Under review as a conference paper at ICLR 2026

TRAIN ON VALIDATION (TOV):
FAST DATA SELECTION WITH APPLICATIONS TO FINE-
TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

State-of-the-art machine learning often follows a two-stage process: (i) pre-
training on large, general-purpose datasets; (i¢) fine-tuning on task-specific data.
In fine-tuning, selecting training examples that closely reflect the target distribu-
tion is crucial. However, it is often the case that only a few samples are available
from the target distribution. Existing data selection methods treat these target
samples as a validation set and estimate the effect of adding or removing a single
sample from the training pool by performing inference on the validation set.

We propose a simpler and faster alternative that inverts the usual role of train and
validation: we perform inference on the training pool before and after fine-tuning
on the validation set. We then select samples whose predictions change the most.
Our key insight is that the training samples most affected by fine-tuning on a small
validation set tend to be the most beneficial for reducing test loss on the target
distribution. Experiments on instruction tuning and named entity recognition tasks
show that, in most cases, our method achieves lower test log-loss than state-of-the-
art approaches. We support our findings with theoretical analysis.

1 INTRODUCTION

While large language models (LLMs) are pretrained on internet-scale datasets, their downstream
performance can be heavily dependent on the instruction-tuning stage in which they are fine-tuned
on instruction/output pairs (Ouyang et al., 2022; Zhou et al., 2024; Longpre et al., 2023; Chung
et al., 2024). These datasets are significantly smaller and are often gathered by using multiple het-
erogeneous sources. Instruction tuning becomes even more difficult when targeting a specialized use
case (Wang et al., 2023). More generally, scarcity of domain-specific data is a ubiquitous challenge
when fine-tuning foundation models.

This paper presents an easy-to-implement and low-complexity method for selecting a training
dataset of prescribed size from heterogeneous sources to maximize the test time performance on
the target distribution. Our method is motivated by the theory of influence functions (van der Vaart,
2000) yet avoids the computational burden of computing influence functions. We validate this ap-
proach on two token-based learning tasks, instruction tuning and named entity recognition (NER),
and show that in most cases it outperforms state-of-the-art data selection baselines. To illustrate its
broad applicability, we show that it yields interesting results even for a simple logistic regression
example (see Appendix D).

To formalize the problem, assume access to two datasets: a small dataset from the target distribution
P on Z and a larger one from possibly heterogeneous data sources. We refer to the dataset from the

target as the ‘validation set’ Z*' := (2}",..., 2}) where z}* are i.i.d. samples from the target
distribution P, and to the larger heterogeneous dataset as ‘training pool’ X = (x1,...,xx), where

x; € Z. In general the distribution of the training pool differs from P. Our goal is to minimize the
test error on the target distribution with respect to the model parameters 8 € RP:

R(0) :=E[{(0,2)], (1)

where ¢ : RP x Z — R is a loss function. A separate target-distribution test set Z*' (separate from
Z") is used to estimate R(8) after fine-tuning.

Under review as a conference paper at ICLR 2026

We aim to achieve this by training (or fine-tuning) the model on a subset S C [N] of the training
pool, e.g. running stochastic gradient descent (SGD) with respect to the empirical risk:

Rs(6) = 15y Cies 6, :) 2)

Let A5 be the outcome of running SGD (or any specific training algorithm) on ES(B). We want to
select the subset .S (given a constraint on its size |S|) so that O achieves a small test loss on the
target distribution, i.e. as to minimize R(6g).

1.1 TRAIN ON VALIDATION: MOTIVATION AND ALGORITHM

To select the most helpful examples at model 6, we might score training examples by the decrease
in validation loss induced by a single gradient step with respect to that example, then select those
with the highest scores. Computing these scores directly requires N4-1 full evaluations over the
validation set. We derive an efficient approximation to these scores.

Consider a single gradient step with respect to a training example x:

0, =0—nVi0,x). 3)

The corresponding change in loss for a validation example z, ¢(6, z) — ¢(6,, z), can be approxi-
mated by a first-order Taylor expansion:

6(07 z) - g(oma Z) ~ *<V€(9, z)v em - 0> = T7<V€(07 Z), V@(G, CC)), (4)

where the last step follows from Eq. (3). Pruthi et al. (2020) approximate the scores by computing
gradients for each training and validation example and taking their dot products; Xia et al. (2024)
extend this to token-based learning. Our method diverges from these approaches: it requires no
per-example gradients.

Note the right-hand side is symmetric in « and z. In other words, the decrease in loss on z from
a step on x is mirrored by the decrease in loss on @ from a step on z. Our method exploits this
train—validation symmetry. The change in overall validation loss for a single gradient step with
respect to x is:

e S (006, 20) — 8a. 20)) & S S 0(VAO, 2:), VEO,). 5)

On the other hand, performing a batch gradient step at @ with respect to the validation set gives
0 =06 — nm#l Shal 7¢(8, z;) . Combining this with Eq. (5), we get

Ly (z(e, z) — 0(0g, zi)) ~ (0 — 0,4, V00,x)) ~ 0(0,%) — (O, z). (6)
In other words, the change in average validation loss from training on & can be approximated by the
change in loss on x after training on the validation set Z*¥.

Our main objective is to evaluate the left-hand side of Eq. (6) for all & in the training set. The right-
hand side provides a far more efficient route: (i) Compute the loss £(0, x) for all training examples;
(#7) fine-tune @ on the validation set to obtain 0 4va; (7i¢) re-evaluate the new loss £(6 v,) at each
training sample x, and approximate the effect of training on « by computing the difference with the
loss at point (4).

This requires one epoch of training on the validation set and two evaluations over the training pool,
as opposed to IV evaluations of the validation loss as suggested by a direct evaluation of the left-hand
side of Eq. (6), and it does not require access to per-example gradients.

In the next sections we use this idea to obtain a selection algorithm that alternates training on a
subset of the training set and on the validation set. A specific implementation, which we refer to as
‘Method A’ is given in Algorithm 1; a slightly different implementation (‘Method B’) will be given
in Algorithm 2. In Method A, we start with a small random subset U C [N] of the training pool.
We train on U for L epochs, resulting in models 3*, ... 8%, For each epoch k € [L] we fine-tune

éz*“ for one epoch on the validation set, resulting in models é,vjl. For each epoch, every remaining

Under review as a conference paper at ICLR 2026

Algorithm 1 ToV Scoring Algorithm: Method A.

Input: Pretrained model 6y, validation set Z**, training pool X = (x; : ¢ € [N]), epochs L,
selected data count n, learning-rate schedule {7, }%_,, base model count m, £ € [0, 1)
Output: Set of examples S C [N] of size n
Sample base subset U C [N] of size m randomly; define Xy = (x; : i € U)
Initialize model: G5 < @p; set scores ¢; < 0 forall i € [N]\ U
for £ = 1to L do .
Train 6} ; on X for one epoch with learning rate 7, to obtain 67

Train BAI"C"’S for one epoch on Z"¥! with a learning rate €7, to obtain GA,VC"’"

for eachi € [N]\ U do
o F(0(63; ;) — £(65; x;)) (see Section 2.1 for the definition of F)
¢+ ¢ + 07 /L

end for

: end for
: Return set S C [N] \ U of size n on the basis of scores ¢; (see text)

A A A o

_.
e

—_— e

training example «; with i € [N]\ U is scored by the change in its loss between éZ’“‘S and OAE", and
scores are averaged across epochs.

After computing scores ¢; as in Algorithm 1, we select S using one of two strategies: (i) choose
the n examples with the largest ¢;; (i7) choose half from the highest-scoring examples and the other
half uniformly at random from U to increase diversity.

Intuitively, large ¢; means that a small amount of training on the target distribution produces a large
change in the model output at ;. Our working assumption, motivated by the heuristics above and
formalized in Section 3, is that the converse also holds: training on x; will produce a large change
in model output on the target distribution. Hence the scores ¢; can be used to select ‘important’
samples for the target.

An adaptation for token-based learning is described in Section 2, along with empirical results. Sec-
tion 3 provides a mathematical justification that formalizes the argument above.

1.2 RELATED WORK

Our work relates to data selection and data attribution. The impact of a single example on the
validation error can be approximated by a first-order Taylor expansion. This idea results in data
selection methods based on influence functions (Wang et al., 2018; 2020; Ai et al., 2021; Kolossov
et al., 2024). Classical influence functions estimate the effect of a single example on the empirical
risk minimizer. Most closely related to our work are Pruthi et al. (2020); Bae et al. (2024); Xia et al.
(2024), which instead estimate the influence of an example on the training dynamics. In particular,
Bae et al. (2024) shows how to approximately propagate gradient changes at k-th epoch through all
subsequent epochs. In contrast, Pruthi et al. (2020); Xia et al. (2024) make a crude approximation
for this propagation. Limitations of influence-based methods are discussed in Schioppa et al. (2023).

The recent work of Xia et al. (2024) proposes LESS, a data selection method for instruction tuning
that adapts influence ideas to Adam and long sequences. In particular, these authors emphasize the
challenge of computing and storing gradients to compute influences. They address this problem
via random projections and low-rank approximation. Engstrom et al. (2024) apply the datamodel
framework (Ilyas et al., 2022; Park et al., 2023) to select pretraining data. Separately, a replay
algorithm that stores only a logarithmic number of checkpoints is proposed in Engstrom et al. (2025).
Methods that align training data distributions to a small target set include TSDS (Liu et al., 2024) and
DSIR (Xie et al., 2023); domain/task-adaptive pretraining also improves transfer (Gururangan et al.,
2020). Broader LLM data-efficiency work proposes LLM-guided quality scoring (Ask-LLM) and
density sampling (Sachdeva et al., 2024), and clustering-based sensitivity sampling with provable
guarantees (Axiotis et al., 2024). Finally, Data Filtering Networks (DFN) also leverage a held-out,
high-quality set, but with a different goal and setup (Fang et al., 2023).

Under review as a conference paper at ICLR 2026

Our contribution differs by (i) inverting train/validation roles to approximate per-example influ-
ence using only forward losses and doesn’t require per example gradients, or Hessian-vector prod-
ucts—and (i) showing that this simple, symmetry-based score is computationally inexpensive and
outperforms recent data selection approaches for instruction tuning and NER.

2 DATA SELECTION FOR TOKEN-BASED LEARNING

In this section we describe our implementation of the general idea described in the introduction
for token-based learning and present empirical results demonstrating its effectiveness. Since pre-
diction takes place at the token level, while data selection takes place at the example level (e.g.,
instruction/output pair), we compute token scores and aggregate them as described in Section 2.1.
Section 2.2 gives a brief overview of instruction-tuning and NER tasks. Experimental settings are
introduced in Section 2.3. Empirical results are presented in Sections 2.4 and 2.5.

2.1 SCORE COMPUTATION FOR TOKEN-BASED LEARNING

Each example z consists of an input 2™ and an output 2°, both of which are strings and may differ
in length. Let Z°" denote the output vocabulary, and let 7'(z) denote the length of the output string
z*, which we write as 2° = (2™(1), 2°(2),...,2"(T(2))).

Given a model parameterized by 0, its prediction on example z is a sequence of T'(z) conditional

distributions, {p:(- | =, 0) ,;r:(’f), where each p;(- | z, 0) denotes the model’s predictive distribution

over the output token at position ¢. Note that p;(- | z,0) depends on z solely through z™ and
z2*(1),...,2*(t — 1). We train models using the log-loss

00;z) = —ﬁ ZtT:(f) log pi (2(t) | 2 0). (7
To compare two models, 6 and 8’, on example z, we define a per-token difference of log-loss

P (Zoul(t) | 2;01)

Ay(2:0,0") = log P21 =7)
i) Dy (z"“‘(t) | z; 9)

®)

Since our setting involves selecting entire examples rather than individual tokens, we aggregate
the per-token differences into a single score per example. Specifically, we apply a transformation
function F' : R — R to each A, before averaging across positions. The final score for example z is:

0(2:0,0) = 75 17 F(Ai(2:6.01). ©)

We consider three instantiations of the function F', leading to three different scoring methods:
MAXIMUM-IMPROVEMENT: F'(y) = y — emphasizes raw improvement.
MAXIMUM-ABSOLUTE CHANGE: F(y) = |y| — captures the magnitude of change.

MAXIMUM-POSITIVE IMPROVEMENT: F'(y) = max{y, 0} — ignores degradations.

The algorithm is therefore the same as in Algorithm 1, with the adaptation ¢§k) = ¢(xy; é,”c“s, ég").
Given a budget of n examples, we choose S C [N]\ U, |S| = n using one of these rules:
SCORE-ONLY: Choose the n examples i € [IV] \ U that have the largest score ¢;.

SCORE+RANDOM: Choose the n/2 examples ¢ € [N]\ U that have the largest score ¢;, and add
n/2 more examples chosen uniformly at random (without replacement) from U.

Our scoring schemes tend to favor shorter examples due to their higher variance, which arises from
having fewer tokens. To mitigate this bias, we partition the set [N]\U into 10 bins based on sequence
length, ensuring each bin contains an equal number of examples. We then select an equal number of
top-scoring examples from each bin.

After selecting S of size |\S| = n, we train (or fine tune) a model on S to evaluate the selection
scheme. We refer to this stage as final training.

Under review as a conference paper at ICLR 2026

We compare our schemes with three baselines:
RANDOM: The set S is selected uniformly at random subject to its size.

MAXIMUM UNCERTAINTY: Instead of the scores we defined, we use the following hardness score:

Wi = 2 3, log (pe(2:(8) 255 05) (1 — pu(z:(1) |21 05)) (10)

This score extends the method of Ting & Brochu (2018); Wang et al. (2018); Ai et al. (2021);
Kolossov et al. (2024) to token-based learning .

LESS: We used the publicly available implementation from Xia et al. (2024); see Appendix A.1.

2.2 PREDICTION TASKS

We evaluate our data selection framework in two distinct token-based tasks: instruction tuning (IT)
and named entity recognition (NER). The framework we introduced above captures both tasks:

Instruction Tuning (IT) involves training a language model to follow natural language instructions.
Each training example consists of:
Input 2™: a user instruction or prompt; Output z°": the desired model response.

The output is typically multi-token and highly variable in content and length, depending on the
instruction. The model learns to generate z°" conditioned on z™. This naturally fits our framework,
which models predictions as token-level distributions p;(- | z, 8).

Named Entity Recognition (NER) is a sequence labeling task where the model assigns a probabil-
ity distribution over entity tags (e.g., PERSON, ORGANIZATION, ...) to each token. In this case:
Input z™": a tokenized sentence; Output 2°': a sequence of entity labels, aligned with the input.

In NER, predictions are computed as token-wise classification distributions and therefore output is
of the same length as input sequence.! In this case, as a base model we take a pretrained language
model and replace its prediction head with a classification head.

2.3 EXPERIMENTAL SETTING

In all of our experiments the training set consisted of N = 36 x 1024 samples. For the base model
training, we used |U| = 4 x 1024 samples. The validation set size is m,, = 1024 and the test set
size is my = 10,000. We vary the selected set size n € {1,2,4,8} x 1024.

Number of epochs. Both for surrogate model training and final model training we determine the
number of epochs by L = (16 x 1024)/n,. We use a batch size of 16 whence the above ensures
that the number batches used in training remains constant, and equal to 1024. In other words, all
experiments in this section are at constant compute. Since base model training uses |U| = m =
4 x 1024 samples, the number of epochs is L = 4.

Learning rate. The learning rate for both surrogate and final model training is selected using hyper-
parameter optimization for each selected set size n. The learning-rate optimization was carried out
for random data selection hence placing our approach at a disadvantage.

We use linear learning rate scheduler and LoRA training Hu et al. (2022) with LoRA parameters
« = 32 and dropout = 0.2. For NER experiments, we used PEFTrank = 1 and for instruction
tuning experiments, we used PEFTrank = 256. The learning rate for the validation examples is
e = 1/10 of the one for the base examples. We present here results with SCORE+-RANDOM and
refer to the appendix for SCORE-ONLY.

2.4 EXPERIMENTS FOR INSTRUCTION TUNING

For these experiments we used 3 different datasets, which we will refer to as . := {Slim Orca,
Alpaca GPT-4, Alpaca GPT-3.5}. As the foundation model, we use Meta-Llama-3-8B. Additional
details of the model and datasets used are provided in the Appendix.

'In NER, typically token level probabilities are combined to assign labels to a whole word.

Under review as a conference paper at ICLR 2026

We designed five experimental setups. In each experiment, one dataset from .7 is selected as the
target distribution. We randomly sample validation and test sets, Z** and Z*', without replacement
from the target dataset. These samples are excluded from further use. The training pool is then
formed by randomly sampling an equal number of examples from one or more datasets in .& (ex-
cluding the validation and test samples), such that the total number of selected training samples is
fixed at V. We denote by ., C .7 the datasets used to generate the training pool. The choices of the
target dataset and of .7, for each of the five experiments are summarized in Table 1. All reported re-
sults are averaged over 10 independent runs. In each run, we freshly sample the training, validation,
and test sets. These experiments are designed to evaluate performance across a range of data con-
figurations. In particular: in Experiments 1 and 4, the training set includes samples from both target
distribution and other distributions; in Experiments 2 and 5, the training set includes samples only
from non-target distributions; in Experiment 3, it includes only samples from the target distribution.

Table 2: Summary of named entity recognition
experiments. Abbreviations: MN = Multinerd,
Adp = Aidp, C4 = C4, SB = Syn-big.

Table 1: Summary of instruction tuning exper-
iments. Abbreviations: SO = Slim Orca, A4 =
Alpaca GPT-4, A3.5 = Alpaca GPT-3.5.

Exp | Target | Training pool

e 1 MN | MN, A4dp, C4, and SB
1 SO SO, A4, and A3.5
2 MN Adp, C4, and SB
2 SO A4 and A3.5
3 SO SO 3 MN | MN
4 A4 | SO, A4, and A35 4 Adp | MN, Adp, C4, and SB
5 A4 | SOand A35 S Adp | MN, C4, and SB
: 6 | Adp [Adp
New Methods Comparison e
10.0] exi '
I exp 3
7.5 w3
exp 5
5.0

e I M

!

|
N
W

% improvement in log loss over random
I
o
o

|
N
3

max abs cng max pos improv max improv max uncert less
selection method

Figure 1: Test log-loss improvement (%) over random selection for instruction tuning with n =
81024 samples. Each group of bars represents a data-selection strategy (maximum-uncertainty and
LESS as baselines); colors show target/training pool configuration (Table 1). Results use Method A
(Algorithm 1) with the SCORE+RANDOM strategy.

Figure 1 summarizes our results for instruction tuning for a fixed select size n = 8 x 1024. We
plot the improvement in test log-loss over random data selection for several data-selection strategies
within the general framework described in Section 2.1, using method A in algorithm 1 for scoring
the examples and SCORE+RANDOM for selecting. We observe that the proposed strategies yield
significantly better instruction tuning than random data selection or selecting by max-uncertainty.
We observe an improvement (albeit a small one) even when both train and validation data are from
Slim Orca (Exp 3), which is a case in which random selection should perform well. The proposed
strategies also yield a significant improvement over LESS (Xia et al., 2024), with the exception of
Experiment 2 in which LESS performs slightly better.

Figure 2 displays the evolution of test log loss with selected sample size n. We observe that a good
choice of the data selection method results in model improvements that can be equivalent to or larger
than doubling n. Plots show standard error (with scaling factor 1) for 10 runs.

Under review as a conference paper at ICLR 2026

exp 1 exp 2 exp 4 exp 5
0.900 4 scoring method 1.150 1.004 1.07 4
max abs cng
—— max pos improv
1.06 1
0.875 1 —— max improv 1125
—— random 0.98
1.051
0.850 less 1.100
= max uncert
n 1.04 4
(%)
o 0.825 1.075 0.96 1
o 1.034
© 0.8001 1.050
1.02 1
0.941
0.7751 1.025 1.014
0.750 1 1.000 0.921 1.00 4
07251, . . —0.975 L 0991 - . .
2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000
Select Count n Select Count n Select Count n Select Count n

Figure 2: Test log-loss vs. number of selected samples n for instruction tuning. (Due to space limits,
Exp. 3 plot is in the Appendix.) Lines show mean log-loss over 10 runs; error bars are +1 standard
error. Results use Method A with the SCORE+RANDOM strategy.

40

New Methods Comparison

g . exp 1l
= 30 - oxp 2
e B exp 3
3 20 B exp 4
>
S} exp 5
g 10 exp 6
j=21
S - e - R e e oo - R G FESE oo - B
g
2 -10
5}
£
2 -20
o
8
g -30
§ 40

max abs cng max pos improv max improv max uncert less

selection method

Figure 3: Test log-loss improvement (%) relative to random selection for NER at n = 8 x1024. Each
group of bars represents a data-selection strategy; colors show target/training pool configuration
(Table 2). Results use Method A (Algorithm 1) with the SCORE4+RANDOM strategy

2.5 EXPERIMENTS FOR NAMED ENTITY RECOGNITION

The task is to classify whether a token is part of a person name or not. For these experiments we
used 4 different labeled datasets, which we will refer to as . := { Multinerd, Aidp, C4, Syn-big}.
We use xIm-roberta-base as the foundation model. Further details on the experiment, model and
datasets used are presented in the Appendix.

We conducted six sets of experiments. As for the case of instruction tuning, for each set of exper-
iments, we select one of the datasets .% as defining the target distribution, and one or more other
datasets to define the training pool (denoted by .%). The choices of target datasets and ., are sum-
marized in Table 2. The construction of train, test and validation sets is same as in instruction tuning.

Figure 3 summarizes our experiments with NER. We plot the improvement in test log-loss over
random data selection for several scores definitions. Throughout these experiments, we use
SCORE+RANDOM. We observe that the strategies of Section 2.1 yield systematic improvements over
random data-selection. Unlike in the case of instruction tuning, maximum uncertainty also yields an
improvement in most settings. However, the ToV approach achieves a larger improvement. Finally,
in this case LESS (Xia et al., 2024) appears not to improve over random data selection.

3 A FORMAL JUSTIFICATION

In this section we present a mathematical analysis of our approach in the case of batch gradient
descent (GD). We focus on the implementation Method B, described in Algorithm 2.

Under review as a conference paper at ICLR 2026

Algorithm 2 ToV Scoring Algorithm: Method B

1: Input: Pretrained model 6y, validation set Z**, training pool X = (x; : i € [N]),

2: selected data count n < NN, base model count m

3: Output: Set of examples S C [N] of size n

4: Sample base subset U C [N] of size m randomly; define Xy = (@; : ¢ € U)

5: Initialize models: 65" < 6y, 65 «+ By; set scores T; « 0 forall i € [N]\ U

6: fork =1to L do A .
7. Train for one epoch on Xy with learn. rate 7, and init. 8. Denote the output by 08":2*
8: Train for one epoch on Z** with learn. rate ¢ - 7, and init. égdj: Denote the output by HAZ“’*
9: Train for one epoch on X, with learn. rate 7, and init. ézz‘il. Denote the output by éZas
10: foreachi € [N]\ U do
e X (6 — 002 ay)
12: YT, T, + Tgk)/L
13: end for
14: end for

—
W

: Select S C [N]\ U with size |S| = n using scores T

Method B differs from Method A because at each training cycle k, training on the base set Xy is
initialized with the output of the previous train-on-validation phase. Empirically Method A performs
somewhat better than B, see Appendix C. We use Method B for analysis just because the resulting
mathematical expressions are simpler.

We find empirically that the ToV works well beyond token-based learning, and hence our focus
will be to understand it in a generic learning problem. Appendix D demonstrates this point by
considering a simple logistic regression problem.

3.1 IDEAL SCORES, LINEARIZATION, INFLUENCE FUNCTIONS

In order to estimate the model improvement produced by sample i € [N]\ U we could train a model
on two training sets Xy and X;, using empirical risk functions Ry (0), Ry;(0). We thus would
run GD for L steps, with initialization 85" = 65" = 6y:

Oty = O —mVRy(O}°), 67 = 6 —n(m + DVRyu(637). 1)

At iteration k, we have thus two models GA%“S and éi‘”“ that differ uniquely in whether sample ¢ is
used or not. We define the ideal score to be the difference in validation error between these two
models, averaged over epochs

L L My,
1 D Abas 3) Abas—+i 1 Qbas. _ va Abas—+i va
S = ZZ[Rval(eg) = R0 = — 7 DSOS {u@; 2 — 00t 2™y (12)
s=1 VAT s=1 j=1

Evaluating this score is computationally expensive, hence several groups (Pruthi et al., 2020; Bae
et al., 2024; Xia et al., 2024) proposed to use a first order Taylor expansion to approximate the
difference between the two models. Expanding .S; with respect to the contribution of ¢(- ; x;) yields

S = F Yocscrer{VRa(OF), My 1 VU0 @) . (13)

K2

where M, ; = I; and M, , captures the propagation of perturbations along the GD trajectory:
M, =H; ,-Hy5---H,, Hy =1 —ymV>Ry(6}). (14)
The next result shows that Si® approximates well .S; in a quantitative way, under local convexity.

Proposition 1. Assume there exist co, Cy, M > 0 such that VQEU(éZaS) = coly, || VE(O; 2;)|| <

Cy for all k and, for all 81,805, |[V*Ry(81) — V>Ry(82)|lop < M||01 — 055, || VE(0:;2;)
VU0 2:)|op < M||01 — O3]|2. Further assume that ||V? Ry (0%)lop < C1 and ||V R,.(61)

Under review as a conference paper at ICLR 2026

V2§val(02)”op < M]||01 — 63||2 for all 81,05 as well. Finally, assume there exists a constant C;,
such that ny, = n < Cy/m Vk. Then there exists C = C(co, C1, Cy, M) such that

|S; — Sin| < C/m?. (15)

The assumption 7 < C,,/m is justified by the fact that we expect the Hessian of }ABU(-) to be of
order one, and hence the stepsize for this objective (which is given by nm see Eq. (11)) should be
of order one. As shown in the proof, the typical size of Si" is of order 1/m, and hence Eq. (15)
establishes that the difference |S; — Si"| is negligible.

3.2 TRAIN-VALIDATION DUALITY

We consider Methods A and B defined in Algorithms 1, 2. We emphasize the dependence on ¢ by
writing ¢; = ¢;(¢) and T; = Y;(¢). It is easy to derive the small € asymptotics ¢; = ¢li"e + o(e),

i = Ti"e 4 o(e), where, for g, ; := V(0" x;),

L
in 1My D Abas in Ty D bas
O =10 Y (VRa(0),900), TPi= "7 Y0 (VRa(05), M1 419.) - (16)
s=1 0<t<s<L

We show that these are good approximations of Y;(¢), ¢;(¢) uniformly in dimension, sample size.
Theorem 1. Consider Algorithms 1, 2 with fixed stepsize n, = n (and F(x) = —x in Algorithm
1). Under the assumptions of Proposition 1, further assume ||V R, (0%)| < Ci for all k, and
V26(0;2)|op < Ci. Then there exist c. = ci(co, M,C1), C = C(co, M, C4) such that, for
Emval/m S Cy,

|Ti(e) — Yine| < C’(emval/m)z, |pi(e) — ¢line] < C(emval/m)z. 17)

Note that YT!" differ from Si". because of: (i) The different order of s and ¢; (i) The fact that M 1
is replaced by its transpose in Eq. (16). Ti" measures the influence of training on validation data
when making inference at x;, while Si" measures the influence of training on x; data when making
inference on validation. These two measures of ‘influence’ differ by the replacement of M; 1 by
M ;r .- However, in a number of cases we expect these two matrices to be not too different, and hence
the two scores to yield similar results. We can prove that Ti" and Si" coincide (for large L) under

local convexity conditions.
Theorem 2. Assume 0 — £(0; x) to be twice continuously differentiable and that HV]TEVHI(GAE“) | <
4, ||V€(ézas;wi)\\ < Oy for all k. Further assume that gradient descent iterates (é‘ff k> 0)
converge 10 0 = limy,_, o 0% which is a local minimum of Ry (0) with Qo := V2Ry (625) > 0
(strictly). Then

lim ——Y"(L) = lim SI"(L) = %Wém(égﬁ), QIO) = S (18)

L—00 My L—o0

The last expression in Eq. (18) (denoted by S?foo) is the classical formula for influence functions of
M-estimators (van der Vaart, 2000). Both our approach and the dynamical influence function Si"(L)
can be regarded as approximations of S;ij‘oo in this case.

In fine tuning, the model is likely to be overparametrized, and it is unrealistic to assume convergence
to a strict minimum (with V2R, (6) > 0). On the other hand, the weights will not change signifi-
cantly during this phase and it is reasonable to approximate fine-tuning as fitting an overparametrized
linear model with respect to the empirical neural tangent features learnt in the pre-training phase.

Theorem 3. Consider the loss function (0;x) = (y(x) — (v(x), 0))? /2 for some response vari-

ables y(x), and featurization map v : R* — RP, p > m. Let ¥ € RIVIXP be the matrix with rows

(Y(xj) 1 j € U), ¥y € R™IP be the matrix with rows ((2}") : j < mya), Py the projector to

the kernel of O, y = (y(z;) : j € U), § := ly, y! = (y(zf") — (0,9(z}") : § < mu),
r(i) = y(x;) — (0, (x;)). If GD is initialized with 8y = 0, and we use constant stepsize
0= 1%12,/2. then

lim —— (L) = lim ~$"(L) =

L—o0 Lmva] Looo L °

N3

r(i) (™, Ol Pyyp(x;)) . (19)

val

Under review as a conference paper at ICLR 2026

REFERENCES

Mingyao Ai, Jun Yu, Huiming Zhang, and HaiYing Wang. Optimal subsampling algorithms for big
data regressions. Statistica Sinica, 31(2):749-772, 2021.

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta—1lama/
llama3/blob/main/MODEL_CARD.md.

Kyriakos Axiotis, Vincent Cohen-Addad, Monika Henzinger, Sammy Jerome, Vahab Mirrokni,
David Saulpic, David Woodruff, and Michael Wunder. Data-efficient learning via clustering-
based sensitivity sampling: Foundation models and beyond. arXiv preprint arXiv:2402.17327,
2024.

Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via approximate
unrolled differentation. arXiv:2405.12186, 2024.

Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
Acta numerica, 30:87-201, 2021.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1-53, 2024.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzman, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
supervised cross-lingual representation learning at scale. CoRR, abs/1911.02116, 2019. URL
http://arxiv.org/abs/1911.02116.

Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection
with datamodels. arXiv preprint arXiv:2401.12926, 2024.

Logan Engstrom, Andrew Ilyas, Benjamin Chen, Axel Feldmann, William Moses, and Aleksander
Madry. Optimizing ml training with metagradient descent. arXiv preprint arXiv:2503.13751,
2025.

Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander Toshev, and Vaishaal
Shankar. Data filtering networks. arXiv preprint arXiv:2309.17425, 2023.

Suchin Gururangan, Ana Marasovié¢, Swabha Swayamdipta, Kyle Lo, 1z Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. In Proceedings of the 39th International Con-
ference on Machine Learning, 2022.

Germain Kolossov, Andrea Montanari, and Pulkit Tandon. Towards a statistical theory of data
selection under weak supervision. In The Twelfth International Conference on Learning Repre-
sentations, 2024.

Wing Lian, Guan Wang, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and
”Teknium”. Slimorca: An open dataset of gpt-4 augmented flan reasoning traces, with verifica-
tion, 2023. URL https://https://huggingface.co/Open-0Orca/SlimOrca.

Zifan Liu, Amin Karbasi, and Theodoros Rekatsinas. Tsds: Data selection for task-specific model
finetuning. Advances in Neural Information Processing Systems, 37:10117-10147, 2024.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective
instruction tuning. In International Conference on Machine Learning, pp. 22631-22648. PMLR,
2023.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
http://arxiv.org/abs/1911.02116
https://https://huggingface.co/Open-Orca/SlimOrca

Under review as a conference paper at ICLR 2026

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. arXiv preprint arXiv:2303.14186, 2023.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920-19930, 2020.

Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H Chi,
James Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train data-efficient 1lms.
arXiv preprint arXiv:2402.09668, 2024.

Andrea Schioppa, Katja Filippova, Ivan Titov, and Polina Zablotskaia. Theoretical and practical
perspectives on what influence functions do. Advances in Neural Information Processing Systems,
36:27560-27581, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Simone Tedeschi and Roberto Navigli. MultiNERD: A multilingual, multi-genre and fine-grained
dataset for named entity recognition (and disambiguation). In Findings of the Association
for Computational Linguistics: NAACL 2022, pp. 801-812, Seattle, United States, July 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.60. URL
https://aclanthology.org/2022.findings—naacl.60.

Daniel Ting and Eric Brochu. Optimal subsampling with influence functions. Advances in neural
information processing systems, 31, 2018.

Aaad W van der Vaart. Asymptotic Statistics. Cambridge University Press, 2000.

HaiYing Wang, Rong Zhu, and Ping Ma. Optimal subsampling for large sample logistic regression.
Journal of the American Statistical Association, 113(522):829-844, 2018.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, 1z Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36:74764-74786, 2023.

Zifeng Wang, Hong Zhu, Zhenhua Dong, Xiuqiang He, and Shao-Lun Huang. Less is better: Un-
weighted data subsampling via influence function. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 6340-6347, 2020.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. LESS:
selecting influential data for targeted instruction tuning. In Proceedings of the 41st International
Conference on Machine Learning, pp. 54104-54132, 2024.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language
models via importance resampling. Advances in Neural Information Processing Systems, 36:
34201-34227, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

11

https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2022.findings-naacl.60

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

A.1 EXPERIMENTS FOR TOKEN-BASED LEARNING

In these experiments, we used pretrained models as base models and constructed training, validation,
and test sets from real-world datasets. Details of the datasets and models are provided in Section J.

For each training example count—both for surrogate model training (used for scoring) and final
model training—we selected the learning rate from the following grid:

[3e-6, 1le-5, 3e-5, le-4, 3e-4, le-3, 3e-3, le-2].

The optimal learning rate was determined by training models on randomly sampled subsets from the
training pool and evaluating their test log-loss. For each learning rate, the loss was averaged over 10
runs, with a new random subset used in each run. The best-performing learning rate was selected
separately for each experimental configuration listed in Table 1 and Table 2.

Implementation details for Less (Xia et al., 2024) We used the public implementation from the
authors’ GitHub repository. The projection dimension was set to 8192. Learning rate and other
hyperparameters were tuned identically for all approaches. For both our method and LESS, the
surrogate model used the same number of samples and was trained for four epochs, matching the
settings in the LESS paper. Following the original LESS procedure, we selected the top-scoring
examples.

A.2 EXPANDED RESULTS FOR INSTRUCTION TUNING

In the main paper, we compared our scoring methods for the SCORE+RANDOM strategy. Due to
space constraints, Figure 2 omitted results for Experiment 3. In Figure 4, we provide an expanded
version that includes results for Experiment 3 as well.

exp 1 exp 2 exp 3
0.900 4 scoring method 1.150 4
max abs cng
— i 0.95 4
0.875 4 max Pos improv 11251
m——Max Improv
= random
0.850 4 less 1.100 0.90
& = max uncert
.825]
o 0825 1.075 0.85
o
© 0.8004 1.050 4
0.80
0.7754 1.025 4
Y 0.75
0.750 4 1.000 4
07251, 0.975 1+ 0.70 1,
2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000
Select Count n
exp 4 exp 5

0.98 1

1.024
0.94 1

1.014
0.92 1.004

20‘00 3()‘00 4600 5600 GObO 7060 80‘00 2600 SObO 4060 50‘00 6600 7600 BObO
Select Count n Select Count n

log loss
o -
o S
E 8
T
o o o =3 i<}
2 2 8 8 8

Figure 4: Expanded version of Figure 2 including the Experiment 3 plot.

Under review as a conference paper at ICLR 2026

A.3 EXPANDED RESULTS FOR NAMED ENTITY RECOGNITION

In Figure 3 of the main paper, we reported results for SCORE+RANDOM using a fixed selected
sample size of n = 8 x 1024, across all experiment configurations in Table 2.

In Figure 5, we show how the test log-loss varies with the selected sample size n for different scoring
methods under the SCORE+RANDOM strategy, and how these compare to random selection.

exp 1 exp 2 exp 3
scoring method 0.070 4
0.055 max abs f:ng 0.050 4
=== Max pos improv
= max improv 0.065 | 0.045
0.050 4 —— random ’
less
m 0.045 4 e max uncert 0.060 0.0407
[e}
- 0.055 4 0.035 4
o]
& 0040 |
0.050 0.0301
0.035 1
0.025 1
0030 0.045 4
0.020
0.025 4+ ‘ ‘ ‘ ‘ ‘ —l 00401, ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000
exp 4 exp 5 exp 6
] 0.011+4
012 0.055
0.0104
0.104 0.050 1
: 0.009 1
0.045 4
A 0.08 1 0.008 1
o
0.040 1 0.007
8 0.06 1
0.035 | 0.006 4
0.04 4
0.005 4
0.030 1
0.024 0.004 1
—
0.025 4 0.003 1
2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000
Select Count n Select Count n Select Count n

Figure 5: Test log-loss vs. number of selected samples n for NER. Lines show mean log-loss over 10
runs; error bars are +1 standard error. Results use Method A with the SCORE+RANDOM strategy.

B COMPARISON OF SCORE+RANDOM AND SCORE-ONLY SELECTION

In this section we examine how the performance of our strategies changes when all training examples
are selected from the top-scoring set (SCORE-ONLY) instead of selecting only half of them from the
top and the other half at random (SCORE+RANDOM).

Recall that our scores approximate how much benefit each example provides when added to a ran-
domly chosen pool of training data. A higher score therefore indicates an example expected to be
more helpful in that setting. SCORE+RANDOM selects half of the final training set from the highest-
scoring examples and fills the rest with random examples, whereas SCORE-ONLY takes only the
top-scoring examples. This design creates a trade-off:

* Pure exploitation: Selecting only top-scoring examples can maximize immediate gain be-
cause every chosen example has a high estimated contribution.

* Score validity and diversity: The scores are defined relative to adding examples to a random
pool. If we select only top examples, the resulting set may differ substantially from the
random reference, making the scores a less accurate guide. Randomly adding half the
examples keeps the final set closer to the conditions under which the scores were computed
and also protects against loss of diversity.

13

Under review as a conference paper at ICLR 2026

CE) max abs cng max pos improv max improv
a
=
< 1.02
+
& 1.01
o — —_—
3 —_ —
~1.00 — T
s _ | |—
=
0 0.99
w
g —e— exp 1
0.98
8 exp 2
:; —— exp 3
S 0.971 — exp4
2 —— exp5
wn
n
(=}
—

2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000
Select Count Select Count Select Count

Figure 6: Ratio of log loss for SCORE-ONLY versus SCORE+RANDOM across our three scoring
strategies and all instruction-tuning setups in Table 1. Scores are computed using Algorithm 1.

max abs cng max pos improv max improv

—— exp 1l
exp 2
exp 3
exp 4
exp 5
exp 6

g
o

=
©

=
o

=
>

=
N

\/&é ——
2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000
Select Count Select Count Select Count

=
o

o
©

Loss Ratio (SCORE-ONLY / SCORE+RANDOM)

Figure 7: Ratio of log-loss for SCORE-ONLY versus SCORE+RANDOM across our three scoring
strategies and all NER setups in Table 2. Scores are computed using Algorithm 1.

Which effect dominates varies by task.

Figures 6 and 7 show the ratio of log-loss for the two selection strategies in instruction tuning
and NER respectively. In each figure the three subplots correspond to our three scoring strategies;
different lines indicate the various experimental setups. Algorithm 1 is used to obtain the scores.

For instruction tuning, SCORE+RANDOM performs better in three setups (3, 4, 5), while SCORE-
ONLY is better in the remaining two (1, 2) across most selection sizes and scoring methods. For
NER, SCORE+RANDOM tends to outperform SCORE-ONLY more often, particularly for the Max-
Improvement scores.

C METHOD B vS METHOD A

All previous plots used Method A (Algorithm 1) for scoring. Here we compare the performance
of the two scoring methods: Method A (Algorithm 1) and Method B (Algorithm 2)—across our
experiments, using the SCORE+RANDOM selection strategy for both.

Figures 8 and 9 show the ratio of test log-loss obtained with Method B relative to Method A for
instruction tuning and NER, respectively. Each figure contains three subplots corresponding to our
three scoring strategies, and different lines represent the various experimental setups.

14

Under review as a conference paper at ICLR 2026

The results indicate that for instruction tuning, Method A is most often superior, while for NER
there is no consistent winner. A possible explanation is that Method B uses two distinct training
trajectories. Our analysis assumes that the resulting models differ only slightly, but in practice, the
two training trajectories can diverge substantially. This effect is likely to be stronger with large and
highly overparameterized models such as Meta-Llama-3-8B, which we used for instruction tuning,
We expect the larger distance between the two models to result in less accurate score estimation in
Method B, as compared to Method A.

max abs cng max pos improv max improv
1.07 —e— exp 1l
exp 2
__1.06
=z exp 3
o

Al
.
=)
o

—
—— exp 4
. —— exp5
-
@ 1.04

2

< N B et M

o103

T

& 1.02 N \

%]

@ —

S101 \.\. \,\‘
1.00{ -5~ e —

2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000
Select Count Select Count Select Count

Figure 8: Ratio of test log-loss using Method B (Algorithm 2) to Method A (Algorithm 1) for
instruction tuning. Results use the SCORE+RANDOM selection strategy. Each subplot corresponds
to one scoring strategy; lines denote different experimental setups in Table 1.

max abs cng max pos improv max improv

f

expl
exp 2
exp 3
exp 4
exp 5
exp 6

=
©

-
o

bttt

=
N

Loss Ratio (Alg B/ Alg A)
-
S

@% ;J!‘X/__./:
—_—r— —1 = —~

2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000
Select Count Select Count Select Count

=
=)

Figure 9: Ratio of test log-loss using Method B (Algorithm 2) to Method A (Algorithm 1) for
NER. Results use the SCORE+RANDOM selection strategy. Each subplot corresponds to one scoring
strategy; lines denote different experimental setups in Table 2.

D LoOGISTIC REGRESSION EXPERIMENTS

In these experiments, we synthetically generated the training pool, validation set, and test set. We
begin by defining a parametric family of distributions used to construct the data.

For a given p > 0 and parameter vector § € RP, we define a distribution Py over pairs (x, y), where

x € RPandy € {0, 1}. The features are sampled as x ~ N (0, I), and the label y is drawn according
to a logistic model:

1

P :1 = —-—
M =11%) = (oo gy

Priy=0|z)=1-Pr(y=1]x).

15

Under review as a conference paper at ICLR 2026

We randomly sample a unit vector #* from the unit sphere to serve as the target direction. A second
unit vector & is then drawn such that it lies at an angle v from 6*. In our experiments, we set p = 10
and v = /2.

The training pool consists of N = 128 x 1024 samples, drawn independently from the mixture
distribution:

1 1
D i = — * 77) ’.
train 2P0 +2 (7

The validation and test sets contain m,,; = 1024 and m,, = 10,000 samples respectively, both drawn
i.i.d. from the target distribution Py-.

0.500 Strategy: Rand-frm-top Strategy: Score+Random Strategy: Score-only
—e— max improv
0.475 max uncert
= —e— random
© 0.450 —e— oracle
=
2 025
S e S |
S 0.400 A + +‘
© \H/ Sy
;E 0375 + \, /"—”\.\‘7‘/‘\’ \+/*\¢\‘7’/.\,/o‘. + *‘Qi’\,/b\,/o\.-o\,
©0.350 $—y- L - S
© 0—:—::'\! L '\:‘t>3>'-<g ________ ‘“‘t>"§t::—°—0—'—‘—o——._.
0.325 * —3—t—3—3 N et -t S e et — e e
0.300
10 104 103 10% 103 104
Final Size Final Size Final Size

Figure 10: Data selection experiments with Method B for logistic regression on synthetic data in
d = 10 dimensions (4 epochs of training). Each color corresponds to a distinct method to score data
in the training pool, and each frame to a distinct method to use the score to form the selected set.
Each symbol corresponds to the average of 10 experiments.

For scoring, we used Method B as described in Algorithm 2; similar experiments with Method A
produced comparable results, so we report only Method B here. Algorithm 2 does not specify
the method to select data on the basis of scores. In Figure 10 we compare SCORE-ONLY and
SCORE+RANDOM (already introduced above) with a third one RANDOM-FROM-TOP that selects
at random from the top 50% subset of data with highest scores.

The RANDOM-FROM-TOP method is included only for these synthetic logistic-regression experi-
ments, for theoretical interest as by construction, the training pool contains half of its examples
from the target distribution.

The base set used for initial training contains |U| = 4 x 1024 examples.

For both the scoring model and the final model training, we used 4 epochs of batch gradient descent
with a linear decay learning rate scheduler. The initial learning rate was set to 0.5. We used € = %
for adjusting the learning rate on validation examples.

The selected subset size n was varied from 128 to 8192 in multiplicative steps of v/2. All results are
averaged over 10 independent runs. The final performance curves are presented in Figure 10.

E PROOF OF PROPOSITION 1

Throughout this proof, we denote by C' a generic constant that can depend on ¢y, C1, M, C,, and
whose value is allowed to change from line to line.

Letting A (i) = 6%+ — 6, Eq. (11) yields

Agi1(i) = Ag(i) — nmV2Ry (85) Ak (i) — nVL(0Y; ;) + erry, (i)
= HpA(i) — VIO x;) + errp (i) (20)

16

Under review as a conference paper at ICLR 2026

where Hj, is defined as in Eq. (14) and
1
err (i) = —n V(O x;) — VO x;)] — nm/ [V2Ry (0k(2)) — VPRy(65")] A (i)dz,
0
where 0 (z) = (1 — 2)0% + 26"+, By assumption 6 ~ V/(0;x;) and 6 — V2R (0) are
M -Lipschitz, whence
lerri ()| < nM|OF*" — 63| + nmM |63 — 6 [|[| Ax (i)

= M| Ak (@) + nmM| A @] e2))

Define A} (i) by letting A}"(¢) = 0 and, for k > 0,
A (i) = Hy AR (i) = nVHO"). (22)
Comparing with Eq. (20), we obtain
(Aks1(i) = AR () = Hi(Ag1(i) — AR (0) + err(n,m),

t—1

= A (i) — AP(i) = Z M, g qerrs(n,m). (23)
s=0

Since V2Ry (éfs) > colq, we have ||Hyllop < (1 — comn), and therefore

t—1
A1) = AP <Y 1My sqallopllerrs(n, m)|
s=0
t—1 R
<> (1= comn) " lerry(n,m)]|| (24)
s=0

Further, from Eq. (22), and using ||V€(ézas; x;)|| < Cy, we get

t—1
AP (i) = =0) My VIO),
s=0
— t—s—1 _ C
= [AFG) < i) (1= comn) " < . (25)
s=0

Let D, (7) := maxg<¢ || Ag(4)

, By (1) := max,< ||errs(¢)||. Using Egs. (21), (24) and (25), we get

L C .
Dy(i) < o + Co’le?’]Et_l(Z)7
Ey(i) <nMDy(i) +nmMD,(i)*.

Using these inequalities together, we obtain, for all m > mg (and eventually adjusting the constant
)

C C
D) < =, Eii)<—L, (26)
m m
whence, using again Eq. (24), we get
. lin ¢ - C
A1) = AP @) < — . 27
m
Notice that we can rewrite
1S~
SI" = =7 D (VRa(0), AT (). (28)
s=1

17

Under review as a conference paper at ICLR 2026

whence, using the fact that | V2R, (8)|lop < C for all 8 € [0, 627 (this follows from the

assumed bound ||V21§V31(0AE“) lop < C1 and the Lipschitz property of V2R,.(0)), we get

R
s=1
< N ((2 N Aling:
< € mae| A, (1) + Cmax [A.(5) — AP
c
= ma

and this completes the proof.

F PROOF OF THEOREM 1

L
. 1 D Abas - ing;
S Cglgal)/(HAs(l)HQ + Z Z |<VRval(02>)7AS(Z) - AL (l)>|

Throughout this proof, we denote by C' a generic constant that can depend on cy, C1, M, C, and

whose value is allowed to change from line to line.

F.1 BOUNDONT;

The iteration for éfs and BAZ““, as specified by Algorithm 2, reads

o, = OF — V().

Abas+ __ Abas.+ D Abas,+ Abas+ __ Abas+ D Abas,+
0k+1 = 90,k+1 — €nmva1VRva1(90)k+1) s 00,k+1 = 01{: — anRU(Gk) .

Letting Ay, := 0% — 6%, and A, := G5 — 65, we obtain

D (A (1)
Ak+1 = AO,k+1 — EnmmVRval(kaj,l) + errk+1 s

AO’kJrl = HkAk + err,(f) .

(29)
(30)

3D
(32)

where, letting 0 11 1(2) = (1 — z)éi“jrl + zég“jcj_l and ;. (2) = (1 — 2)0 + 26", we have

1
err,(clJz1 = —nemva]/o V2R (00 k11(2)) Ao 1 dz,

1
errl”) = —nm / [V2Ry(0k(2)) — V2R (07)] Ax dz.
0

Using the assumption that ||V2}§V31(0Azail(z))||op < Cand 0 — V2R, (8) is M-Lipschitz, we get:

1
lerrid Il < Cemmua{ [Ao k1]l + Ao ki]}
On the other hand, since 6 — V21§U(0) is also M-Lipschitz, we have
2
lerrl || < pmM | A,
whence, using Eq. (32) and || Hy||op < 1
[A ksl < [[AR] + nmM || Ag|?
1
= [lerr)y || < Cenmmu{ | Akl + [Ax]® + 7*m? | Ak},
where in the last line we used the assumption that nm < C,.
Substituting Eqs. (34) and (35) in Eq. (31), (32), we obtain (using again nm < C,,)
Ay = HyAp — snmvaIV}A%val(éZajrl) + erry,,
lerri]| < Crema (ARl + [ARI*) + Coml|Ag|? .
We define A" = 0 and, for & > 0,
Al]lgn+1 = Hk:Allign - EnmvaIVEVal(ék];ﬁl))

18

(33)

(34)

(35)

(36)
(37

(38)

Under review as a conference paper at ICLR 2026

whence
t—1 t—1
li li
A = —enmyy g M, H_lVRva,(é_H) A — Ay = E M o 1qerrs.
s=0 s=0

Define D; := maxs<;||Ag||, B¢ := maxs<y ||errs|. Using the fact that | M; s11]lop <

comn)t~*~1 and the assumption HVﬁml(éz“s) | < Cq, we get, from Egs. (37), (39),

E; < Cnemyy(Ds + D}) + CymD? |
Using the assumption em., /m < ¢, this is easily seen to imply

(5’rnval)2
m

EMy,
Dt < O al

B, < C——

Substituting in Eq. (39), we get
. — o EMyar) 2
A - Al < Z (1= comm)=*err,|| < (=22)
5=0

The linearized score of Eq. (16) can be rewritten as
'rliing — _ Z vg ebqs Alm>
Using the fact that || V£(0%; x;)||, || V(62;) [|op < C1, we get

[Ti(e) — Tjre

‘ st,xl _ (0bas+) <V£(0b.1s i);Agn>

<3l
<73

b«\Q h\

lAas* + LZIIA - Ay

(E val)

IN
Q

F.2 BOUND ON ¢;

The iteration for éi‘“ and é']';*““', as specified by Algorithm 2, reads
651 = O — VR (6).
i1 = 63y — enmua VRw(0)) -
Hence, we can rewrite
L

pre = ——= Y (VIO x;), 05" — 67) .

s=1

Using the assumptions ||V2£(8"; z;)||op < C1, ||§vﬂl(é,bjs)|| < (4, we obtain

|¢z(¢lm€| < Z ‘é gval obds) <v£(él§ab7 xi)7 é;al _ égas>

C Aval Avas
<7 g 162 = 01> < Clenmaa)?

The claim thus follows by recalling that n < C,,/m.

19

(39)

(1-

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
(49)

(50)

(G

Under review as a conference paper at ICLR 2026

G PROOF OF THEOREM 2

To lighten notation, we define 7y, := Vﬁval(éz’s) and vy, (i) == V(02; x;).
Forany L L, € Z, we have
TP (L) = T30 (L) + T3 (L) + T3 (L) + T (L),
in, 7/)Tnva .
1L = Tl Z (rogr, M, v4(2))

0<t<s<Lyg
in, 1 TMMya) .
Tlim (L) = Lva Z <Tt+17M;t+le(z)>)
0<t<Lo,Lo<s<L
in, nm .
Tlim 2(L) = Lval Z <rt+1v M;I:tJrl'US (z)>)
Lo<t<s<Lg:|s—t|>Ly
in, Ty, .
sz Q(L) = LV‘] Z <Tt+17 M;I:t—i-lvs(l»)
Lo<t<s<Lg:|s—t|>L1
in,3 My T .
TSy =TS MT).

Lo<t<s<Lg:|s—t|<Ly

Since by continuity we have limy_, oo V2}A2U(ézas) = Q, for any 6 € (0,1/2), we can choose Lg

large enough so that (1 — §)Qo < VQ}A%U(ést) =< (1 +0)Qx for all & > L. In particular there
exists co > 0 (independent of €) such that ||Hy||op < (1 — comn) forall k > Ly.

Clearly | Y¥™°(L)| < C(Lo)/L — 0 as L — oo. Further

; Cnm
in, 1 NMyal
T (L)IST > [M5 t41lop
0<t<Lo,Lo<s<L
Cnmy, e
<O S gyt
0<t<Lo,Lo<s<L
Cnm,, L
< Mha 20
L comn

Finally, by increasing Ly, we can ensure that, for k > Lo, | Hy — Hoollop < 0, |7k — Too|| < 6,
[|lvg(3) — Voo (i)]] < & (where Hoo = I — nmQ o and 7, Voo (7). Hence

‘<Tt+1,M;t+1vs(i)> — (roo,Hso_t_l'voo(i)H < Clt—s+1|(1 —comn)*~15.

Therefore, letting

TPPL) = T2 N (e HS s (i) (52)
Lo<t<s<L

we have

in, lin, MMy . s—t— .
T3 (L) = T < = Yo e MU vs(6) — (oo, H T ose (i)
Lo<t<s<L
< 1M Z Clt — s+ 1|(1 — comn) 1§
Lo<t<s<L

< 1 1)
Myl © 50 .
= T gmn)?

20

Under review as a conference paper at ICLR 2026

s—t—1

Finally, using again |(roo, HS '~ 1vo (1)) < (1 — comn) , we have

: Alin, 2 EERT NMyal = s—t—1 .
Lh_)rr;O T,"(L) = ngr;o < Z Z (Poo, H '™ 000 (1))
Lo<t<L s—t+1

= MMy Z<roov Hclfovoo (Z)>
k=0
= NMyai(T oo (I - Hoc)_lvoo(i»
Myal

=T <roo;Q;ol'U00(i)>~

This finishes the proof of the part of Eq. (18) which concerns the limit of T¥". The calculation of
limy,_, oo Si(L) is completely analogous and we omit it.

H PROOF OF THEOREM 3

To simplify notations, we write y; = y(a;) for the response variables and 1; = 1 (x;) for the
feature vectors. Similarly, for the y* = y(2}"), ¥ (2}") = ¥
With these notations, we have H; = H independent of k£ and

VU0 i) = —(yi — (i, 0))s (33)
VR.(0) = —%lI'T(y —), (54)
H=1-n0"w¥. (55)
Hence,
T = % oSKZSSL rs() (O, H 7) (56)
=y — z/;““é;’il ; 7s(i) = yi — (i, ég‘“) 57

Since Py is the projector onto the null-space of H, and by our choice of , we have H = Pg+H |,
where the row/column space of H | is orthogonal to the one of Py and |[H | |jop = (1 — cyn) €
[0,1). As a consequence || H* ™71 — Pglop < (1 — cyn)s~ L

Define
Y= T N)y, Pats) (58)
0<t<s<L
Then we have
1 in 1 in My . va
Y- ST S—LQ‘ S) (e, Pay)
0<t<s<L
MMy . " i
< TN @ NHT T = Pallop |41
0<t<s<L
(@ iy, st
SOt D0 (et
0<t<s<L

S Cnmvali Li>>o 0.
L cyn

In (a), we used the fact that lim,_, o, 6 = @ (Bartlett et al., 2021), and therefore |r(i)|, [Ery |
remain bounded as s,t — oc.

21

Under review as a conference paper at ICLR 2026

In view of the above, limy,_,oo Yi"/L = limy, ’flz»‘" /L. For the latter, we have

Z Ts(l)<\IITZ117P\P¢Z>

0<t<s<L

: L iin - Mya
Jm g T = i T

lim TN ()W, Pa)

L—oo L2
Lo<t<s<L
= lim 2o Z (i) (¥, Pgp;) + err(Lo, L)
Lo 12 AL)
Lo<t<s<L
where
lerr(Lo, L)| < C sup ||rs(i) — r(i)| + C sup [|ry" — 4,]. (59)
s>Lo t>Lg

Since lim;_, o é't’“ = 0, we have limy, o0 limsup;_, . err(Lo, L) = 0. Therefore,

i L in ; s MM . wal
Jim ST = limlim Sy ()@, P)
Lo<t<s<L

1 . val
= inmvalr(@)<\11r ' Pgp;) .

This proves the limit for Yi"(L) in Eq. (19).

The limit of Si"(L) is computed essentially by the same argument and we omit the derivation.

I LIMITATION

The core idea of “train-on-validation” impacting training examples is general, but the specific scor-
ing function F'(.) and aggregation strategy might need adaptation for different problem settings.

The SCORE+RANDOM selection strategy often outperformed SCORE-ONLY in our experiments,
suggesting that diversity plays an important role beyond simply selecting the “most affected” ex-
amples. While this is a practical improvement, it also indicates that our current scoring mechanism
might not fully capture the optimal diversity or coverage needed for effective generalization. It will
be interesting to explore more sophisticated diversity-aware scoring or selection mechanisms that
explicitly balance our scoring methods with representation across the data space.

Although we mitigated bias toward shorter examples through length-based binning, a more refined
length-normalization or task-specific weighting might further enhance the selection process. Fur-
thermore, it will be interesting to see if the performance of our strategies further improves compared
to random selection if the learning rate is also tuned for these strategies and not just for random
selection.

Finally, our theoretical analysis relies on stylized settings that are plausible for simple models but
may not hold in many large-scale applications.

J MODELS AND DATASETS INFORMATION

J.1 DATASET INFORMATION

¢ Slim Orca:
— Link
— Citations-Longpre et al. (2023); Mukherjee et al. (2023); Lian et al. (2023)
— Licence: mit

* Alpaca GPT-4:

— Paper:Peng et al. (2023)
— Repository

22

https://huggingface.co/datasets/Open-Orca/SlimOrca
https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM

Under review as a conference paper at ICLR 2026

— Link
— Licence: cc-by-nc-4.0
e Alpaca GPT-3.5:
— Paper: Taori et al. (2023)
— Link
— Licence: cc-by-nc-4.0
* Multinerd:
— Paper: Tedeschi & Navigli (2022)
— Link
- Licence: cc-by-nc-sa-4.0
o Aidp:
— Link
— Licence: link
* C4 dataset:
— Link
— Labeled for NER task using llms.
— Licence: terms of use

* Syn-Big:
— Synthetically generated by us using llms.
— Proprietary dataset

J.2 PRETRAINED MODEL INFORMATION

* Meta-Llama-3-8B Al@Meta (2024)
— Link
— License: llama3
¢ xlm-roberta-base Conneau et al. (2019)
— Link
— License: mit

23

https://huggingface.co/datasets/vicgalle/alpaca-gpt4
https://huggingface.co/datasets/tatsu-lab/alpaca/blob/main/README.md
https://huggingface.co/datasets/Babelscape/multinerd/blob/main/README.md
https://huggingface.co/datasets/ai4privacy/pii-masking-300k/tree/main
https://huggingface.co/datasets/ai4privacy/pii-masking-300k/blob/main/LICENSE.md
https://github.com/allenai/allennlp/discussions/5056
https://commoncrawl.org/terms-of-use
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://huggingface.co/FacebookAI/xlm-roberta-base/blob/main/README.md

	Introduction
	Train on validation: motivation and algorithm
	Related work

	Data selection for token-based learning
	Score computation for token-based learning
	Prediction tasks
	Experimental setting
	Experiments for instruction tuning
	Experiments for named entity recognition

	A formal justification
	Ideal scores, linearization, influence functions
	Train-validation duality

	Additional Experimental Details and Results
	Experiments for Token-Based Learning
	Expanded Results for Instruction Tuning
	Expanded Results for Named Entity Recognition

	Comparison of Score+Random and Score-Only selection
	Method B vs Method A
	Logistic Regression Experiments
	Proof of Proposition 1
	Proof of Theorem 1
	Bound on i
	Bound on i

	Proof of Theorem 2
	Proof of Theorem 3
	Limitation
	Models and Datasets information
	Dataset information
	Pretrained Model information

