
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRAIN ON VALIDATION (TOV):
FAST DATA SELECTION WITH APPLICATIONS TO FINE-
TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

State-of-the-art machine learning often follows a two-stage process: (i) pre-
training on large, general-purpose datasets; (ii) fine-tuning on task-specific data.
In fine-tuning, selecting training examples that closely reflect the target distribu-
tion is crucial. However, it is often the case that only a few samples are available
from the target distribution. Existing data selection methods treat these target
samples as a validation set and estimate the effect of adding or removing a single
sample from the training pool by performing inference on the validation set.
We propose a simpler and faster alternative that inverts the usual role of train and
validation: we perform inference on the training pool before and after fine-tuning
on the validation set. We then select samples whose predictions change the most.
Our key insight is that the training samples most affected by fine-tuning on a small
validation set tend to be the most beneficial for reducing test loss on the target
distribution. Experiments on instruction tuning and named entity recognition tasks
show that, in most cases, our method achieves lower test log-loss than state-of-the-
art approaches. We support our findings with theoretical analysis.

1 INTRODUCTION

While large language models (LLMs) are pretrained on internet-scale datasets, their downstream
performance can be heavily dependent on the instruction-tuning stage in which they are fine-tuned
on instruction/output pairs (Ouyang et al., 2022; Zhou et al., 2024; Longpre et al., 2023; Chung
et al., 2024). These datasets are significantly smaller and are often gathered by using multiple het-
erogeneous sources. Instruction tuning becomes even more difficult when targeting a specialized use
case (Wang et al., 2023). More generally, scarcity of domain-specific data is a ubiquitous challenge
when fine-tuning foundation models.

This paper presents an easy-to-implement and low-complexity method for selecting a training
dataset of prescribed size from heterogeneous sources to maximize the test time performance on
the target distribution. Our method is motivated by the theory of influence functions (van der Vaart,
2000) yet avoids the computational burden of computing influence functions. We validate this ap-
proach on two token-based learning tasks, instruction tuning and named entity recognition (NER),
and show that in most cases it outperforms state-of-the-art data selection baselines. To illustrate its
broad applicability, we show that it yields interesting results even for a simple logistic regression
example (see Appendix D).

To formalize the problem, assume access to two datasets: a small dataset from the target distribution
P on Z and a larger one from possibly heterogeneous data sources. We refer to the dataset from the
target as the ‘validation set’ Zval := (zval

1 , . . . ,z
val
mval

) where zval
i are i.i.d. samples from the target

distribution P, and to the larger heterogeneous dataset as ‘training pool’X = (x1, . . . ,xN), where
xi ∈ Z . In general the distribution of the training pool differs from P. Our goal is to minimize the
test error on the target distribution with respect to the model parameters θ ∈ Rp:

R(θ) := E[ℓ(θ, z)] , (1)

where ℓ : Rp × Z → R is a loss function. A separate target-distribution test set Z tst (separate from
Zval) is used to estimate R(θ) after fine-tuning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We aim to achieve this by training (or fine-tuning) the model on a subset S ⊆ [N] of the training
pool, e.g. running stochastic gradient descent (SGD) with respect to the empirical risk:

R̂S(θ) :=
1
|S|

∑
i∈S ℓ(θ,xi) . (2)

Let θ̂S be the outcome of running SGD (or any specific training algorithm) on R̂S(θ). We want to
select the subset S (given a constraint on its size |S|) so that θ̂S achieves a small test loss on the
target distribution, i.e. as to minimize R(θ̂S).

1.1 TRAIN ON VALIDATION: MOTIVATION AND ALGORITHM

To select the most helpful examples at model θ, we might score training examples by the decrease
in validation loss induced by a single gradient step with respect to that example, then select those
with the highest scores. Computing these scores directly requires N+1 full evaluations over the
validation set. We derive an efficient approximation to these scores.

Consider a single gradient step with respect to a training example x:

θx = θ − η∇ℓ(θ,x) . (3)

The corresponding change in loss for a validation example z, ℓ(θ, z) − ℓ(θx, z), can be approxi-
mated by a first-order Taylor expansion:

ℓ(θ, z)− ℓ(θx, z) ≈ −⟨∇ℓ(θ, z),θx − θ⟩ = η⟨∇ℓ(θ, z),∇ℓ(θ,x)⟩, (4)

where the last step follows from Eq. (3). Pruthi et al. (2020) approximate the scores by computing
gradients for each training and validation example and taking their dot products; Xia et al. (2024)
extend this to token-based learning. Our method diverges from these approaches: it requires no
per-example gradients.

Note the right-hand side is symmetric in x and z. In other words, the decrease in loss on z from
a step on x is mirrored by the decrease in loss on x from a step on z. Our method exploits this
train–validation symmetry. The change in overall validation loss for a single gradient step with
respect to x is:

1
mval

∑mval
i=1

(
ℓ(θ, zi)− ℓ(θx, zi)

)
≈ 1

mval

∑mval
i=1 η⟨∇ℓ(θ, zi),∇ℓ(θ,x)⟩. (5)

On the other hand, performing a batch gradient step at θ with respect to the validation set gives
θZval = θ − η 1

mval

∑mval
i=1 ∇ℓ(θ, zi) . Combining this with Eq. (5), we get

1
mval

∑mval
i=1

(
ℓ(θ, zi)− ℓ(θx, zi)

)
≈ ⟨θ − θZval ,∇ℓ(θ,x)⟩ ≈ ℓ(θ,x)− ℓ(θZval ,x) . (6)

In other words, the change in average validation loss from training on x can be approximated by the
change in loss on x after training on the validation set Zval.

Our main objective is to evaluate the left-hand side of Eq. (6) for all x in the training set. The right-
hand side provides a far more efficient route: (i) Compute the loss ℓ(θ,x) for all training examples;
(ii) fine-tune θ on the validation set to obtain θZval ; (iii) re-evaluate the new loss ℓ(θZval ,x) at each
training sample x, and approximate the effect of training on x by computing the difference with the
loss at point (i).

This requires one epoch of training on the validation set and two evaluations over the training pool,
as opposed toN evaluations of the validation loss as suggested by a direct evaluation of the left-hand
side of Eq. (6), and it does not require access to per-example gradients.

In the next sections we use this idea to obtain a selection algorithm that alternates training on a
subset of the training set and on the validation set. A specific implementation, which we refer to as
‘Method A’, is given in Algorithm 1; a slightly different implementation (‘Method B’) will be given
in Algorithm 2. In Method A, we start with a small random subset U ⊂ [N] of the training pool.
We train on U for L epochs, resulting in models θ̂bas

1 , . . . θ̂bas
L . For each epoch k ∈ [L] we fine-tune

θ̂bas
k for one epoch on the validation set, resulting in models θ̂val

k . For each epoch, every remaining

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 ToV Scoring Algorithm: Method A.

1: Input: Pretrained model θ0, validation set Zval, training poolX = (xi : i ∈ [N]), epochs L,
2: selected data count n, learning-rate schedule {ηk}Lk=1, base model count m, ε ∈ [0, 1)
3: Output: Set of examples S ⊂ [N] of size n
4: Sample base subset U ⊆ [N] of size m randomly; defineXU = (xi : i ∈ U)

5: Initialize model: θ̂bas
0 ← θ0; set scores ϕi ← 0 for all i ∈ [N] \ U

6: for k = 1 to L do
7: Train θ̂bas

k−1 onXU for one epoch with learning rate ηk to obtain θ̂bas
k

8: Train θ̂bas
k for one epoch on Zval with a learning rate εηk to obtain θ̂val

k
9: for each i ∈ [N] \ U do

10: ϕ
(k)
i ← F (ℓ(θ̂val

k ;xi)− ℓ(θ̂bas
k ;xi)) (see Section 2.1 for the definition of F)

11: ϕi ← ϕi + ϕ
(k)
i /L

12: end for
13: end for
14: Return set S ⊆ [N] \ U of size n on the basis of scores ϕi (see text)

training example xi with i ∈ [N] \ U is scored by the change in its loss between θ̂bas
k and θ̂val

k , and
scores are averaged across epochs.

After computing scores ϕi as in Algorithm 1, we select S using one of two strategies: (i) choose
the n examples with the largest ϕi; (ii) choose half from the highest-scoring examples and the other
half uniformly at random from U to increase diversity.

Intuitively, large ϕi means that a small amount of training on the target distribution produces a large
change in the model output at xi. Our working assumption, motivated by the heuristics above and
formalized in Section 3, is that the converse also holds: training on xi will produce a large change
in model output on the target distribution. Hence the scores ϕi can be used to select ‘important’
samples for the target.

An adaptation for token-based learning is described in Section 2, along with empirical results. Sec-
tion 3 provides a mathematical justification that formalizes the argument above.

1.2 RELATED WORK

Our work relates to data selection and data attribution. The impact of a single example on the
validation error can be approximated by a first-order Taylor expansion. This idea results in data
selection methods based on influence functions (Wang et al., 2018; 2020; Ai et al., 2021; Kolossov
et al., 2024). Classical influence functions estimate the effect of a single example on the empirical
risk minimizer. Most closely related to our work are Pruthi et al. (2020); Bae et al. (2024); Xia et al.
(2024), which instead estimate the influence of an example on the training dynamics. In particular,
Bae et al. (2024) shows how to approximately propagate gradient changes at k-th epoch through all
subsequent epochs. In contrast, Pruthi et al. (2020); Xia et al. (2024) make a crude approximation
for this propagation. Limitations of influence-based methods are discussed in Schioppa et al. (2023).

The recent work of Xia et al. (2024) proposes LESS, a data selection method for instruction tuning
that adapts influence ideas to Adam and long sequences. In particular, these authors emphasize the
challenge of computing and storing gradients to compute influences. They address this problem
via random projections and low-rank approximation. Engstrom et al. (2024) apply the datamodel
framework (Ilyas et al., 2022; Park et al., 2023) to select pretraining data. Separately, a replay
algorithm that stores only a logarithmic number of checkpoints is proposed in Engstrom et al. (2025).
Methods that align training data distributions to a small target set include TSDS (Liu et al., 2024) and
DSIR (Xie et al., 2023); domain/task-adaptive pretraining also improves transfer (Gururangan et al.,
2020). Broader LLM data-efficiency work proposes LLM-guided quality scoring (Ask-LLM) and
density sampling (Sachdeva et al., 2024), and clustering-based sensitivity sampling with provable
guarantees (Axiotis et al., 2024). Finally, Data Filtering Networks (DFN) also leverage a held-out,
high-quality set, but with a different goal and setup (Fang et al., 2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Our contribution differs by (i) inverting train/validation roles to approximate per-example influ-
ence using only forward losses and doesn’t require per example gradients, or Hessian-vector prod-
ucts—and (ii) showing that this simple, symmetry-based score is computationally inexpensive and
outperforms recent data selection approaches for instruction tuning and NER.

2 DATA SELECTION FOR TOKEN-BASED LEARNING

In this section we describe our implementation of the general idea described in the introduction
for token-based learning and present empirical results demonstrating its effectiveness. Since pre-
diction takes place at the token level, while data selection takes place at the example level (e.g.,
instruction/output pair), we compute token scores and aggregate them as described in Section 2.1.
Section 2.2 gives a brief overview of instruction-tuning and NER tasks. Experimental settings are
introduced in Section 2.3. Empirical results are presented in Sections 2.4 and 2.5.

2.1 SCORE COMPUTATION FOR TOKEN-BASED LEARNING

Each example z consists of an input zin and an output zout, both of which are strings and may differ
in length. Let Zout denote the output vocabulary, and let T (z) denote the length of the output string
zout, which we write as zout =

(
zout(1), zout(2), . . . , zout(T (z))

)
.

Given a model parameterized by θ, its prediction on example z is a sequence of T (z) conditional
distributions, {pt(· | z,θ)}T (z)

t=1 , where each pt(· | z,θ) denotes the model’s predictive distribution
over the output token at position t. Note that pt(· | z,θ) depends on z solely through zin and
zout(1), . . . , zout(t− 1). We train models using the log-loss

ℓ(θ; z) = − 1
T (z)

∑T (z)
t=1 log pt

(
zout(t) | z;θ

)
. (7)

To compare two models, θ and θ′, on example z, we define a per-token difference of log-loss

∆t(z;θ,θ
′) = log

pt
(
zout(t) | z;θ′

)
pt
(
zout(t) | z;θ

) . (8)

Since our setting involves selecting entire examples rather than individual tokens, we aggregate
the per-token differences into a single score per example. Specifically, we apply a transformation
function F : R→ R to each ∆t before averaging across positions. The final score for example z is:

ϕ(z;θ,θ′) = 1
T (z)

∑T (z)
t=1 F

(
∆t(z;θ,θ

′)
)
. (9)

We consider three instantiations of the function F , leading to three different scoring methods:

MAXIMUM-IMPROVEMENT: F (y) = y — emphasizes raw improvement.

MAXIMUM-ABSOLUTE CHANGE: F (y) = |y|— captures the magnitude of change.

MAXIMUM-POSITIVE IMPROVEMENT: F (y) = max{y, 0}— ignores degradations.

The algorithm is therefore the same as in Algorithm 1, with the adaptation ϕ(k)i = ϕ(xi; θ̂
bas
k , θ̂

val
k).

Given a budget of n examples, we choose S ⊆ [N] \ U , |S| = n using one of these rules:

SCORE-ONLY: Choose the n examples i ∈ [N] \ U that have the largest score ϕi.

SCORE+RANDOM: Choose the n/2 examples i ∈ [N] \ U that have the largest score ϕi, and add
n/2 more examples chosen uniformly at random (without replacement) from U .

Our scoring schemes tend to favor shorter examples due to their higher variance, which arises from
having fewer tokens. To mitigate this bias, we partition the set [N]\U into 10 bins based on sequence
length, ensuring each bin contains an equal number of examples. We then select an equal number of
top-scoring examples from each bin.

After selecting S of size |S| = n, we train (or fine tune) a model on S to evaluate the selection
scheme. We refer to this stage as final training.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We compare our schemes with three baselines:

RANDOM: The set S is selected uniformly at random subject to its size.

MAXIMUM UNCERTAINTY: Instead of the scores we defined, we use the following hardness score:

ψi :=
1
Ti

∑Ti

t=1 log
(
pt(zi(t)|zi; θ̂bas

L)(1− pt(zi(t)|zi; θ̂bas
L)

)
, (10)

This score extends the method of Ting & Brochu (2018); Wang et al. (2018); Ai et al. (2021);
Kolossov et al. (2024) to token-based learning .

LESS: We used the publicly available implementation from Xia et al. (2024); see Appendix A.1.

2.2 PREDICTION TASKS

We evaluate our data selection framework in two distinct token-based tasks: instruction tuning (IT)
and named entity recognition (NER). The framework we introduced above captures both tasks:

Instruction Tuning (IT) involves training a language model to follow natural language instructions.
Each training example consists of:
Input zin: a user instruction or prompt; Output zout: the desired model response.

The output is typically multi-token and highly variable in content and length, depending on the
instruction. The model learns to generate zout conditioned on zin. This naturally fits our framework,
which models predictions as token-level distributions pt(· | z,θ).
Named Entity Recognition (NER) is a sequence labeling task where the model assigns a probabil-
ity distribution over entity tags (e.g., PERSON, ORGANIZATION, . . .) to each token. In this case:
Input zin: a tokenized sentence; Output zout: a sequence of entity labels, aligned with the input.

In NER, predictions are computed as token-wise classification distributions and therefore output is
of the same length as input sequence.1 In this case, as a base model we take a pretrained language
model and replace its prediction head with a classification head.

2.3 EXPERIMENTAL SETTING

In all of our experiments the training set consisted of N = 36× 1024 samples. For the base model
training, we used |U | = 4 × 1024 samples. The validation set size is mval = 1024 and the test set
size is mtst = 10, 000. We vary the selected set size n ∈ {1, 2, 4, 8} × 1024.

Number of epochs. Both for surrogate model training and final model training we determine the
number of epochs by L = (16 × 1024)/ntr. We use a batch size of 16 whence the above ensures
that the number batches used in training remains constant, and equal to 1024. In other words, all
experiments in this section are at constant compute. Since base model training uses |U | = m =
4× 1024 samples, the number of epochs is L = 4.

Learning rate. The learning rate for both surrogate and final model training is selected using hyper-
parameter optimization for each selected set size n. The learning-rate optimization was carried out
for random data selection hence placing our approach at a disadvantage.

We use linear learning rate scheduler and LoRA training Hu et al. (2022) with LoRA parameters
α = 32 and dropout = 0.2. For NER experiments, we used PEFTrank = 1 and for instruction
tuning experiments, we used PEFTrank = 256. The learning rate for the validation examples is
ε = 1/10 of the one for the base examples. We present here results with SCORE+RANDOM and
refer to the appendix for SCORE-ONLY.

2.4 EXPERIMENTS FOR INSTRUCTION TUNING

For these experiments we used 3 different datasets, which we will refer to as S := {Slim Orca,
Alpaca GPT-4, Alpaca GPT-3.5}. As the foundation model, we use Meta-Llama-3-8B. Additional
details of the model and datasets used are provided in the Appendix.

1In NER, typically token level probabilities are combined to assign labels to a whole word.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We designed five experimental setups. In each experiment, one dataset from S is selected as the
target distribution. We randomly sample validation and test sets, Zval and Z tst, without replacement
from the target dataset. These samples are excluded from further use. The training pool is then
formed by randomly sampling an equal number of examples from one or more datasets in S (ex-
cluding the validation and test samples), such that the total number of selected training samples is
fixed atN . We denote by S∗ ⊆ S the datasets used to generate the training pool. The choices of the
target dataset and of S∗ for each of the five experiments are summarized in Table 1. All reported re-
sults are averaged over 10 independent runs. In each run, we freshly sample the training, validation,
and test sets. These experiments are designed to evaluate performance across a range of data con-
figurations. In particular: in Experiments 1 and 4, the training set includes samples from both target
distribution and other distributions; in Experiments 2 and 5, the training set includes samples only
from non-target distributions; in Experiment 3, it includes only samples from the target distribution.

Table 1: Summary of instruction tuning exper-
iments. Abbreviations: SO = Slim Orca, A4 =
Alpaca GPT-4, A3.5 = Alpaca GPT-3.5.

Exp Target Training pool
1 SO SO, A4, and A3.5
2 SO A4 and A3.5
3 SO SO
4 A4 SO, A4, and A3.5
5 A4 SO and A3.5

Table 2: Summary of named entity recognition
experiments. Abbreviations: MN = Multinerd,
A4p = Ai4p, C4 = C4, SB = Syn-big.

Exp Target Training pool
1 MN MN, A4p, C4, and SB
2 MN A4p, C4, and SB
3 MN MN
4 A4p MN, A4p, C4, and SB
5 A4p MN, C4, and SB
6 A4p A4p

max abs cng max pos improv max improv max uncert less
selection method

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

%
 im

pr
ov

em
en

t i
n

lo
g

lo
ss

 o
ve

r
ra

nd
om

New Methods Comparison exp 1
exp 2
exp 3
exp 4
exp 5

Figure 1: Test log-loss improvement (%) over random selection for instruction tuning with n =
8×1024 samples. Each group of bars represents a data-selection strategy (maximum-uncertainty and
LESS as baselines); colors show target/training pool configuration (Table 1). Results use Method A
(Algorithm 1) with the SCORE+RANDOM strategy.

Figure 1 summarizes our results for instruction tuning for a fixed select size n = 8 × 1024. We
plot the improvement in test log-loss over random data selection for several data-selection strategies
within the general framework described in Section 2.1, using method A in algorithm 1 for scoring
the examples and SCORE+RANDOM for selecting. We observe that the proposed strategies yield
significantly better instruction tuning than random data selection or selecting by max-uncertainty.
We observe an improvement (albeit a small one) even when both train and validation data are from
Slim Orca (Exp 3), which is a case in which random selection should perform well. The proposed
strategies also yield a significant improvement over LESS (Xia et al., 2024), with the exception of
Experiment 2 in which LESS performs slightly better.

Figure 2 displays the evolution of test log loss with selected sample size n. We observe that a good
choice of the data selection method results in model improvements that can be equivalent to or larger
than doubling n. Plots show standard error (with scaling factor 1) for 10 runs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2000 4000 6000 8000
Select Count n

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

lo
g

lo
ss

exp 1
scoring method

max abs cng
max pos improv
max improv
random
less
max uncert

2000 4000 6000 8000
Select Count n

0.975

1.000

1.025

1.050

1.075

1.100

1.125

1.150

exp 2

2000 4000 6000 8000
Select Count n

0.92

0.94

0.96

0.98

1.00

exp 4

2000 4000 6000 8000
Select Count n

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

exp 5

Figure 2: Test log-loss vs. number of selected samples n for instruction tuning. (Due to space limits,
Exp. 3 plot is in the Appendix.) Lines show mean log-loss over 10 runs; error bars are ±1 standard
error. Results use Method A with the SCORE+RANDOM strategy.

max abs cng max pos improv max improv max uncert less
selection method

40

30

20

10

0

10

20

30

40

%
 im

pr
ov

em
en

t i
n

lo
g

lo
ss

 o
ve

r
ra

nd
om

New Methods Comparison exp 1
exp 2
exp 3
exp 4
exp 5
exp 6

Figure 3: Test log-loss improvement (%) relative to random selection for NER at n = 8×1024. Each
group of bars represents a data-selection strategy; colors show target/training pool configuration
(Table 2). Results use Method A (Algorithm 1) with the SCORE+RANDOM strategy

2.5 EXPERIMENTS FOR NAMED ENTITY RECOGNITION

The task is to classify whether a token is part of a person name or not. For these experiments we
used 4 different labeled datasets, which we will refer to as S := {Multinerd, Ai4p, C4, Syn-big}.
We use xlm-roberta-base as the foundation model. Further details on the experiment, model and
datasets used are presented in the Appendix.

We conducted six sets of experiments. As for the case of instruction tuning, for each set of exper-
iments, we select one of the datasets S as defining the target distribution, and one or more other
datasets to define the training pool (denoted by S∗). The choices of target datasets and S∗ are sum-
marized in Table 2. The construction of train, test and validation sets is same as in instruction tuning.

Figure 3 summarizes our experiments with NER. We plot the improvement in test log-loss over
random data selection for several scores definitions. Throughout these experiments, we use
SCORE+RANDOM. We observe that the strategies of Section 2.1 yield systematic improvements over
random data-selection. Unlike in the case of instruction tuning, maximum uncertainty also yields an
improvement in most settings. However, the ToV approach achieves a larger improvement. Finally,
in this case LESS (Xia et al., 2024) appears not to improve over random data selection.

3 A FORMAL JUSTIFICATION

In this section we present a mathematical analysis of our approach in the case of batch gradient
descent (GD). We focus on the implementation Method B, described in Algorithm 2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 2 ToV Scoring Algorithm: Method B

1: Input: Pretrained model θ0, validation set Zval, training poolX = (xi : i ∈ [N]),
2: selected data count n ≤ N , base model count m
3: Output: Set of examples S ⊂ [N] of size n
4: Sample base subset U ⊆ [N] of size m randomly; defineXU = (xi : i ∈ U)

5: Initialize models: θ̂bas,+
0 ← θ0, θ̂bas

0 ← θ0; set scores Υi ← 0 for all i ∈ [N] \ U
6: for k = 1 to L do
7: Train for one epoch onXU with learn. rate ηk and init. θ̂bas,+

k−1. Denote the output by θ̂bas,+
0,k

8: Train for one epoch on Zval with learn. rate ε · ηk and init. θ̂bas,+
0,k . Denote the output by θ̂bas,+

k

9: Train for one epoch onXU with learn. rate ηk and init. θ̂bas
k−1. Denote the output by θ̂bas

k

10: for each i ∈ [N] \ U do
11: Υ

(k)
i ← ℓ(θ̂bas

k ;xi)− ℓ(θ̂bas,+
k ;xi)

12: Υi ← Υi +Υ
(k)
i /L

13: end for
14: end for
15: Select S ⊆ [N] \ U with size |S| = n using scores Υi

Method B differs from Method A because at each training cycle k, training on the base set XU is
initialized with the output of the previous train-on-validation phase. Empirically Method A performs
somewhat better than B, see Appendix C. We use Method B for analysis just because the resulting
mathematical expressions are simpler.

We find empirically that the ToV works well beyond token-based learning, and hence our focus
will be to understand it in a generic learning problem. Appendix D demonstrates this point by
considering a simple logistic regression problem.

3.1 IDEAL SCORES, LINEARIZATION, INFLUENCE FUNCTIONS

In order to estimate the model improvement produced by sample i ∈ [N]\U we could train a model
on two training setsXU andXU∪i, using empirical risk functions R̂U (θ), R̂U∪i(θ). We thus would
run GD for L steps, with initialization θ̂bas

0 = θ̂bas+i
0 = θ0:

θ̂bas
k+1 = θ̂bas

k − ηm∇R̂U (θ̂bas
k) , θ̂bas+i

k+1 = θ̂bas+i
k − η(m+ 1)∇R̂U∪i(θ̂

bas+i
k) . (11)

At iteration k, we have thus two models θ̂bas
k and θ̂bas+i

k that differ uniquely in whether sample i is
used or not. We define the ideal score to be the difference in validation error between these two
models, averaged over epochs

Si :=
1

L

L∑
s=1

[R̂val(θ̂
bas
s)− R̂val(θ̂

bas+i
s)] =

1

mvalL

L∑
s=1

mval∑
j=1

{
ℓ(θ̂bas

s ; zval
j)− ℓ(θ̂bas+i

s ; zval
j)

}
. (12)

Evaluating this score is computationally expensive, hence several groups (Pruthi et al., 2020; Bae
et al., 2024; Xia et al., 2024) proposed to use a first order Taylor expansion to approximate the
difference between the two models. Expanding Si with respect to the contribution of ℓ(· ;xi) yields

S lin
i = η

L

∑
0≤s<t≤L⟨∇R̂val(θ̂

bas
t),Mt,s+1∇ℓ(θ̂bas

s ;xi)⟩ . (13)

whereMt,t = Id andMt,r captures the propagation of perturbations along the GD trajectory:

Mt,r :=Ht−1 ·Ht−2 · · ·Hr , Hk := I − ηm∇2R̂U (θ̂
bas
k) . (14)

The next result shows that S lin
i approximates well Si in a quantitative way, under local convexity.

Proposition 1. Assume there exist c0, C1,M > 0 such that ∇2R̂U (θ̂
bas
k) ⪰ c0Id, ∥∇ℓ(θ̂bas

k ;xi)∥ ≤
C1 for all k and, for all θ1,θ2, ∥∇2R̂U (θ1) − ∇2R̂U (θ2)∥op ≤ M∥θ1 − θ2∥2, ∥∇ℓ(θ1;xi) −
∇ℓ(θ2;xi)∥op ≤ M∥θ1 − θ2∥2. Further assume that ∥∇2R̂val(θ̂

bas
k)∥op ≤ C1 and ∥∇2R̂val(θ1) −

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

∇2R̂val(θ2)∥op ≤ M∥θ1 − θ2∥2 for all θ1,θ2 as well. Finally, assume there exists a constant Cη
such that ηk = η ≤ Cη/m ∀k. Then there exists C = C(c0, C1, Cη,M) such that∣∣Si − S lin

i

∣∣ ≤ C/m2 . (15)

The assumption η ≤ Cη/m is justified by the fact that we expect the Hessian of R̂U (·) to be of
order one, and hence the stepsize for this objective (which is given by ηm see Eq. (11)) should be
of order one. As shown in the proof, the typical size of S lin

i is of order 1/m, and hence Eq. (15)
establishes that the difference |Si − S lin

i | is negligible.

3.2 TRAIN-VALIDATION DUALITY

We consider Methods A and B defined in Algorithms 1, 2. We emphasize the dependence on ε by
writing ϕi = ϕi(ε) and Υi = Υi(ε). It is easy to derive the small ε asymptotics ϕi = ϕlin

i ε + o(ε),
Υi = Υlin

i ε+ o(ε), where, for gs,i := ∇ℓ(θ̂bas
s ;xi),

ϕlin
i :=

ηmval

L

L∑
s=1

⟨∇R̂val(θ̂
bas
s), gs,i⟩ , Υlin

i :=
ηmval

L

∑
0≤t<s≤L

⟨∇R̂val(θ̂
bas
t+1),M

T
s,t+1gs,i⟩ . (16)

We show that these are good approximations of Υi(ε), ϕi(ε) uniformly in dimension, sample size.
Theorem 1. Consider Algorithms 1, 2 with fixed stepsize ηk = η (and F (x) = −x in Algorithm
1). Under the assumptions of Proposition 1, further assume ∥∇R̂val(θ̂

bas
k)∥ ≤ C1 for all k, and

∥∇2
θℓ(θ;x)∥op ≤ C1. Then there exist c∗ = c∗(c0,M,C1), C = C(c0,M,C1) such that, for

εmval/m ≤ c∗,∣∣Υi(ε)−Υlin
i ε

∣∣ ≤ C(εmval/m
)2
,

∣∣ϕi(ε)− ϕlin
i ε| ≤ C

(
εmval/m

)2
. (17)

Note that Υlin
i differ from S lin

i . because of: (i) The different order of s and t; (ii) The fact thatMt,s+1

is replaced by its transpose in Eq. (16). Υlin
i measures the influence of training on validation data

when making inference at xi, while S lin
i measures the influence of training on xi data when making

inference on validation. These two measures of ‘influence’ differ by the replacement of Mt,s+1 by
MT

s,t. However, in a number of cases we expect these two matrices to be not too different, and hence
the two scores to yield similar results. We can prove that Υlin

i and S lin
i coincide (for large L) under

local convexity conditions.

Theorem 2. Assume θ 7→ ℓ(θ;x) to be twice continuously differentiable and that ∥∇R̂val(θ̂
bas
k)∥ ≤

C1, ∥∇ℓ(θ̂bas
k ;xi)∥ ≤ C1 for all k. Further assume that gradient descent iterates (θ̂bas

k : k ≥ 0)

converge to θ̂bas
∞ = limk→∞ θ̂

bas
k which is a local minimum of R̂U (θ) with Q∞ := ∇2R̂U (θ̂

bas
∞) ≻ 0

(strictly). Then

lim
L→∞

1

mval
Υlin
i (L) = lim

L→∞
S lin
i (L) =

1

m
⟨∇R̂val(θ̂

bas
∞),Q−1

∞ ∇ℓ(θ̂bas
∞ ;xi)⟩ := S lin

i,∞ . (18)

The last expression in Eq. (18) (denoted by S lin
i,∞) is the classical formula for influence functions of

M-estimators (van der Vaart, 2000). Both our approach and the dynamical influence function S lin
i (L)

can be regarded as approximations of S lin
i,∞ in this case.

In fine tuning, the model is likely to be overparametrized, and it is unrealistic to assume convergence
to a strict minimum (with∇2R̂U (θ̂

bas
∞) ≻ 0). On the other hand, the weights will not change signifi-

cantly during this phase and it is reasonable to approximate fine-tuning as fitting an overparametrized
linear model with respect to the empirical neural tangent features learnt in the pre-training phase.
Theorem 3. Consider the loss function ℓ(θ;x) = (y(x) − ⟨ψ(x),θ⟩)2/2 for some response vari-
ables y(x), and featurization map ψ : Rd → Rp, p > m. Let Ψ ∈ R|U |×p be the matrix with rows
(ψ(xj) : j ∈ U), Ψval ∈ Rmval×p be the matrix with rows (ψ(zval

j) : j ≤ mval), PΨ the projector to
the kernel of Ψ, y = (y(xj) : j ∈ U), θ̂ := Ψ†y, rval := (y(zval

j) − ⟨θ̂,ψ(zval
j)⟩ : j ≤ mval),

r(i) := y(xi) − ⟨θ̂,ψ(xi)⟩. If GD is initialized with θ0 = 0, and we use constant stepsize
η < ∥Ψ∥2op/2, then

lim
L→∞

1

Lmval
Υlin
i (L) = lim

L→∞

1

L
S lin
i (L) =

η

2
r(i)⟨rval,ΨT

valPΨψ(xi)⟩ . (19)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mingyao Ai, Jun Yu, Huiming Zhang, and HaiYing Wang. Optimal subsampling algorithms for big
data regressions. Statistica Sinica, 31(2):749–772, 2021.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Kyriakos Axiotis, Vincent Cohen-Addad, Monika Henzinger, Sammy Jerome, Vahab Mirrokni,
David Saulpic, David Woodruff, and Michael Wunder. Data-efficient learning via clustering-
based sensitivity sampling: Foundation models and beyond. arXiv preprint arXiv:2402.17327,
2024.

Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via approximate
unrolled differentation. arXiv:2405.12186, 2024.

Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
Acta numerica, 30:87–201, 2021.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
supervised cross-lingual representation learning at scale. CoRR, abs/1911.02116, 2019. URL
http://arxiv.org/abs/1911.02116.

Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection
with datamodels. arXiv preprint arXiv:2401.12926, 2024.

Logan Engstrom, Andrew Ilyas, Benjamin Chen, Axel Feldmann, William Moses, and Aleksander
Madry. Optimizing ml training with metagradient descent. arXiv preprint arXiv:2503.13751,
2025.

Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander Toshev, and Vaishaal
Shankar. Data filtering networks. arXiv preprint arXiv:2309.17425, 2023.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. In Proceedings of the 39th International Con-
ference on Machine Learning, 2022.

Germain Kolossov, Andrea Montanari, and Pulkit Tandon. Towards a statistical theory of data
selection under weak supervision. In The Twelfth International Conference on Learning Repre-
sentations, 2024.

Wing Lian, Guan Wang, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and
”Teknium”. Slimorca: An open dataset of gpt-4 augmented flan reasoning traces, with verifica-
tion, 2023. URL https://https://huggingface.co/Open-Orca/SlimOrca.

Zifan Liu, Amin Karbasi, and Theodoros Rekatsinas. Tsds: Data selection for task-specific model
finetuning. Advances in Neural Information Processing Systems, 37:10117–10147, 2024.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective
instruction tuning. In International Conference on Machine Learning, pp. 22631–22648. PMLR,
2023.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
http://arxiv.org/abs/1911.02116
https://https://huggingface.co/Open-Orca/SlimOrca

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. arXiv preprint arXiv:2303.14186, 2023.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920–19930, 2020.

Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H Chi,
James Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train data-efficient llms.
arXiv preprint arXiv:2402.09668, 2024.

Andrea Schioppa, Katja Filippova, Ivan Titov, and Polina Zablotskaia. Theoretical and practical
perspectives on what influence functions do. Advances in Neural Information Processing Systems,
36:27560–27581, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Simone Tedeschi and Roberto Navigli. MultiNERD: A multilingual, multi-genre and fine-grained
dataset for named entity recognition (and disambiguation). In Findings of the Association
for Computational Linguistics: NAACL 2022, pp. 801–812, Seattle, United States, July 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.60. URL
https://aclanthology.org/2022.findings-naacl.60.

Daniel Ting and Eric Brochu. Optimal subsampling with influence functions. Advances in neural
information processing systems, 31, 2018.

Aaad W van der Vaart. Asymptotic Statistics. Cambridge University Press, 2000.

HaiYing Wang, Rong Zhu, and Ping Ma. Optimal subsampling for large sample logistic regression.
Journal of the American Statistical Association, 113(522):829–844, 2018.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36:74764–74786, 2023.

Zifeng Wang, Hong Zhu, Zhenhua Dong, Xiuqiang He, and Shao-Lun Huang. Less is better: Un-
weighted data subsampling via influence function. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 6340–6347, 2020.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. LESS:
selecting influential data for targeted instruction tuning. In Proceedings of the 41st International
Conference on Machine Learning, pp. 54104–54132, 2024.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language
models via importance resampling. Advances in Neural Information Processing Systems, 36:
34201–34227, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

11

https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2022.findings-naacl.60

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

A.1 EXPERIMENTS FOR TOKEN-BASED LEARNING

In these experiments, we used pretrained models as base models and constructed training, validation,
and test sets from real-world datasets. Details of the datasets and models are provided in Section J.

For each training example count—both for surrogate model training (used for scoring) and final
model training—we selected the learning rate from the following grid:

[3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2].

The optimal learning rate was determined by training models on randomly sampled subsets from the
training pool and evaluating their test log-loss. For each learning rate, the loss was averaged over 10
runs, with a new random subset used in each run. The best-performing learning rate was selected
separately for each experimental configuration listed in Table 1 and Table 2.

Implementation details for Less (Xia et al., 2024) We used the public implementation from the
authors’ GitHub repository. The projection dimension was set to 8192. Learning rate and other
hyperparameters were tuned identically for all approaches. For both our method and LESS, the
surrogate model used the same number of samples and was trained for four epochs, matching the
settings in the LESS paper. Following the original LESS procedure, we selected the top-scoring
examples.

A.2 EXPANDED RESULTS FOR INSTRUCTION TUNING

In the main paper, we compared our scoring methods for the SCORE+RANDOM strategy. Due to
space constraints, Figure 2 omitted results for Experiment 3. In Figure 4, we provide an expanded
version that includes results for Experiment 3 as well.

2000 3000 4000 5000 6000 7000 8000
0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

lo
g

lo
ss

exp 1
scoring method

max abs cng
max pos improv
max improv
random
less
max uncert

2000 3000 4000 5000 6000 7000 8000
0.975

1.000

1.025

1.050

1.075

1.100

1.125

1.150

exp 2

2000 3000 4000 5000 6000 7000 8000
Select Count n

0.70

0.75

0.80

0.85

0.90

0.95

exp 3

2000 3000 4000 5000 6000 7000 8000
Select Count n

0.92

0.94

0.96

0.98

1.00

lo
g

lo
ss

exp 4

2000 3000 4000 5000 6000 7000 8000
Select Count n

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

exp 5

Figure 4: Expanded version of Figure 2 including the Experiment 3 plot.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.3 EXPANDED RESULTS FOR NAMED ENTITY RECOGNITION

In Figure 3 of the main paper, we reported results for SCORE+RANDOM using a fixed selected
sample size of n = 8× 1024, across all experiment configurations in Table 2.

In Figure 5, we show how the test log-loss varies with the selected sample size n for different scoring
methods under the SCORE+RANDOM strategy, and how these compare to random selection.

2000 3000 4000 5000 6000 7000 8000
0.025

0.030

0.035

0.040

0.045

0.050

0.055

lo
g

lo
ss

exp 1
scoring method

max abs cng
max pos improv
max improv
random
less
max uncert

2000 3000 4000 5000 6000 7000 8000
0.040

0.045

0.050

0.055

0.060

0.065

0.070

exp 2

2000 3000 4000 5000 6000 7000 8000

0.020

0.025

0.030

0.035

0.040

0.045

0.050

exp 3

2000 3000 4000 5000 6000 7000 8000
Select Count n

0.02

0.04

0.06

0.08

0.10

0.12

lo
g

lo
ss

exp 4

2000 3000 4000 5000 6000 7000 8000
Select Count n

0.025

0.030

0.035

0.040

0.045

0.050

0.055

exp 5

2000 3000 4000 5000 6000 7000 8000
Select Count n

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

exp 6

Figure 5: Test log-loss vs. number of selected samples n for NER. Lines show mean log-loss over 10
runs; error bars are ±1 standard error. Results use Method A with the SCORE+RANDOM strategy.

B COMPARISON OF SCORE+RANDOM AND SCORE-ONLY SELECTION

In this section we examine how the performance of our strategies changes when all training examples
are selected from the top-scoring set (SCORE-ONLY) instead of selecting only half of them from the
top and the other half at random (SCORE+RANDOM).

Recall that our scores approximate how much benefit each example provides when added to a ran-
domly chosen pool of training data. A higher score therefore indicates an example expected to be
more helpful in that setting. SCORE+RANDOM selects half of the final training set from the highest-
scoring examples and fills the rest with random examples, whereas SCORE-ONLY takes only the
top-scoring examples. This design creates a trade-off:

• Pure exploitation: Selecting only top-scoring examples can maximize immediate gain be-
cause every chosen example has a high estimated contribution.

• Score validity and diversity: The scores are defined relative to adding examples to a random
pool. If we select only top examples, the resulting set may differ substantially from the
random reference, making the scores a less accurate guide. Randomly adding half the
examples keeps the final set closer to the conditions under which the scores were computed
and also protects against loss of diversity.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

2000 3000 4000 5000 6000 7000 8000
Select Count

0.97

0.98

0.99

1.00

1.01

1.02
Lo

ss
 R

at
io

 (S
CO

RE
-O

NL
Y

/ S
CO

RE
+R

AN
DO

M
)

max abs cng

exp 1
exp 2
exp 3
exp 4
exp 5

2000 3000 4000 5000 6000 7000 8000
Select Count

max pos improv

2000 3000 4000 5000 6000 7000 8000
Select Count

max improv

Figure 6: Ratio of log loss for SCORE-ONLY versus SCORE+RANDOM across our three scoring
strategies and all instruction-tuning setups in Table 1. Scores are computed using Algorithm 1.

2000 3000 4000 5000 6000 7000 8000
Select Count

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

 R
at

io
 (S

CO
RE

-O
NL

Y
/ S

CO
RE

+R
AN

DO
M

)

max abs cng
exp 1
exp 2
exp 3
exp 4
exp 5
exp 6

2000 3000 4000 5000 6000 7000 8000
Select Count

max pos improv

2000 3000 4000 5000 6000 7000 8000
Select Count

max improv

Figure 7: Ratio of log-loss for SCORE-ONLY versus SCORE+RANDOM across our three scoring
strategies and all NER setups in Table 2. Scores are computed using Algorithm 1.

Which effect dominates varies by task.

Figures 6 and 7 show the ratio of log-loss for the two selection strategies in instruction tuning
and NER respectively. In each figure the three subplots correspond to our three scoring strategies;
different lines indicate the various experimental setups. Algorithm 1 is used to obtain the scores.

For instruction tuning, SCORE+RANDOM performs better in three setups (3, 4, 5), while SCORE-
ONLY is better in the remaining two (1, 2) across most selection sizes and scoring methods. For
NER, SCORE+RANDOM tends to outperform SCORE-ONLY more often, particularly for the Max-
Improvement scores.

C METHOD B VS METHOD A

All previous plots used Method A (Algorithm 1) for scoring. Here we compare the performance
of the two scoring methods: Method A (Algorithm 1) and Method B (Algorithm 2)—across our
experiments, using the SCORE+RANDOM selection strategy for both.

Figures 8 and 9 show the ratio of test log-loss obtained with Method B relative to Method A for
instruction tuning and NER, respectively. Each figure contains three subplots corresponding to our
three scoring strategies, and different lines represent the various experimental setups.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The results indicate that for instruction tuning, Method A is most often superior, while for NER
there is no consistent winner. A possible explanation is that Method B uses two distinct training
trajectories. Our analysis assumes that the resulting models differ only slightly, but in practice, the
two training trajectories can diverge substantially. This effect is likely to be stronger with large and
highly overparameterized models such as Meta-Llama-3-8B, which we used for instruction tuning,
We expect the larger distance between the two models to result in less accurate score estimation in
Method B, as compared to Method A.

2000 3000 4000 5000 6000 7000 8000
Select Count

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Lo
ss

 R
at

io
 (A

lg
 B

 /
Al

g
A)

max abs cng
exp 1
exp 2
exp 3
exp 4
exp 5

2000 3000 4000 5000 6000 7000 8000
Select Count

max pos improv

2000 3000 4000 5000 6000 7000 8000
Select Count

max improv

Figure 8: Ratio of test log-loss using Method B (Algorithm 2) to Method A (Algorithm 1) for
instruction tuning. Results use the SCORE+RANDOM selection strategy. Each subplot corresponds
to one scoring strategy; lines denote different experimental setups in Table 1.

2000 3000 4000 5000 6000 7000 8000
Select Count

1.0

1.2

1.4

1.6

1.8

Lo
ss

 R
at

io
 (A

lg
 B

 /
Al

g
A)

max abs cng
exp 1
exp 2
exp 3
exp 4
exp 5
exp 6

2000 3000 4000 5000 6000 7000 8000
Select Count

max pos improv

2000 3000 4000 5000 6000 7000 8000
Select Count

max improv

Figure 9: Ratio of test log-loss using Method B (Algorithm 2) to Method A (Algorithm 1) for
NER. Results use the SCORE+RANDOM selection strategy. Each subplot corresponds to one scoring
strategy; lines denote different experimental setups in Table 2.

D LOGISTIC REGRESSION EXPERIMENTS

In these experiments, we synthetically generated the training pool, validation set, and test set. We
begin by defining a parametric family of distributions used to construct the data.

For a given p > 0 and parameter vector θ ∈ Rp, we define a distribution Pθ over pairs (x, y), where
x ∈ Rp and y ∈ {0, 1}. The features are sampled as x ∼ N (0, I), and the label y is drawn according
to a logistic model:

Pr(y = 1 | x) = 1

1 + exp(−x · θ)
, Pr(y = 0 | x) = 1− Pr(y = 1 | x).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We randomly sample a unit vector θ∗ from the unit sphere to serve as the target direction. A second
unit vector θ′ is then drawn such that it lies at an angle γ from θ∗. In our experiments, we set p = 10
and γ = π/2.

The training pool consists of N = 128 × 1024 samples, drawn independently from the mixture
distribution:

Dtrain =
1

2
Pθ∗ +

1

2
Pθ′ .

The validation and test sets containmval = 1024 andmtst = 10,000 samples respectively, both drawn
i.i.d. from the target distribution Pθ∗ .

103 104

Final Size
0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

cla
ss

ifi
ca

tio
n

er
ro

r

Strategy: Rand-frm-top
max improv
max uncert
random
oracle

103 104

Final Size

Strategy: Score+Random

103 104

Final Size

Strategy: Score-only

Figure 10: Data selection experiments with Method B for logistic regression on synthetic data in
d = 10 dimensions (4 epochs of training). Each color corresponds to a distinct method to score data
in the training pool, and each frame to a distinct method to use the score to form the selected set.
Each symbol corresponds to the average of 10 experiments.

For scoring, we used Method B as described in Algorithm 2; similar experiments with Method A
produced comparable results, so we report only Method B here. Algorithm 2 does not specify
the method to select data on the basis of scores. In Figure 10 we compare SCORE-ONLY and
SCORE+RANDOM (already introduced above) with a third one RANDOM-FROM-TOP that selects
at random from the top 50% subset of data with highest scores.

The RANDOM-FROM-TOP method is included only for these synthetic logistic-regression experi-
ments, for theoretical interest as by construction, the training pool contains half of its examples
from the target distribution.

The base set used for initial training contains |U | = 4× 1024 examples.

For both the scoring model and the final model training, we used 4 epochs of batch gradient descent
with a linear decay learning rate scheduler. The initial learning rate was set to 0.5. We used ϵ = 1

10
for adjusting the learning rate on validation examples.

The selected subset size n was varied from 128 to 8192 in multiplicative steps of
√
2. All results are

averaged over 10 independent runs. The final performance curves are presented in Figure 10.

E PROOF OF PROPOSITION 1

Throughout this proof, we denote by C a generic constant that can depend on c0, C1,M,Cη and
whose value is allowed to change from line to line.

Letting ∆s(i) = θ̂
bas+i
s − θ̂bas

s , Eq. (11) yields

∆k+1(i) = ∆k(i)− ηm∇2R̂U (θ̂
bas
k)∆k(i)− η∇ℓ(θ̂bas

k ;xi) + errk(i)

=Hk∆k(i)− η∇ℓ(θ̂bas
k ;xi) + errk(i) , (20)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

whereHk is defined as in Eq. (14) and

errk(i) := −η
[
∇ℓ(θ̂bas+i

k ;xi)−∇ℓ(θ̂bas
k ;xi)

]
− ηm

∫ 1

0

[
∇2R̂U (θk(z))−∇2R̂U (θ̂

bas
k)

]
∆k(i)dz ,

where θk(z) = (1 − z)θ̂bas
k + zθ̂bas+i

k . By assumption θ 7→ ∇ℓ(θ;xi) and θ 7→ ∇2R̂U (θ) are
M -Lipschitz, whence

∥errk(i)∥ ≤ ηM∥θ̂bas+i
k − θ̂bas

k ∥+ ηmM∥θ̂bas+i
k − θ̂bas

k ∥∥∆k(i)∥
= ηM∥∆k(i)∥+ ηmM∥∆k(i)∥2 . (21)

Define ∆lin
k (i) by letting ∆lin

k (i) = 0 and, for k ≥ 0,

∆lin
k+1(i) =Hk∆

lin
k (i)− η∇ℓ(θ̂bas

k ;xi) . (22)

Comparing with Eq. (20), we obtain(
∆k+1(i)−∆lin

k+1(i)
)
=Hk

(
∆k+1(i)−∆lin

k+1(i)
)
+ errk(η,m) ,

⇒ ∆t(i)−∆lin
t (i) =

t−1∑
s=0

Mt,s+1errs(η,m) . (23)

Since∇2R̂U (θ̂
bas
k) ⪰ c0Id, we have ∥Hk∥op ≤ (1− c0mη), and therefore

∥∆t(i)−∆lin
t (i)∥ ≤

t−1∑
s=0

∥Mt,s+1∥op∥errs(η,m)∥

≤
t−1∑
s=0

(
1− c0mη

)t−s−1∥errs(η,m)∥ . (24)

Further, from Eq. (22), and using ∥∇ℓ(θ̂bas
k ;xi)∥ ≤ C1, we get

∆lin
t (i) = −η

t−1∑
s=0

Mt,s+1∇ℓ(θ̂bas
s ;xi) ,

⇒ ∥∆lin
t (i)∥ ≤ C1η

t−1∑
s=0

(
1− c0mη

)t−s−1 ≤ C

m
. (25)

Let Dt(i) := maxs≤t ∥∆s(i)∥, Et(i) := maxs≤t ∥errs(i)∥. Using Eqs. (21), (24) and (25), we get

Dt(i) ≤
C

m
+

1

c0mη
Et−1(i) ,

Et(i) ≤ ηMDt(i) + ηmMDt(i)
2 .

Using these inequalities together, we obtain, for all m ≥ m0 (and eventually adjusting the constant
C)

Dt(i) ≤
C

m
, Et(i) ≤

Cη

m
, (26)

whence, using again Eq. (24), we get

∥∆t(i)−∆lin
t (i)∥ ≤

C

m2
. (27)

Notice that we can rewrite

S lin
i = − 1

L

L∑
s=1

⟨∇R̂val(θ̂
bas
s),∆lin

s (i)⟩ , (28)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

whence, using the fact that ∥∇2R̂val(θ)∥op ≤ C for all θ ∈ [θ̂bas
k , θ̂

bas+i
k] (this follows from the

assumed bound ∥∇2R̂val(θ̂
bas
k)∥op ≤ C1 and the Lipschitz property of θ 7→ ∇2R̂val(θ̂)), we get

∣∣Si − S lin
i

∣∣ ≤ Cmax
s≤L
∥∆s(i)∥2 +

1

L

L∑
s=1

∣∣⟨∇R̂val(θ̂
bas
s),∆s(i)−∆lin

s (i)⟩|

≤ C max
s≤L
∥∆s(i)∥2 + Cmax

s≤L
∥∆s(i)−∆lin

s (i)∥

≤ C

m2
,

and this completes the proof.

F PROOF OF THEOREM 1

Throughout this proof, we denote by C a generic constant that can depend on c0, C1,M,Cη and
whose value is allowed to change from line to line.

F.1 BOUND ON Υi

The iteration for θ̂bas
k and θ̂bas,+

k , as specified by Algorithm 2, reads

θ̂bas
k+1 = θ̂bas

k − ηm∇R̂U (θ̂bas
k) , (29)

θ̂bas,+
k+1 = θ̂bas,+

0,k+1 − εηmval∇R̂val(θ̂
bas,+
0,k+1) , θ̂bas,+

0,k+1 = θ̂bas,+
k − ηm∇R̂U (θ̂bas,+

k) . (30)

Letting ∆k := θ̂bas,+
k − θ̂bas

k , and ∆0,k := θ̂bas,+
0,k − θ̂bas

k , we obtain

∆k+1 = ∆0,k+1 − εηmval∇R̂val(θ̂
bas
k+1) + err

(1)
k+1 , (31)

∆0,k+1 =Hk∆k + err
(2)
k . (32)

where, letting θ0,k+1(z) = (1− z)θ̂bas
k+1 + zθ̂bas,+

0,k+1 and θk(z) = (1− z)θ̂bas
k + zθ̂bas,+

k , we have

err
(1)
k+1 := −ηεmval

∫ 1

0

∇2R̂val(θ0,k+1(z))∆0,k+1 dz ,

err
(2)
k := −ηm

∫ 1

0

[
∇2R̂U (θk(z))−∇2R̂U (θ̂

bas
k)

]
∆k dz .

Using the assumption that ∥∇2R̂val(θ̂
bas
k+1(z))∥op ≤ C and θ 7→ ∇2R̂val(θ) is M -Lipschitz, we get:

∥err(1)k+1∥ ≤ Cεηmval

{
∥∆0,k+1∥+ ∥∆0,k+1∥2

}
. (33)

On the other hand, since θ 7→ ∇2R̂U (θ) is also M -Lipschitz, we have

∥err(2)k ∥ ≤ ηmM∥∆k∥2 , (34)

whence, using Eq. (32) and ∥Hk∥op ≤ 1

∥∆0,k+1∥ ≤ ∥∆k∥+ ηmM∥∆k∥2

⇒ ∥err(1)k+1∥ ≤ Cεηmval

{
∥∆k∥+ ∥∆k∥2 + η2m2∥∆k∥4

}
, (35)

where in the last line we used the assumption that ηm ≤ Cη .

Substituting Eqs. (34) and (35) in Eq. (31), (32), we obtain (using again ηm ≤ Cη)

∆k+1 =Hk∆k − εηmval∇R̂val(θ̂
bas
k+1) + errk , (36)

∥errk∥ ≤ Cηεmval

(
∥∆k∥+ ∥∆k∥4

)
+ Cηm∥∆k∥2 . (37)

We define ∆lin
k = 0 and, for k ≥ 0,

∆lin
k+1 =Hk∆

lin
k − εηmval∇R̂val(θ̂

bas
k+1) , (38)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

whence

∆lin
t = −εηmval

t−1∑
s=0

Mt,s+1∇R̂val(θ̂
bas
s+1) , ∆t −∆lin

t =

t−1∑
s=0

Mt,s+1errs . (39)

Define Dt := maxs≤t ∥∆s∥, Et := maxs≤t ∥errs∥. Using the fact that ∥Mt,s+1∥op ≤ (1 −
c0mη)

t−s−1 and the assumption ∥∇R̂val(θ̂
bas
k)∥ ≤ C1, we get, from Eqs. (37), (39),

Dt+1 ≤
Cεmval

m
+

C

mη
Et , (40)

Et ≤ Cηεmval(Dt +D4
t) + CηmD2

t , (41)

Using the assumption εmval/m ≤ c∗, this is easily seen to imply

Dt ≤ C
εmval

m
, Et ≤ C

(εmval)
2

m
η . (42)

Substituting in Eq. (39), we get

∥∆t −∆lin
t ∥ ≤

t−1∑
s=0

(1− c0mη)t−s−1∥errs∥ ≤ C
(εmval

m

)2

. (43)

The linearized score of Eq. (16) can be rewritten as

Υlin
i ε = −

1

L

L∑
s=1

⟨∇ℓ(θ̂bas
s ;xi),∆

lin
s ⟩ . (44)

Using the fact that ∥∇ℓ(θ̂bas
k ;xi)∥, ∥∇ℓ(θ̂bas

k ;xi)∥op ≤ C1, we get

∣∣Υi(ε)−Υlin
i ε

∣∣ ≤ 1

L

L∑
s=1

∣∣∣ℓ(θ̂bas
k ;xi)− ℓ(θ̂bas,+

k ;xi) + ⟨∇ℓ(θ̂bas
s ;xi),∆

lin
s ⟩

∣∣∣ (45)

≤ C

L

L∑
s=1

∥∆s∥2 +
C

L

L∑
s=1

∥∆s −∆lin
s ∥ (46)

≤ C
(εmval

m

)2

, (47)

F.2 BOUND ON ϕi

The iteration for θ̂bas
k and θ̂bas,+

k , as specified by Algorithm 2, reads

θ̂bas
k+1 = θ̂bas

k − ηm∇R̂U (θ̂bas
k) , (48)

θ̂val
k+1 = θ̂bas

k+1 − εηmval∇R̂val(θ̂
bas
k+1) . (49)

Hence, we can rewrite

ϕlin
i ε = −

1

L

L∑
s=1

⟨∇ℓ(θ̂bas
s ;xi), θ̂

val
s − θ̂bas

s ⟩ .

Using the assumptions ∥∇2ℓ(θ̂bas
s ;xi)∥op ≤ C1, ∥R̂val(θ̂

bas
k)∥ ≤ C1, we obtain

∣∣ϕi(ε)− ϕlin
i ε

∣∣ ≤ 1

L

L∑
s=1

∣∣∣ℓ(θ̂val
s ;xi)− ℓ(θ̂bas

s ;xi)− ⟨∇ℓ(θ̂bas
s ;xi), θ̂

val
s − θ̂bas

s ⟩
∣∣∣ (50)

≤ C

L

L∑
s=1

∥θ̂val
s − θ̂bas

s ∥2 ≤ C(εηmval)
2 . (51)

The claim thus follows by recalling that η ≤ Cη/m.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G PROOF OF THEOREM 2

To lighten notation, we define rk := ∇R̂val(θ̂
bas
k) and vk(i) := ∇ℓ(θ̂bas

k ;xi).

For any L,L1 ∈ Z, we have

Υlin
i (L) = Υlin,0

i (L) + Υlin,1
i (L) + Υlin,2

i (L) + Υlin,3
i (L) ,

Υlin,0
i (L) :=

ηmval

L

∑
0≤t<s≤L0

⟨rt+1,M
T
s,t+1vs(i)⟩ ,

Υlin,1
i (L) :=

ηmval

L

∑
0≤t≤L0,L0<s≤L

⟨rt+1,M
T
s,t+1vs(i)⟩ ,

Υlin,2
i (L) :=

ηmval

L

∑
L0<t<s≤L0:|s−t|≥L1

⟨rt+1,M
T
s,t+1vs(i)⟩ ,

Υlin,2
i (L) :=

ηmval

L

∑
L0<t<s≤L0:|s−t|≥L1

⟨rt+1,M
T
s,t+1vs(i)⟩ ,

Υlin,3
i (L) :=

ηmval

L

∑
L0<t<s≤L0:|s−t|<L1

⟨rt+1,M
T
s,t+1vs(i)⟩ .

Since by continuity we have limk→∞∇2R̂U (θ̂
bas
k) = Q∞, for any δ ∈ (0, 1/2), we can choose L0

large enough so that (1 − δ)Q∞ ⪯ ∇2R̂U (θ̂
bas
k) ⪯ (1 + δ)Q∞ for all k > L0. In particular there

exists c0 > 0 (independent of ε) such that ∥Hk∥op ≤ (1− c0mη) for all k > L0.

Clearly |Υlin,0
i (L)| ≤ C(L0)/L→ 0 as L→∞. Further

∣∣Υlin,1
i (L)

∣∣ ≤ Cηmval

L

∑
0≤t≤L0,L0<s≤L

∥Ms,t+1∥op

≤ Cηmval

L

∑
0≤t≤L0,L0<s≤L

(1− c0mη)s−t−1

≤ Cηmval

L

L0

c0mη
→ 0 .

Finally, by increasing L0, we can ensure that, for k > L0, ∥Hk −H∞∥op ≤ δ, ∥rk − r∞∥ ≤ δ,
∥vk(i)− v∞(i)∥ ≤ δ (whereH∞ = I − ηmQ∞ and r∞, v∞(i)). Hence∣∣⟨rt+1,M

T
s,t+1vs(i)⟩ − ⟨r∞,Hs−t−1

∞ v∞(i)⟩
∣∣ ≤ C|t− s+ 1|(1− c0mη)s−t−1δ .

Therefore, letting

Υ̃lin,2
i (L) :=

ηmval

L

∑
L0<t<s≤L

⟨r∞,Hs−t−1
∞ v∞(i)⟩ , (52)

we have∣∣Υlin,2
i (L)− Υ̃lin,2

i (L)
∣∣ ≤ ηmval

L

∑
L0<t<s≤L

∣∣⟨rt+1,M
T
s,t+1vs(i)⟩ − ⟨r∞,Hs−t−1

∞ v∞(i)⟩
∣∣

≤ ηmval

L

∑
L0<t<s≤L

C|t− s+ 1|(1− c0mη)s−t−1δ

≤ ηmval ·
1

(c0mη)2
δ .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Finally, using again |⟨r∞,Hs−t−1
∞ v∞(i)⟩| ≤ (1− c0mη)s−t−1, we have

lim
L→∞

Υ̃lin,2
i (L) = lim

L→∞

ηmval

L

∑
L0<t≤L

∞∑
s=t+1

⟨r∞,Hs−t−1
∞ v∞(i)⟩

= ηmval

∞∑
k=0

⟨r∞,Hk
∞v∞(i)⟩

= ηmval⟨r∞, (I −H∞)−1v∞(i)⟩

=
mval

m
⟨r∞,Q−1

∞ v∞(i)⟩ .

This finishes the proof of the part of Eq. (18) which concerns the limit of Υlin
i . The calculation of

limL→∞ S lin
i (L) is completely analogous and we omit it.

H PROOF OF THEOREM 3

To simplify notations, we write yj = y(xj) for the response variables and ψj = ψ(xj) for the
feature vectors. Similarly, for the yval

j = y(zval
j), ψ(zval

j) = ψval
j .

With these notations, we haveHk =H independent of k and

∇ℓ(θ̂;xi) = −(yi − ⟨ψi,θ⟩)ψi , (53)

∇R̂val(θ) = −
1

m
ΨT

(
y −Ψθ

)
, (54)

H = I − ηΨTΨ . (55)

Hence,

Υlin
i =

ηmval

L

∑
0≤t<s≤L

rs(i)⟨Ψrval
t+1,H

s−t−1ψi⟩ , (56)

rval
t := yval −ψvalθ̂bas

t+1 , rs(i) := yi − ⟨ψi, θ̂bas
s ⟩ (57)

SincePΨ is the projector onto the null-space ofH , and by our choice of η, we haveH = PΨ+H⊥,
where the row/column space of H⊥ is orthogonal to the one of PΨ and ∥H⊥∥op = (1 − cψη) ∈
[0, 1). As a consequence ∥Hs−t−1 − PΨ∥op ≤ (1− cψη)s−t−1.

Define

Υ̃lin
i :=

ηmval

L

∑
0≤t<s≤L

rs(i)⟨Ψrval
t+1,PΨψi⟩ . (58)

Then we have∣∣∣ 1
L
Υlin
i −

1

L
Υ̃lin
i

∣∣∣ ≤ ηmval

L2

∑
0≤t<s≤L

∣∣∣rs(i)⟨Ψrval
t+1,PΨψi⟩

∣∣∣
≤ ηmval

L2

∑
0≤t<s≤L

|rs(i)| ∥Ψrval
t+1∥∥Hs−t−1 − PΨ∥op

∣∣ψi∣∣
(a)

≤ C
ηmval

L2

∑
0≤t<s≤L

(1− cψη)s−t−1

≤ C ηmval

L

1

cψη

L→∞−→ 0 .

In (a), we used the fact that limt→∞ θ̂
bas
t = θ̂ (Bartlett et al., 2021), and therefore |rs(i)|, ∥Ψrval

t+1∥
remain bounded as s, t→∞.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

In view of the above, limL→∞ Υlin
i /L = limL→∞ Υ̃lin

i /L. For the latter, we have

lim
L→∞

1

L
Υ̃lin
i = lim

L→∞

ηmval

L2

∑
0≤t<s≤L

rs(i)⟨Ψrval
t+1,PΨψi⟩

= lim
L→∞

ηmval

L2

∑
L0≤t<s≤L

rs(i)⟨Ψrval
t+1,PΨψi⟩

= lim
L→∞

ηmval

L2

∑
L0≤t<s≤L

r(i)⟨Ψrval,PΨψi⟩+ err(L0, L) ,

where

|err(L0, L)| ≤ C sup
s≥L0

∥rs(i)− r(i)|+ C sup
t≥L0

∥rval
t − rval

t+1| . (59)

Since limt→∞ θ̂
bas
t = θ̂, we have limL0→∞ lim supL→∞ err(L0, L) = 0. Therefore,

lim
L→∞

1

L
Υ̃lin
i = lim

L0→∞
lim
L→∞

ηmval

L2

∑
L0≤t<s≤L

r(i)⟨Ψrval,PΨψi⟩

=
1

2
ηmvalr(i)⟨Ψrval,PΨψi⟩ .

This proves the limit for Υlin
i (L) in Eq. (19).

The limit of S lin
i (L) is computed essentially by the same argument and we omit the derivation.

I LIMITATION

The core idea of “train-on-validation” impacting training examples is general, but the specific scor-
ing function F (.) and aggregation strategy might need adaptation for different problem settings.

The SCORE+RANDOM selection strategy often outperformed SCORE-ONLY in our experiments,
suggesting that diversity plays an important role beyond simply selecting the “most affected” ex-
amples. While this is a practical improvement, it also indicates that our current scoring mechanism
might not fully capture the optimal diversity or coverage needed for effective generalization. It will
be interesting to explore more sophisticated diversity-aware scoring or selection mechanisms that
explicitly balance our scoring methods with representation across the data space.

Although we mitigated bias toward shorter examples through length-based binning, a more refined
length-normalization or task-specific weighting might further enhance the selection process. Fur-
thermore, it will be interesting to see if the performance of our strategies further improves compared
to random selection if the learning rate is also tuned for these strategies and not just for random
selection.

Finally, our theoretical analysis relies on stylized settings that are plausible for simple models but
may not hold in many large-scale applications.

J MODELS AND DATASETS INFORMATION

J.1 DATASET INFORMATION

• Slim Orca:
– Link
– Citations-Longpre et al. (2023); Mukherjee et al. (2023); Lian et al. (2023)
– Licence: mit

• Alpaca GPT-4:
– Paper:Peng et al. (2023)
– Repository

22

https://huggingface.co/datasets/Open-Orca/SlimOrca
https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

– Link
– Licence: cc-by-nc-4.0

• Alpaca GPT-3.5:
– Paper: Taori et al. (2023)
– Link
– Licence: cc-by-nc-4.0

• Multinerd:
– Paper: Tedeschi & Navigli (2022)
– Link
– Licence: cc-by-nc-sa-4.0

• Ai4p:
– Link
– Licence: link

• C4 dataset:
– Link
– Labeled for NER task using llms.
– Licence: terms of use

• Syn-Big:
– Synthetically generated by us using llms.
– Proprietary dataset

J.2 PRETRAINED MODEL INFORMATION

• Meta-Llama-3-8B AI@Meta (2024)
– Link
– License: llama3

• xlm-roberta-base Conneau et al. (2019)
– Link
– License: mit

23

https://huggingface.co/datasets/vicgalle/alpaca-gpt4
https://huggingface.co/datasets/tatsu-lab/alpaca/blob/main/README.md
https://huggingface.co/datasets/Babelscape/multinerd/blob/main/README.md
https://huggingface.co/datasets/ai4privacy/pii-masking-300k/tree/main
https://huggingface.co/datasets/ai4privacy/pii-masking-300k/blob/main/LICENSE.md
https://github.com/allenai/allennlp/discussions/5056
https://commoncrawl.org/terms-of-use
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://huggingface.co/FacebookAI/xlm-roberta-base/blob/main/README.md

	Introduction
	Train on validation: motivation and algorithm
	Related work

	Data selection for token-based learning
	Score computation for token-based learning
	Prediction tasks
	Experimental setting
	Experiments for instruction tuning
	Experiments for named entity recognition

	A formal justification
	Ideal scores, linearization, influence functions
	Train-validation duality

	Additional Experimental Details and Results
	Experiments for Token-Based Learning
	Expanded Results for Instruction Tuning
	Expanded Results for Named Entity Recognition

	Comparison of Score+Random and Score-Only selection
	Method B vs Method A
	Logistic Regression Experiments
	Proof of Proposition 1
	Proof of Theorem 1
	Bound on i
	Bound on i

	Proof of Theorem 2
	Proof of Theorem 3
	Limitation
	Models and Datasets information
	Dataset information
	Pretrained Model information

