CCM can be considered as a multi-class extension of Lu et al. (2021)
where they only studied the binary version of MCMU by solving a surrogate set classification prob-
lem with a probability transition function. However, CCM cannot guarantee risk consistency and
fails to consider differentiating the true label of each training example, which could limit its em-
pirical performance due to the lack of any purified supervision information. Therefore, we further
propose a risk-consistent method (RCM) via importance weighting, which can progressively pu-
rify supervision information during the training process by dynamically calculating the weights to
identify the true label of each training example.

The main contributions of our paper can be summarized as follows:
• We propose a classifier-consistent method (CCM) based on a probability transition function,

which can be considered as a multi-class extension of Lu et al. (2021).

• We propose a risk-consistent method (RCM) via importance weighting. RCM is superior to CCM
because it can hold risk consistency and progressively purify supervision information.

• We provide comprehensive theoretical analyses for our proposed methods CCM and RCM to
demonstrate their theoretical guarantees.

• We conduct extensive experiments on benchmark datasets with various settings. Experimental
results demonstrate that CCM works well but RCM consistently outperforms CCM.

2 RELATED STUDIES ON RELEVANT PROBLEM SETTINGS

In this section, we introduce necessary notations, related studies, and the problem setting of our
work.
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2.1 MULTI-CLASS CLASSIFICATION FROM FULLY LABELED DATA

Let us begin with introducing the ordinary multi-class classification setting. Let the feature space be
X Ď Rd and the label space be Y “ rks, where d is a positive integer denotes the input dimension.
rks “ t1, 2, . . . , ku where k denotes the number of classes. Let x P X be an instance and y P Y
be a label, and each example px, yq P X ˆ Y is assumed to be drawn from an underlying joint
distribution with probability density ppx, yq. The goal of multi-class classification is to learn a
multi-class classifier f : X ÞÑ Rk that minimizes the classification risk defined as

Rpfq “ Eppx,yqrLpfpxq, yqs, (1)

where Eppx,yq denotes the expectation over ppx, yq, and L : Rk ˆ Y ÞÑ R` denotes a multi-class
classification loss (e.g., the softmax cross entropy loss), which measures the discrepancy between
the classifier output fpxq and the true label y. Given the classifier f , the predicted label is given by
py “ argmaxjPrksfjpxq, where fjpxq is the j-th element of fpxq.

2.2 LEARNING FROM LABEL PROPORTIONS

LLP (Yu et al., 2014; Liu et al., 2019) considers a problem where the supervision is given to a set
of data and the supervision is the proportion of instances from each class in the set. This super-
vision provides similar information compared with class priors. However, MCMU and LLP are
significantly different from each other, and here we describe the differences between them:
• From the distribution perspective: In MCMU, the unlabeled sets are sampled from distributions

with different class priors, while the unlabeled sets in LLP are sampled from the same distribution.
• From the generation perspective: In MCMU, the generation process of a data point is: class

priors Ñ ground truth label y Ñ data point x, while in LLP, the generation process is: a set of
data points X Ñ a set of ground truth label y Ñ the proportion supervision.

• From the dependence perspective: In MCMU, given the class priors, the data points in the same
set are independent on each other, while in LLP, given the label proportions, the data points in the
same set are dependent from each other.

Most previous studies on LLP try to solve this problem by the empirical proportion risk minimization
(ERPM) (Dery et al., 2017; Tsai & Lin, 2020), which aims to minimize the distance between the
approximated label proportion by the classification model and the truth label proportion. There are
various approaches to measuring this distance, including squared error or KL-divergence for binary
classification (Dery et al., 2017; Tsai & Lin, 2020) and cross-entropy for multi-class classification
(Dulac-Arnold et al., 2019; Liu et al., 2019).

2.3 PREVIOUS STUDIES ON CLASSIFICATION FROM UNLABELED DATASETS

Recent studies (Lu et al., 2019; Luo & Orabona, 2010) showed that it is possible to train a binary
classifier from only two unlabeled datasets with different class priors. Hence, many researchers
began to investigate classification from unlabeled datasets (Scott & Zhang, 2020; Lu et al., 2021;
Tang et al., 2022) and proposed effective solutions. However, compared with our study in this paper,
these previous methods normally have the following limitations:
• Limited to the binary classification: Most previous methods focus on the binary classification

setting (Menon et al., 2015; Lu et al., 2019; Luo & Orabona, 2010; Zhang et al., 2020b; Scott &
Zhang, 2020; Lu et al., 2021) and cannot deal with the multi-class classification setting.

• Limited to the specific number of unlabeled sets: Some methods are limited to a specific
number of unlabeled sets, such as the number of unlabeled sets m “ 2 (Lu et al., 2019; Luo &
Orabona, 2010) or m “ 2k (k P N`) (Scott & Zhang, 2020).

• Limited by the negative empirical risk: Some methods would encounter the negative empirical
risk issue (Lu et al., 2019; Tsai & Lin, 2020; Tang et al., 2022), i.e., the risk could empirically
become negative during the training process. This poses a serious challenge to the optimization
process since it is problematic to minimize an objective that can be unbounded from below.

In our work, we focus on multi-class classification from multiple unlabeled sets and the empirical
risk of our proposed methods would never become negative. Table 1 shows the comparisons of our
work with previous studies on relevant problem settings.
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2.4 MULTI-CLASS CLASSIFICATION FROM MULTIPLE UNLABELED DATASETS

Given m (m ě 2) sets of unlabeled data D :“
Ťm

i“1 Ui where Ui “ txi,ru
ni
r“1 is a collection of ni

data points drawn from a mixture of class-conditional densities:

Ui
i.i.d
„ p̄ipxq “ ppx | ȳ “ iq “

ÿk

j“1
θij ¨ ppx | y “ jq,

where θ P Rmˆk and 0 ď θij ď 1 denotes the j-th class prior of the i-th unlabeled set, and
ȳ P t1, 2, . . . ,mu denotes the index of the m sets of unlabeled instances.

We assume that these class priors form a full column rank matrix θ :“ pθijq P r0, 1smˆk with the
constraint

řk
j“1 θij “ 1. Let π denote the original class priors (the class priors over all m unlabeled

sets), i.e., πj “ ppy “ jq and ρj denote the probability of a data point belonging to the i-th set,
i.e., ρi “ ppȳ “ iq. Throughout the paper, we assume that the class priors of each unlabeled set are
given, which means θ is accessible. Then, πj and ρj could be estimated by

řm
i“1 ni ¨ θij{

řm
i“i ni

and nj{
řm

i“1 ni respectively. Although we can only access the unlabeled training sets
Ťm

i“1 Ui, our
goal in this paper is to learn a multi-class classifier that can make accurate predictions on unseen
individual instances.

3 THE PROPOSED CONSISTENT LEARNING METHODS

In this section, we present our two statistically consistent methods, i.e., the classifier-consistent
method (CCM) and the risk-consistent method (RCM). We say a method is classifier-consistent if
the learned classification model by this method would converge to the optimal classification model
obtained by minimizing the classification risk in Eq. (1) and we say a method is risk-consistent if
this method holds a risk function that is exactly equivalent to the classification risk in Eq. (1). CCM
can be viewed as a multi-class extension of Lu et al. (2021), following which we also consider the
MCMU problem as a surrogate set classification problem, i.e., to predict which unlabeled set an
instance belongs to. Then we theoretically showed that we can transform the posterior probabilities
of ordinary labels to the posterior probabilities of surrogate sets, via a probability transition function.
In this way, we can obtain the desired multi-class classifier from the learned surrogate set classifier.
However, CCM suffers from both theoretical and practical limitations because it cannot guarantee
risk consistency and lacks purified supervision information.

Therefore, we further propose a risk-consistent method (RCM). Concretely, we rewrite the risk
shown in Eq. (1) into an equivalent form via importance weighting, which can well handle the given
unlabeled datasets. RCM dynamically calculates the importance weights during the training process,
which enables RCM to differentiate the true label of each training example and progressively purify
supervision information during the training process. It is noteworthy that U-PRR (Tang et al., 2022)
is also a method that holds risk consistency, which rewrites the classification risk by a pseudo-inverse
matrix. However, our proposed RCM is superior to U-PRR according to the following aspects: 1)
RCM utilizes both the classifier information and the prior matrix information to dynamically cal-
culate importance weights while U-PRR only statically calculates weights solely based on the prior
matrix. 2) U-PRR suffers from the issue of negative empirical risk, while RCM intrinsically avoids
this issue by using a non-negative risk estimator. 3) RCM does not involve any hyper-parameters in
the training objective while U-PRR needs to tune several hyper-parameters for better training perfor-
mance. 4) RCM consistently exhibits superior performance across various settings and demonstrates
a substantial performance advantage in random matrix settings.

In many popular WSL (Weakly Supervised Learning) problems (such as partial-label learning (Wang
et al., 2022), noisy label learning (Han et al., 2018), and multiple-instance learning (Zhou et al.,
2009)), we could usually have access to weakly supervised labels. However, in the MCMU problem,
neither a ground-truth label nor a weakly supervised label is accessible for each training example,
which makes the classification risk in Eq. (1) cannot be easily recovered from the unlabeled sets. To
deal with this challenge, Lu et al. (2021) treated the indexes of the m sets as surrogate labels, which
would be convenient for deriving a meaningful training objective.

Following this strategy, by treating ȳ as a surrogate label, we could transform the m sets unlabeled
data

Ťm
i“1 Ui into rD “ tpxprq, ȳprqqunr“1 where n is the total number of data points. Then, we could

bridge the two posterior probabilities ppy | xq and ppȳ | xq by the following lemma:
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Lemma 3.1. Let ηpxq and η̄pxq be k-dimensional and m-dimensional probabilistic vectors re-
spectively, where ηjpxq and η̄ipxq denote ppy “ j | xq and ppȳ “ i | xq respectively. Then we
have

η̄ipxq “
ρi ¨ r

řk
j“1 θij ¨

ηjpxq

πj
s

řm
i“1 ρi ¨ r

řk
j“1 θij ¨

ηjpxq

πj
s

“
ρi ¨ αJ

i ηpxq

βJηpxq
, (2)

where αi “ rαi1, . . . , αiks and αij “
θij
πj

and β “
řm

i“1 ρi ¨ αi.

The detailed derivation of Lemma 3.1 is provided in Appendix A.

3.1 CLASSIFIER-CONSISTENT METHOD VIA PROBABILITY TRANSITION FUNCTION

For the classifier-consistent method, we aim to solve the surrogate set classification problem by
standard multi-class classification method. We use ηjpxq to denote the probability ppy “ j | xq,
which can be approximated by the softmax output of the classification model. As shown in Eq. (2),
η̄jpxq could be obtained by substituting ηpxq. We define T p¨q : Rk Ñ Rm as a transition function
to represent this transformation, i.e., η̄pxq “ T pηpxqq. It is noteworthy that the coefficients in Tip¨q

are all constant as shown in Eq. (2) and T p¨q is deterministic. Then the learning objective of CCM
could be defined as

Rccmpfq “ Eppx,ȳqrLpη̄pxq, ȳqs. (3)
It is worth noting that the loss function L here needs to handle probability vectors (e.g., the cross
entropy loss without the softmax processing). In this way, the empirical version of Rccmpfq can be
expressed as

pRccmpfq “
1

n

´

ÿn

i“1
Lpη̄pxpiqq, ȳpiqq

¯

. (4)

The pseudo-code of the CCM is provided in Algorithm 1.

Then, in order to prove that this method is classifier-consistent, we introduce the following lemmas:
Lemma 3.2. Let θij ‰ θis, @i P r1, . . . ,ms and @j, s P r1, . . . , ks. Then, the transition function
T p¨q is an injective function in the domain r0, 1s.

The proof is provided in Appendix B.1. A similar proof can also be found in Lu et al. (2021).
Lemma 3.3. If certain loss functions are used (e.g., the softmax cross entropy loss), by minimizing
the expected risk Rpfq, the optimal mapping g‹ satisfies g‹

i pxq “ ppy “ i|xq.

The proof is provided in Appendix B.2. The same proof can also be found in (Yu et al., 2018; Feng
et al., 2020). Then, we have the following theorem.
Theorem 3.4. When the conditions in Lemma 3.2 and Lemma 3.3 are satisfied, the minimizer
fccm “ argminfPF Rccmpfq is also the true minimizer f‹ “ argminfPF Rpfq, i.e., fccm “ f‹

(classifier consistency).

The proof is provided in Appendix B.3.

Let pfccm “ argminfPF
pRccmpfq be the empirical risk minimizer, and f‹ “ argminfPF Rpfq be

the true risk minimizer. Besides, we define the function space Hy for the label y P Y as th : x Ñ

fypxq | f P Fu. Let RnpHyq be the expected Rademacher complexity (Bartlett & Mendelson,
2002) of Hy with sample size n, then we have the following theorem.
Theorem 3.5. Let the loss function LpT pηpxqq, ȳq be L1-Lipschitz with respect to fpxq (0 ă L1 ă

8) and bounded by C 1
ℓ, i.e., supxPX ,fPF,ȳPrms LpT pηpxqq, ȳq ď C 1

ℓ. Then for any δ ą 0, with
probability at least 1 ´ δ,

Rccmp pfccmq ´ Rccmpf‹q ď 4
?
2L1

ÿk

y“1
RnpHyq ` 2C 1

ℓ

d

log 2
δ

2n
.

The proof is provided in Appendix B.4. Generally, RnpHyq can be upper bounded by CH{
?
n for

a positive constant CH (Lu et al., 2020; Golowich et al., 2017). Theorem 3.5 demonstrates that
the empirical minimizer pfccm learned by CCM would convergent to the minimizer f‹ learned from
clean data as the training sample size approaches infinity.
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3.2 RISK-CONSISTENT METHOD VIA IMPORTANCE WEIGHTING

For the risk-consistent method, our strategy is to solve the MCMU problem by risk rewriting (Gret-
ton et al., 2009), i.e., transforming the classification risk into an equivalent form that can be accessi-
ble from multiple unlabeled sets with class priors.
Theorem 3.6. The classification risk Rpfq in Eq. (1) can be equivalently expressed as follows:

Rrcmpfq “ Eppx,ȳqr
ÿk

j“1
ppy “ j | ȳ,xqLpfpxq, jqs. (5)

The proof of Theorem 3.6 is provided in Appendix C.1. It is worth noting that the loss function
L here needs to handle logit vectors before the softmax processing (e.g., the softmax cross entropy
loss). It can be observed that the Rrcm works as an importance-weighting loss due to the probability
function ppy “ j | ȳ,xq, and ppy “ j | ȳ,xq indicates the probability of x in ȳ-th unlabeled set
belonging to class j.

Here, ppy “ j | ȳ,xq can be calculated by

ppy “ j | ȳ,xq “
ppx | y “ j, ȳqppy “ j, ȳq

ppȳ,xq
“

ppx | y “ jqppy “ j | ȳqppȳq

ppȳ,xq

“

ppy“j|xq

ppy“jq
ppy “ j | ȳqppȳq

ppȳ | xq
“

ηjpxq

πj
θȳjρȳ

η̄ȳpxq
“

ηjpxqαȳjβ
Jηpxq

αJ
ȳ ηpxq

. (6)

The above derivation uses the fact that ppx | y “ jq “ ppx | y “ j, ȳq, since we could obtain the
underlying class-conditional distribution independent from the surrogate label, given the true label.
After obtaining the formulation of Rrcm, its empirical version pRrcm can be expressed as

pRrcm “
ÿn

v“1

´

ÿk

j“1
ppy “ j | ȳpvq,xpvqqLpfpxpvqq, jq

¯

. (7)

Now, the problem becomes how to accurately estimate ppy “ j | ȳ,xq, since cannot not be di-
rectly accessible from the unlabeled datasets. We apply the softmax function on the outputs of the
classification model fpxq to approximate ηpxq, concretely, we use exppfjpxqq{

řk
i“1 exppfipxqq

to approximate ηjpxq. Then, by substituting the approximated ηpxq into Eq. (6), we could obtain
the estimated ppy “ j | ȳ,xq due to Eq. (6). The pseudo-code of RCM is shown in Algorithm 2.

From the theoretical perspective, RCM tries to recover the ordinary classification risk defined in Eq.
(1) by using the estimated probability function ppy “ j | ȳ,xq. Hence we do not impose any restric-
tions on the loss function L and the classification model f , and we could utilize classification mod-
els in RCM. From the practical perspective, RCM works in an importance-weighting manner. RCM
synthesizes the surrogate label information and the classification model information to approximate
the distribution of the ground truth label y. Specifically, when the estimated ppy “ j | ȳ,xq is small,
the label j is unlikely to be the ground truth label of the instance x, then the weight ppy “ j | ȳ,xq

on the loss Lpfpxq, jq is small. In this way, the weights help the classification model identify the
ground truth label and purify supervision information while the classification model also helps the
method to obtain better estimated weights. These two procedures work alternately and reciprocate
each other. We further provide a more detailed theoretical analysis of the influence between weights
and classification models based on the EM algorithm. The analysis is provided in Appendix C.2.

Furthermore, we derive a generalization error bound to theoretically analyze our RCM. Let pfrcm “

argminfPF
pRrcmpfq be the empirical risk minimizer. Besides, we define the function space Hy for

the label y P Y as th : x Ñ fypxq | f P Fu. Let RnpHyq be the expected Rademacher complexity
(Bartlett & Mendelson, 2002) of Hy with sample size n, then we have the following theorem.
Theorem 3.7. Let the used multi-class classification loss function Lpfpxq, yq be L-Lipschitz with
respect to fpxq (0 ă L ă 8) and bounded by Cℓ, i.e., supxPX ,fPF,yPY Lpfpxq, yq ď Cℓ. Then for
any δ ą 0, with probability at least 1 ´ δ,

E
“

pRrcmp pfrcmq
‰

´ pRrcmp pfrcmq ď 2
?
2L

ÿk

y“1
RnpHyq ` Cℓ

d

log 1
δ

2n
.
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Algorithm 1 CCM Algorithm
Input: Model f , class prior matrix θ, origi-
nal class prior π, surrogate class prior ρ, epoch
Emax, iteration Imax, unlabeled training set rD “

tpxpiq, ȳpiqquni“1;
1: for e = 1, 2, . . . , Emax do
2: Shuffle the unlabeled training set rD “

tpxpiq, ȳpiqquni“1;
3: for j “ 1, . . . , Imax do
4: Fetch mini-batch rDj from rD;
5: Calculate estimated η̄pxpiqq by sub-

stituting estimated ηpxpiqq into Eq. (2)
6: Update model f by minimizing the

empirical risk estimator pRccm in Eq. (4);
7: end for
8: end for
Output: f .

Algorithm 2 RCM Algorithm
Input: Model f , class prior matrix θ, origi-
nal class prior π, surrogate class prior ρ, epoch
Emax, warmup epoch Ewarm, iteration Imax, un-
labeled training set rD “ tpxpiq, ȳpiqquni“1.

1: Warmup f by CCM for Ewarm epochs;
2: Initialize estimated ppy|xpiq, ȳpiqq by

Eq. (6);
3: for e = 1, 2, . . . , Emax do
4: Shuffle rD “ tpxpiq, ȳpiqquni“1;
5: for j “ 1, . . . , Imax do
6: Fetch mini-batch rDj from rD;
7: Update model f by pRrcm in Eq. (7);
8: Update estimated ppy|xpiq, ȳq by

Eq. (6);
9: end for

10: end for Output: f .

The proof of Theorem 3.7 is provided in Appendix C.3. Theorem 3.7 demonstrates that the training
error pRrcmp pfrcmq would convergent to the generalization error Er pRrcmpf̂rcmqs as the the training
sample size approaches infinity.

Comparisions Between RCM and CCM. From a theoretical perspective, RCM could approximate
or simulate the distribution of real clean data by utilizing the data distribution from the unlabeled set
(by the importance-weighting schema). This means that RCM attempts to infer latent distribution
patterns similar to those of real clean data from the unlabeled data. In contrast, CCM aims to better
fit the distribution of the unlabeled set by maximizing a log-likelihood object. With a sufficient
number of samples, RCM is more accurate in predicting the labels of unseen samples because it
considers the restoration of the distribution of real clean data when modeling unlabeled data. This
enables RCM to exhibit better generalization performance when facing unknown data, making more
precise predictions for unseen samples. More detailed descriptions and explanations of RCM and
CCM are provided in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use 5 popular benchmark datasets including MNIST (LeCun et al., 1998), Kuzushiji-
MNIST (Clanuwat et al., 2018), Fasion-MNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky et al.,
2009) and SVHN (Netzer et al., 2011). In the experiments, the number of data points in all sets
is the same, and the total number of training data points is fixed, i.e., n1 “ n2 “ ¨ ¨ ¨nm and
řm

i“1 ni is equal to the size of the training dataset. The ni data points contained in i-th unlabeled set
were randomly sampled according to θi,1, θi,2, ¨ ¨ ¨ , θi,m without replacement. Since our methods is
flexible on classification models, we apply 5-layer MLP on MNIST, Kuzushiji-MNIST and Fashion-
MNIST and ResNet (He et al., 2016) is used on CIFAR10 and SVHN. For fair comparison, we apply
the same classification model on the same dataset for each method. More training details are reported
in Appendix E.1.

Class prior matrix. To better analyze the performance of our proposed methods, we construct
different class prior matrices θ in experiments. Previous studies on MCMU conduct experiments
on the diagonal-dominated matrix or the matrix conducted by two diagonal-dominated matrices.
For the m sets generated according to such a matrix, there exists at least one set Ui that the class j
accounts for the largest portion in Ui. However, this setting is hard to apply in real-world scenarios.
To better simulate real-world situations, we conduct experiments on both the diagonal-dominated
matrix and the non-diagonal-dominated random matrix.
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Table 2: Classification accuracy (mean˘std) for each methods on m “ 10. Symmetric, Asymmetric,
and Random in the table refer to Symmetric diagonal-dominated matrix, Asymmetric diagonal-
dominated matrix, and Random matrix respectively. The best and comparable methods based on the
paired t-test at the significance level 5% are highlighted in boldface.

Matrix Datasets MNIST Fashion Kuzushiji CIFAR-10 SVHN

Symmetric

Supervised 98.15 ˘ 0.05% 88.39 ˘ 0.18% 90.98 ˘ 0.18% 70.21 ˘ 0.43% 92.68 ˘ 0.29%

Unbiased 25.34 ˘ 22.65% 29.40 ˘ 10.39% 15.81 ˘ 12.21% 13.32 ˘ 11.71% 11.35 ˘ 16.07%
U-Stop 81.44 ˘ 6.91% 74.40 ˘ 5.40% 54.16 ˘ 8.27% 34.72 ˘ 5.64% 25.01 ˘ 11.06%

U-Correct 86.20 ˘ 6.21% 76.82 ˘ 3.98% 66.89 ˘ 6.25% 39.14 ˘ 3.32% 68.09 ˘ 9.88%
U-Flood 83.93 ˘ 4.93% 77.33 ˘ 3.36% 66.74 ˘ 5.23% 36.51 ˘ 3.00% 69.46 ˘ 7.18%

Prop 85.99 ˘ 5.84% 75.16 ˘ 5.02% 73.32 ˘ 4.97% 51.21 ˘ 4.12% 74.12 ˘ 7.43%
U-PRR 80.37 ˘ 6.98% 72.30 ˘ 6.97% 67.79 ˘ 7.54% 43.39 ˘ 5.42% 69.08 ˘ 8.51%

CCM 94.03 ˘ 1.47% 83.37 ˘ 1.88% 79.06 ˘ 3.73% 60.05 ˘ 5.01% 80.80 ˘ 5.81%
RCM 94.28 ˘ 2.26% 82.81 ˘ 3.13% 78.91 ˘ 3.87% 65.68 ˘ 4.88% 84.22 ˘ 6.96%

Asymmetric

Supervised 98.24 ˘ 0.15% 88.68 ˘ 0.12% 91.03 ˘ 0.20% 71.91 ˘ 0.85% 92.89 ˘ 0.25%

Unbiased 82.82 ˘ 2.01% 70.53 ˘ 1.45% 57.70 ˘ 4.52% 48.65 ˘ 1.04% 69.57 ˘ 2.41%
U-Stop 89.08 ˘ 2.18% 79.51 ˘ 0.59% 68.38 ˘ 4.61% 48.38 ˘ 0.43% 65.99 ˘ 3.42%

U-Correct 94.56 ˘ 0.49% 83.43 ˘ 0.27% 79.41 ˘ 0.74% 49.85 ˘ 1.87% 85.77 ˘ 0.62%
U-Flood 92.85 ˘ 0.26% 82.44 ˘ 0.59% 76.56 ˘ 1.24% 50.60 ˘ 0.95% 83.14 ˘ 0.58%

Prop 96.13 ˘ 0.22% 86.46 ˘ 0.37% 84.48 ˘ 0.95% 61.60 ˘ 1.33% 85.14 ˘ 0.53%
U-PRR 94.44 ˘ 0.36% 85.15 ˘ 0.28% 81.94 ˘ 0.47% 56.34 ˘ 1.16% 84.91 ˘ 0.74%

CCM 96.08 ˘ 0.22% 85.24 ˘ 0.43% 85.01 ˘ 0.28% 67.73 ˘ 1.84% 88.25 ˘ 0.77%
RCM 96.75 ˘ 0.11% 85.87 ˘ 0.15% 85.65 ˘ 0.31% 74.55 ˘ 0.27% 92.03 ˘ 0.40%

Random

Supervised 97.97 ˘ 0.13% 88.10 ˘ 0.10% 90.60 ˘ 0.13% 70.86 ˘ 0.63% 92.43 ˘ 0.22%

Unbiased 14.25 ˘ 4.55% 13.04 ˘ 2.16% 11.9 ˘ 0.82% 12.56 ˘ 2.01% 10.11 ˘ 1.70%
U-Stop 22.67 ˘ 4.81% 46.70 ˘ 23.55% 24.92 ˘ 14.76% 18.63 ˘ 2.34% 8.49 ˘ 1.20%

U-Correct 25.23 ˘ 9.32% 28.45 ˘ 10.40% 17.48 ˘ 4.44% 14.21 ˘ 3.55% 11.13 ˘ 2.92%
U-Flood 78.95 ˘ 16.06% 71.79 ˘ 8.38% 53.68 ˘ 16.12% 25.88 ˘ 3.63% 13.12 ˘ 4.50%

Prop 89.09 ˘ 1.76% 79.26 ˘ 2.25% 67.12 ˘ 2.58% 37.38 ˘ 2.75% 59.56 ˘ 3.80%
U-PRR 26.56 ˘ 3.79% 14.25 ˘ 3.53% 21.79 ˘ 2.45% 17.71 ˘ 2.37% 10.05 ˘ 2.31%

CCM 91.92 ˘ 1.19% 78.07 ˘ 6.38% 72.62 ˘ 2.33% 42.31 ˘ 2.99% 72.73 ˘ 4.70%
RCM 95.04 ˘ 0.58% 81.11 ˘ 2.13% 78.60 ˘ 2.61% 50.51 ˘ 4.59% 78.70 ˘ 7.88%

• Symmetric diagonal-dominated square matrix: In this matrix, the largest element in each row
is the element on the diagonal, and the rest elements in the same row are completely identical.
Concretely, the elements θij are uniformly sampled from r1{k, 1s when i “ j, and set θij “

p1 ´ θi,iq{pk ´ 1q when i ‰ j.

• Asymmetric diagonal-dominated square matrix: In this matrix, the elements on the diagonals
of θ are larger than the elements in the same row, i.e., θi,i ą θij , 1 ď i, j ď m, i ‰ j and the
non-diagonal elements in the same row may be not identical. Concretely, the class priors θij are
uniformly generated from r1, 1{ms when i ‰ j, and θi,i “ 1 ´

ř

j‰i θij .

• Random matrix: This matrix is a totally random matrix. Firstly, we uniformly generate each
element in the matrix from r0, 1s, then we assign each element θij the value θij{

řk
v“1 θiv to

ensure the summation of each row is equal to 1.
We conduct experiments not only on the square matrix but also on the non-square matrix when
m ą k. Specifically, we set m “ 2k and the non-square class-prior matrix is constructed by
concatenating two squared matrices described above.

Compared methods. We compared our proposed methods with the following methods including
Unbiased (Tang et al., 2022), U-Stop (Tang et al., 2022), U-Correct (Tang et al., 2022), U-Flood
(Tang et al., 2022), Prop (Yu et al., 2014), U-PRR (Tang et al., 2022). More detailed descriptions of
the compared methods are shown in Appendix E.2.

4.2 EXPERIMENTAL RESULTS

The experimental results on m “ 10 and m “ 20 based on the 3 class prior matrices are shown
in Table. 2 and Table. 3 respectively. To verify the robustness of the methods against the noisy
prior matrix θ, variant set numbers m and variant set sizes, we also provide additional experimental
results in Appendix F. From Table 2 and Table 3, we could observe that our proposed RCM achieves
the best performance and outperforms the other methods in most cases. In addition, RCM and
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Table 3: Classification accuracy (mean˘std) for each methods on m “ 20. Symmetric, Asymmetric,
and Random in the table refer to Symmetric diagonal-dominated matrix, Asymmetric diagonal-
dominated matrix, and Random matrix respectively. The best and comparable methods based on the
paired t-test at the significance level 5% are highlighted in boldface.

Matrix Datasets MNIST Fashion Kuzushiji CIFAR-10 SVHN

Symmetric

Supervised 98.20 ˘ 0.22% 88.29 ˘ 0.16% 90.64 ˘ 0.39% 70.89 ˘ 1.17% 92.45 ˘ 0.25%

Unbiased 57.02 ˘ 13.03% 51.02 ˘ 9.17% 36.42 ˘ 6.45% 30.14 ˘ 11.81% 40.87 ˘ 17.05%
U-Stop 88.48 ˘ 1.66% 80.03 ˘ 1.38% 65.75 ˘ 4.41% 42.82 ˘ 2.63% 44.58 ˘ 11.35%

U-Correct 92.41 ˘ 1.41% 82.06 ˘ 1.51% 74.10 ˘ 3.85% 46.33 ˘ 3.15% 78.43 ˘ 5.38%
U-Flood 90.07 ˘ 2.59% 81.16 ˘ 1.44% 71.80 ˘ 3.45% 44.66 ˘ 2.93% 78.13 ˘ 3.29%

Prop 88.36 ˘ 4.70% 79.71 ˘ 3.59% 74.12 ˘ 5.16% 54.18 ˘ 4.54% 84.66 ˘ 2.09%
U-PRR 85.75 ˘ 4.74% 78.23 ˘ 3.79% 70.08 ˘ 6.05% 47.14 ˘ 5.41% 74.96 ˘ 5.34%

CCM 94.66 ˘ 0.90% 84.07 ˘ 1.19% 80.51 ˘ 2.37% 59.71 ˘ 2.33% 81.95 ˘ 5.14%
RCM 95.47 ˘ 0.72% 84.54 ˘ 0.70% 81.56 ˘ 2.17% 66.99 ˘ 3.28% 90.24 ˘ 0.93%

Asymmetric

Supervised 98.09 ˘ 0.06% 88.36 ˘ 0.11% 90.99˘0.32% 71.34 ˘ 0.98% 92.45 ˘ 0.63%

Unbiased 85.21 ˘ 5.27% 72.69 ˘ 2.13% 62.25 ˘ 4.26% 48.69 ˘ 1.01% 69.23 ˘ 2.64%
U-Stop 90.92 ˘ 0.11% 81.47 ˘ 0.90% 69.69 ˘ 0.56% 48.49 ˘ 0.92% 61.75 ˘ 2.30%

U-Correct 94.30 ˘ 0.22% 83.59 ˘ 0.73% 78.74 ˘ 1.01% 49.67 ˘ 1.57% 84.89 ˘ 0.89%
U-Flood 93.43 ˘ 0.49% 82.68 ˘ 0.50% 76.51 ˘ 0.95% 51.72 ˘ 1.44% 82.24 ˘ 1.25%

Prop 95.84 ˘ 0.41% 85.68 ˘ 0.21% 82.54 ˘ 0.64% 60.22 ˘ 1.17% 88.73 ˘ 0.67%
U-PRR 92.72 ˘ 0.86% 84.09 ˘ 0.80% 76.98 ˘ 1.36% 51.52 ˘ 2.50% 75.85 ˘ 3.06%

CCM 95.92 ˘ 0.35% 85.18 ˘ 0.67% 83.28 ˘ 0.41% 65.18 ˘ 3.47% 86.99 ˘ 1.33%
RCM 96.33 ˘ 0.14% 85.37 ˘ 0.28% 84.10 ˘ 0.55% 69.72 ˘ 0.55% 91.54 ˘ 0.19%

Random

Supervised 98.11 ˘ 0.06% 88.31 ˘ 0.17% 91.00 ˘ 0.20% 70.73 ˘ 1.16% 92.40 ˘ 0.46%

Unbiased 26.46 ˘ 3.68% 31.36 ˘ 2.06% 17.36 ˘ 1.95% 15.46 ˘ 4.45% 16.46 ˘ 5.51%
U-Stop 55.70 ˘ 12.81% 74.08 ˘ 2.71% 31.20 ˘ 19.28% 31.09 ˘ 2.64% 51.59 ˘ 8.16%

U-Correct 54.34 ˘ 4.19% 60.76 ˘ 2.45% 32.68 ˘ 2.67% 25.29 ˘ 2.65% 17.51 ˘ 3.13%
U-Flood 89.04 ˘ 0.73% 78.85 ˘ 1.11% 67.43 ˘ 0.37% 31.32 ˘ 2.28% 68.70 ˘ 3.11%

Prop 86.73 ˘ 1.12% 79.44 ˘ 2.11% 60.49 ˘ 1.50% 33.26 ˘ 2.50% 53.15 ˘ 4.31%
U-PRR 26.82 ˘ 1.74% 27.45 ˘ 1.88% 16.11 ˘ 2.84% 23.32 ˘ 1.36% 11.01 ˘ 2.40%

CCM 92.21 ˘ 0.25% 81.46 ˘ 0.54% 74.08 ˘ 1.07% 46.23 ˘ 1.79% 66.16 ˘ 26.68%
RCM 95.37 ˘ 0.18% 83.48 ˘ 0.23% 80.68 ˘ 0.81% 55.71 ˘ 5.93% 88.99 ˘ 1.01%

CCM outperform the compared methods with a large gap in the random matrix, which verifies the
effectiveness of our proposed method in a complex scenario.

Compared to the performance between RCM and CCM, RCM demonstrated superior performance
in most settings. When utilizing the same prior matrix, RCM exhibits a larger performance gap over
CCM in CIFAR-10 and SVHN, indicating that when applying deeper models, RCM can achieve even
more remarkable results. When trained on the same dataset, compared to two diagonal-dominated
matrices, RCM demonstrates a larger performance gap over CCM on the Random matrix. This
highlights the ability of RCM to handle complex prior matrices more effectively.

On the variation of set size. We also conduct experiments to verify the performance of our proposed
method on different sizes. Concretely, we randomly select ϵ ¨ ni data points from the i-th set. The
experimental results are provided in Fig. 1 in Appendix F.2. As shown in Fig. 1, RCM and CCM
achieve better performance with larger ϵ. Moreover, CCM achieves better performance than RCM
when ϵ is small and RCM outperforms CCM when ϵ increases, which demonstrates that CCM is
more robust when few data points are provided.

5 CONCLUSION

In this paper, we studied an interesting problem called multi-class classification from multiple un-
labeled datasets (MCMU), where the only supervision is the class priors for unlabeled sets. To
solve this problem, we first proposed a classifier-consistent method based on a probability transition
function. Nevertheless, CCM cannot guarantee risk consistency and neglects to differentiate the true
labels of training examples. Hence, we further proposed a risk-consistent method (RCM) based on
importance weighting. RCM can progressively purify supervision information during training. In
addition, we provided comprehensive theoretical analyses of the two methods to show the theoretical
guarantees. We conducted comprehensive experiments on various settings, and experimental results
demonstrated the effectiveness of our proposed methods.
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A PROOF OF LEMMA 3.1

@i P t1, . . . ,mu we have

η̄ipxq “
ppx, ȳ “ iq

p̄pxq
“

ppx | ȳ “ iq ¨ ppȳ “ iq
řm

i“1 ppȳ “ iq ¨ p̄ipxq
“

ρi ¨ r
řk

j“1 θij ¨ ppx | y “ jqs
řm

i“1 ρi ¨ r
řk

j“1 θij ¨ ppx | y “ jqs
,

where p̄ipxq is used to denotes the mixture probability densities function of set i.

And by Bayes’ rule we have

ppx | y “ jq “
ppy “ j | xq ¨ ppxq

ppy “ jq
“

ηjpxq ¨ ppxq

πj
.

Then we can obtain

η̄ipxq “
ρi ¨ r

řk
j“1 θij ¨

ηjpxq

πj
s

řm
i“1 ρi ¨ r

řk
j“1 θij ¨

ηjpxq

πj
s

“
ρi ¨ αJ

i ηpxq

βJηpxq
, (8)

where αi “ rαi1, . . . , αiks and αij “
θij
πj

and β “
řm

i“1 ρi ¨ αi.

B PROOFS OF CLASSIFIER-CONSISTENCY METHOD

B.1 PROOF OF LEMMA 3.2

We proceed the proof by firstly showing that the denominator of each function Tiptq, i P r1, . . . ,ms,
is strictly greater than zero for all t P r0, 1sk and then showing that Tipt1q “ Tipt2q if and only if
t1 “ t2. For all i P r1, . . . ,ms and j P r1, . . . , ks, ρi ą 0, αij ą 0 and βj ą 0. Then we have the
denominator of each function Tiptq, i P r1, . . . ,ms, is strictly greater than zero for all t P r0, 1sk.
Next, assume that there exist t1, t2 P r0, 1sk such that t1 ‰ t2 but T pt1q “ T pt2q, which indicates
that Tipt1q “ Tipt2q,@i P r1, . . . ,ms. For all i, we have

Tipt1q ´ Tipt2q “
ρi ¨ αJ

i t1
βJt1

´
ρi ¨ αJ

i t2
βJt2

“ ρi
`αJ

i t1
βJt1

´
αJ

i t2
βJt2

˘

“ 0.

Since θij ‰ θis, @i P r1, . . . ,ms and @j, s P r1, . . . , ks, we have αij ‰ αis, @i P r1, . . . ,ms

and @j, s P r1, . . . , ks. Therefore, t2 “ λt1, λ P R. Since t1, t2 P r0, 1sk ,
řk

i“1 t1i “ 1 and
řk

i“1 t2i “ 1, we have λ “ 1, which indicates that Tipt1q “ Tipt2q if and only if t1 “ t2.

B.2 PROOF OF LEMMA 3.3

If the cross entropy loss is used, we have the following optimization problem:

ϕpgq “ ´
ÿk

i“1
ppy “ i|xq logpgipxqq

s.t.
ÿk

i“1
gipxq “ 1.

By using the Lagrange multiplier method, we can obtain the following non-constrained optimization
problem:

Φpgq “ ´
ÿk

i“1
ppy “ i|xq logpgipxqq ` λp

ÿk

i“1
gipxq ´ 1q.

The derivative of Φpgq with respect to g is

BΦpgq

Bg
“ r´

ppy “ 1|xq

g1pxq
` λ, . . . ,´

ppy “ k|xq

gkpxq
` λsJ.
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By setting this derivative to 0 we obtain

g‹
i pxq “

1

λ
ppy “ i|xq, @i P r1, . . . , ks and @x P X .

Since
řk

i“1 g
‹
i pxq “ 1 and

řk
i“1 ppy “ i|xq “ 1, we have
ÿk

i“1
g‹
i pxq “

ÿk

i“1

1

λ
ppy “ i|xq “ 1.

Therefore, we can easily obtain λ “ 1. In this way, g‹
i pxq “ ppy “ i|xq, which concludes the

proof.

B.3 PROOF OF THEOREM 3.4

According to Lemma 3.3, by minimizing Rccmpfq with the cross entropy loss, we can obtain

q‹
i pxq “ ppȳ “ i|xq, @i P r1, . . . ,ms.

Let us introduce p̄ “ rppȳ “ 1|xq, . . . , ppȳ “ m|xqs and p “ rppy “ 1|xq, . . . , ppyq “ k|xqs.
We have p̄ “ T ppq. Since q‹pxq “ p̄ and g‹pxq “ p, we have q‹pxq “ T pg‹pxqq where
g‹pxq “ softmaxpf‹pxqq.

On the other hand, we can obtain gccmpxq by minimizing Rccmpfq (i.e., gccmpxq “

softmaxpfccmpxqq). Then, we can obtain q‹pxq “ T pgccmpxqq, which further ensures T pg‹pxqq “

T pgccmpxqq. Therefore, according to Lemma 3.2, we obtain g‹pxq “ gccmpxq, i.e., f‹pxq “

fccmpxq.

B.4 PROOF OF THEOREM 3.5

We define a function space for our CC method as

Gccm “ tg : px, ȳq Ñ LpT pηpxqq, ȳq | f P Fu,

where

LpT pηpxqq, ȳq “ ´ log
´

řk
j“1 ρȳαȳj exppfjpxqq
řk

j“1 βj exppfjpxqq

¯

,

fjpxq denotes the j-th element of the output. Then we have the following lemmas.
Lemma B.1. Let the loss function LpT pηpxqq, ȳq be L1-Lipschitz with respect to fpxq (0 ă L1 ă

8) and bounded by C 1
ℓ, i.e., supxPX ,fPF,ȳPrms LpT pηpxqq, ȳq ď C 1

ℓ. Then for any δ ą 0, with
probability at least 1 ´ δ,

supfPF | pRccmpfq ´ Rccmpfq| ď 2
?
2L1

ÿk

y“1
RnpHyq ` C 1

ℓ

d

log 2
δ

2n
.

Proof. We first show that the one direction supfPF
pRccmpfq ´ Rccmpfq. The change of

supfPF
pRccmpfq ´ Rccmpfq is no greater than C1

ℓ

n if an example xi is replaced with an arbitrary
example x1

i. By applying McDiarmid’s inequality (McDiarmid, 1989), for any δ ą 0, with proba-
bility at least 1 ´ δ

2 ,

supfPF
pRccmpfq ´ Rccmpfq ď ErsupfPF

pRccmpfq ´ Rccmpfqs ` C 1
ℓ

d

log 2
δ

2n
.

Then it is routine (Mohri et al., 2012) to show

ErsupfPF
pRccmpfq ´ Rccmpfqs ď 2RnpGccmq

ď 2
?
2L1

ÿk

y“1
RnpHyq,

13
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where the last inequality is due to the vector-contraction inequality for Rademacher complexities
(Maurer, 2016).

By further taking into account the other side supfPF Rccmpfq ´ pRccmpfq, we have for any δ ą 0,
with probability at least 1 ´ δ,

supfPF | pRccmpfq ´ Rccmpfq| ď 2
?
2L1

ÿk

y“1
RnpHyq ` C 1

ℓ

d

log 2
δ

2n
,

which concludes the proof.

Lemma B.2. Let f̂ be the empirical minimizer (i.e., f̂ “ argminfPF
pRpfq) and f‹ be the true risk

minimizer (i.e., f‹ “ argminfPF Rpfq), then the following inequality holds:

Rpf̂q ´ Rpf‹q ď 2 supfPF | pRpfq ´ Rpfq|.

Proof. We have

Rpf̂q ´ Rpf‹q “ pRpf̂q ´ pRpf‹q ` Rpf̂q ´ pRpf̂q ` pRpf‹q ´ Rpf‹q

ď 0 ` 2 supfPF | pRpfq ´ Rpfq|,

which concludes the proof.

By combining Lemma B.1 and Lemma B.2, Theorem 3.5 can be proved.

C PROOF OF RISK-CONSISTENT METHOD

C.1 PROOF OF THEOREM 3.6

The classification risk could be rewritten as:

Rpfq “ Eppx,yqrLpfpxq, yqs

“

ż

X

ÿk

j“1
ppy “ j,xqLpfpxq, jq dx

“

ż

X

ÿk

j“1

ÿm

i“1
ppy “ j, ȳ “ i,xqLpfpxq, jqdx

“

ż

X

ÿm

i“1

ÿk

j“1
ppy “ j, ȳ “ i,xqLpfpxq, jqdx

“

ż

X

ÿm

i“1
ppȳ “ i,xq

ÿk

j“1

ppy “ j, ȳ “ i,xq

ppȳ “ i,xq
Lpfpxq, jqdx

“

ż

X

ÿm

i“1
ppȳ “ i,xq

ÿk

j“1
ppy “ j | ȳ “ i,xqLpfpxq, jqdx

“ Eppx,ȳqr
ÿk

j“1
ppy “ j | ȳ,xqLpfpxq, jqs “ Rrcmpfq. (9)

C.2 EM ALGORITHM

In this section, we show that the training process of RCM works in an expectation-maximization
manner and aims to maximize the likelihood ppȳ,x;γq with respect to γ when the widely used
cross entropy loss is employed. Here, γ denotes the parameters of the classification model and
pp¨;γq denotes the probability function approximated by the classification model. ω

pvq

j is used to

represent the weight corresponding to the j-th class for the v-th example, and 0 ď ω
piq
j ď 1,

řk
j“1 ω

pvq

j “ 1. Then, the following equations hold:

14
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n
ÿ

v“1

logpppȳpvq,xpvq;γqq “

n
ÿ

v“1

logp

k
ÿ

j“1

ppȳpvq, ypvq “ j,xpvq;γqq

“

n
ÿ

v“1

logp

k
ÿ

j“1

ω
pvq

j

ppȳpvq, ypvq “ j,xpvq;γq

ω
pvq

j

q

ě

n
ÿ

v“1

k
ÿ

j“1

ω
pvq

j logp
ppȳpvq, ypvq “ j,xpvq;γq

ω
pvq

j

q.

The last inequality is based on Jensen’s inequality and the properties of the weights: 0 ď ω
piq
j ď 1,

řk
j“1 ω

pvq

j “ 1. The inequality holds equality when ppȳpvq,ypvq
“j,xpvq;γq

ω
pvq

j

is a constant, which means

ppȳpvq,ypvq
“j,xpvq;γq

ω
pvq

j

“ C and C is a constant when v is fixed. Then, we have

ppȳpvq, ypvq“j ,xpvq;γq

C
“ ω

pvq

j ,

k
ÿ

j“1

ppȳpvq, ypvq“j ,xpvq;γq

C
“

k
ÿ

j“1

ω
pvq

j ,

ppȳpvq,xpvq;γq

C
“ 1,

ppȳpvq,xpvq;γq “ C.

In this way, the value of ωpvq

j could be calculated by

ω
pvq

j “
ppȳpvq, ypvq “ j,xpvq;γq

C
,

ω
pvq

j “
ppȳpvq, ypvq “ j,xpvq;γq

ppȳpvq,xpvq;γq
,

ω
pvq

j “ ppypvq “ j | ȳpvq,xpvq;γq.

Therefore, the E-step of RCM is to set ωpvq

j “ ppypvq “ j | ȳpvq,xpvq;γq, to make the inequal-

ity holds with equality, which means to maximize
řn

v“1

řk
j“1 ω

pvq

j logp
ppȳpvq,ypvq

“j,xpvq;γq

ω
pvq

j

q

with fixed ppȳpvq, ypvq “ j,xpvq;γq. For the M-step, RCM is to maximize
řn

v“1

řk
j“1 ω

pvq

j logp
ppȳpvq,ypvq

“j,xpvq;γq

ω
pvq

j

q with fixed ω
pvq

j . We have the following equations

with the fixed ω
pvq

j :

logp
ppȳpvq, ypvq “ j,xpvq;γq

ω
pvq

j

q

“ logpppȳpvq, ypvq “ j,xpvq;γqq ´ logpω
pvq

j q

“ logpppx | ȳpvq, ypvq “ j;γqq ` logpppȳpvq, ypvq “ jq;γq ´ logpω
pvq

j q

“ logpppx | ypvq “ j;γqq ` logpppȳpvq, ypvq “ j;γqq ´ logpω
pvq

j q

“ logp
ppypvq “ j | x;γqppx;γq

ppypvq “ j;γq
q ` logpppȳpvq, ypvq “ jq;γq ´ logpω

pvq

j q

“ logpppypvq “ j | x;γqq ` logp
ppx;γq

ppypvq “ j;γq
q ` logpppȳpvq, ypvq “ j;γqq ´ logpω

pvq

j q

It is noteworthy that logp
ppx;γq

ppypvq“j;γq
q ` logpppȳpvq, ypvq “ j;γqq ´ logpω

pvq

j q could be treated as a

constant term with respect to γ (i.e., logp
ppx;γq

ppypvq“j;γq
q ` logpppȳpvq, ypvq “ j;γqq “ logp

ppxq

ppypvq“j
q `
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logpppȳpvq, ypvq “ jqq) since the role of classification model is to approximate the probability func-
tion ppy | xq. When the cross entropy loss function is employed, Lpfpxq, jq “ ´ logpppy “ j |

xq;γq, which means maximizing logpppy “ j | xq;γq is equivalent to minimizing Lpfpxq, jq.

In summary, the E-step of the RCM is to maximize the lower bound of ppȳ,x;γq and the M-step of
RCM is to maximize the improved lower-bound by updating the parameters γ of the classification
model.

Based on the above analysis, the M-step of RCM is to minimize
řn

v“1

řk
j“1 ω

pvq

j Lpfpxpvqq, jq with

fixed ω
pvq

j .

C.3 PROOF OF THEOREM 3.7

We define a function space for our RCM method as

Grcm “ tg : px, ȳq Ñ
ÿk

j“1
ppy “ j | ȳ,xqLpfpxq, jq | f P Fu,

where px, ȳq is randomly sampled from p̄px, ȳq. Let RnpGrcmq be the expected Rademacher com-
plexity of Grcm. Then, to prove Theorem 3.7, we introduce the following lemmas.
Lemma C.1. Let the used multi-class classification loss function Lpfpxq, yq be bounded by Cℓ, i.e.,
supxPX ,fPF,yPY Lpfpxq, yq ď Cℓ. Then, for any δ ą 0, with probability at least 1 ´ δ,

E
“

pRrcmp pfrcmq
‰

´ pRrcmp pfrcmq ď 2RnpGrcmq ` Cℓ

d

log 1
δ

2n
.

Proof. Since
řk

j“1 ppy “ j | ȳ,xq “ 1 and Lpfpxq, yq is bounded by Cℓ, the change of

E
“

pRrcmp pfrcmq
‰

´ pRrcmp pfrcmq is no greater than Cℓ

n if an example xi is replaced with an arbi-
trary example x1

i. By applying McDiarmid’s inequality (McDiarmid, 1989), for any δ ą 0, with
probability at least 1 ´ δ,

E
“

pRrcmp pfrcmq
‰

´ pRrcmp pfrcmq ď sup
fPF

E
“

pRrcmpfq
‰

´ pRrcmpfq

ď Ersup
fPF

E
“

pRrcmpfq
‰

´ pRrcmpfqs ` Cℓ

d

log 1
δ

2n
.

Then we can bound the expectation of the right-hand side as follows:

Ersup
fPF

E
“

pRrcmpfq
‰

´ pRrcmpfqs ď 2RnpGrcmq,

which concludes the proof.

Lemma C.2. Let the loss function Lpfpxq, yq be L-Lipschitz with respect to fpxq (0 ă L ă 8).
The following inequality holds:

RnpGrcmq ď
?
2L

ÿk

y“1
RnpHyq,

where

Hy “ th : x Ñ fypxq|f P Fu,

RnpHyq “ Eσ,X rsuphPHy

1

n

ÿn

i“1
σihpxqs.

Proof. Since
řk

j“1 ppy “ j | ȳ,xq “ 1 and 0 ď ppy “ j | ȳ,xq ď 1 @y P Y , we can obtain
RnpGrcmq ď RnpL˝Fq where L˝F denotes tL˝f | f P Fu. Since Hy “ th : x Ñ fypxq | f P Fu

and the loss function is L-Lipschitz, by using the vector contraction inequality for Rademacher
complexities (Maurer, 2016), we have RnpL ˝ Fq ď

?
2L

řk
y“1 RnpHyq, which concludes the

proof of Lemma C.2.

By combining Lemma C.1 and Lemma C.2, Theorem 3.7 can be proved.
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D DETAILED DESCRIPTIONS/EXPLANATIONS OF RCM AND CCM

In our paper, we present two loss functions to solve the MCMU problem: RCM and CCM. These
two methods stem from different conceptual frameworks.

The main idea of CCM is to design a loss function by converting the problem of classifying mul-
tiple classes into multiple unlabeled datasets. This conversion is based on our built connection
relationship between ppy|xq (the probability that an instance x belongs to a label) and ppȳ|xq (the
probability that an instance x belongs to an unlabeled set) in Eq. (2), which is further represented
as a transition function T (i.e., η̄pxq “ T pηpxqq where η̄pxq “ ppȳ|xq and ηpxq “ ppy|xq). As
we aim to approximate ppȳ|xq by T pgpxqq, we can infer that ppy|xq can be approximated by gpxq

(where we use gpxq to denote the Softmax output of the model), because T is an injective function.
The detailed proof can be found in Appendix B.3.

The main idea of RCM is risk rewriting. We rewrite the risk function on clean data (Eq. (1)) into an
equivalent form for MCMU (Eq. (5)) that can be accessible from unlabeled sets, since the ordinary
classification risk cannot be obtained from unlabeled sets. Concretely, we rewrite the risk function
via the importance-weighting strategy, i.e. assign the weight ppy “ j|xq to loss Lpfpxq, jq. RCM
could recover the distribution of clean data by combining the information of unlabeled sets and the
learned classifier. Then we could achieve the optimization of Eq (1) by minimizing Eq. (5).

E DETAILED INFORMATION OF EXPERIMENTS

E.1 TRAINING DETAILS

In the experiments, Adam (Kingma & Ba, 2015) was used for optimization and we adopt the cross
entropy function as the loss function for CCM and adopt softmax cross entropy for RCM. We
ran 5 trials on each dataset for each method and recorded mean accuracy and standard deviation
(mean˘std). We trained the classification model for 100 epochs on all datasets. We recorded the
average test accuracy of the last ten epochs as the accuracy for each trial except for U-Stop, in which
we recorded the test accuracy of the epoch where stop training as the accuracy for each trial. The
learning rate was chosen from {10´5, 10´4, 10´3, 10´2, 10´1} and the batch size was chosen from
128 and 256. The weight decay was set as 10´5. The hyper-parameters for compared methods were
searched according to the suggested parameters by respective papers. We used PyTorch (Paszke
et al., 2019) to implement our experiments and conducted the experiments on NVIDIA 3090 GPUs.

E.2 COMPARED METHODS

In this section, we provide detailed descriptions of the compared methods.
• Unbiased (Tang et al., 2022): This method aims to minimize an unbiased risk estimator derived

from by using the backward correction technique (Patrini et al., 2017). However, this method
suffers from the unreasonable training objective caused by the negative empirical risk.

• U-Stop (Tang et al., 2022): It aims to minimize an identical unbiased risk estimator as the
Unbiased method but stops training when the empirical risk goes negative to prevent suffering
from the optimization obstacle caused by unbounded losses.

• U-Correct (Tang et al., 2022): It takes the absolute value of partial risks corresponding to each
class in the Unbiased method to correct the partial risks to be non-negative.

• U-Flood (Tang et al., 2022): It aims to apply the flooding method (Ishida et al., 2020) to the
Unbiased method to maintain the empirical risks at certain levels.

• Prop (Yu et al., 2014): It treats class priors as weak supervision to the set and minimizes the
difference between the true class priors and the class priors predicted by the classification model.
KL divergence is applied to measure the difference.

• U-PRR (Tang et al., 2022): It aims to utilize a partial risk regularization that maintains the partial
risks corresponding to each class in the Unbiased method to certain levels.
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F ADDITIONAL EXPERIMENTS

F.1 ROBUSTNESS AGAINST NOISY PRIOR MATRIX

We conducted experiments that add noise to the true class prior matrix Θ on m “ 10 (m denotes the
number of sets). Specifically, we train the classifier on the MNIST dataset and the class prior matrix
we used is the random matrix as we described in Section 4.1. We design two procedures to perturb
the class prior matrix with the noise rate ϵ and the class number k.

• Random noise: we obtain the noisy class prior matrix by right-multiplying the truth class
prior matrix with a noise matrix N , i.e., Θnoise “ Θ ¨N where Nii “ 1´ k´1

k ϵ and Nij “
ϵ
k where i ‰ j. This noise procedure typically only changes the numerical values of the
elements of the prior matrix, without significantly altering the relative order of magnitude
between elements in the same row. The experimental results are reported in Table 4.

• Order disturbance: we aim to disrupt the relative order of class priors in the same row.
For example, given the i-th row of a prior matrix be r0.1, 0.2, 0.7s and the relative order
is θi3 ą θi2 ą θi1. The noisy version r0.12, 0.18, 0.7s only changes the numerical values
while the noisy version r0.18, 0.12, 0.7s changes both numerical values and the relative
order (i.e., changes the relative order to θi3 ą θi1 ą θi2). Concretely, we perturb to the i-th
row of Θ by the following step. Firstly, we generate an arithmetic sequence l according
to ϵ, i.e., l “ t1, 1 ` ϵ, . . . , 1 ` pk ´ 1qϵu. Secondly, we randomly shuffle the elements
in l. Thirdly, we divide the elements in the ith row by the corresponding element in l,
i.e. θij “ θij{lj . Finally, we normalize the i-th row, i.e., θij “ θij{

řk
j“1 θij . The

experimental results of this case are reported in Table 5.

To our surprise, in Table 4, all methods other than CCM works well and were not significantly
affected by the random noise. Additionally, our proposed RCM model achieves the best performance
on the inaccurate prior matrix. We observe that CCM tends to overfit in cases of high noise rates,
which leads to poorer performance.

From Table 5, we can observe in order disturbance, as the noise rate increases, the performance of
all models decreases. However, our proposed RCM method still achieves the best performance in
almost all cases.

By comparing the experimental results on random noise and order disturbance, it appears that the
inaccurate elements in the prior matrix may not have a substantial impact on the performance of
methods. What appears to be a more influential factor is the disturbance of the relative order of the
prior matrix. In addition, RCM performs well even in the presence of noise in the prior matrix. This
can be attributed to the label correction effect of the importance weighting scheme in RCM, which
could leverage the model’s capability to refine the labeling information in surrogate labels.

Table 4: Classification performance of each method on the MNIST dataset with m “ 10 trained on
random prior matrix with random noise

Noise Rate 0 0.1 2 0.3 0.5 0.7

Unbiased 14.10 ˘ 2.94% 12.89 ˘ 1.89% 14.58 ˘ 0.91% 15.52 ˘ 1.28% 18.68 ˘ 1.90% 19.16 ˘ 0.98%
U-Stop 25.39 ˘ 5.52% 20.49 ˘ 6.58% 18.99 ˘ 3.80% 26.73 ˘ 5.84% 21.27 ˘ 4.10% 24.72 ˘ 6.98%

U-Corret 27.32 ˘ 7.07% 27.29 ˘ 5.95% 27.15 ˘ 6.37% 26.70 ˘ 6.20% 26.78 ˘ 6.97% 25.48 ˘ 6.32%
U-Flood 86.83 ˘ 1.31% 88.46 ˘ 1.21% 86.84 ˘ 2.43% 85.87 ˘ 1.51% 75.08 ˘ 3.05% 62.39 ˘ 6.99%

Prop 88.64 ˘ 1.93% 88.85 ˘ 1.50% 89.78 ˘ 1.48% 89.66 ˘ 0.84% 88.99 ˘ 0.92% 87.88 ˘ 1.49%
U-PRR 23.17 ˘ 1.59% 23.86 ˘ 1.75% 25.57 ˘ 2.75% 26.10 ˘ 2.26% 24.61 ˘ 2.06% 22.19 ˘ 1.79%

CCM 91.46 ˘ 1.22% 91.11 ˘ 1.56% 37.49 ˘ 37.88% 10.31 ˘ 1.45% 43.15 ˘ 23.79% 11.68 ˘ 1.82%
RCM 94.80 ˘ 0.64% 95.25 ˘ 0.58% 95.41 ˘ 0.53% 95.56 ˘ 0.48% 95.45 ˘ 0.53% 91.92 ˘ 4.69%

F.2 ROBUSTNESS AGAINST VARIANT SET NUMBERS

We conducted additional experiments with different numbers of sets with fixed data points (i.e. with
fixed set number times the set size) on the MNIST dataset. Random matrix and asymmetric matrix
are adapted as the class prior matrix. The experimental results are shown in Table 6 and Table
7. Our proposed RCM and CCM demonstrate stable performance with the increase in the number
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Table 5: Classification performance of each method on the MNIST dataset with m “ 10 trained on
random prior matrix with order disturbance

Noise Rate 0 0.1 0.2 0.3 0.5 0.7

Unbiased 14.10 ˘ 2.94% 17.22 ˘ 4.02% 15.84 ˘ 3.00% 9.87 ˘ 7.11% 9.87 ˘ 7.11% 8.34 ˘ 1.86%
U-Stop 25.39 ˘ 5.52% 19.97 ˘ 1.96% 20.61 ˘ 3.12% 14.02 ˘ 3.36% 5.08 ˘ 1.30% 8.52 ˘ 4.24%

U-Correct 27.32 ˘ 7.07% 30.18 ˘ 6.56% 18.63 ˘ 5.92% 14.01 ˘ 2.87% 15.47 ˘ 4.76% 15.23 ˘ 3.78%
U-Flood 86.83 ˘ 1.31% 87.70 ˘ 0.79% 85.06 ˘ 0.34% 58.28 ˘ 28.31% 54.10 ˘ 31.16% 55.00 ˘ 19.91%

Prop 88.64 ˘ 1.93% 86.98 ˘ 2.06% 80.55 ˘ 3.90% 73.98 ˘ 1.39% 61.53 ˘ 3.71% 50.93 ˘ 5.51%
U-PRR 23.17 ˘ 1.59% 21.92 ˘ 2.60% 20.55 ˘ 2.13% 14.12 ˘ 3.43% 9.96 ˘ 4.16% 11.32 ˘ 4.26%

CCM 91.46 ˘ 1.22% 89.27 ˘ 2.12% 86.99 ˘ 2.62% 82.03 ˘ 0.88% 74.84 ˘ 4.57% 68.91 ˘ 5.94%
RCM 94.80 ˘ 0.64% 93.09 ˘ 1.98% 87.50 ˘ 1.51% 83.78 ˘ 1.28% 75.83 ˘ 5.25% 67.69 ˘ 7.02%

of sets and still outperform the baseline methods. When the number of sets becomes excessively
large, some baseline methods may achieve poorer performance. This is because in such a case, the
distribution ppxq on training data might shift from testing data. Some papers Zhang et al. (2020a);
Shimodaira (2000) refer to this case as a covariate shift, which would lead to degraded performance.

Table 6: Classification performance of each method on the MNIST dataset using an asymmetric
prior matrix with variant set numbers.

Methods m=30 m=50 m=100 m=200 m=300 m=500 m=1000

Unbiased 84.30±2.55% 86.85±1.06% 86.74±0.88% 87.75±0.47% 88.17±0.68% 87.46±0.41% 62.78±5.07%
U-Stop 89.69±1.21% 89.79±1.59% 91.05±0.42% 89.47±0.20% 89.71±0.58% 88.37±0.21% 85.23±0.65%

U-Correct 94.07±0.18% 94.16±0.23% 87.00±0.30% 78.94±1.86% 63.33±16.18% 27.04±8.39% 26.80±7.59%
U-Flood 93.42±0.56% 93.29±0.34% 90.55±0.53% 85.29±0.86% 79.46±0.83% 68.43±10.75% 56.70±3.33%

Prop 82.98±1.55% 79.85±1.01% 75.46±1.23% 72.77±1.60% 72.62±0.67% 71.61±0.51% 71.90±0.32%
U-PRR 91.11±0.29% 89.32±0.89% 79.28±1.34% 70.88±2.36% 67.80±0.69% 62.76±2.53% 67.28±2.11%

CCM 95.77±0.12% 95.66±0.17% 95.66±0.08% 95.40±0.14% 95.69±0.14% 95.57±0.20% 95.91±0.17%
RCM 95.94±0.23% 96.02±0.08% 95.95±0.15% 95.70±0.23% 95.88±0.08% 95.82±0.07% 95.77±0.22%

Table 7: Classification performance of each method on the MNIST dataset using a random prior
matrix with variant set numbers.

Methods m=30 m=50 m=100 m=200 m=300 m=500 m=1000

Unbiased 14.14±1.15% 15.64±1.48% 13.90±0.70% 11.18±2.30% 15.12±2.64% 16.36±1.53% 13.31±2.95%
U-Stop 53.12±3.76% 71.61±0.52% 38.41±18.44% 40.62±24.60% 18.33±6.65% 18.27±2.32% 25.89±3.77%

U-Correct 63.84±4.61% 66.64±1.21% 75.00±0.50% 64.24±0.34% 64.85±1.51% 71.59±0.20% 77.01±0.83%
U-Flood 89.14±0.96% 88.91±0.92% 85.87±0.42% 75.59±0.72% 69.92±1.47% 59.82±2.38% 50.54±5.46%

Prop 81.84±1.36% 77.29±1.51% 66.61±2.35% 57.96±1.47% 54.38±1.12% 53.38±1.26% 51.44±1.16%
U-PRR 23.92±0.56% 19.62±1.15% 19.30±1.30% 18.15±1.22% 14.97±0.47% 17.98±1.16% 13.69±0.53%

CCM 92.90±0.29% 92.49±0.14% 92.86±0.39% 92.37±0.20% 93.23±0.37% 93.00±0.08% 93.06±0.20%
RCM 95.69±0.25% 95.63±0.12% 95.49±0.17% 95.38±0.18% 95.49±0.07% 95.46±0.15% 95.78±0.14%
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Figure 1: Mean accuracy over 3 trials in percentage for our proposed RCM and CCM tested on
different set sizes on the random class prior matrix.
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