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Abstract

We present new algorithms for online convex optimization over unbounded domains
that obtain parameter-free regret in high-probability given access only to potentially
heavy-tailed subgradient estimates. Previous work in unbounded domains con-
siders only in-expectation results for sub-exponential subgradients. Unlike in the
bounded domain case, we cannot rely on straight-forward martingale concentration
due to exponentially large iterates produced by the algorithm. We develop new
regularization techniques to overcome these problems. Overall, with probability at
most �, for all comparators u our algorithm achieves regret Õ(kukT 1/p log(1/�))
for subgradients with bounded pth moments for some p 2 (1, 2].

1 Introduction

In this paper, we consider the problem of online learning with convex losses, also called online convex
optimization, with heavy-tailed stochastic subgradients. In the classical online convex optimization
setting, given a convex set W , a learning algorithm must repeatedly output a vector wt 2 W , and
then observe a convex loss function `t : W ! R and incur a loss of `t(wt). After T such rounds, the
algorithm’s quality is measured by the regret with respect to a fixed competitor u 2W:

RT (u) =
TX

t=1

`t(wt)�
TX

t=1

`t(u)

Online convex optimization is widely applicable, and has been used to design popular stochastic
optimization algorithms ([Duchi et al., 2010a, Kingma and Ba, 2014, Reddi et al., 2018]), for control
of linear dynamical systems [Agarwal et al., 2019], or even building concentration inequalities [Vovk,
2007, Waudby-Smith and Ramdas, 2020, Orabona and Jun, 2021].

A popular approach to this problem reduces it to online linear optimization (OLO): if gt is a
subgradient of `t at wt, then RT (u) 

P
T

t=1hgt,wt � ui so that it suffices to design an algorithm
that considers only linear losses w 7! hgt,wi. Then, by assuming that the domain W has some finite
diameter D, standard arguments show that online gradient descent [Zinkevich, 2003] and its variants
achieve RT (u)  O(D

p
T ) for all u 2W . See the excellent books Cesa-Bianchi and Lugosi [2006],

Shalev-Shwartz [2011], Hazan [2019], Orabona [2019] for more detail.

Deviating from the classical setting, we study the more difficult case in which, (1) the domain
W may have infinite diameter (such as W = Rd), and (2) instead of observing the loss `t, the
algorithm is presented only with a potentially heavy-tailed stochastic subgradient estimate gt with
E[gt|wt] 2 @`t(wt). Our goal is to develop algorithms that, with high probability, obtain essentially
the same regret bound that would be achievable even if the full information was available.

Considering only the setting of infinite diameter W with exact subgradients gt 2 @`t(wt), past work
has achieved bounds of the form RT (u)  Õ(✏ + kuk

p
T ) for all u 2 W simultaneously for any
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user-specified ✏, directly generalizing the O(D
p
T ) rate available when D <1 [Orabona and Pál,

2016, Cutkosky and Orabona, 2018, Foster et al., 2017, Mhammedi and Koolen, 2020, Chen et al.,
2021]. As such algorithms do not require knowledge of the norm kuk that is usually used to specify
a learning rate for gradient descent, we will call them parameter-free. Note that such algorithms
typically guarantee constant RT (0), which is not achieved by any known form of gradient descent.

While parameter-free algorithms appear to fully generalize the finite-diameter case, they fall short
when gt is a stochastic subgradient estimate. In particular, lower-bounds suggest that parameter-free
algorithms must require Lipschitz `t [Cutkosky and Boahen, 2017], which means that care must be
taken when using gt with unbounded noise as this may make `t “appear” to be non-Lipschitz. In the
case of sub-exponential gt, Jun and Orabona [2019], van der Hoeven [2019] provide parameter-free
algorithms that achieve E[RT (u)]  Õ(✏+ kuk

p
T ), but these techniques do not easily extend to

heavy-tailed gt or to high-probability bounds. The high-probability statement is particularly elusive
(even with sub-exponential gt) because standard martingale concentration approaches appear to
fail spectacularly. This failure may be counterintuitive: for finite diameter W , one can observe
that hgt � E[gt],wt � ui forms a martingale difference sequence with variance determined by
kwt � uk  D, which allows for relatively straightforward high-probability bounds. However,
parameter-free algorithms typically exhibit exponentially growing kwtk in order to compete with all
possible scales of kuk, which appears to stymie such arguments.

Our work overcomes these issues. Requiring only that gt have a bounded pth moment for some
p 2 (1, 2], we devise a new algorithm whose regret with probability at least 1 � � is RT (u) 
Õ(✏+ kukT 1/p log(1/�)) for all u simultaneously. The T 1/p dependency is unimprovable Bubeck
et al. [2013], Vural et al. [2022]. Moreover, we achieve these results simply by adding novel and
carefully designed regularizers to the losses `t in a way that converts any parameter-free algorithm
with sufficiently small regret into one with the desired high probability guarantee.

Motivation: High-probability analysis is appealing since it provides a confidence guarantee for an
algorithm over a single run. This is crucially important in the online setting in which we must make
irrevocable decisions. It is also important in the standard stochastic optimization setting encountered
throughout machine learning as it ensures that even a single potentially very expensive training
run will produce a good result. (See Harvey et al. [2019], Li and Orabona [2020], Madden et al.
[2020], Kavis et al. [2022] for more discussion on the importance of high-probability bounds.) This
goal naturally synergizes with the overall objective of parameter-free algorithms, which attempt to
provide the best-tuned performance after a single pass over the data. In addition, we consider the
presence of heavy-tailed stochastic gradients, which are empirically observed in large neural network
architectures Zhang et al. [2020], Zhou et al. [2020].

Contribution and Organization: After formally introducing and discussing our setup in Sections 2,
we then proceed to conduct an initial analysis for the 1-D case W = R in 3. First (Section 4),
we introduce a parameter-free algorithm for sub-exponential gt that achieves regret Õ(✏+ |u|

p
T )

in high probability. This already improves significantly on prior work, and is accomplished by
introducing a novel regularizer that “cancels” some unbounded martingale concentration terms, a
technique that may have wider application. Secondly (Section 5), we extend to heavy-tailed gt
by employing clipping, which has been used in prior work on optimization [Bubeck et al., 2013,
Gorbunov et al., 2020, Zhang et al., 2020, Cutkosky and Mehta, 2021] to convert heavy-tailed
estimates into sub-exponential ones. This clipping introduces some bias that must be carefully offset
by yet another novel regularization (which may again be of independent interest) in order to yield
our final Õ(✏+ |u|T 1/p) parameter-free regret guarantee. Finally (Section 6), we extend to arbitrary
dimensions via the reduction from Cutkosky and Orabona [2018].

2 Preliminaries

Our algorithms interact with an adversary in which for t = 1 . . . T the algorithm first outputs
a vector wt 2 W for W a convex subset of some real Hilbert space, and then the adversary
chooses a convex and G-Lipschitz loss function `t : W ! R and a distribution Pt such that for
gt ⇠ Pt, E[gt] 2 @`t(wt) and E[kgt � E[gt]kp]  �p for some p 2 (1, 2]. The algorithm then
observes a random sample gt ⇠ Pt. After t rounds, we compute the regret, which is a function
Rt(u) =

P
t

i=1 `i(wi) � `i(u). Our goal is to guarantee RT (u)  ✏ + Õ(kukT 1/p) for all u
simultaneously with high probability.
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Throughout this paper we will employ the notion of a sub-exponential random sequence:
Definition 1. Suppose {Xt} is a sequence of random variables adapted to a filtration Ft such that
{Xt,Ft} is a martingale difference sequence. Further, suppose {�t, bt} are random variables such
that �t, bt are both Ft�1-measurable for all t. Then, {Xt,Ft} is {�t, bt} sub-exponential if

E[exp(�Xt)|Ft�1]  exp(�2�2
t
/2)

almost everywhere for all Ft�1-measurable � satisfying � < 1/bt.

We drop the subscript t when we have uniform (not time-varying) sub-exponential parameters (�, b).
We use bold font (gt) to refer to vectors and normal font (gt) to refer to scalars. Occasionally, we
abuse notation to write r`t(wt) for an arbitrary element of @`t(wt).

We present our results using O(·) to hide constant factors, and Õ(·) to hide log factors (such as some
power of log T dependence) in the main text, the exact results are left at the last line of the proof for
interested readers.

Finally, observe that by the unconstrained-to-constrained conversion of Cutkosky and Orabona [2018],
we need only consider the case that W is an entire vector space. By solving the problem for this case,
the reduction implies a high-probability regret algorithm for any convex W .

3 Challenges

A reader experienced with high probability bounds in online optimization may suspect that one
could apply fairly standard approaches such as gradient clipping and martingale concentration to
easily achieve high probability bounds with heavy tails. While such techniques do appear in our
development, the story is far from straightforward. In this section, we will outline these non-intuitive
difficulties. For a further discussion, see Section 3 of Jun and Orabona [2019].

For simplicity, consider wt 2 R. Before attempting a high probability bound, one may try to derive
a regret bound in expectation with heavy-tailed (or even light-tailed) gradient gt via the following
calculation:

E[RT (u)] = E

"
TX

t=1

`t(wt)� `t(u)
#


TX

t=1

E [hgt, wt � ui] +
TX

t=1

E [hr`t(wt)� gt, wt � ui]

The second sum from above vanishes, so one is tempted to send gt directly to some existing parameter-
free algorithm to obtain low regret. Unfortunately, most parameter-free algorithms require a uniform
bound on |gt| - even a single bound-violating gt could be catastrophic [Cutkosky and Boahen, 2017].
With heavy-tailed gt, we are quite likely to encounter such a bound-violating gt for any reasonable
uniform bound. In fact, the issue is difficult even for light-tailed gt, as described in detail by Jun and
Orabona [2019].

A natural approach to overcome this uniform bound issue is to incorporate some form of clipping, a
commonly used technique controlling for heavy-tailed subgradients. The clipped subgradient ĝt is
defined below with a positive clipping parameter ⌧ as:

ĝt =
gt
|gt|

min(⌧, |gt|)

If we run algorithms on uniformly bounded ĝt instead, the expected regret can now be written as:

E[RT (u)] 
TX

t=1

E [hĝt, wt � ui]
| {z }

parameter-free regret

+
TX

t=1

E [hE[ĝt]� ĝt, wt � ui]
| {z }

martingale concentration?

+
TX

t=1

E [hr`t(wt)� E[ĝt], wt � ui]
| {z }

bias

(1)

Since |ĝt|  ⌧ , the first term can in fact be controlled for appropriate ⌧ at a rate of Õ(✏ + |u|
p
T )

using sufficiently advanced parameter-free algorithms (e.g. Cutkosky and Orabona [2018]). However,
now bias accumulates in the last term, which is difficult to bound due to the dependency on wt. On
the surface, understanding this dependency appears to require detailed (and difficult) analysis of the
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dynamics of the parameter-free algorithm. In fact, from naive inspection of the updates for standard
parameter-free algorithms, one expects that |wt| could actually grow exponentially fast in t, leading
to a very large bias term.

Finally, disregarding these challenges faced even in expectation, to derive a high-probability bound
the natural approach is to bound the middle sum in (1) via some martingale concentration argument.
Unfortunately, the variance process for this martingale depends on wt just like the bias term. In fact,
this issue appears even if the original gt already have bounded norm, which is the most extreme
version of light tails! Thus, we again appear to encounter a need for small wt, which may instead grow
exponentially. In summary, the unbounded nature of wt makes dealing with any kind of stochasticity
in the gt very difficult. In this work we will develop techniques based on regularization that intuitively
force the wt to behave well, eventually enabling our high-probability regret bounds.

4 Bounded Sub-exponential Noise via Cancellation

In this section, we describe how to obtain regret bound in high probability for stochastic subgradients
gt for which E[g2t ]  �2 and |gt|  b for some � and b (in particular, gt exhibits (�, 4b) sub-
exponential noise). We focus on the 1-dimensional case with W = R. The extension to more general
W is covered in Section 6. Our method involves two coordinated techniques. First, we introduce a
carefully designed regularizer  t such that any algorithm that achieves low regret with respect to the
losses w 7! gtw +  t(w) will automatically ensure low regret with high probability on the original
losses `t. Unfortunately,  t is not Lipschitz and so it is still not obvious how to obtain low regret. We
overcome this final issue by an “implicit” modification of the optimistic parameter-free algorithm of
Cutkosky [2019]. Our overall goal is a regret bound of RT (u)  Õ(✏+ |u|(�+G)

p
T + b|u|) for all

u with high probability. Note that with this bound, b can be O(
p
T ) before it becomes a significant

factor in the regret.

Let us proceed to sketch the first (and most critical) part of this procedure: Define ✏t = r`t(wt)� gt,
so that ✏t captures the “noise” in the gradient estimate gt. In this section, we assume that ✏t is (�, 4b)
sub-exponential for all t for some given �, b and |gt|  b. Then we can write:

RT (u) 
TX

t=1

hr`t(wt), wt � ui =
TX

t=1

hgt, wt � ui+
TX

t=1

h✏t, wti �
TX

t=1

h✏t, ui


TX

t=1

hgt, wt � ui+

�����

TX

t=1

✏twt

�����+ |u|

�����

TX

t=1

✏t

�����
| {z }

“noise term”, NOISE

(2)

Now, the natural strategy is to run an OLO algorithm A on the observed gt, which will obtain some
regret RA

T
(u) =

P
T

t=1hgt, wt � ui, and then show that the remaining NOISE terms are small. To
this end, from sub-exponential martingale concentration, we might hope to show that with probability
1� �, we have an identity similar to:

NOISE  �

vuut
TX

t=1

w2
t
log(1/�) + bmax

t

|wt| log(1/�) + |u|�
p
T log(1/�) + |u|b log(1/�)

The dependency of |u| above appears to be relatively innocuous as it only contributes Õ(|u|�
p
T +

|u|b) to the regret. The wt-dependent term is more difficult as it involves a dependency on the
algorithm A. This captures the complexity of our unbounded setting: in a bounded domain, the
situation is far simpler as we can uniformly bound |wt|  D, ideally leaving us with an Õ(D

p
T )

bound overall.

Unfortunately, in the unconstrained case, |wt| could grow exponentially (|wt| ⇠ 2t) even when u
is very small, so we cannot rely on a uniform bound. In fact, even in the finite-diameter case, if we
wish to guarantee RT (0)  ✏, the bound |wt|  D is still too coarse. The resolution is to instead
feed the algorithm A a regularized loss ˆ̀

t(w) = hgt, wi +  t(w), where  t will “cancel” the wt

dependency in the martingale concentration. That is, we now define RA
T
(u) =

P
T

t=1
ˆ̀
t(wt)� ˆ̀

t(u)
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and rearrange:

TX

t=1

hgt, wt � ui  RA
T
(u)�

TX

t=1

 t(wt) +
TX

t=1

 t(u) (3)

And now combine equations (2) and (3):

RT (u)  RA
T
(u)�

TX

t=1

 t(wt) +
TX

t=1

 t(u) + NOISE

 RA
T
(u) + �

vuut
TX

t=1

w2
t
log(1/�) + bmax

t

|wt| log(1/�)�
TX

t=1

 t(wt)

+ |u|�
p
T log(1/�) + |u|b log(1/�) +

TX

t=1

 t(u) (4)

From this, we can read off the desired properties of  t: (1)  t should be large enough that
P

T

t=1  t(wt) � �
qP

T

t=1 w
2
t
log(1/�) + bmaxt |wt| log(1/�), (2)  t should be small enough

that
P

T

t=1  t(u)  Õ(|u|
p
T ), and (3)  t should be such that RA

T
(u) = Õ(✏ + |u|

p
T ) for an

appropriate algorithm A. If we can exhibit a  t satisfying all three properties, we will have developed
a regret bound of Õ(✏+ |u|

p
T ) in high probability.

It turns out that the modified Huber loss rt(w) defined in equation (5) and (6) with appropriately
chosen constants c1, c2, p1, p2,↵1,↵2 satisfies criterion (1) and (2).

rt(w; c, p,↵0) =

(
c (p|w|� (p� 1)|wt|) |wt|p�1

(
Pt

i=1 |wi|p+↵
p
0)

1�1/p , |w| > |wt|
c|w|p 1

(
Pt

i=1 |wi|p+↵
p
0)

1�1/p , |w|  |wt|
(5)

 t(w) = rt(w; c1, p1,↵1) + rt(w; c2, p2,↵2) (6)

Let us take a moment to gain some intuition for these functions rt and  t. First, observe that rt
is always continuously differentiable, and that rt’s definition requires knowledge of wt. This is
acceptable because online learning algorithms must be able to handle even adaptively chosen losses.
In particular, consider the p = 2 case, rt(w; c, 2,↵) for some positive constants c and ↵. We plot this
function in Figure 1, where one can see that rt grows quadratically for |w|  |wt|, but grows only
linearly afterwards so that rt is Lipschitz.

Figure 1: rt(w; 1, 2, 1) when
P

t

i=1 w
2
i
= 10

and wt = 2. The dashed line has slope
cp |wt|p�1

(
Pt

i=1 |wi|p+↵
p
0)

1/p , so that rt is quadratic

for |w|  |wt| and linear otherwise. Notice
that wt is a constant used to define rt - it is
not the argument of the function.

Eventually, in Lemma 13 we will show that this func-
tions satisfies

TX

t=1

rt(wt; c, 2,↵) � c

vuut
TX

t=1

w2
t
� ↵

TX

t=1

rt(u : c, 2,↵)  Õ(u
p
T )

so that for appropriate choice of c and ↵,

rt(w; c, 2,↵) will cancel the O(
qP

T

t=1 w
2
t
) mar-

tingale concentration term while not adding too
much to the regret - it satisfies criteria (1) and
(2). The lower-bound follows from the standard
inequality

p
a+ b 

p
a + bp

a+b
since rt(wt) =

c w
2
tp

↵2+
Pt

i=1 w
2
i

. The upper-bound is more subtle,

and involves the piece-wise definition. For simplic-
ity, suppose it were true that either |wt| < |u| for
all t or |wt| � |u| for all t. In the former case,
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P
T

t=1 rt(u) = O

✓
|u|
P

T

t=1
|wt|p

↵+
Pt

i=1 w
2
i

◆
, which via algebraic manipulation can be bounded

as Õ(|u|
p
T ). In the latter case, we have

P
T

t=1
|u|2p

↵2+
Pt

i=1 w
2
t


P

T

t=1
|u|2p
↵2+tu2 = Õ(|u|

p
T ) so

that both cases result in the desired bound on
P

T

t=1 rt(u). The general setting is handled by parti-
tioning the sum into two sets depending on whether |wt|  |u|. In order to cancel the maxt |wt| term
in the martingale concentration, we employ p = log T . This choice is motivated by the observation
that kvklog T 2 [kvk1, exp(1)kvk1] for all v 2 Rlog T . With this identity in hand, the argument is
very similar to the p = 2 case.

The correct values for the constants are provided in Theorem 3. Again, at a high level, the important
constants are p1 and p2. With p1 = 2, we allow

P
t
rt(wt; p = 2) to cancel out the

pP
t
w2

t

martingale concentration term, while with p2 = log T ,
P

t
rt(wt; p = log T ) cancels that maxt |wt|

term.

It remains to show that  t also allows for small RA
T
(u) and so satisfies criterion (3). Unfortunately,

our setting for c2 in the definition of  t is Õ(b), which means that  t is Õ(b)-Lipschitz. Since we
wish to allow for b = ⇥(

p
T ), this means that we cannot simply let A linearize  t and apply an

arbitrary OLO algorithm. Instead, we must exploit the fact that  t is known before gt is revealed.
That is, algorithm A is chosen to exploit the structure composite loss ˆ̀

t(w). Intuitively, the regret of
a composite loss should depend only on the non-composite gt terms (as in e.g. Duchi et al. [2010b]).
Our situation is slightly more complicated as  t depends on wt as well, but we nevertheless achieve
the desired result via a modification of the parameter-free optimistic reduction in Cutkosky [2019].
For technical reasons, this algorithm still requires |gt|  b with probability 1, but obtains regret only
RA

T
(u)  Õ(✏+ |u|�

p
T + |u|b). This technical limitation is lifted in the following section.

We display the method as Algorithm 1, which provides a regularization that cancels the |wt| dependent
part of the NOISE term in (7). It also allows us to control RA

T
(u) to order Õ(✏+ |u|�

p
T + b|u|) by

taking account into the predictable structure of regularizer  t(w). The algorithm requires black-box
access to two base online learning algorithms, which we denote A1 and A2 with domains (�1,1)
and [0,1) respectively. These can be any algorithms that obtain so-called “second-order” parameter-
free regret bounds, such as available in Cutkosky and Orabona [2018], van der Hoeven [2019],
Kempka et al. [2019], Mhammedi and Koolen [2020]. Roughly speaking, the role of A1 is to provide
an initial candidate ouput xt that is then “corrected” by A2 using the regularization to obtain the final
wt.

Following the intuition previously outlined in this section, We first provide a deterministic regret
guarantee on the quantity RA

T
(u) =

P
T

t=1
ˆ̀
t(wt) � ˆ̀

t(u) as an intermediate result (Theorem 2).
Then, we provide the analysis of the full procedure of Algorithm 1 for the final high probability result
(Theorem 3). Missing proofs are provided in the Appendix A and B.

Algorithm 1 Sub-exponential Noisy Gradients with Optimistic Online Learning
Require: E[gt] = r`t(wt), |gt|  b,E[gt|wt]  �2 almost surely. Two online learning algorithms

(e.g. copies of Algorithm 1 from Cutkosky and Orabona [2018]) labelled as A1,A2 with domains
R and R�0 respectively. Time horizon T , 0 < �  1.

1: Initialize:
Constants {c1, c2, p1, p2,↵1,↵2} from Theorem 3.
H = c1p1 + c2p2

. for defining  t in equation (6)

2: for t = 1 to T do
3: Receive x0

t
from A1, y0

t
from A2

4: Rescale xt = x0
t
/(b+H), yt = y0

t
/(H(b+H))

5: Solve for wt: wt = xt � ytr t(wt) . The solution exists by Lemma 6
6: Play wt to, suffer loss `t(wt)
7: Receive gt with E[gt] 2 @`t(wt)
8: Compute  t(w) = rt(w; c1, p1,↵1) + rt(w; c2, p2,↵2) and r t(wt) . equations (5), (6)
9: Send (gt +r t(wt))/(b+H) to A1

10: Send �hgt +r t(wt),r t(wt)i/H(b+H) to A2

11: end for
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Theorem 2. Suppose A1 ensure that given some ✏ > 0 and a sequence ct with |ct|  1:

TX

t=1

hct, wt � ui  ✏+A|u|

vuut
TX

t=1

|ct|2
✓
1 + log

✓
|u|2TC

✏2
+ 1

◆◆
+B|u| log

✓
|u|TC

✏
+ 1

◆

for all u for some positive constants A,B,C, and that A2 obtains the same guarantee for all u � 0,
then for |gt|  b, |r t(wt)|  H , we have the following guarantee from Algorithm 1,

RA
T
(u)  O

2

4✏+ |u|

0

@

vuutmax

 
0,

TX

t=1

|gt|2 � |r t(wt)|2
!

+ (b+H) log T

1

A

3

5

Although this Theorem 2 is rather technical, the overall message is not too complicated. If we
ignore the negative |r t(wt)|2 terms, the bound simply says that the regret on the “composite” loss
hgt, wi+  t(w) only increases with the apriori-unknown gt, and not with r t(wt). With this result,
we can formalize the intuition in this section to provide the following high probability regret bound:
Theorem 3. Suppose {gt} are stochastic subgradients such that E[gt] 2 @`t(wt), |gt|  b and
E[g2t |wt]  �2 almost surely for all t. Set the following constants for  t(w) shown in equation (6)
for any 0 < �  1, ✏ > 0,

c1 = 2�

r
log
⇣

32
�
[log (2T+1) + 2]2

⌘
, c2 = 32b log

⇣
224
�

⇥
log
�
1 + b

�
2T+2

�
+ 2
⇤2⌘

,

p1 = 2, p2 = log T, ↵1 = ✏/c1, ↵2 = ✏�/(4b(b+H))

where H = c1p1 + c2p2, |r t(wt)|  H . Then, with probability at least 1 � �, algorithm 1
guarantees

RT (u)  Õ

"
✏ log

1

�
+ |u|b log 1

�
+ |u|�

r
T log

1

�

#

Note that this result is already of interest: prior work on parameter-free algorithms with sub-
exponential noise only achieve in-expectation rather than high probability results. Of course, there is
a caveat: our bound requires that |gt| be uniformly bounded by b. Even though b could be as large asp
T , this is still a mild restriction. In the next section, we remove both this restriction as well as the

light tail assumption all together.

5 Heavy tails via Truncation

In this section, we aim to give a high probability bound for heavy-tailed stochastic gradients gt. Our
approach builds on Section 4 by incorporating gradient clipping with a clipping parameter ⌧ 2 R+.

ĝt =
gt

kgtk
min(⌧, kgtk)

We continue to consider a 1-dimensional problem in this section, replacing the norm k·kwith absolute
value | · | and gt with gt. The key insight is that the clipped ĝt satisfies E[ĝ2t ]  2p�1⌧2�p(�p +Gp)
and of course |ĝt|  ⌧ . Hence, a high probability bound could be obtained by feeding ĝt into
Algorithm 1 from Section 4. Let us formally quantify the effect of this clipping:

RT (u) 
TX

t=1

hr`t(wt), wt � ui =
TX

t=1

hr`t(wt)� E[ĝt], wt � ui
| {z }

bias

+
TX

t=1

hE[ĝt], wt � ui
| {z }

Section 4

(7)

Without clipping, we would have E[ĝt] = r`t(wt), and so if we were satisfied with an in-expectation
result, the first sum above would vanish. However, with clipping, the first sum actually represents
some “bias” that must be controlled even to obtain an in-expectation result, let alone high probability.
We control this bias using a cancellation-by-regularization strategy analogous at a high level to the
one developed in Section 4, although technically quite distinct. After dealing with the bias, we must
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handle the second sum. Fortunately, since ĝt is sub-exponential, bounding the second sum in high
probability is precisely the problem solved in Section 4. We introduce the analysis in two elementary
steps. For the purpose of bias cancellation, we define a linearized loss ˜̀

t(w) with regularization
function �(w)

˜̀
t(w) = hE[ĝt], wi+ �(w), �(w) = 2p�1(�p +Gp)|w|/⌧p�1 (8)

the regret in equation (7) can be re-written as

=
TX

t=1

(hr`t(wt)� E[ĝt], wt � ui � �(wt) + �(u))

| {z }
bias cancellation

+
TX

t=1

˜̀
t(wt)� ˜̀

t(u)

| {z }
Section 4

(9)

We will be able to show that the wt-dependent terms of the first summation sum to a negative number
and so can be dropped. This leaves only the u-dependent terms, which for appropriate choice of ⌧
will be Õ(|u|T 1/p).

Note that at this point, if we were satisfied with an in expectation bound for heavy-tailed subgradient
estimates (which would already be an interesting new result), we would not require the techniques
of Section 4: we could instead define ˆ̀

t(w) = hĝt, wi +  (w), so that the last sum is equal toP
T

t=1
ˆ̀
t(wt)� ˆ̀

t(u) in expectation. Then, since |ˆ̀t(wt)|  O(⌧) with probability 1, we can control
P

T

t=1
ˆ̀
t(wt)� ˆ̀

t(u) using a parameter-free algorithm obtaining regret Õ(|u|
qP

T

t=1 |rˆ̀
t(wt)|2 +

⌧ |u|) to bound the total expected regret, yielding a simple way to recover prior work on expected
regret with sub-exponential subgradients (up to logs), while extending the results to heavy-tailed
subgradients.

However, since we do aim for a high probability bound, we need to be more careful with the second
summation. Fortunately, given that ĝt is sub-exponential and bounded, andr�(wt) is deterministic,
we can supply ĝt+r�(wt) to Algorithm 1 and then bound the sum in high probability by Theorem 3.
We formalize the procedure as Algorithm 2, and its guarantee is stated in Theorem 4. The exact regret
guarantee (including constants) can be found in Appendix C.

Algorithm 2 Gradient clipping for (�, G)�Heavy tailed gradients
Require: E[gt] = r`t(wt), |E[gt]|  G, E[|gt � E[gt]|p]  �p for some p 2 (1, 2], Time horizon

T , gradient clipping parameter ⌧ .
1: Initialize Algorithm 1 using the parameters of Theorem 3.
2: for t = 1 to T do
3: Receive wt from Algorithm 1.
4: Suffer loss `t(wt), receive gt
5: Truncate ĝt =

gt

|gt| min(⌧, |gt|).
6: Compute g̃t = ĝt +r�t(wt) . �(w) is defined in (8), E[g̃t] 2 @ ˜̀t(wt).
7: Send g̃t to Algorithm 1 as tth subgradient.
8: end for

Theorem 4. Suppose {gt} are heavy-tailed stochastic gradient such that E[gt] 2 @`t(wt), |E[gt]| 
G, E[|gt � E[gt]|p]  �p for some p 2 (1, 2]. If we set ⌧ = T 1/p(�p +Gp)1/p then with probability
at least 1� �, Algorithm 2 guarantees:

RT (u)  Õ


✏ log

1

�
+ |u|T 1/p(� +G) log

T

�
log

|u|T
✏

�

Theorem 4 suggests regret with heavy-tailed gradients gt has a p dependence of Õ(T 1/p), which is
optimal [Bubeck et al., 2013, Vural et al., 2022].

6 Dimension-free Extension

So far, we have only considered 1-dimensional problems. In this section, we demonstrate the extension
to dimension-free, which is achieved by using a reduction from Cutkosky and Orabona [2018]. The
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original reduction extends a 1-dimensional algorithm to a dimension-free one by dissecting the
problem into a “magnitude” and a “direction” learner. The direction learner is a constrained OLO
algorithm And which outputs a vector vt with kvtk  1 in response to g1, . . . ,gt�1, while the
magnitude learner is an unconstrained OLO algorithm A1d which outputs xt 2 R in response to
hg1,v1i, . . . hgt�1,vt�1i. The output of the entire algorithm is wt = xtvt. Suppose A1d and
And have regret guarantee of R1d

T
(u) and Rnd

T
(u), respectively. Then regret of the dimension-free

reduction is bounded by RT (u)  kukRnd

T
(u/kuk) + R1d

T
(kuk). Thus, in order to apply this

reduction we need to exhibit a A1d and And that achieves low regret on heavy-tailed losses. For the
magnitude learner A1d, we use can use the 1d Algorithm 2 that we just developed. The remaining
question is how to develop a direction learner that can handle heavy-tailed subgradients. Fortunately,
this is much easier since the direction learner is constrained to the unit ball.

To build this direction learner, we again apply subgradient clipping, and feed the clipped subgradients
to the standard FTRL algorithm with quadratic regularizer (i.e. “lazy” online gradient descent). This
procedure is described in Algorithm 3. Note there is no regularization implemented in Algorithm 3
although ĝt induces bias. This is because of And runs on the unit ball, careful tuning of ⌧ is sufficient
to control the bias - a concrete demonstration of how much more intricate the unconstrained case
is! Finally, the full dimension-free reduction is displayed in Algorithm 4 with its high probability
guarantee stated in Theorem 5. The details are presented in Appendix D.

Algorithm 3 Unit Ball Gradient clipping with FTRL
Require: time horizon T , gradient clipping parameter ⌧ , regularizer weight ⌘

1: Set ⌘ = 1/⌧
2: for t = 1 to T do
3: Compute vt 2 argminv:kvk1

P
t�1
i=1hĝt,vi+ 1

2⌘kvk
2

4: Output vt, receive gradient gt

5: Set ĝt =
gt

kgtk min(⌧, kgtk)
6: end for

Algorithm 4 Dimension-free Gradient clipping for (�, G) Heavy-tailed gradients
Require: Subgradients pth moment bound �p, time horizon T , Set Algorithm 2, 3 as A1d, And.

1: Set �1d = (�p + 2Gp)1/p and ⌧1d = T 1/p(�p
1d +Gp)1/p = T 1/p(�p + 3Gp)1/p

2: Initialize A1d with parameters �  �1d and ⌧  ⌧1d
3: Initialize And with parameters �  � and ⌧  T 1/p(�p +Gp)1/p.
4: for t = 1 to T do
5: Receive xt 2 R from A1d,
6: Receive vt 2 Rd, kvtk  1 from And

7: Play output wt = xtvt

8: Suffer loss `t(wt), receive gradients gt

9: Send gt = hgt,vti as the tth gradient to A1d

10: Send gt as the tth gradient to And

11: end for

Theorem 5. Suppose that for all t, {gt} are heavy-tailed stochastic subgradients satisfying E[gt] 2
@`t(wt), kE[gt]k  G and E[kgt � E[gt]kp]  �p for some p 2 (1, 2]. Then, with probability at
least 1� �, Algorithm 4 guarantees

RT (u) =
TX

t=1

`t(wt)� `t(u)  Õ

"
✏ log

1

�
+ kukT 1/p(� +G) log

T

�
log
kukT
✏

#

Complexity Analysis: Algorithm 4 requires O(d) space. It also requires O(d) time for all operations
except solving the fixed-point equation in Algorithm 1 (line 5). This can be solved via binary search
to arbitrary precision ✏0 for an overall complexity of O(d+ log(1/✏0)). This is essentially O(d) in
practice for any d > 64.
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7 Conclusion

We have presented a framework for building parameter-free algorithms that achieve high probability
regret bounds for heavy-tailed subgradient estimates. This improves upon prior work in several
ways: high probability bounds were previously unavailable even for the restricted setting of bounded
subgradient estimates, while even in-expectation bounds were previously unavailable for heavy-tailed
subgradients. Our development required two new techniques: first, we described a regularization
scheme that effectively “cancels” potentially problematic iterate-dependent variance terms arising in
standard martingale concentration arguments. This allows for high probability bounds with bounded
sub-exponential estimates, and we hope may be of use in other scenarios where the iterates appear in
variance calculations. The second combines clipping with another new regularization scheme that
“cancels” another problematic iterate-dependent bias term. On its own, this technique actually can be
used to recover in-expectation bounds for heavy-tailed estimates.

Limitations: Our algorithm has several limitations that suggest open questions: first, our two
regularization schemes each introduce potentially suboptimal logarithmic factors. The first one
introduces a higher logarithmic dependence on T , while the second introduces a higher logarithmic
dependence on kuk because the optimal clipping parameter ⌧ depends on log(kuk). Beyond this,
our algorithms require knowledge of the parameters � and ⌧ . Adapting to an unknown value of even
one of these parameters remains a challenging problem.
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