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Figure 1. Given a multi-view video input, D3GA is trained to create light, drivable, photorealistic 3D human avatars. These avatars are
constructed as a composition of 3D Gaussians encapsulated within tetrahedral cages. The Gaussians undergo transformation and stretching
influenced by these cages, are colored using an MLP, and are rasterized into splats. By representing the drivable human as a collection of
3D Gaussian layers, we gain the ability to decompose and manipulate the avatar as needed.

Abstract
We present Drivable 3D Gaussian Avatars (D3GA), a

multi-layered 3D controllable model for human bodies that
utilizes 3D Gaussian primitives embedded into tetrahedral
cages. The advantage of using cages compared to com-
monly employed linear blend skinning (LBS) is that prim-
itives like 3D Gaussians are naturally re-oriented and their
kernels are stretched via the deformation gradients of the
encapsulating tetrahedron. Additional offsets are modeled
for the tetrahedron vertices, effectively decoupling the low-
dimensional driving poses from the extensive set of primi-
tives to be rendered. This separation is achieved through the
localized influence of each tetrahedron on 3D Gaussians,
resulting in improved optimization. Using the cage-based
deformation model, we introduce a compositional pipeline
that decomposes an avatar into layers, such as garments,
hands, or faces, improving the modeling of phenomena like
garment sliding. These parts can be conditioned on dif-
ferent driving signals, such as keypoints for facial expres-
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sions or joint-angle vectors for garments and the body. Our
experiments on two multi-view datasets with varied body
shapes, clothes, and motions show higher-quality results.
They surpass PSNR and SSIM metrics of other SOTA meth-
ods using the same data while offering greater flexibility
and compactness.

1. Introduction

Developing drivable, photorealistic human avatars is crucial
for better long-distance telecommunication that provides an
immersive experience to the users. The motion and defor-
mations across various segments of a complex avatar’s body
are influenced by distinct signals, such as facial expres-
sions and body movements. This complexity poses chal-
lenges for accurate modeling using a single layer. Multi-
layered avatars become essential to represent these different
regions, ensuring proper motion and visual fidelity. Simi-
larly, garments present challenges such as sliding, necessi-
tating separate modeling of each clothing piece.

Mixture of Volumetric Primitives (MVP) [30] started a

https://zielon.github.io/d3ga/


successful line of hybrid implementations, where volumet-
ric primitives are embedded on the surface of the tracked
mesh. This representation, despite excellent results, strug-
gles when the provided mesh is not precise or lacks details,
ultimately producing artifacts and misaligning the primi-
tives. Similar CNN-based architectures [1, 27, 29, 30, 52],
do not allow for easy garment decomposition and assume
a fixed amount of 3D primitives since the CNN size has
to be set for the training. Furthermore, numerous meth-
ods [1, 24, 30, 57] lack the capability of layered condition-
ing specific to different body parts. For example, they may
not support using keypoints for the face or motion vectors
for clothing like t-shirts. This is an important aspect of a
holistic system that, ultimately, needs to capture speech,
face, gestures, and garment motion. State-of-the-art driv-
able avatars [52, 68] require dense input signals like RGB-
D images or even multi-view camera setups at test time,
which might not be suitable for low-bandwidth connec-
tions in telepresence applications. Finally, drivable NeRFs
and 3DGS avatars typically rely on LBS to transform sam-
ples between canonical and observation spaces. However,
LBS is limited by the low degree of freedom of the model,
whereas cages can handle more complex non-linear motion
and offer additional physical properties (e.g., stretching).

We designed our method to use a minimal set of inputs
and still be competitive with the ones that require more in-
formation to train an avatar. D3GA models digital humans
using volumetric primitives represented as 3D Gaussians
embedded into a tetrahedral cage which is naturally de-
scribed by phenomenons like stretching, rotation, and scal-
ing. Accordingly, instead of LBS, our method builds on a
classic deformation model for transforming volumes [40].
Specifically, by recasting cages from the canonical space
into a deformed one, the 3D Gaussian covariance matrices
undergo the encapsulating tetrahedral deformation transfor-
mation. Recent advancements in incorporating physics into
Gaussians [8, 70] show further promise in the context of
cage usage for garment modeling by capitalizing on [4, 35].
Also, cages decouple the representation resolution (related
to the amount of Gaussians) from the degrees of freedom
present in the model ultimately allowing an effective reg-
ularization of the deformations in contrast to LBS which
depends on the global bone transformations only. In addi-
tion, we employ a compositional structure based on separate
body, face, and garment cages, allowing us to model those
parts independently, including localized conditioning based
on different driving signals (e.g., keypoints).

We train person-specific models on nine high-quality
multi-view sequences with a wide range of body shapes,
motion, and clothing (not limited to tight-fitting), which
later can be driven with new poses from any subject.

In summary, we present Drivable 3D Gaussian Avatars
(D3GA) with the following contributions:

• A light, flexible, and composable model based on 3D
Gaussian primitives driven by tetrahedral cage-based de-
formations which improve their body modeling proper-
ties.

• Localized motion conditioning which enables for instance
facial expressions.

2. Related Work

D3GA reconstructs controllable digital full-body avatars us-
ing multi-view video and joint angle motion by combining
3D Gaussian Splatting (3DGS) [19] with cage-based de-
formations [12, 14, 17]. Current methods for controllable
avatars rely on dynamic Neural Radiance Fields (NeRF)
[38, 43, 44], point-based [34, 71, 77], or hybrid represen-
tations [1, 6, 30, 79], which are either slow to render or fail
to correctly disentangle garments from the body, leading to
poor generalization to new poses. Recently, incorporating
3DGS into dynamic scenarios has opened new research av-
enues [27, 49, 69, 72, 76]. For a thorough overview, we re-
fer readers to state-of-the-art reports on digital avatars and
neural rendering [60, 61, 82].

Dynamic Neural Radiance Fields NeRF [39] is a popular
appearance model for human avatars, representing scenes
volumetrically with density and color information using an
MLP. Images are rendered via ray casting and volumetric
integration of sample points [18]. Many methods have suc-
cessfully applied NeRF to dynamic scenes [9, 26, 43, 44,
47, 65, 71, 79], achieving high-quality results. However,
most methods treat avatars as a single layer [24, 38, 45, 55–
57, 78], which complicates modeling phenomena like slid-
ing or loose garments. Methods like [6, 7] address this
using a hybrid representation, combining explicit geome-
try from SMPL[31] with implicit dynamic NeRF. Despite
impressive garment reconstruction, these methods struggle
with novel pose prediction. TECA [74] extends SCARF to
a generative framework, enabling prompt-based generation
of NeRF-based accessories and hairstyles.

Point-based Rendering Before 3DGS, many methods used
point-based rendering [34, 57, 77] or sphere splatting [23],
with optimizable positions and sizes. NPC by Su et al. [57]
defines a point-based body model for avatar representation,
but requires lengthy nearest neighbor searches during train-
ing (12 hours vs. 30 minutes for our model), making it
impractical for dense multi-view datasets. Ma et al. [34]
represent garments as a pose-dependent function mapping
SMPL points [31] to the clothing space. This is improved
in [48] with a neural deformation field, but both models only
address geometry, not appearance. Zheng et al. [77] repre-
sent the upper part of an avatar as a point cloud, grown dur-
ing optimization and rasterized using a differentiable ren-
derer [63]. While achieving photorealistic local results, the
avatars suffer from artifacts like holes.



Cage-based Deformations Cages[40] are commonly used
for geometry modeling and animation, serving as sparse
proxies to control all interior points, enabling efficient de-
formation by manipulating only cage nodes. Yifan et
al. [64] introduced neural cages for detail-preserving shape
deformation, where a neural network rigs the source object
into the target via a proxy. Garbin et al. [10] extended dy-
namic NeRF with tetrahedron cages to unposed ray sam-
ples based on tetrahedron intersections. This method is
real-time, high-quality, and controllable, but limited to ob-
jects with local deformations like heads, and not suitable
for highly articulate objects like full-body avatars. Peng et
al. used a cage to deform a radiance field in CageNeRF
[46]. While their low-resolution cages can be applied to
full-body avatars, they fail to model detailed features like
faces or complex deformations.

Time-conditioned Methods Playback methods [2, 5, 13,
25, 66, 73] represent a scene as a time-conditioned func-
tion that cannot be arbitrarily controlled, allowing only for
a novel viewpoint synthesis while traversing the time axis.
Yang et al. [73] extended the representation of 3DGS [19]
into 4DGS, effectively incorporating time into the primi-
tive representation. Wu et al. [66] combine Gaussians with
4D neural voxels, inspired by HexPlane [2], which achieves
real-time rendering and novel-view synthesis. However,
these solutions fall into a different class of algorithms com-
pared to pose-conditioned drivable avatars, which is our
goal.

Dynamic Gaussian Splatting D3GA is based on 3D Gaus-
sian Splatting (3DGS) [19], a recent alternative to NeRF
for modeling neural scenes. Due to its real-time capabili-
ties and high-quality results, 3DGS has inspired numerous
follow-up papers [8, 15, 33, 49, 69, 70, 72, 76, 80, 81] in ar-
eas such as physics simulation, hair modeling, head avatars,
and fluid dynamics. Several works [27, 41, 53] recently in-
troduced convolutional networks to regress Gaussian maps.
Despite achieving high-quality results, fixed convolutional
architectures do not allow for local conditioning or adjust-
ing the number of Gaussians during training. These meth-
ods also use up to 23 times more parameters, causing the
model size to reach almost 1 GiB. In contrast, our pipeline
remains lightweight and flexible, offering garment decom-
position and localized conditioning. Finally, using CNNs
can slow down the pipeline to around 10 FPS [27], whereas
our method remains real-time.

3. Method

D3GA is built on 3DGS extended by a neural representation
and tetrahedral cages to model the color and geometry of
each dynamic part of the avatar, respectively. In the follow-
ing, we introduce the formulation of 3D Gaussian Splatting
and give a detailed description of our method.

3.1. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [19] is designed for real-
time novel view synthesis in multi-view static scenes. Their
rendering primitives are scaled 3D Gaussians [22, 63] with
a 3D covariance matrix Σ and mean µ:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ). (1)

To splat the Gaussians, Zwicker et al. [83] define the pro-
jection of 3D Gaussians onto the image plane as:

Σ′ = AWΣWTAT , (2)

where Σ′ is a covariance matrix in 2D space, W is the view
transformation, and A is the Jacobian of the affine approx-
imation of the projective transformation. During optimiza-
tion, enforcing the positive semi-definiteness of the covari-
ance matrix Σ is challenging. To avoid this, Kerbl et al.
[19] use an equivalent formulation of a 3D Gaussian as a
3D ellipsoid parameterized with a scale S and rotation R:

Σ = RSSTRT . (3)

3DGS uses spherical harmonics [51] to model the view-
dependent color of each Gaussian. In practice, appearance
is modeled with an optimizable 48 elements vector repre-
senting four bands of spherical harmonics.

3.2. Body Cage Creation

Body Garment

Figure 3. D3GA uses a tetrahedral
mesh for deformation modeling.

To deform 3D Gaus-
sians, we utilize
tetrahedron cage-
based deformations
as a coarse proxy
for the body, face,
and individual gar-
ments. Unlike a
triangle, which is
two-dimensional,
a tetrahedron is

a polyhedron with four triangular faces (A, B, C, D),
providing a three-dimensional structure. The volume of a
tetrahedron can be calculated using the scalar triple product
of vectors, which enables precise control and deformation
of the enclosed 3D Gaussians. The volume V is given by:

V =
1

6
|AB · (AC × AD)| (4)

where AB, AC, AD are edges of tetraherdon. This property
allows us to compute the deformation gradient similarly to
Sumner et al. [58] and transfer it to the Gaussian covariance
matrix (Equation 7), see Supp. Mat, for more details.

To create a cage per garment, we segment all images of
a single time instance using an EfficientNet [59] backbone



Figure 2. Overview. D3GA uses 3D pose ϕϕϕ, face embedding κκκ, viewpoint dk and canonical cage v (as well as auto-decoded color
features hi) to generate the final render C̄ and auxiliary segmentation render P̄. The inputs in the left are processed through three networks
(ΨMLP, ΠMLP, ΓMLP) per avatar part to generate cage displacements ∆v, Gaussians deformations bi, qi, si and color/oppacity ci, oi
respectively. After cage deformations transform canonical Gaussians, they are rasterized into the final images according to Eq. 10.

with PointRend [21] refinement, trained on a corpus of sim-
ilar multi-view captures. The per-image 2D segmentation
masks are projected onto a body mesh M̂ to obtain per-
triangle labels (body, upper, lower). To get the mesh M̂, we
fit a low-resolution LBS model to a single 3D scan of the
subject and then fit such model to the segmented frame by
minimizing the distance to the 3D keypoints, extracted with
an EfficientNet trained on similar captures. We transform
the body mesh into canonical space with LBS and divide it
into body part templates Mk. The garment meshes are addi-
tionally inflated by 1-3 cm along the vertex normals. After-
ward, we run a voxelization of the meshes and subsequently
extract the mesh using the marching cubes algorithm [32].
After that, we use TetGen [54] to turn the unposed meshes
Mk into tetrahedral meshes Tk. Consequently, cages for
garments are hollow, containing only their outer layer, while
the body cage is solid (Figure 3). The face cage is composed
of the body tetrahedra which contains triangles defined as
the face on the LBS template. The cage nodes are deformed
according to LBS weights transferred from the closest ver-
tex in Mk.

3.3. Cage Deformation Transfer

While classic cage methods typically deform the volume
according to complex weight definitions [14, 16, 17], us-
ing linear weights works well in practice when cage cells
are small, making it easier to integrate into an end-to-end
training system. Specifically, we define vij as the vertices
of tetrahedron i in canonical space, any point x inside this
tetrahedron can be defined by its barycentric coordinates bj :

x =

4∑
j=1

bjvij . (5)

Each Gaussian 3D mean µ = x is obtained as a linear com-
bination of learnable barycentric coordinates bj and tetra-
hedron vertices vij . When the tetrahedra are transformed
to posed space according to v̂ij = LBS(vij ,ϕϕϕ,wij), where
ϕϕϕ is the pose and wij are the blendweights, the same lin-
ear relation holds x̂ =

∑4
j=1 bjv̂ij . To leverage the cage

volume properties (rotation, sheer, and scaling), we use the
deformation gradient [58]:

JiEi = Êi, (6)

Ji = ÊiE
−1
i , (7)

where Êi ∈ R3×3 and Ei ∈ R3×3 contain three edges from
tetrahedron i defined in deformed and canonical spaces, re-
spectively. The gradient Ji is used to transform the kernel
of each Gaussian i (Eq 8). See Supp. mat for more details.

3.4. Drivable Gaussian Avatars

We initialize a fixed number of Gaussians, whose 3D means
µ are sampled on the surface of M̂. However, we are
not limited to the fixed amount of Gaussians allowing for
cloning or densification if needed. The rotation of each
Gaussian is initialized so that the first two axes are aligned
with the triangle surface and the third one with the normal:
this is a good approximation for a smooth surface. The scale
is initialized uniformly across a heuristic range depending
on inter-point distances as in [19]. We assign each sampled
position x to the intersecting tetrahedron and compute its
barycentric coordinates b ∈ R4. To deform the tetrahedron
volume, we incorporate the deformation gradient J defined
in Eq. 7 into the Gaussian covariance matrix from Eq. 3.

This is an important step as the deformation gradient J
encapsulates many phenomena that we want to model, for
instance, rotation, stretching, and sheering. To correctly
transfer the deformation to 3D Gaussian primitives, we ap-
ply it to the covariance matrix Σ, effectively modeling the
3DGS ellipsoids depending on the shape deformation from
the canonical space into deformed one. Thus, the final co-
variance matrix passed to the rasterizer is denoted as:

Σ̂ = JiΣJT
i , (8)

where Ji is the deformation gradient of the tetrahedron con-
taining the 3D mean of the Gaussian with covariance Σ.
This way, we transfer the deformation into the Gaussians,
improving modeling phenomena like garment stretching.



Each part of the avatar (the garment, body, or
face) is controlled by a separate GaussianNet GNet =
{ΓMLP,ΠMLP,ΨMLP} which is defined as a set of small spe-
cialized multi-layer perceptrons (MLP) parametrized as:

ΨMLP : {ϕϕϕ, encpos(v)} → ∆v,

ΠMLP : {ϕϕϕ,bi,qi, si} → {∆bi,∆si,∆qi},
ΓMLP : {ϕϕϕ, encview(dk),hi, fj} → {ci, oi}.

(9)

All the networks take joint anglesϕϕϕ (or face encodingsκκκ for
the face networks) as inputs, in addition to network-specific
conditioning. The cage node correction network ΨMLP takes
positional encodings [39] for all canonical vertices to trans-
form them into offsets of the cage node positions similar to
SMPL [31] pose-correctives. To adapt our representation
further to the pose, the Gaussian correction network ΠMLP
takes the canonical Gaussian parameters (barycentric coor-
dinates bi ∈ R4, rotation qi ∈ R4 and scale si ∈ R3) to
predict corrections of those same parameters. These two
networks are necessary to capture high-frequency details
outside the parametric transformation.

The shading network ΓMLP transforms encoded view di-
rection and initial color into final color and opacity, ci, oi.
Unlike 3DGS, we use a pose-dependent color representa-
tion to model self-shadows and wrinkles in garments. The
view angle is projected onto the first four spherical har-
monics bands encpos(·), while the initial color is an auto-
decoded feature vector hi [42]. Additionally, the face re-
gion utilizes face embeddings κκκ as input instead of pose
ϕϕϕ. This adaptability stems from our model’s composability
and holds the potential for extension to other regions, such
as hair, shoes, or hands. A small auxiliary MLP regresses κκκ
based on 150 3D keypoints k normalized by their training
mean and standard deviations. This effectively enables us
to model facial expressions.

Finally, we also add an embedding vector with the time
frame of the current sample [36]. This allows D3GA to ex-
plain properties that cannot be modeled (e.g., cloth dynam-
ics) from our input, effectively avoiding excessive blur due
to averaging residuals. During testing, the average training
embedding is used.

3.5. Training Objectives

As in 3DGS [19], we define the color C̄ of pixel (u, v):

C̄u,v =
∑
i∈N

ciαi

i−1∏
j=1

(1− αi), (10)

where ci is the color predicted by ΓMLP, which replaces the
spherical harmonics in 3DGS. αi is computed as the product
of the Gaussian density in Eq. 1 with covariance matrix Σ′

from Eq. 2 and the learned per-point opacity oi predicted
by ΓMLP. The sum is computed over set N , the Gaussians

with spatial support on (u, v). The primary loss in D3GA is
a weighted sum of three different color losses applied to the
estimated image C̄ and the ground truth RGB image C:

LColor = (1− ω)L1 + ωLD-SSIM + ζLVGG, (11)

where ω = 0.2, ζ = 0.005 (after 400k iterations steps and
zero otherwise), LD-SSIM is a structural dissimilarity loss,
and LVGG is the perceptual VGG loss.

To encourage correct garment separation, we introduce a
garment loss. Since each Gaussian i is statically assigned to
a part, we define pi as a constant-per-part color and conse-
quently render P̄ by replacing ci by pi in Eq. 10. Then, we
compute the L1 norm between predicted parts P̄ and ground
truth segmentations P, LGarment = L1(P̄,P). Moreover,
we are using the Neo-Hookean loss based on Macklin et al.
[35] to enforce the regularization of the predicted tetrahedra
for the regions with low supervision signal:

LNeo =
1

N

N∑
i=0

λ

2
(det(Ji)− 1)

2
+

µ

2

(
tr(JT

i Ji)− 3
)
,

(12)
where Ji denotes the deformation gradient between a
canonical and a deformed tetrahedron (Eq. 7), N is the total
number of tetrahedrons, and λ and µ are the Lamé parame-
ters [35]. The overall loss is defined as:

L = νLColor + νLGarment + τLNeo, (13)

where ν = 10 and τ = 0.005 balance the different losses.
We implemented D3GA based on the differentiable

3DGS renderer [19]. The networks ΠMLP,ΨMLP,ΓMLP have
three hidden layers with 128 neurons and ReLU activation
functions. In our experiments, we train the networks for
700k (Ours) and 400k (ActorsHQ) steps with a multi-step
scheduler with a decay rate of 0.33, a batch size of one, and
using the Adam optimizer [20] with a learning rate set to
5e − 4. We ran all experiments on a single Nvidia V100
GPU with 1024 × 667 images. When ground truth poses
are not available, as in the case of ActorsHQ [13], we addi-
tionally refine poses regressed from keypoints during avatar
training and during the test time, and optionally projected
them onto PCA basis computed from the training set.

4. Dataset
Our dataset comprises nine subjects performing various mo-
tions, observed by 200 cameras. We use 12,000 frames for
training (at 10 FPS) and 1,500 for testing (at 30 FPS). Im-
ages were captured at a resolution of 4096×2668 in a multi-
view studio with synchronized cameras and downsampled
to 1024× 667 to reduce computational cost. We utilize 2D
segmentation masks, RGB images, keypoints, and 3D joint
angles for training, as well as a single registered mesh to
create our template M̂. Of the nine subjects, data for four
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Figure 4. Qualitative comparisons show that D3GA models facial expressions and garments better than other SOTA approaches. Especially
regions with loose garments like skirts or sweatpants.

is publicly available through the Goliath-4 dataset release
[37].

5. Results
We evaluate and benchmark our method w.r.t. five state-of-
the-art multiview-based solutions [1, 11, 27, 30, 50]. We
compare D3GA to the mesh-based full-body avatar meth-
ods BodyDecoder (BD) [1] and MVP-based avatars [30, 52]
evaluated on our dataset.

Additionally, we evaluated D3GA on the ActorsHQ
dataset [13] using a significantly smaller number of cam-
eras (40). We compare to SOTA pose-conditioned 3DGS
avatar methods, including Animatable Gaussians (AG)
[27], 3DGS-Avatar [50], and Gaussian Avatar (GA) [11]
which were trained on the same multiview data.

Please note that our method, along with 3DGS-Avatar
and GA, represents a lightweight class of MLP-based algo-
rithms, utilizing up to 10 million parameters. In contrast,
the CNN-based MVP, BD, and AG [27] which in this case
uses approximately 23 times more parameters (230 mil-
lion).

5.1. Image Quality Evaluation

Our model is evaluated using SSIM, PSNR, and the per-
ceptual metric LPIPS [75], with random color backgrounds.
For the ActorsHQ evaluation, we utilized SMPL-X fittings

obtained through OpenPose [3] and scan-to-mesh optimiza-
tion. Table 1 shows that our method achieves the best PSNR
and SSIM on our dataset compared to MVP [30] and BD
[1]. Furthermore, on the ActorsHQ dataset, D3GA outper-
forms other Gaussian Avatar methods in terms of PSNR
and SSIM. However, similar to previous evaluations, our
method lacks sharpness due to its much smaller size com-
pared to the CNN-based architecture of AG [27]. Moreover,
our approach allows us to decompose avatars into drivable
layers, unlike other volumetric methods. Each separate gar-
ment layer can be controlled solely by skeleton joint angles,
without requiring specific garment registration modules as
in [67].

Dataset Method PSNR ↑ LPIPS ↓ SSIM ↑

Ours
Ours 30.634 0.054 0.964
MVP [30] 28.795 0.051 0.955
BD [1] 29.918 0.044 0.959

ActorsHQ

Ours 26.562 0.065 0.944
GA [11] 24.731 0.088 0.933
3DGS-Avatar [50] 21.709 0.082 0.915
AG [28] 26.454 0.055 0.937

Table 1. Our method scores the best in terms of PSNR and SSIM
compared to BD [1] and MVP [30] on our dataset. D3GA is the
best among MLP-based avatars, ranking only second in terms of
sharpness compared to AG, which uses a CNN-based architecture.
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Figure 5. ActorsHQ [13] comprises challenging garments that contain high-frequency patterns. Our method despite its small size can
capture it and performs the best in terms of PSNR and SSIM, ranking second only in terms of sharpness to AG [27], which presents very
sharp results due to the powerful StyleUNet [62].

5.2. Ablation Studies

Importance of cage deformations We replaced tetrahe-
drons with triangles to emphasize the crucial role of cage
deformation gradients in transforming Gaussians. We mod-
ified Eq 5 such that 3D means are obtained through the
barycentric coordinates of triangles b ∈ R3 instead of tetra-
hedrons b ∈ R4. The rest of the pipeline remains un-
changed, with MLPs computing the same corrective terms
as our cage-based model. Since triangles do not provide
volume, we disabled the application of the cage deformation

gradient J, but the Gaussians are still modeled by the pre-
dicted residuals w.r.t. the canonical space. Figure 8 shows
that the triangle-based approach does not stretch the prim-
itives correctly, creating holes and artifacts which demon-
strates the importance of using cages for deformation.

Garment loss The garment loss LGarment (Fig. 7) serves
two primary purposes: it improves garment separation and
reduces erroneously translucid regions. We can observe
qualitatively that regions between garments’ boundaries
without the regularizer are blurry and have erroneous opac-



Figure 6. D3GA enables motion transfer showing good generaliz-
ability while preserving each avatar’s high-quality details.

Method #parameters (M) size (MiB)

Ours 9 45
GaussianAvatar [11] 7 59
3DGS-Avatar [50] 6 57
AG [28] 232 862

Table 2. Model compactness. D3GA offers the best tradeoff be-
tween quality and model size.

ity, see supp. mat. Single layer avatar D3GA supports a
single-layer training for the garment and body, which strug-
gles to model proper garment sliding. The results are pre-
sented in the last column of Fig. 7. It can be observed that
the edges between the T-shirt and jeans are over-smoothed.

Size and compactness Our model offers an optimal balance
between quality and model size, making it both compact
and easily portable. This lightweight representation sets
D3GA apart from much larger and more cumbersome mod-
els like AG [27]. As shown in Table 2, D3GA is similar in
size to other methods, yet it delivers superior quality com-
pared to models in the same category. This makes D3GA an
attractive choice for telepresence applications, where both
efficiency and performance are crucial.

6. Discussion
While D3GA shows better quality and competitive render-
ing speed w.r.t. the state of the art, there are still particular
challenges. High-frequency patterns, like stripes, may re-
sult in blurry regions. One way of improving image quality
would be using a variational autoencoder to regress Gaus-
sian parameters per texel of a guide mesh similar to [27, 30].

Ground Truth Ours w/o LGarment Single Layer

Figure 7. Ablation of D3GA: shape smoothness without
LGarment, and sliding artifacts with a single layer representation.
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Figure 8. Gaussian primitives embedded in triangles, compared to
tetrahedrons, produce more artifacts, resulting in small holes and
reduced sharpness that is reflected in the LIPIS score, which drops
from 0.0648 to 0.0703.

Despite using the LGarment loss, self-collisions for loose
garments are still challenging, and the sparse controlling
signal does not contain enough information about complex
wrinkles or self-shadowing. A potential solution to solve
self-penetration would be to incorporate explicit collision
detection [4] for the tetrahedrons. An exciting follow-up
work direction would be replacing the appearance model in
D3GA with a relightable one. D3GA is currently limited
to model photorealistic avatars for a few consenting sub-
jects captured in a dense multi-view capture device. While
this limits the potential misuse of the technology of driving
somebody else’s avatar without their consent, it needs to be
addressed in future work. In conclusion, it’s worth noting
that the D3GA offers significant flexibility and can be cus-
tomized for particular applications. For instance, one could
employ additional Gaussians to capture high-frequency de-
tail or opt to eliminate garment supervision, particularly if
precise cage geometry decomposition isn’t necessary.

7. Conclusion
We have proposed D3GA, a novel approach for reconstruct-
ing multi-layered animatable human avatars using tetrahe-
dral cages embedded with 3D Gaussians. To transform the
rendering primitives from canonical to deformed space, we
directly apply the deformation gradient to the 3D Gaussian
parametrization, enabling improved avatar modeling. Our
method’s compositional approach enables various forms
of localized conditioning, such as using keypoints for fa-
cial expressions, and can be extended to other regions like
hair, hands, or shoes. This capability is essential for cre-
ating holistic avatars driven by diverse input signals. We
have demonstrated high-quality results that surpass state-
of-the-art methods with similar model architectures, all
while maintaining a lightweight, real-time, and compact ap-
proach.
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