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Abstract

In a contextual pricing problem, a seller aims at maximizing the revenue over a sequence
of sales sessions (described by feature vectors) using binary-censored feedback of “sold” or
“not sold”. Existing methods often overlook two practical challenges (1) the best pricing
strategy could change over time; (2) the prices and pricing policies must conform to hard
constraints due to safety, ethical or legal restrictions. We address both challenges by solving
a more general problem of universal dynamic regret minimization in proper online learning
with exp-concave losses — an open problem posed by Baby & Wang (2021) that we partially
resolve in this paper, with attention restricted to loss functions coming from a generalized
linear model. Here “dynamic regret” measures the performance relative to a non-stationary
sequence of policies, and “proper” means that the learner must choose feasible strategies
within a pre-defined convex set, which we use to model the safety constraints. In this work,
we consider a linear noisy valuation model for the customers. With the market noises drawn
from a known strictly log-concave distribution, our algorithm achieves Õ(d3T 1/3C

2/3
T ∨ d3)

dynamic regret in comparison with the optimal policy series, where T , d and CT stand for the
time horizon, the feature dimension and the total variation (characterizing non-stationarity)
respectively. This regret is near-optimal with respect to T (within O(log T ) gaps) and CT ,
and our algorithm is adaptable to unknown CT and remains feasible throughout. However,
the dependence on d is suboptimal and the minimax rate is still open.

1 Introduction

Feature-based dynamic pricing, or contextual pricing, is a problem where the seller sets prices for different
products based on their features and aims to maximize revenue. In general, a customer will make her decision
based on a comparison between the price and her own valuation of the product. Formally, many existing
works (e.g., Cohen et al., 2020; Javanmard & Nazerzadeh, 2019; Xu & Wang, 2021; Luo et al., 2021) adopt
the following linear-feature valuation model:

∗for equal contribution.

1

https://openreview.net/forum?id=fWIQ9Oaao0


Published in Transactions on Machine Learning Research (10/2023)

Contextual pricing. For t = 1, 2, ..., T :
1. A context xt ∈ Rd is revealed that describes a sales session (product, customer and context).
2. The customer valuates the product as yt = x⊤

t θ∗
t + Nt using xt.

3. The seller proposes a price vt > 0 concurrently (according to xt and historical sales records).
4. The transaction is successful if vt ≤ yt, i.e., the seller gets a reward (payment) of rt = vt · 1(vt ≤ yt).

Here T is the unknown time horizon, xt’s are adversarial features (which can be stochastic or non-stochastic
series), θ∗

t ’s are hidden parameters mapping features to valuations linearly, and Nt’s are i.i.d. noises drawn
from a known distribution D. Denote 1t := 1(vt ≤ yt) as the Boolean-censored feedback that equals 1 if
vt ≤ yt and 0 otherwise, and we only observe 1t instead of the realized yt at each round. Our goal is to
maximize the cumulative expected reward, and the regret is defined as the difference of expected rewards
between vt and the best price at each round.

Time-variant Behavior and Dynamic Regret. Comparing with existing linear contextual pricing
problem settings (e.g., Cohen et al., 2020; Javanmard & Nazerzadeh, 2019; Xu & Wang, 2021) where the
linear valuation parameter θ∗

t is fixed as the same θ∗ over all t, in this work we allow moderate changing
of customers’ valuations: i.e. θ∗

t ’s can vary over time, and the total variation
∑T −1

t=1 ∥θ∗
t − θ∗

t+1∥1 is upper
bounded by some CT (which could be unknown to the seller). Here we adopt the L1-norm bound because it
is a reasonable metric for capturing the non-stationarity of the valuation mechanism: For instance, suppose
each element of xt indicates the amount of one component of this product, and therefore each element
of θ∗

t indicates the unit price of this component. In this example, ∥θ∗
t − θ∗

t+1∥1 reflects the general price
fluctuations on the market, i.e., the sum of market-wise price changes over all components. To characterize
the performance of a pricing scheme under this non-stationary setting, we adopt the concept of dynamic
regret. In this notion, we compare the performance of vt we propose with that of the optimal pricing policy
that knows the sequence of θ∗

t in advance. A rigorous definition of this dynamic regret will be presented in
Section 2.3.

Proper Learning. Usually, the actions/strategies we are allowed to adopt are restricted in some specific safe
domains. Taking any action/strategy outside this domain would probably cause risky, illegal or inconsistent
outcomes. Our algorithm works by maintaining an estimate, θt, for the true valuation parameter θ∗

t at each
round t, and we in turn take θt as a parametric strategy for proposing the price vt according to a greedy policy
(see Section 2.3 for more details). In this work, we require that the estimate θt must fall in a specific convex
and closed domain Dt at each round t. Here Dt can be chosen adversarially with the constraint imposed by
Assumption 1. As will be explained in Section 2.4, this is to address the fact that pricing strategies must
conform to hard constraints due to safety restrictions.

Universal Dynamic Regret and Proper OCO with co-variates. Next, we take a digression and
describe a general Online Convex Optimization (OCO) setting which will play a pivotal role in solving the
contextual pricing problem.

Proper OCO with co-variates. For t = 1, 2, ..., T :
1. Adversary reveals a co-variate xt ∈ Rd.
2. Learner makes a decision θ̂t in a convex domain Dt ⊂ Rd.
3. Adversary reveals a convex loss function ℓt(θ) = gt(θT xt).

This setting embodies OCO under a wide range of loss functions from the generalized linear model (GLM)
family for appropriate choices of gt. The co-variates xt can be thought of as a feature that encodes valuable
information about the context in round t which can be used by the learner to make its predictions. Examples
of this setting include (but are not limited to) linear regression and logistic regression.

The goal of the learner is to control its universal dynamic regret:

R(w1:T ) :=
T∑

t=1
ℓt(θ̂t)− ℓt(wt), (1)
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where w1:T = {w1, w2, . . . , wT } is any comparator sequence satisfying wt ∈ Dt for all t ∈ [T ]. This is known
to be a good metric in characterizing the performance of a learner in non-stationary environments (Zinkevich,
2003). Dynamic regret bounds are usually expressed in literature as functions of the time horizon T and a path
length that captures the smoothness of the comparator sequence such as CT =

∑T −1
t=1 ∥wt − wt+1∥1.

1.1 Summary of Contributions
Our main contributions are given below.

1. We present an algorithm ProDR (Algorithm 1) that attains an optimal Õ(d3(T 1
3 C

2
3
T ∨ 1)) dynamic regret

(modulo dependencies in d and log T ) for the setting of proper OCO with co-variates under exp-concave
losses (see Section 3.1).

2. We construct an algorithm PDRP (Algorithm 2) with a base learner ProDR, which solves the non-stationary
contextual pricing problem with strictly log-concave noise. We define the dynamic regret of contextual
pricing as Eq.(3) and show that PDRP achieves a Õ(d3(T 1

3 C
2
3
T ∨ 1)) dynamic regret guarantee (see Section

3.2).

3. We show that any algorithm must incur a dynamic regret of Ω(T 1
3 C

2
3
T ∨ 1) in the contextual pricing

problem, which says that PDRP is minimax optimal up to d and log T factors (see Section 3.3).

Novelty. Owing to the reduction of Xu & Wang (2021), the non-stationary contextual pricing problem can
be reduced to an OCO problem with co-variates and exp-concave losses. The key subroutine we developed —
ProDR — is the first to achieve an optimal universal dynamic regret with exp-concave losses in the proper
OCO with covariate setting. ProDR makes considerable progress towards addressing the open problem posed
by Baby & Wang (2021) on the more general version of the above problem with general exp-concave losses
(rather than GLM with known covariates) . The only existing attempt to this open problem requires the
decision set to be an L∞ ball (Baby & Wang, 2022b), which cannot be used to handle arbitrary convex
decision sets as we do.

Summary of techniques. The key technique in deriving ProDR is a novel “transfer theorem” which takes
the algorithm of Baby & Wang (2022b) (L∞ ball decision set) and converts it to an optimal algorithm for
the setting of proper OCO with co-variates under arbitrary convex decision sets. This idea is similar in spirit
to the improper-proper reduction in the work of Cutkosky & Orabona (2018) where they consider general
convex losses. However, a direct application of their reduction scheme cannot give fast rates for exp-concave
losses. To circumvent this issue, we propose new reduction schemes that carefully take the curvature of the
losses into account thereby allowing us to derive fast and optimal dynamic regret rates under exp-concave
losses (see Section 3.1 for a list of technical challenges). Such a “transfer theorem” could be of independent
interest and impactful in the general context of non-stationary online learning. That the non-stationary
dynamic pricing problem can be optimally solved using ProDR is a testament to this fact.

1.2 Related Works
Here we discuss how our work relates to the existing literature on dynamic pricing and dynamic regret.

Dynamic Pricing Dynamic pricing has been extensively studied under the single product (non-contextual)
setting (e.g. Kleinberg & Leighton, 2003; Besbes & Zeevi, 2015; Wang et al., 2021), where the goal is to find
and approach the best fixed price that maximizes the expected revenue. The problem is later generalized to
contextual pricing where a feature xt occurs at each time t and the customer’s valuation is dependent on xt. A
widely adopted model is the linear valuation (e.g., Cohen et al., 2020; Javanmard & Nazerzadeh, 2019; Xu &
Wang, 2021), where they assume all customers’ valuations are a fixed feature-to-valuation mapping (i.e., θ∗

t is
fixed, ∀t) adding i.i.d. noises drawn from a known distribution. As a result, the best price varies on different
features occurring over time, and the goal turns to approach the best price in every round. However, the
optimal pricing policy is static and the regret definition is a comparison of performance between our proposed
price and the optimal policy that knows θ∗ and the noise distribution in advance. In this work, we adopt
this linear valuation setting and further generalize to non-stationary cases where the linear mapping θ∗

t is
changeable over time. As a result, the best pricing policy also changes according to θ∗

t , and we have to analyze
the algorithmic performance in the scale of dynamic regret. Leme et al. (2021) also studies non-stationary
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pricing problems and adopts the dynamic regret metric. However, their loss function and constraints are
defined on realized valuations, different from our regret function defined on the expected valuations. Also,
they adopt a non-contextual problem setting and assume individual variation bounds on each pair of adjacent
valuations like |vt+1 − vt| ≤ ϵt for some ϵt > 0, t = 1, 2, . . . , T . Under their assumptions, they achieve an
Õ(T 1

2 C
1
2
T ) optimal regret with a matching lower bound1. Given those differences in problem settings, their

regret bounds are not applicable to our problem.

Some existing works on stationary pricing problems adopt contextual bandits to achieve sub-linear static
regrets (Luo et al., 2021; Xu & Wang, 2022). Therefore, it is also possible to reduce our non-stationary pricing
problem to a non-stationary bandit problem (Chen et al., 2019; Cheung et al., 2022; Zhao et al., 2020a).
However, similarly to what Amin et al. (2014) indicates in stationary contextual pricing, a direct application
of non-stationary bandit algorithms to our known-noise-distribution setting might cause sub-optimality in
dynamic regret. Such a reduction might be optimal without the knowledge of noise distribution, but it is
beyond the scope of this work.

Besides, a recent stream of works study the pricing problems under constraints on inventory (Chen & Gallego,
2022), reserve-price (Niu et al., 2020), fairness (Cohen et al., 2021; 2022; Xu et al., 2023; Chen et al., 2023)
and budget (Salehi & Mirmohammadi, 2023), etc. Our work also contributes to this series as we enforce
safety constraints and adaptively measure the impact of those constraints on the dynamic regret.

Dynamic Regret. There is a rich body of literature aimed in minimizing the universal dynamic regret
(Eq.(1)) in OCO setting where the earliest works can be traced back to Zinkevich (2003). When the revealed
losses are convex, Zhang et al. (2018) proposes algorithms to attain an optimal dynamic regret rate of
O(
√

T (1 + PT )) where PT =
∑T −1

t=1 ∥wt − wt+1∥2. When the loss functions are gradient Lipschitz, problem
dependent regret bounds have been developed in the work of Zhao et al. (2020b). In addition to gradient
Lipschitzness, if the losses have extra curvature properties such as exp-concavity, Baby & Wang (2021)
proposes algorithms that attain a near optimal dynamic regret of Õ∗(T 1/3C

2/3
T ∨ 1) (Õ∗ hides dependencies

on dimensions and factors of log T ). The work of Baby & Wang (2022b) shows similar rates for non-smooth
and exp-concave losses in a proper learning setting when the decision set is an L∞ ball. In contrast, our work
is able to attain near optimal rates for arbitrary convex decision sets for a large family of exp-concave losses.
Further Baby & Wang (2022b) also shows optimal rates for arbitrary bounded convex decision sets when the
losses are strongly convex.

If we take all the comparators wt in Eq.(1) to be same, one recovers the notion of static regret. There are
works that aim in controlling the static regret in any time window which makes them suitable for learning in
non-stationary environments. These algorithms fall into the category of adaptive / strongly adaptive regret
minimization algorithms. Examples of such methods include Hazan & Seshadhri (2007); Daniely et al. (2015);
Adamskiy et al. (2016); Jun et al. (2017); Cutkosky (2020); Baby et al. (2021); Zhang et al. (2021). We refer
the readers to Baby & Wang (2021) and references therein for a more inclusive survey on dynamic regret and
strongly adaptive algorithms.

There has also been recent advances (e.g. Zhao et al., 2022; Baby & Wang, 2022a) in applying online learning
techniques to design controllers. In particular, Baby & Wang (2022a) uses a reduction from Linear Quadratic
Regulator (LQR) problem to online (mini-batch) linear regression problem due to the work of Foster &
Simchowitz (2020). They employ a black-box reduction technique to convert the algorithm of Baby & Wang
(2022b) to one that attains optimal dynamic regret for online linear regression under the setting of proper
learning. This is facilitated by exploiting the constant hessian property of linear regression losses. However,
this property will not be satisfied for exp-concave losses in general. As such it is unclear that the black-box
reduction techniques of Baby & Wang (2022a) are generalisable beyond linear regression. Hence the results
in this paper are not directly implied by their results. We direct the readers to Baby & Wang (2022b) for an
elaborate discussion about the literature on online learning and control.

1Here we reduce their loss bound to our notations.
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2 Notations and Problem Setup
In this section, we specify necessary mathematical symbols and notations, and define functions for algorithm
design and regret analysis. We also present three examples to illustrate the concept of proper learning in
contextual pricing.

2.1 Symbols and Notations.
The pricing process consists of T rounds. xt, θ∗

t ∈ Rd, yt ∈ R, vt ∈ R+ and Nt ∈ R denote the feature vector,
the linear valuation parameter, the customer’s valuation, the seller’s price and the noise at time t, sequentially.
At each round, we receive a payoff (reward) rt = vt · 1t, where the binary variable 1t indicates the customer’s
decision, i.e., 1t = 1(vt ≤ yt).

2.2 Technical Assumptions
Denote a norm-bounded domain family DB

p = {θ ∈ Rd, ∥θ∥p ≤ B}. We firstly present assumptions on domain
constraints of xt and θ∗

t :

Assumption 1 (Domain Constraints). Assume xt ∈ Dx where Dx ⊆ D1
2 is convex and closed, and θ∗

t ∈ Dt

where every Dt ⊆ DB
2 ⊂ DB

∞ is also convex and closed. Each Dt can be chosen adversarially and is known to
the learner before time t.

Here we want the customers’ valuations to be bounded. Equivalently, we may also assume that Dx ⊆ DB1
2

and Dt ⊆ DB/B1
2 for any B1 > 0. With these assumptions, we know that |x⊤

t θ| ≤ B, ∀θ ∈ DB
2 , t = 1, 2, . . . , T .

Next, we make a reasonable assumption on customers’ expected valuations:

Assumption 2 (Non-Negative Expected Valuation). For a customer’s valuation yt = x⊤
t θ∗

t , we assume the
expected valuation x⊤

t θ∗
t ≥ 0, t = 1, 2, . . . , T .

Now we make assumptions on the distribution of noise Nt. We firstly present the definitions of log-concavity
and strict log-concavity on 1-dimensional distributions according to Prékopa (1973).

Definition 2.1 (Log-concavity and strict log-concavity). A probability measure P defined on R is said to be
log-concave if and only if for any pair A, B ⊂ R of intervals, it holds that

P (λA + (1− λ)B) ≥ {P (A)}λ{P (B)}1−λ,∀λ ∈ (0, 1).

Here "+" denotes Minkowski addition. Also, P is strictly log-concave if and only if for any pair A, B ⊂ R of
intervals, A ̸= B, it holds that

P (λA + (1− λ)B) > {P (A)}λ{P (B)}1−λ,∀λ ∈ (0, 1).

Then we make the following assumption:

Assumption 3 (Valuation noise distribution). At each time t = 1, 2, . . . , T , the noise Nt is independently
and identically sampled from a fixed strictly log-concave distribution D with a twice continuously differentiable
cumulative distribution function (CDF) F . Furthermore, the first and second derivatives of the CDF, denoted
as f and f ′, respectively are bounded by two finite constants Bf := supω∈R f(ω) and Bf ′ := supω∈R |f ′(ω)|.

According to Definition 2.1, let (i) A = (−∞, x], B = (−∞, y] and (ii) A = (x, +∞), B = (y, +∞) respectively,
and we have F and (1− F ) are both strictly log-concave functions. Existing works on contextual pricing
also adopt log-concavity assumptions (see Javanmard & Nazerzadeh, 2019). For a detailed discussion on
log-concave distributions, we kindly refer the audience to Bagnoli & Bergstrom (2006).

All of those three assumptions are supposed to hold throughout the paper.

2.3 Functions and Key Quantities
Greedily Pricing. Here we adopt two functions defined by Xu & Wang (2021) and also make use
of their properties. Firstly, we introduce an expected reward function g(v, u) := E[rt|vt = v, x⊤

t θ∗ =
u] = v · (1 − F (v − u)) that is unimodal w.r.t. v. Secondly, we introduce a greedily pricing function
J(u) := argmaxv∈Rg(v, u). J(u) has two important properties: On the one hand, J(u) is strictly monotonically
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increasing, with J ′(u) ∈ (0, 1). Therefore, J(u) and J−1(v) are bijections, ∀u ∈ R, v > 0. On the other hand,
we have ∥∇θJ(x⊤θ)∥2 = |J ′(x⊤θ)| · ∥x∥2 ≤ 1, which guarantees a low price-changing rate while modifying
parameter θ.

Restrictions on Actions/Parametric Strategies. When we take an action by presenting a price vt, there
always exists an θt ∈ Rd such that x⊤

t θt = J−1(vt). Therefore, for any price vt > 0, it is equivalent to firstly
propose a corresponding parametric strategy θt (satisfying x⊤

t θt = J−1(vt)) and then set the price as J(x⊤
t θt).

Since we are approaching the optimal price (which is J(x⊤
t θ∗)) and that θ∗

t ∈ Dt, we may restrict the strategy
θt to be taken within Dt at each time t. We will explain more on the motivation of the restrictions in Section
2.4.

Negative Log-likelihood. We define

ℓt(θ) = −1t · log
(
1− F (vt − x⊤

t θ)
)
− (1− 1t) log

(
F (vt − x⊤

t θ)
)

(2)

as a negative log-likelihood function at round t. Also, we define an expected log-likelihood function Lt :=
ENt [ℓt(θ)|xt, θ∗

t ]. For the simplicity of notations in the following sections, we denote ht(θ) := ∂ℓt(θ)
∂x⊤

t θ
∈ R, and

we show a property of ht(θ):

Lemma 2.2. For θ ∈ DB
2 , there exist constants 0 < hmin ≤ hmax < +∞ such that

hmax = sup
θ∈DB

2

|ht(θ)|, hmin = inf
θ∈DB

2

|ht(θ)|,∀t = 1, 2, . . . , T.

We prove this by noticing that h(θ) is continuous and DB
2 is closed, and the details are in Appendix B.1.

With this lemma, we may know that ℓt(θ) is Lipschitz (see Lemma 3.8).

Dynamic Regret. Finally, we define the cumulative dynamic regret:

RegT =
T∑

t=1
g(J(x⊤

t θ∗
t ), x⊤

t θ∗
t )− g(vt, x⊤

t θ∗
t ). (3)

We usually measure the regret as a function of T, d and the total variation CT :=
∑T −1

t=1 ∥θ∗
t − θ∗

t+1∥1.

2.4 Examples
Here we present three examples where the nature requires the strategies to lie in a “safe domain”, regarding
risk-taking, legal or consistency concerns.

Risk Control Adopting strategies outside a pre-defined and protected decision set can be very risky in
general. Concerning our contextual pricing problem, an extremely low price would lead to significant loss of
profit. Therefore, we have to set a lower pricing bar for each item. At each time t, suppose the lower bar is
ct > 0, and therefore our parametric strategy θt should satisfy ct ≤ J(x⊤

t θt). Since J(u) is monotonically
increasing, we have x⊤

t θt ≥ J−1(ct). By intersecting {θ ∈ Rd|x⊤
t θ ≥ J−1(ct)} with the L2-norm ball DB

2 , we
get a convex and compact set Dt, in which any parametric strategy θ satisfies the norm bound and will lead
to a price not less than ct given the J(x⊤

t θ) greedy pricing policy.

Legal Concern There exist laws or regulations regarding the highest price of some specific products.
For each item with feature xt, suppose that we cannot set a price exceeding ct > 0. Equivalently, the
parametric strategy θt we take must satisfy vt = J(x⊤

t θt) ≤ ct. Since J(u) is monotonically increasing, this
is further equivalent to x⊤

t θt ≤ J−1(ct). Therefore, the restricted strategy space Dt is the intersection of
{θ|x⊤

t θ ≤ J−1(ct)} with the L2-norm ball DB
2 , which is a convex and compact set. Any parametric strategy

falling out of Dt would lead to either vt > ct or ∥θ∥ > B.

Price Consistency It is important for the seller to be consistent on setting prices, or otherwise it might
cause pricing discrimination. Specifically, if two identical items with feature x occur at time t and t + 1, then
their prices must be close to each other. In other words, we require |J(x⊤θt)−J(x⊤θt+1)| ≤ C,∀x ∈ Dx ⊂ D1

2
for some constant C > 0. For each x ∈ Dx, we may solve it and get
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Algorithm 1 Proper Dynamic Regret minimization (ProDR)
1: Input: Base algorithm A, barrier multiplier G′ > 0, exp-concavity factor β.
2: for t = 1, 2, . . . , T : do
3: Get iterate θ̃t from A.
4: Feature xt and proper domain Dt are revealed
5: Output θ̂t = argminθ∈Dt

|x⊤
t (θ − θ̃t)|.

6: Loss ℓt is revealed.
7: Construct ℓ̂t(θ) as in Eq.(4) and set

ft(θ) = ℓ̂t(θ) + G′ · St(θ),

where St(θ) = minη∈Dt
|∇ℓ̂t(θ̂t)⊤(η − θ)|;

8: Send ft(θ) to A as loss at time t.
9: end for

J−1(J(x⊤θt)− C) ≤ x⊤θt+1 ≤ J−1(C + J(x⊤θt)).

Denote this set as St(x), and we have Dt+1 ⊆ ∩x∈Dx
St(x). Since θt ∈ St(x),∀x, the intersection is non-

empty.

3 Main Results
In this section, we present and analyse our algorithms. In Section 3.1, we first study the more general problem
of universal dynamic regret (Eq.(1)) minimization in a proper OCO setting. Results of Section 3.1 will be
applied in Section 3.2 to derive an optimal algorithm for the non-stationary pricing problem. All omitted
proofs in this section are deferred to Appendix B.

3.1 Dynamic Regret of ProDR
In this section, we study the Proper Dynamic Regret minimization (ProDR) algorithm (Algorithm 1). We
consider the protocol of proper OCO with co-variates introduced in Section 1.

The goal of this section is to control the universal dynamic regret as defined in Eq.(1). We start by listing
out the assumptions we made for the OCO problem.

Assumption 4. A constant B > 0 is known such that maxθ∈Dt ∥θ∥∞ ≤ B for all t ∈ [n].

Assumption 5. The losses ℓt obey ∥∇ℓt(θ)∥2 ≤ G for all t ∈ [n] and θ ∈ Dt (recall that Dt ⊆ DB
2 from

Section 2.2).

Assumption 6. The losses are α exp-concave. i.e ℓt(y) ≥ ℓt(x) +∇ℓt(x)⊤(y − x) + α
2
(
ℓt(x)⊤(y − x)

)2, for
α > 0 and for all x, y ∈ DB

2 .

Assumption 4 puts a relatively mild constraint that a box enclosing all the decision sets is known ahead of
time. Lipschitzness assumptions like Assumption 5 are standard in online learning. Assumption 6 states that
the loss ℓt exhibits a strong curvature in the direction of its gradients (see Hazan et al., 2007, as an example).
We will exploit this curvature to derive fast regret rates.

Qualitative description of ProDR. The base algorithm A in ProDR is expected to optimally control the
dynamic regret under exp-concave losses and when the decision set is a box: DB

∞ = {x ∈ Rd : ∥x∥∞ ≤ B},
where B is as in Assumption 4. The idea is to perform a black-box reduction that can convert the base
algorithm A to an algorithm that attains good dynamic regret guarantee on the domains Dt. Though similar
ideas have been already explored in the work of Cutkosky & Orabona (2018), our way of constructing such
reductions for the current problem is new and interesting in its own right in the context of exp-concave online
learning. Next, we expand upon this matter highlighting the differences from Cutkosky & Orabona (2018).
We construct losses ft in Line 7 of ProDR where the St(θ) term acts as a regularizer that penalizes A for
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predicting points outside Dt. We would like the losses ft to be exp-concave as the base algorithm A expects.
However, a direct application of the techniques of Cutkosky & Orabona (2018) does not satisfy this property.
We address this issue by carefully constructing ft as in Line 7 of Algorithm 1 such that: 1) gradients of
both ℓ̂t(θ) and St(θ) lie in the span of co-variate xt and 2) ℓ̂t(θ) is exp-concave, meaning that it exhibits
strong curvature along the direction of xt. Now, 1 and 2 together implies that the surrogate losses ft still
remains exp-concave as it exhibits strong curvature along the direction of its gradient (which is spanned by
xt). The particular choice of ℓ̂t(θ) is found to be crucial in preventing the exp-concavity factor of losses ft

from collapsing to zero. We will show that the dynamic regret of ProDR w.r.t. losses ℓ̂t is upper bounded by
the dynamic regret of the base algorithm A wrt losses ft which is well controlled.

We next describe the dynamic regret guarantees of Algorithm 1. We inherit all the notations used in the
algorithm description.

Theorem 3.1. Let β = min{α/2, 1/(8GB
√

d)} and γ = 1
4
(

2GB
√

dβ+1/(2
√

β)
)2 and G′ = 1 + 2GBβ

√
d. Let

A in ProDR algorithm be FLH-ONS (Fig.1 in Appendix A) instantiated with parameters ζ = 2γ/25, G = GG′

and ϕ = B. Then ProDR (Algorithm 1) satisfes

T∑
t=1

ℓt(θ̂t)− ℓt(wt) = Õ

(
(d3γ + d2

γ
)(T 1/3C

2/3
T ∨ 1)

)
,

where CT :=
∑T

t=2 ∥wt − wt−1∥1 with wt ∈ Dt. a ∨ b := max{a, b} and Õ hides dependence of constants
G, B, α and poly-logarithmic factors of T .

Remark 3.2 (Adaptivity to CT ). In light of the Ω(dB2 log T ∨ d1/3T 1/3C
2/3
T B4/3) lower bound (see Baby &

Wang, 2021, Proposition 11), we see that the ProDR algorithm adapts optimally to the path variation CT of
the comparator sequence, which may not be known ahead of time.

Proof. Due to the α exp-concavity of losses ℓt over the domain DB
2 and β ≤ α

2 we have that:

ℓt(θ) ≥ ℓt(θ̂t) +∇ℓt(θ̂t)⊤(θ − θ̂t) + β
(
∇ℓt(θ̂t))⊤(θ − θ̂t)

)2
,

for any θ ∈ DB
2 . Hence following Hazan et al. (2007), we consider the linear-regression-type surrogate losses:

ℓ̂t(θ) :=
(
∇ℓt(θ̂t)⊤(θ − θ̂t)

√
β + 1

2
√

β

)2

. (4)

Hence for any θ ∈ DB
2 we have that

ℓt(θ̂t)− ℓt(θ) ≤ 1
4β
− ℓ̂t(θ) = ℓ̂t(θ̂t)− ℓ̂t(θ). (5)

where we used the fact that ℓ̂t(θ̂t) = 1
4β .

Given that St(θ∗
t ) = St(θ̂t) = 0 since θ∗

t , θ̂t ∈ Dt, we have

ft(θ∗
t ) = ℓ̂t(θ∗

t ), ft(θ̂t) = ℓ̂t(θ̂t). (6)

8
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Let us denote ∇ℓt(θ) = ht(θ)xt where ht(θ) = g′
t(x⊤

t θ). Now, according to the definition of St(θ) and θ̂t, we
have:

ft(θ̃t) =ℓ̂t(θ̃t) + G′ · St(θ̃t)
=ℓ̂t(θ̃t) + G′ · min

η∈Dt

|∇ℓt(θ̂t)⊤(η − θ̃t)|

=ℓ̂t(θ̃t) + G′ · min
η∈Dt

|ht(θ̂t)||x⊤
t (η − θ̃t)|

=ℓ̂t(θ̃t) + G′ · |ht(θ̂t)||x⊤
t (θ̂t − θ̃t)|

=ℓ̂t(θ̃t) + G′ · |∇ℓt(θ̂t)⊤(θ̂t − θ̃t)|.

Next we proceed to upper bound the regret w.r.t. losses ℓ̂t by the regret w.r.t. losses ft. We need the
following lemma.

Lemma 3.3. Under the assumptions of Theorem 3.1, we have that

|ℓ̂t(θ)− ℓ̂t(θ̂t)| ≤ G′|∇ℓt(θ̂t)⊤(θ − θ̂t)|,

for any θ ∈ DB
∞ where G′ := (1 + 2GBβ

√
d).

The proof is shown in Appendix B.2. With this lemma, we have

ℓ̂t(θ̂t) ≤ ℓ̂t(θ̃t) + G′ · |∇ℓt(θ̂t)⊤(θ̂t − θ̃t)| = ft(θ̃t).

Combining the above inequality with Eq.(6) we obtain

ℓ̂t(θ̂t)− ℓ̂t(θ∗
t ) ≤ ft(θ̃t)− ft(θ∗

t ).

Now using Eq.(5) along with the previous relation yields that

T∑
t=1

ℓt(θ̂t)− ℓt(θ∗
t ) ≤

T∑
t=1

ft(θ̃t)− ft(θ∗
t ).

The following lemma specifies how to compute the sub-gradient of the regularizer term St(θ) in Line 7 of
Algorithm 1. Further it highlights an important property that a sub-gradient of St(θ) lies in the span of
covariate xt (recall that ∇ℓt(θ) = h(θ)xt). This is also useful for proving the joint exp-concavity of the losses
ft.

Lemma 3.4. The function St(θ) is convex across Rd. Denote ηt(θ) := argminη |x⊤
t (η − θ)|. When

∇ℓt(θ̂t)⊤(ηt(θ)− θ) ̸= 0, we have:

∇St(θ) =
{
∇ℓt(θ̂t), if ∇ℓt(θ̂t)⊤(ηt(θ)− θ) < 0
−∇ℓt(θ̂t), if ∇ℓt(θ̂t)⊤(ηt(θ)− θ) > 0.

When ∇ℓt(θ̂t)⊤(ηt(θ)− θ) = 0, we have 0 ∈ ∂St(θ).

The proof of Lemma 3.4 is in Appendix B.3. In the next lemma, we show that the losses ft remain exp-concave
with appropriate exp-concavity factor bounded away from zero. This is the key lemma that helps to control
the regret of ProDR.

Lemma 3.5. Define γ := 1
4
(

2GB
√

dβ+1/(2
√

β)
)2 . We have that the surrogate losses ft are 2γ/25 exp-concave

and 2GG′ Lipschitz in L2 norm across DB
∞.
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Algorithm 2 Proper Dynamic Regret Pricing (PDRP)
1: Input: Noise distribution D (including its CDF F and PDF f).

ProDR algorithm A instantiated as in Theorem 3.1.
2: for t = 1, 2, . . . , T : do
3: Feature xt and proper domain Dt are revealed and sent to A.
4: Get θ̂t ∈ Dt from A.
5: Seller proposes vt = J(x⊤

t θ̂t) and receive 1t.
6: Send loss ℓt(θ) defined in Eq.(2) to A.
7: end for

As is stated earlier in this section, the intuition of this lemma comes from two facts: (1) both ∇ℓ̂t(θ) and
∇St(θ) are in the span of xt, and (2) ℓ̂t(θ) is exp-concave. As a result, the strong curvature of ℓ̂t(θ) along
the xt direction “absorbs” the plain convexity of St(θ) and therefore guarantees the exp-concavity of ft(θ).
We defer the detailed proof to Appendix B.4. Hence from Baby & Wang (2022b, Theorem 10) , FLH-ONS
algorithm (Fig.1 in Appendix A) run with parameters ζ = 2γ/25, G = GG′ and ϕ = B can be used to control

T∑
t=1

ft(θ̃t) − ft(θ∗
t ) =Õ

(
d2(G2(G′)2B2γd + G2(G′)2B2 + 1

γ
)(T 1/3C

2/3
T ∨ 1)

)
=Õ

(
d3(T 1/3C

2/3
T ∨ 1)

)
,

where the last line is got by plugging in the values of γ and G′ and upper bounding further.

3.2 Dynamic regret of PDRP
In this section, we present our main algorithm for controlling the dynamic regret on contextual pricing
problem, the Proper Dynamic Regret Pricing (PDRP) (Algorithm 2).

Qualitative description of PDRP. Xu & Wang (2021) observes that the pricing problem can be reduced
to the setting of proper OCO with co-variates and exp-concave losses. This observation, armed with the
ProDR algorithm, naturally lends itself to the algorithm PDRP for controlling dynamic regret of the pricing
problem.

We are now ready to present regret guarantees for the non-stationary pricing problem.

Theorem 3.6. Consider the linear noisy contextual pricing problem defined in Section 1. Assume that
we know the noise distribution D exactly. By properly initializing β, γ and G′ with pre-knowledge, PDRP
(Algorithm 2) obeys RegT = Õ(d3(T 1

3 C
2
3
T ∨ 1)), where RegT is as defined in Eq.(3), Õ hides poly-logarithmic

factors of T and (a ∨ b) = max{a, b}.

Proof. We start with the lemmas that help us leverage the OCO framework of Section 3.1.

Lemma 3.7. (Xu & Wang, 2021, Lemma 5 and 6) Under the assumptions in Theorem 3.6, for θ ∈ DB
2 , we

have:
g(J(x⊤

t θ∗
t ), x⊤

t θ∗
t )− g(J(x⊤

t θ), x⊤
t θ∗

t ) ≤ 2C

Cdown
(E[ℓt(θ)− ℓt(θ∗

t )]) ,

where ℓt is defined in Eq.(2), C = 2Bf + (B + J(0))Bf ′ and

Cdown := inf
ω∈[−B,B+J(0)]

min
{

d2 log(1− F (ω))
dω2 ,

d2 log(F (ω))
dω2

}
> 0.

So we have

RegT ≤
2C

Cdown
E[ℓt(θ̂t)− ℓt(θ∗

t )]. (7)

10
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Next, we record the curvature and smoothness properties of losses ℓt.

Lemma 3.8. Let G = hmax defined in Lemma 2.2. Under the assumptions in Theorem 3.6, for θ ∈
Dt, we have: (1) ℓt(θ) is G-Lipschitz in ∥ · ∥2 norm, and (2) ℓt(θ) Cdown

Cexp
-exp-concave. Here Cexp :=

supω∈[−B,B+J(0)] max
{

f(ω)2

F (ω)2 , f(ω)2

(1−F (ω))2

}
and Cdown is defined in Lemma 3.7 .

This lemma is derived from Xu & Wang (2021) Lemma 7, and we defer the proof to Appendix B.5. The
lemma above implies that the losses satisfy Assumption 5 in Section 3.1. Further they satisfy Assumption 6
with exp-concavity factor of Cdown/Cexp. So we can use the ProDR algorithm (Algorithm 1) to control the
dynamic regret wrt losses ℓt. Let β = min{Cdown/(2Cexp), 1/(8GB

√
d)} and γ = 1

4
(

2GB
√

dβ+1/(2
√

β)
)2 and

G′ = 1 + GB
√

dCdown/Cexp. Hence continuing from Eq.(7), we apply Theorem 3.1 to obtain

RegT ≤ Õ
(

d3(T 1/3C
2/3
T ∨ 1)

)
.

This completes the proof of the theorem.

Remark 3.9. Although noise distributions are known as we assumed, the coefficient of our regret upper bound
depends highly on the distribution. As is indicated by Xu & Wang (2021), when the noise Nt is an i.i.d.
Gaussian noise with zero mean and σ standard deviation, this coefficient is exponentially large w.r.t. 1

σ as σ
approaches 0, which is counter-intuitive.

3.3 Lower Bound on Dynamic Pricing Regret
So far, we have developed a ProDR algorithm that is suitable for domain-constraint optimization of generalized
linear model, and have constructed a PDRP algorithm to solve the linear contextual pricing problem where
PDRP achieves a Õ(d3(T 1

3 C
2
3
T ∨1)) dynamic regret. This upper regret bound is optimal for online exp-concave

optimization as is shown by Baby & Wang (2021), but is it still optimal for our feature-based dynamic pricing
setting in specific? The answer is Yes. This dynamic regret is near-optimal up to d and log T factors, and
here we present the following theorem.

Theorem 3.10 (Lower dynamic regret bound). Let d = 1 in the contextual pricing problem we consider.
For any algorithm A, there exists a specific problem setting where A has to suffer an Ω(T 1

3 C
2
3
T ∨ 1) expected

dynamic regret.

With this theorem, we may claim that our PDRP algorithm is near-optimal. We here show a proof sketch
and defer the full proof to Appendix B.6.

Proof Sketch. The proof is developed in three steps: Firstly, we construct a hypothesis set Θ in which there
are N different {θ∗

t }T
t=1 series whose total variations are upper bounded by CT . For any pair of two different

series {θ∗
t }T

t=1’s in Θ, they are identical for T/3 out of T rounds in total, and are different by some small δ
for the rest 2T/3 rounds. Secondly, we show that their corresponding feedback distributions are also “similar”
to each other under the metric of KL-divergence. Therefore, according to Fano’s Inequality, any algorithm
can hardly distinguish among these distributions. Finally, we show that a failure of correctly distinguish the
underlying distribution (i.e., the real {θ∗

t }T
t=1 series) will result in an Ω(T 1

3 C
2
3
T ∨ 1) regret.

4 Conclusion
In this work, we studied the non-stationary contextual pricing problem under safety constraints. We first
presented the ProDR algorithm for minimizing universal dynamic regret in the framework of proper OCO
with co-variates and exp-concave losses. This contribution could be of independent interest in the context of
non-stationary online learning. As a concrete application, we constructed our pricing algorithm, PDRP, by
making use of ProDR as the base learner. We showed that PDRP attains a Õ(d3(T 1

3 C
2
3
T ∨ 1)) dynamic regret

in our pricing problem setting. Finally, we proved that this rate is information-theoretically optimal (modulo
dependencies on d and log T ).
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A Preliminaries
For the sake of completeness, we recall the description of the Follow-the-Leading-History (FLH) algorithm
(see Hazan & Seshadhri, 2007).

FLH: inputs - Learning rate ζ, G, ϕ > 0 and T ONS base learners E1, . . . , ET

initialized with parameters G = G, D = 2ϕ
√

d, α = ζ and decision set D = {θ ∈
Rd : ∥θ∥∞ ≤ ϕ}. The learner Et starts operating from time t.

1. For each t, vt = (v(1)
t , . . . , v

(t)
t ) is a probability vector in Rt. Initialize

v
(1)
1 = 1.

2. In round t, set ∀j ≤ t, θj
t ← Ej(t) (the prediction of the jth base learner

at time t). Play θalg
t =

∑t
j=1 v

(j)
t θ

(j)
t .

3. After receiving loss ft, set v̂
(t+1)
t+1 = 0 and perform update for 1 ≤ i ≤ t:

v̂
(i)
t+1 = v

(i)
t e−ζft(θ

(i)
t )∑t

j=1 v
(j)
t e−ζft(θ

(j)
t )

4. Addition step - Set v
(t+1)
t+1 to 1/(t + 1) and for i ̸= t + 1:

v
(i)
t+1 = (1− (t + 1)−1)v̂(i)

t+1

Figure 1: FLH algorithm

Next, we describe the Online Newton Step (ONS) algorithm (see Hazan et al., 2007).

ONS: inputs - Exp-concavity factor α and G, D > 0. Decision set D.
1. At round 1, predict 0.
2. Let β = 1

2 min{ 1
4GD , α}. At iteration t > 1 predict:

wt ∈ argmin
θ∈D

∥wt−1 −
1
β

A−1
t−1∇t−1 − θ∥At−1 ,

where ∇i = ∇fi(wi), At = Id

β2D2 +
∑t

i=1∇i∇⊤
i .

Figure 2: ONS algorithm

B Detailed Proof
B.1 Proof of Lemma 2.2
Proof. To begin with, we know that

ht(θ) = −1t ·
f(ω)

1− F (ω) + (1− 1t) ·
f(ω)
F (ω) ,

where ω = vt − x⊤
t θ. Since ∃θt ∈ Dt such that vt = J(x⊤

t θt), given that J ′(u) ∈ (0, 1) (see Xu &
Wang, 2021, Eq.(19)), we know that ω ∈ [J(−B) − B, J(B) + B] is bounded in a closed interval. Since
we assume that f(ω) > 0,∀ω ∈ R, we know that fmin = infω∈[J(−B)−B,J(B)+B] f(ω) > 0 and F (ω) ∈
[F (J(−B)−B), F (J(B) + B)] ⊂ (0, 1). Remember that we denote Bf := supω∈R f(ω) < +∞. As a result,
we have

0 < fmin ≤
f(ω)

1− F (ω) ≤
Bf

1− F (J(B) + B) < +∞

0 < fmin ≤
f(ω)
F (ω) ≤

Bf

F (J(−B)−B) < +∞.
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Since ht(θ) = f(ω)
1−F (ω) for 1t = 1 or h(t) = f(ω)

F (ω) for 1t = 0, we know that |ht(θ)| ∈
[fmin,

Bf

min{1−F (J(B)+B),F (J(−B)−B)} ]. Let hmax = Bf

min{1−F (J(B)+B),F (J(−B)−B)} and hmin = fmin, and the
lemma is therefore proved.

B.2 Proof of Lemma 3.3
Proof. We have that for any θ ∈ DB

∞,

|ℓ̂t(θ)− ℓ̂t(θ̂t)| =
∣∣∣1/
√

β +
√

β · ∇ℓt(θ̂t)⊤(θ − θ̂t)
∣∣∣ · ∣∣∣√β∇ℓt(θ̂t)⊤(θ − θ̂t)

∣∣∣
≤
(

1 + 2GBβ
√

d
)
|∇ℓt(θ̂t)⊤(θ − θ̂t)|,

where in the last line we apply triangle inequality and the facts that |∇ℓt(θ̂t)⊤(θ − θ̂t)| ≤ G∥θ − θ̂t∥2 with
∥θ − θ̂t∥2 ≤ 2B

√
d.

Putting G′ = 1 + 2GBβ
√

d completes the lemma.

B.3 Proof of Lemma 3.4
Proof. For the simplicity of notation, we denote ∇t := ∇ℓt(θ̂t), and we have: St(θ) = minx∈Dt |∇⊤

t (x− θ)|.
Since St(θ) is convex in Rd, we have:

St(θ2) ≥ St(θ1) + ⟨∇St(θ1), θ2 − θ1⟩,∀θ1, θ2 ∈ DB
∞.

Now we conduct an orthogonal decomposition: ∇St(θ1) = µ1∇t +∇⊥
t , where ∇⊤

t ∇⊥
t = 0. Let θ3 = θ2 +µ2∇⊥

t ,
and we have |∇⊤

t (x− θ2)| = |∇⊤
t (x− θ3)|,∀x ∈ Rd. In other words, we have St(θ2) = St(θ3) and therefore

we have:
St(θ2) = St(θ3) ≥ St(θ1) + ⟨∇St(θ1), θ3 − θ1⟩

= St(θ1) + ⟨µ1∇t +∇⊥
t , θ2 + µ2∇⊥

t − θ1⟩
= St(θ1) + ⟨∇St(θ1), θ2 − θ1⟩+ µ2⟨∇⊥

t ,∇⊥
t ⟩,∀θ2 ∈ Rd, µ2 ∈ R

In other words, µ2∥∇⊥
t ∥2

2 ≤ St(θ2)− St(θ1)− ⟨∇St(θ1), θ2 − θ1⟩. Denote η1 = argminx∈Dt
|∇⊤

t (x− θ1)|, and
η2 = argminx∈Dt

|∇⊤
t (x− θ2)|. Notice that

St(θ2)− St(θ1) =|∇⊤
t (η2 − θ2)| − |∇⊤

t (η1 − θ1)|
≤|∇⊤

t (η1 − θ2)| − |∇⊤
t (η1 − θ1)|

≤|∇⊤
t (θ1 − θ2)|

≤∥∇t∥2 · ∥θ1 − θ2∥2

≤G · ∥θ1 − θ2∥2.

(8)

Here the first inequality comes from the definition of η2, the second inequality is an application of the
triangular inequality, the third inequality is derived from Cauchy-Schwarz Inequality, and the last inequality
is from Assumption A5 on the Lipschitzness of ℓt(θ) over Dt. Therefore, St(θ) is G-Lipschitz as well over
DB

∞, and we have:

µ2∥∇⊥
t ∥2

2 ≤ St(θ2)− St(θ1)− ⟨∇St(θ1), θ2 − θ1⟩
≤ 2G∥θ2 − θ1∥2.

This holds for any θ1, θ2 ∈ DB
∞. However, we may fix θ1 and θ2 while also let µ2 → +∞ since it holds for any

µ2 ∈ R. If ∥∇⊥
t ∥2 ̸= 0 then it will fall into a contradiction. Therefore, we know that ∇⊥

t = 0 and ∇St(θ) is
always in the same direction of ∇t.

16



Published in Transactions on Machine Learning Research (10/2023)

Without losing generality, denote ∇St(θ1) := λ · ∇t. In the following, we will prove that λ = ±1 or 0. From
Eq. (8) line 3, we know that St(θ2)−St(θ1) ≤ |∇⊤

t (θ1− θ2)|. Combined with the convexity of St(θ), we have:

|∇⊤
t (θ1 − θ2)| ≥St(θ2)− St(θ1)

≥∇St(θ1)⊤(θ2 − θ1)
=λ · ∇⊤

t (θ2 − θ1).
(9)

Notice that we can choose arbitrary θ2 without changing λ, we may let θ2 = 0 and θ2 = 2θ1 in Eq. (9):

±λ · ∇⊤
t θ1 ≤ |∇⊤

t θ1|

If ∇⊤
t θ1 ≠ 0, then we have λ ∈ [−1, 1]. Otherwise, we know from Eq. (9) that |∇⊤

t θ2| ≥ λ · ∇⊤
t θ2,∀θ2, and

similarly we have λ ∈ [−1, 1]. Now we denote θ4 := θ1+η1
2 , and we have:

⟨∇St(θ1), θ4 − θ1⟩+ St(θ1) ≤ St(θ4) (10)

from the convexity of St. And we also have:

St(θ4) = min
x∈Dt

|∇⊤
t (x− θ4)|

≤ |∇⊤
t (η1 − θ4)|

= |∇⊤
t

θ1 − η1

2 |

= 1
2St(θ1)

= |∇⊤
t (θ1 − θ4)|

= St(θ1)− |∇⊤(θ1 − θ4)|.

(11)

Combine Eq. (10) and (11), we have:

⟨∇St(θ1), θ4 − θ1⟩ ≤ St(θ4)− St(θ1) = −|∇⊤
t (θ1 − θ4)| (12)

Plug in ∇St(θ1) = λ∇t to Eq. (12), and we have:

λ · ∇⊤
t (θ4 − θ1) ≤ −|∇⊤

t (θ1 − θ4)|. (13)

According to Eq. (13), if ∇⊤
t (θ4 − θ1) > 0, then we have λ ≤ −1; if ∇⊤

t (θ4 − θ1) < 0, then we have λ ≥ 1.
Since we already know that λ ∈ [−1, 1], then for the two case we should have λ = −1 or λ = 1.

Finally, what if ∇⊤
t (θ4 − θ1) = 0? In this case, it means that ∇⊤

t (η1 − θ1)/2 = 0. Since η1 =
argminx∈Dt

|∇⊤
t (x − θ1)|, we know that St(θ1) = 0 at this time. Since St(θ) ≥ 0,∀θ ∈ Rd, we know

that St(θ) ≥ St(θ1) + 0⊤(θ − θ1) and as a result 0 ∈ ∂St(θ1). This in fact holds the lemma.

B.4 Proof of Lemma 3.5
Proof. We begin by noticing that ℓ̂t(θ) is exp-concave over DB

∞. To see this, note that by the triangular
inequality and Cauchy-Schwarz Inequality,

|∇ℓt(θ̂t)⊤(θ − θ̂t)
√

β + 1/(2
√

β)| ≤ |∇ℓt(θ̂t)⊤(θ − θ̂t)|
√

β + 1/(2
√

β) ≤ 2GB
√

dβ + 1/(2
√

β),

where we use the fact that ∥∇ℓt(θ̂t)∥2 ≤ G by Assumption A5 and ∥θ − θ̂t∥2 ≤ 2B
√

d as θ ∈ DB
∞ and

θ̂t ∈ Dt ⊂ DB
∞.
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With γ as defined in the statement of the lemma, we have that the losses ℓ̂t(θ) are 2γ exp-concave over DB
∞.

(see Cesa-Bianchi & Lugosi, 2006, Section 3.3).

Now we proceed to show that the losses ft(θ) are in-fact exp-concave with appropriate exp-concavity factor.

For the sake of brevity, let us denote

∇ℓ̂t(u) = 2
√

β

(
∇ℓt(θ̂t)⊤(u− θ̂t)

√
β + 1

2
√

β

)
∇ℓt(θ̂t)

:= p(u)∇ℓt(θ̂t).

We have that for any u, v ∈ DB
∞,

ℓ̂t(v) ≥ ℓ̂t(u) + p(u)∇ℓt(θ̂t)⊤(v − u)

+ γ
(

p(u)∇ℓt(θ̂t)⊤(v − u)
)2

. (14)

Due to convexity, we have

St(v) ≥ St(u) + λ∇ℓt(θ̂t)⊤(v − u), (15)

for some λ ∈ {−1, 0, 1} as per Lemma 3.4.

Adding Eq.(14) and (15), we obtain

ft(v) ≥ ft(u) +∇ft(u)⊤(u− v)

+ γp(u)2
(
∇ℓt(θ̂t)⊤(v − u)

)2

= ft(u) +∇ft(u)⊤(u− v)

+ γ

(
p(u)

λ + p(u)

)2 (
∇ft(u)⊤(v − u)

)2
. (16)

Next, we proceed to obtain a lower bound on the exp-concavity factor. Note that

p(u) ≥ 2
√

β

(
−2GB

√
dβ + 1

2
√

β

)
≥ 2
√

β · 1
4
√

β
= 1

2

where the first inequality is via Cauchy-Schwarz Inequality and the second inequality holds due to the fact
that β ≤ 1/(8GB

√
d) due to the setting in Theorem 3.1

Similarly we have that

|p(u) + λ| ≤ 4GBβ
√

d + 2 ≤ 5/2,

where in the last line we used β ≤ 1/(8GB
√

d).

Combining the last two displays, we have that

γ

(
p(u)

λ + p(u)

)2
≥ γ/25.

Applying this lower bound to Eq.(16) now yields the exp-concavity of ft(θ) claimed in the lemma.

Next, we proceed to calculate the Lipschitz constant of ft. Since ∥∇ℓt(θ̂t)∥2 ≤ G, by Lemma 3.4 we conclude
that G′St(θ) is G′G Lipschitz in L2 norm across Rd. Now using Lemma 3.3 we conclude that the losses ft

are 2G′G are Lipschitz in L2 norm across DB
∞.
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B.5 Proof of Lemma 3.8
Xu & Wang (2021, Lemma 7) has proved the Cdown

Cexp
-exp-concavity. Here we prove the other claim on

Lipschitzness.

Proof. Notice that ℓt(θ) is a continuous function. Therefore, for any θ1, θ2 ∈ Dt, there exists a θ3 =
ϵθ1 + (1− ϵ)θ2 for some ϵ ∈ [0, 1] such that

ℓt(θ1)− ℓt(θ2) = ∇ℓt(θ3)⊤(θ1 − θ2)
= ht(θ3)x⊤

t (θ1 − θ2)
≤ hmax∥xt∥2∥θ1 − θ2∥2

= hmax∥θ1 − θ2∥2

= G∥θ1 − θ2∥2

(17)

where hmax is defined in Appendix B.1. In Eq.(17), the first equality is by Lagrange interpolation, the second
equality is by definition of ht(θ), the third inequality is by Cauchy-Schwarz Inequality, the fourth equality is
by the assumption that xt ∈ D1

2, and the last inequality is from the fact that hmax = G. Since Dt is convex,
we know that θ3 ∈ Dt. Therefore, the lemma is proven.

B.6 Lower Bound Proof (Proof of Theorem 3.10)

Here we present and prove the following theorem, which is sufficient to show a Ω(T 1
3 C

2
3
T ) lower bound for

CT > 1√
T

.

Theorem B.1. Consider a feature-based dynamic pricing problem with d = 1, xt = 1, Nt ∼i.i.d. N (0, 1), t =
1, 2, . . . , T and CT > 1√

T
For any algorithm A there exists a specific setting such that A suffer Ω(T 1

3 C
2
3
T )

expected regret even with yt observable.

The sufficiency comes from the fact that we cannot observe any realized yt’s in the pricing problem (but a
binary indicator instead). In comparison, the lower bound in Theorem B.1 even works for observable yt’s,
which is sufficient to derive the binary feedback (by comparing yt with vt).

Proof. To summarize the procedure of proof: Denote [n] := {1, 2, . . . , n} for any positive integer n. Define
θ0 = 1, θ1 = 1 + δ(T, CT ) where δ = 1

40 ( CT

T ) 1
3 is an additional amount. Then we construct a set S ⊂ {0, 1}T

consisting of randomly-sampled β(i) ∈ {0, 1}T , i = 1, 2, . . . , N that we will use to construct θ∗
t (i) series (each

i indicating a specific {θ∗
t } series) later. Afterward, we will show that the {θ∗

t (i)} and the {θ∗
t (j)} series are

hard to distinguish by any algorithm, and we will further show that a large enough regret caused by this
misspecification. In this way, we can prove an expected lower regret bound (where the expectation is also
taken over different {θ∗

t (i)}).

The process to sample each β(i) is as follows: We split [T ] uniformly into m = CT

4δ intervals, with each length
4T δ
CT

. Since δ = 1
40 (CT

T ) 1
3 and CT ≥ 1√

T
, we know that m ≥ 10. Denote these intervals as I1, I2, . . . , Im.

For any β(i) ∈ S, we construct it in a stochastic process: For each index interval Ik, k = 1, 2, . . . , m, we
generate a random variable Z

(i)
k ∼ Ber( 1

2 ) independently, and then let β
(i)
l = Z

(i)
k ,∀l ∈ Ik. Denote the

vector Z(i) = [Z(i)
1 , Z

(i)
2 , . . . , Z

(i)
m ]⊤ ∈ {0, 1}m, and we know that E[∥Z(i) − Z(j)∥1] = m

2 . Accordingly, we
have E[∥β(i) − β(j)∥1] = m

2 ·
4T δ
CT

= T
2 .

Therefore, according to Hoeffding’s inequality, we have:

Pr[|∥Z(i) − Z(j)∥1 −
m

2 | ≤
m

6 ] ≥1− 2 · e−
( m

6 )2

2m

⇔ Pr[|∥β(i) − β(j)∥1 −
T

2 | ≤
T

6 ] ≥1− 2 · e− m
72 ,∀i, j ∈ [N ].

(18)
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By applying a union bound over all
(

N
2
)

pairs of i, j ∈ [N ], we have:

Pr[|∥β(i) − β(j)∥1 −
T

2 | ≤
T

6 ,∀i, j ∈ [N ]] ≥ 1−N2 · e− m
72 .

Also, we know that Pr[β(i) ̸= β(j)] = Pr[Z(i) ̸= Z(j)] = 1− 1
2m for i ̸= j. By applying a union bound over all((N

2)
)

pairs of i, j, we have Pr[β(i) ̸= β(j)] ≥ 1− N2

2m+1 . Combining these two probability bounds, we know that
in this way we can find a satisfactory set S with probability at least Pr ≥ 1−N2 · (e− m

72 + 2−(m+1)). Let
N = e

m
200 (and therefore log N = m

200 = CT

800δ ), and then Pr ≥ 1−N2 · (e− m
72 + 2−(m+1)) ≥ 1− (e− m

300 + e− 3
5 m).

Since the total number of possible S (i.e., any set consisting N (repeatable) vectors β ∈ {0, 1}T ) is (2m)N

and we are uniformly sampling from this whole family, the expected total number of satisfactory S is at least
(2m)N · (1− (e− m

300 + e− 3
5 m)). Since m ≥ 10 as we showed above, we have (2m)N · (1− (e− m

300 + e− 3
5 m)) ≥

210×1 · (1− e− 1
30 − e−6) = 31.0325 > 1. As a result, there must exist at least one satisfactory S in the whole

possible set family, such that: (1) T
3 ≤ ∥β

(i) − β(j)∥1 ≤ 2T
3 , and (2) β(i) ≠ β(j),∀i ≠ j ∈ [N ]. We here pick

this satisfactory S and in the following we use it for further proof.

Now, for each β(i) ∈ S, we generate a sequence of parameter {θ∗
t (i)} according to β(i): For t = 1, 2, . . . , T , we

let θ∗
t (i) = 1 + δ · β(i)

t , i.e., if β(i) = 0, then θ∗
t (i) = θ0 = 1; if β(i) = 1, then θ∗

t (i) = 1 + δ. Therefore, we have
the following result:

TV({θ∗
t (i)}) ≤ m · δ = CT

4 < CT .

This is because ∥θ∗
t (i)− θ∗

t+1(i)∥ > 0 only if ∃k ∈ [m] s.t. t ∈ Ik, t + 1 ∈ Ik+1. As a result, the total variation
of this {θ∗

t (i)} satisfies the upper bound CT .

Now, let us consider the realized valuation sequence {yt}. For any i ∈ [N ], denote

y(i) := [x1(1 + β
(i)
1 δ) + N1, x2(1 + β

(i)
2 δ) + N2, . . . , xT (1 + β

(i)
T ) + NT ]⊤

Let us denote the distribution of y(i) as Pi, i = 1, 2, . . . , N . Recall that xt = 1 and Nt ∼ N (0, 1),∀t, and we
have Pi = [N (1 + β

(i)
1 δ, 1),N (1 + β

(i)
2 δ, 1), . . . ,N (1 + β

(i)
T δ)]⊤. Consider the difference between Pi and Pj

while fixing β(i) and β(i), and for any i, j ∈ [N ], i ̸= j we have:

KL[Pi||Pj ] =
T∑

t=1
KL[N (1 + β

(i)
t δ, 1)||N (1 + β(j)δ, 1)]

=
T∑

t=1

(β(i)
t − β

(j)
t )2δ2

2

=δ2

2 · ∥β
(i) − β(j)∥2

2

=δ2

2 · ∥β
(i) − β(j)∥1.

(19)

Again, the KL-divergence is conditioning on β(i) and β(j). Here the first line is from the fact that
yt’s are independent for every t, the second line is by xt = 1, the third line is from the fact that
KL[N (µ1, σ1)||N (µ2, σ2)] = log σ2

σ1
+ σ2

1+(µ1−µ2)2

2σ2
2

− 1
2 , the fourth line is by calculation and the fifth line is

from that |β(i)
t − β

(j)
t | ∈ {0, 1}.

Here we introduce a Fano’s Inequality as the following proposition:

Proposition B.2 (Fano’s Inequality). Let X1, X2, . . . , Xn ∼i.i.d. P where P ∈ {P1,P2, . . . ,PN} is a
distribution family. Let Ψ be any function of X1, X2, . . . , Xn taking values in {1, 2, . . . , N}. Let α =
maxj ̸=k KL(Pj ||Pk).2 Then

1
N

N∑
j=1

Pj(Ψ ̸= j) ≥ 1− nα + log 2
log N

.

2Usually it is denoted as β, but here we denote it as α for clarity, since we have already defined β(i) as vectors in S.
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According to Fano’s Inequality, we have:

inf
Ψ :RT →{1,2,...,N}

sup
i∈{1,2,...,N}

Pi(Ψ ̸= i) ≥ inf
Ψ

1
N

N∑
i=1

Pi(Ψ ̸= i) ≥ 1− nα + log 2
log N

≥ 1
2 −

nα

log N
. (20)

Here n = 1 since only one specific y(i) covers the whole time series and is only sampled once, and
α = maxi,j∈[N ],i̸=j KL[y(i)||y(j)] = maxi,j∈[N ],i̸=j

δ2

2 · ∥β
(i) − β(j)∥1 ≤ δ2T

3 is the upper bound of KL-
divergences on different distributions. Now we specify the function ΨA for any pricing algorithm A: At each
round t = 1, 2, . . . , T , suppose the algorithm A proposes a price vA

t . Define a vector w = [w1, w2, . . . , wT ]⊤

where wt = 1[vA
t ≥

J(θ0)+J(θ1)
2 ] is a Boolean value. Then we let ΨA = argmini ∈ [N ]∥w− β(i)∥1. Therefore,

we have:
2 · ∥w− β(j)∥1 ≥∥β(ΨA) −w∥1 + ∥w− β(j)∥1

≥∥β(ΨA) − β(j)∥1,∀j ∈ [N ], j ̸= ΨA

≥T

6

Here the first inequality is from the optimality of ΨA, the second inequality is from the triangular inequality,
and the third inequality is from the Hoeffding bound in Eq. (18). Therefore we know that if ΨA ≠ i then we
have ∥w− β(i)∥1 ≥ T

12 , which further leads to

T∑
t=1

(vA
t − J(xtθ

∗
t (i)))2

≥
T∑

t=1
(1[wt = 1]1[β(i)

t = 0] + 1[wt = 0]1[β(i)
t = 1])(vA

t − J(xtθ
∗
t (i)))2

=
T∑

t=1
1[vA

t ≥
J(θ0) + J(θ1)

2 ]1[β(i)
t = 0](vA

t − J(θ0))2 + 1[vA
t <

J(θ0) + J(θ1)
2 ]1[β(i)

t = 1](J(θ1 − vA
t ))2

≥
T∑

t=1
1[|wt − β

(i)
t | = 1](J(θ1)− J(θ0)

2 )2

= ∥w− β(i)∥1(J(θ1)− J(θ0)
2 )2

≥ T

12 · (
J(θ0)− J(θ1)

2 )2.

Here the first line is because we omit the case where 1[wt = β
(i)
t ], the second line is from the definition of

wt, the third line is from the facts of θ0 < θ1 and J ′(u) > 0,∀u ∈ R, the fourth line is by the definition of
L1-norm and the last line is from the fact we mentioned prior to this equation. Now we propose a lemma of
properties:

Lemma B.3 (Properties of g(v, u) and J(u)). For g(v, u) and J(u) with Nt ∼ N (0, 1), we have:

1. J(u) > u when u ∈ (0,
√

π
2 ) and J(u) < u when u ∈ (

√
Π
2 , +∞).

2. ∃cJ > 0 s.t. J ′(u) ≥ cJ ,∀u ∈ [−B, B].

3. ∃cg > 0 s.t. g(J(u), u)− g(v, u) ≥ cg(J(u)− v)2,∀v ∈ [0, B + J(B)].

21



Published in Transactions on Machine Learning Research (10/2023)

We will show the proof of Lemma B.3 by the end of this section. With Lemma B.3, when ΨA ̸= i, we have:

RegA =
T∑

t=1
g(J(xtθ

∗
t (i)), xtθ

∗
t (i))− g(vA

t , xtθ
∗
t (i))

≥
T∑

t=1
cg(vA

t − J(xtθ
∗
t (i)))2

≥cg ·
T

12 · (
J(θ0)− J(θ1)

2 )2

≥cg ·
T

12 ·
c2

J

4 · (θ1 − θ0)2

≥cgc2
J · Tδ2

48 .

(21)

Finally, let δ = 1
40 ( CT

T ) 1
3 , and according to Eq. (19),(20) and (21), we have:

E[RegA] ≥ sup
i∈[N ]

Pi(ΨA ̸= i) · (
T∑

t=1
g(J(xtθ

∗
t (i)), xtθ

∗
t (i))− g(vA

t , xtθ
∗
t (i)))

≥ sup
i∈[N ]

Pi(ΨA ̸= i) · cgc2
J · Tδ2

48

≥(1
2 −

nα

log N
) · cgc2

J · Tδ2

48

=(1
2 −

δ2T
3

CT

800δ

) · cgc2
J

·Tδ2

48

=cgc2
J(1

2 −
800
3 · δ3T

CT
) · ·Tδ2

48

=cgc2
J

48 (1
2 −

1
240)

T · ( CT

T ) 2
3

144

≥ cgc2
J

307200 · C
2
3
T T

1
3 .

This holds the theorem.

Also, since our upper regret bound w.r.t. T and CT is Õ(1) when CT ≤ 1√
T

, which is trivial up to log T and

d factors, we may conclude that our upper regret bound of Õ(T 1
3 C

2
3
T ∨ 1) is optimal with respect to T and

CT .

Proof of Lemma B.3. We here prove each of them.

1. According to Xu & Wang (2021, Lemma 14), we know that u − J(u) is monotonically increasing
since J ′(u) ∈ (0, 1). Also, since ∂g(v,u)

∂v |v=J(u) = 1 − F (J(u) − u) − J(u) · f(J(u) − u) = 0, we have
J(
√

π
2 ) =

√
π
2 . Therefore, u− J(u) > 0 when u >

√
π
2 and u− J(u) < 0 when 0 < u <

√
π
2 .

2. From Xu & Wang (2021, Appendix B.2.1.), we know that J ′(u) = 1 + 1
ϕ′(ϕ−1(u)) ∈ (0, 1),∀u ∈ R where

ϕ(ω) = 1−F (ω)
f(ω) − ω is invertible and smooth for standard Gaussian distribution. Therefore, we know

that J ′(u) is continuous. Therefore, ∃cJ > 0 such that infu∈[−B,B] J ′(u) = cJ .
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3. From the optimality of J(u) we know that ∂g(v,u)
∂v |v=J(u) = 1− F (J(u)− u)− J(u) · f(J(u)− u) = 0.

Define q(u) := 1− F (J(u)− u)− J(u) · f(J(u)− u). Since q(u) = 0,∀u ∈ R, we have:

∂q(u)
∂u

= 0

⇔
(
J ′(u)(J(u)2 − u · J(u)− 2)− (J(u)2 − u · J(u)− 1)

)
f(J(u)− u) = 0

⇔J ′(u) = 1 + 1
J(u)2 − u · J(u)− 2 .

The second line is by standard Gaussian noises and some calculations, and the third line is from the
fact that f(x) > 0 for standard Gaussian distribution. Since we already know that J ′(u) ∈ (0, 1), we
may then realized that J(u)2 − u · J(u) − 2 < −1. Notice that ∂2g(v,u)

∂v2 = (v2 − vu − 2)f(v − u) for
standard gaussian noise. Therefore, we have ∂2g(v,u)

∂v2 = (J(u)2−u ·J(u)−2)f(J(u)−u) ≤ (−1) ·fmin<0
where fmin has been defined in Appendix B.1 as the universal lower bound of f . This means that
g(v, u) is fmin-strongly concave at v = J(u), which further leads to the fact that there exists a
neighborhood v ∈ [J(u)−Bu, J(u) + Bu] with constant3 Bu such that ∂2g(v,u)

∂v2 ≤ − fmin
2 . As a result,

for v ∈ [J(u)−Bu, J(u) + Bu] we have

g(J(u), u)− g(v, u) = −∂g(v, u)
∂v

|v=J(u)(J(u)− u)− 1
2 ·

∂2g(v, u)
∂v2 |v=v′∈[J(u),v] or [v,J(u)](J(u)− v)2

≥ −1
2(−fmin

2 )(J(u)− v)2

= fmin

4 (J(u)− v)2.

Now, let us consider the case when v ∈ [0, B + J(B)] but v /∈ [J(u) − Bu, J(u) + Bu]. On the one
hand, (J(u)− v)2 ≤ (B + J(B)− (−B))2 = (2B + J(B))2. On the other hand, g(J(u), u)− g(v, u) ≥
g(J(u), u) − max{g(J(u) − Bu, u), g(J(u) + B(u), u)} > 0. Denote cu := infu∈[−B,B]{g(J(u), u) −
max{g(J(u)−Bu, u), g(J(u) + B(u), u)}}, and we have cu > 0. Therefore, we have:

g(J(u), u)− g(v, u) ≥ cu ≥
cu

(2B + J(B))2 (2B + J(B))2 ≥ cu

(2B + J(B))2 (J(u)− v)2.

Finally, let cg = min{ fmin
4 , cu

(2B+J(B))2 }, and we have proved the lemma.

3Bu can be defined as the inferior of all Bu over all u ∈ [−B, B] and is still a positive constant.
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