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Abstract

We analyze the complexity of learning directed acyclic graphical models from
observational data in general settings without specific distributional assumptions.
Our approach is information-theoretic and uses a local Markov boundary search
procedure in order to recursively construct ancestral sets in the underlying graph-
ical model. Perhaps surprisingly, we show that for certain graph ensembles, a
simple forward greedy search algorithm (i.e. without a backward pruning phase)
suffices to learn the Markov boundary of each node. This substantially improves
the sample complexity, which we show is at most polynomial in the number of
nodes. This is then applied to learn the entire graph under a novel identifiability
condition that generalizes existing conditions from the literature. As a matter of
independent interest, we establish finite-sample guarantees for the problem of
recovering Markov boundaries from data. Moreover, we apply our results to the
special case of polytrees, for which the assumptions simplify, and provide explicit
conditions under which polytrees are identifiable and learnable in polynomial time.
We further illustrate the performance of the algorithm, which is easy to implement,
in a simulation study. Our approach is general, works for discrete or continuous
distributions without distributional assumptions, and as such sheds light on the
minimal assumptions required to efficiently learn the structure of directed graphical
models from data.

1 Introduction

Learning the structure of a distribution in the form of a graphical model is a classical problem in
statistical machine learning, whose roots date back to early problems in structural equations and
covariance selection [12, 45, 46]. Graphical models such as Markov networks and Bayesian networks
impose structure in the form of an undirected graph (UG, in the case of Markov networks) or a
directed acyclic graph (DAG, in the case of Bayesian networks). This structure is useful for variety
of tasks ranging from querying and sampling to inference of conditional independence and causal
relationships, depending on the type of graph used. In practice, of course, this structure is rarely
known and we must rely on structure learning to first infer the graphical structure. The most basic
version of this problems asks, given n samples from some distribution P that is represented by a
graphical model G = (V,E), whether or not it is possible to reconstruct G.

In this paper, we study the structure learning problem for Bayesian networks (BNs). Our main
contribution is a fine-grained analysis of a polynomial time and sample complexity algorithm for
learning the structure of BNs with potentially unbounded maximum in-degree and without faithfulness.
In particular, in our analysis we attempt to expose the underlying probabilistic assumptions that are
important for these algorithms to work, drawing connections with existing work on local search
algorithms and the conditional independence properties of P .
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1.1 Contributions

One of the goals of the current work is to better understand the minimal assumptions needed to
identify and learn the structure of a DAG from data. Although this is a well-studied problem, existing
theoretical work (see Section 1.2) relies on assumptions that, as we show, are not really necessary. In
particular, our results emphasize generic probabilistic structure (conditional independence, Markov
boundaries, positivity, etc.) as opposed to parametric or algebraic structure (linearity, additivity, etc.),
and hence provide a more concrete understanding of the subtle necessary conditions for the success
of this approach.

With this goal in mind, we study two fundamental aspects of the structure learning problem: Identifia-
bility and Markov boundary search. On the one hand, we provide a weaker condition for identifiability
compared to previous work, and on the other, we exhibit families of DAGs for which forward greedy
search suffices to provably recover the parental sets of each node. More specifically, our contributions
can be divided into several parts:

1. Identifiability (Theorem 3.1). We prove a new identifiability result on DAG learning.
Roughly speaking, this condition requires that the entropy conditioned on an ancestral set
H(Xk |A) of each node in G is dominated by one of its ancestors. An appealing feature of
this assumption is that it applies to general distributions without parametric or structural
assumptions, and generalizes existing ones based on second moments to a condition on the
local entropies in the model. We also discuss in depth various relaxations of this and other
conditions (Appendix C).

2. Local Markov boundary search (Algorithm 2, Proposition 4.1). We prove finite-sample guar-
antees for a Markov boundary learning algorithm that is closely related to the incremental
association Markov blanket (IAMB) algorithm, proposed in Tsamardinos et al. [42]. These
results also shed light on the assumptions needed to successfully learn Markov boundaries
in general settings; in particular, we do not require faithfulness, which is often assumed.

3. Structure learning (Algorithm 1, Theorem 5.1). We propose an algorithm which runs in
O(d3r log d) time and O(d2r log3 d) sample complexity, to learn an identifiable DAG G
from samples. Here, d is the dimension and r ≤ d is the depth of the DAG G, defined in
Section 2.

4. Learning polytrees (Theorem 5.2). As an additional application of independent interest, we
apply our results to the problem of learning polytrees [10, 37].

5. Generalizations and extensions (Appendix C). In the supplement, we have included an
extensive discussion of our assumptions with many examples and generalizations to illustrate
the main ideas. For example, this appendix includes relaxations of the positivity assumption
on P , the main identifiability condition (Condition 1), the PPS condition (Condition 2), and
extensions to general, non-binary distributions. We also discuss examples of the conditions
and a comparison to the commonly assumed faithfulness condition.

Finally, despite a long history of related work on Markov blanket learning algorithms [e.g. 1, 34, 40],
to the best of our knowledge there has been limited theoretical work on the finite-sample properties
of IAMB and related algorithms. It is our hope that the present work will serve to partially fill in this
gap.

1.2 Related work

Early approaches to structure learning assumed faithfulness (for the definition, see Appendix B; this
concept is not needed in the sequel), which allows one to learn the Markov equivalence class of P
[7, 15, 23, 30, 39]. Under the same assumption and assuming additional access to a black-box query
oracle, Barik and Honorio [3] develop an algorithm for learning discrete BNs. Barik and Honorio
[4] develop an algorithm for learning the undirected skeleton of G without assuming faithfulness.
On the theoretical side, the asymptotic sample complexity of learning a faithful BN has also been
studied [14, 51]. Brenner and Sontag [5] propose the SparsityBoost score and prove a polynomial
sample complexity result, although the associated algorithm relies on solving a difficult integer linear
program. Chickering and Meek [8] study structure learning without faithfulness, although this paper
does not establish finite-sample guarantees. Zheng et al. [49, 50] transform the score-based DAG
learning problem into continuous optimization, but do not provide any guarantees. Aragam et al. [2]
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analyze the sample complexity of score-based estimation in Gaussian models, although this estimator
is based on a nonconvex optimization problem that is difficult to solve.

An alternative line of work, more in spirit with the current work, shows that G itself can be identified
without assuming faithfulness [24, 36, 38, 48], although these methods lack finite-sample guarantees.
Recently, Ghoshal and Honorio [19] translated the equal variance property of Peters and Bühlmann
[36] into a polynomial-time algorithm for linear Gaussian models with polynomial sample complexity.
Around the same time, Park and Raskutti [33] developed an efficient algorithm for learning a special
family of distributions with quadratic variance functions. To the best of our knowledge, these
algorithms were the first provably polynomial-time algorithm for learning DAGs that did not assume
faithfulness. See also Ordyniak and Szeider [32] for an excellent discussion of the complexity of
BN learning. The algorithm of Ghoshal and Honorio [19] has since been extended in many ways
[6, 17, 20, 44].

Our approach is quite distinct from these approaches, although as we show, our identifiability result
subsumes and generalizes existing work on equal variances. Additionally, we replace second-moment
assumptions with entropic assumptions, which are weaker and have convenient interpretations in terms
of conditional independence, which is natural in the setting of graphical models. Since many of the
analytical tools for analyzing moments and linear models are lost in the transition to discrete models,
our work relies on fundamentally different (namely, information-theoretic) tools in the analysis. Our
approach also has the advantage of highlighting the important role of several fundamental assumptions
that are somewhat obscured by the linear case, which makes strong use of the covariance structure
induced by the linear model. Finally, we note that although information-theoretic ideas have long
been used to study graphical models [e.g. 25–28], these works do not propose efficient algorithms
with finite-sample guarantees, which is the main focus of our work.

2 Preliminaries

Notation We use [d] = {1, . . . , d} to denote an index set. As is standard in the literature on
graphical models, we identify the vertex set of a graph G = (V,E) with a random vector X =
(X1, . . . , Xd), and in the sequel we will frequently abuse notation by identifying V = X = [d]. For
any subset S ⊂ V ,G[S] is the subgraph defined by S. Given a DAGG = (V,E) and a nodeXk ∈ V ,
pa(k) = {Xj : (j, k) ∈ E} is the set of parents, de(k) is the set of descendants, nd(k) := V \ de(k)
is the set of nondescendants, and an(k) is the set of ancestors. Analogous notions are defined for
subsets of nodes in the obvious way. A source node is any node Xk such that an(k) = ∅ and a
sink node is any node Xk such that de(k) = ∅. Every DAG admits a unique decomposition into
r layers, defined recursively as follows: L1 is the set of all source nodes of G and Lj is the set of
all sources nodes of G[V \ ∪j−1t=0Lt]. By convention, we let L0 = ∅ and layer width dj = |Lj |, the
largest width maxj dj = w. An ancestral set is any subset A ⊂ V such that an(A) ⊂ A. The layers
of G define canonical ancestral sets by Aj = ∪jt=0Lt. Finally, the Markov boundary of a node Xk

relative to a subset S ⊂ V is the smallest subset m ⊂ S such that Xk ⊥⊥ (S \m) |m, and is denoted
by MB(Xk;S) or mSk for short.

The entropy of a discrete random variable Z is given by H(Z) = −
∑
z P (Z = z) logP (Z = z),

the conditional entropy given Y is H(Z |Y ) = −
∑
z,y P (Z = z, Y = y) logP (Z = z |Y = y),

and the mutual information between Z and Y is I(Z;Y ) = H(Z)−H(Z |Y ). For more background
on information theory, see Cover and Thomas [9].

Graphical models Let X = (X1, . . . , Xd) be a random vector with distribution P . In the sequel,
for simplicity, we assume that X ∈ {0, 1}d and that P is strictly positive, i.e. P (X = x) > 0 for
all x ∈ {0, 1}d. These assumptions are not necessary; see Appendix C for extensions to categorical
random variables and/or continuous random variables and nonpositive distributions.

A DAG G = (V,E) is a Bayesian network (BN) for P if P factorizes according to G, i.e.

P (X) =

d∏
k=1

P (Xk | pa(k)). (1)

Obviously, by the chain rule of probability, a BN is not necessarily unique—any permutation of the
variables can be used to construct a valid BN according to (1). A minimal I-map of P is any BN such
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that removing any edge would violate (1). The importance of the factorization (1) is that it implies
that separation in G implies conditional independence in P , and a minimal I-map encodes as many
such independences as possible (although not necessarily all independences). For more details, a
review of relevant graphical modeling concepts is included, see Appendix B.

The purpose of structure learning is twofold: 1) To identify a unique BN G which can be identified
from P , and 2) To devise algorithms to learn G from data. This is our main goal.

3 Identifiability of minimal I-maps

In this section we introduce our main assumption regarding identifiability of minimal I-maps of P .

3.1 Conditions for identifiability

For Xk ∈ V \ Aj+1, define anj(k) := an(Xk) ∩ Lj+1, i.e anj(k) denotes the ancestors of Xk in
Lj+1. By convention, we let A0 = ∅. Finally, with some abuse of notation, let L(Xk) ∈ [r] indicate
which layer Xk is in, i.e. L(Xk) = j if and only if Xk ∈ Lj .
Condition 1. For each Xk ∈ V with L(Xk) ≥ 2 and for each j = 0, · · · , L(Xk)− 2, there exists
Xi ∈ anj(k) such that following two conditions hold:

(C1) H(Xi |Aj) < H(Xk |Aj),

(C2) I(Xk;Xi |Aj) > 0.

We refer Xi ∈ anj(k) satisfying (C1) and (C2) in Condition 1 as the important ancestors for
Xk, denoted by imj(k). Thus, another way of stating Condition 1 is that for each Xk ∈ V with
L(Xk) ≥ 2 and for each j = 0, · · · , L(Xk)− 2, there exists an important ancestor, i.e. imj(k) 6= ∅.
The idea behind this condition is the following: Suppose we wish to identify the tth layer of G.
Condition 1 requires that for every node after Lt (represented by Xk), there is at least one node Xi in
Lt satisfying (C1) and (C2). The intuition is the entropy (uncertainty) in the entire system is required
to increase as time evolves.

Condition (C1) is the operative condition: By contrast, (C2) is just a nondegeneracy condition that
says Xi 6⊥⊥ Xk |Aj , which will be violated only when anj(k) is conditionally independent of Xk

given Aj . At the population level, (C2) is superficially similar to faithfulness, however, a closer look
reveals significant differences. One example of conditional independence between an entire layer of
ancestors and descendants is path-cancellation, where effects through multiple paths are neutralized
through delicate choices of parameters, whereas unfaithfulness occurs when there happens to be just
one such path cancellation. Moreover, (C2) only applies to a small set of ancestral sets, whereas
faithfulness applies to all possible d-separating sets. Not only is this kind of path-cancellation for all
of anj(k) unlikely, we show in Appendix G that this is essentially the only way (C2) can be violated:
If G is a poly-forest, then (C2) always holds, see Lemma G.1.

In Section 3.2, we will discuss this condition in the context of an algorithm and an example, which
should help explain its purpose better. Before we interpret this condition further, however, let us point
out why this condition is important: It identifies G.
Theorem 3.1. If there is a minimal I-map G satisfying Condition 1, then G is identifiable from P .

In order to better understand Condition 1, let us first compare it to existing assumptions such as
equal variances [19, 36]. Indeed, there is a natural generalization of the equal variance assumption to
Shannon entropy:

(C3) H(Xk | pa(k)) ≡ h∗ is the same for each node k = 1, . . . , d.

One reason to consider entropy is due to the fact that every distribution with EXc < ∞ for some
c > 0 has well-defined entropy, whereas not all distributions have finite variance. Though quoted
here, we will not require (C3) in the sequel; it is included here merely for comparison. Indeed, the
next result shows that this “equal entropy” condition is a special case of Condition 1:
Lemma 3.2. Assuming (C2), (C3) implies (C1). Thus, the “equal entropy” condition implies
Condition 1.
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Algorithm 1 Learning DAG structure
Input: X = (X1, . . . , Xd), ω
Output: Ĝ.

1. Initialize empty graph Ĝ = ∅ and j = 0

2. Set L̂j = ∅, let Âj = ∪jt=0L̂t

3. While V \ Âj 6= ∅:

(a) For k /∈ Âj , estimate conditional entropy H(Xk | Âj) by some estimator ĥjk.

(b) Initialize L̂j+1 = ∅, Ŝj+1 = ∅. Sort ĥjk in ascending order and let τ̂ (0) be the
corresponding permutation of V \ Âj .

(c) For ` ∈ 0, 1, 2, . . . until |τ̂ (`)| = 0: [TAM step]
i. L̂j+1 = L̂j+1 ∪ {τ̂ (`)1 }.

ii. For k /∈ Âj ∪ L̂j+1 ∪ Ŝj+1, estimate I(Xk; τ̂
(`)
1 | Âj).

iii. Set Ŝj+1 = Ŝj+1 ∪ {k : Î
(`)
jk ≥ ω}.

iv. τ̂ (`+1) = τ̂ (`) \
(
L̂j+1 ∪ Ŝj+1

)
(d) For k ∈ L̂j+1, set paĜ(k) = MB(Xk; Âj).
(e) Update j = j + 1.

4. Return Ĝ.

In fact, (C1) significantly relaxes (C3). The latter implies that all nodes in Lj+1 have smaller
conditional entropy than Xk, whereas (C1) only requires this inequality to hold for at least one
ancestor Xi ∈ anj(k). Moreover, something even stronger is true: The equal variance condition
can be relaxed to unequal variances (see Assumption 1 in [20]), and we can derive a corresponding
“unequal entropy” condition. This condition is also a special case of Condition 1. We can also
construct explicit examples that satisfy Condition 1, but neither the equal nor unequal entropy
condition. For details, see Appendix C.3.
Remark 1. Condition 1 can be relaxed even further: See Appendix C.2 and Remark 3 for a discussion
along with its corresponding algorithm.

3.2 Algorithmic interpretation

The proof of Theorem 3.1 motivates a natural algorithm to learn the DAG, shown in Algorithm 1. This
algorithm exploits the fact that given Aj , nodes within Lj+1 are mutually independent. Algorithm 1
is a layer-wise DAG learning algorithm. For each layer, it firstly sorts the conditional entropies in
ascending order τ , then runs a “Testing and Masking” (TAM) step to distinguish nodes in Lj+1 from
remaining ones (Xk): We use imj(k) defined in (C1) to detect and mask Xk /∈ Lj+1 by testing
conditional independence. By masking, we mean we do not consider the nodes being masked when
proceeding over the entropy ordering τ to identify Lj+1.

In order to see how Algorithm 1 works, consider the example shown in Figure 1(a). In the first step
with j = 0, we use marginal entropy (i.e. since A0 = ∅) to distinguish L1 from the remaining nodes.
Let H(X`) := h` and assume for simplicity that the nodes are ordered such that h1 < h2 < · · · < h6
(Step 3(b)). Apparently, the inequalities that h3 < h[4:6] and h5 < h6 imply (C3) does not hold here.
Suppose there are no spurious edges, i.e. descendants and ancestors are dependent. Now we can see
conditions in Theorem 3.1 are satisfied and the important ancestors for X2, X3, X5 are X1, X1, X4

respectively. The implementation of Algorithm 1 is visualized in Figure 1(b): In the first loop, X1 is
taken into L1 and X2, X3 are masked due to dependence (Step 3c(iii)). In the second loop, X4 is
added to L1 and then X5 is masked. Finally, with X6 put into L1, we have identified L1.

It is worth emphasizing that the increasing order of marginal entropies in this example is purely for
simplicity of presentation, and does not imply any information on the causal order of the true DAG.
The marginal entropies of nodes need not be monotonic with respect to the topological order of G.
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Figure 1: Example for TAM algorithm: (a) True DAG with L1 outlined; (b) Status of the algorithm
after each loop, denoted by different patterns of nodes.

Algorithm 2 Possible Parental Set (PPS) procedure
Input: X = (X1, . . . , Xd), k, A, κ
Output: Conditional entropy ĥ, Markov boundary m̂

1. Initialize m̂ = ∅, loop until m̂ does not change:
(a) For ` ∈ A \ m̂, estimate conditional mutual information I(X`;Xk | m̂) by some

estimator Î`.
(b) Let `∗ = arg max`/∈A\m̂ Î`, if Î`∗ > κ, set m̂ = m̂ ∪ {`∗}.

2. Estimate conditional entropy H(Xk | m̂) by some estimator ĥ.

3. Return conditional entropy estimation ĥ and estimated Markov boundary m̂.

4 Local Markov boundary search

Algorithm 1 assumes that we can learn MB(Xk;Aj), the Markov boundary of Xk in the ancestral
set Aj . This is a well-studied problem in the literature, and a variety of greedy algorithms have
been proposed for learning Markov boundaries from data [1, 16, 18, 34, 41, 42], all based on the
same basic idea: Greedily add variables whose association with Xk is the highest. In this section,
we establish theoretical guarantees for such a greedy algorithm. In the next section, we apply this
algorithm to reconstruct to full DAG G via Algorithm 1.

To present our Markov boundary search algorithm, we first need to set the stage. Let Xk ∈ V be any
node and A an ancestral set of Xk. We wish to compute MB(Xk;A) and H(Xk |A). An algorithm
for this is outlined in Algorithm 2. In contrast to many existing local search methods for learning
Markov boundaries, this algorithm is guaranteed to return the parents of Xk in G. More specifically,
if Xk ∈ Lj+1, then MB(Xk;Aj) = pa(Xk). For this reason, we refer to Algorithm 2 as possible
parent selection, or PPS for short. In fact, PPS is exactly the forward phase of the well-known IAMB
algorithm for Markov blanket discovery [42] with conditional mutual information used both as an
association measure and as a conditional independence test.

Although PPS will always return a valid Markov blanket, without a backward phase to remove
unnecessary variables added by the forward greedy step, PPS may fail to return a minimal Markov
blanket, i.e. the Markov boundary. The following condition is enough to ensure no unnecessary
variables are included:
Condition 2 (PPS condition). For any proper subset m ( MB(Xk;A) and any node X` ∈ A \
MB(Xk;A), there exists Xc ∈ MB(Xk;A) \m such that

I(Xk;Xc |m) > I(Xk;X` |m).
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Condition 2 requires that nodes in MB(Xk;A) always contribute larger conditional mutual infor-
mation marginally than those that are not in MB(Xk;A). Thus when we do greedy search to select
parents in Algorithm 2, only the nodes in MB(Xk;A) will be chosen. Therefore, with a proper
threshold κ, this set can be perfectly recovered without incorporating any nuisance nodes.

We now present the sample complexity of using PPS to recover Markov boundaries under Condition 2.
We will make frequent use of the Markov boundary and its size:

mAk := MB(Xk;A), MAk := |mAk|. (2)

In particular, by definition we have Xk ⊥⊥ (A \mAk) |mAk. Under Condition 2, we further define
following quantities:

∆̃Ak := min
m(mAk

[
max

c∈mAk\m
I(Xk;Xc |m)− max

`∈Aj\mAk

I(Xk;X` |m)

]
> 0,

ξAk := min
m(mAk

min
c∈mAk\m

I(Xk;Xc |m)/2 > 0. (3)

∆̃Ak is the gap between the mutual information of nodes inside or outside of mAk. ξAk is the
minimum mutual information contributed by the nodes in mAk. The larger these quantities, the easier
the MB(Xk;A) is to be recovered.
Proposition 4.1. Fix k ∈ V and let A be any set of ancestors of Xk. Suppose Condition 2
holds. Algorithm 2 is applied for to estimate mAk and H(Xk |A) with κ ≤ ξAk, we have with

t ≤ min
(
κ, ∆̃Ak/2

)
P
(
m̂Ak = mAk,

∣∣Ĥ(Xk |A)−H(Xk |A)
∣∣ < t

)
≥ 1− (MAk + 2)|A|

δ2MAk

t2
.

where δ2MAk
is the estimation error of conditional entropy defined by (9) in Appendix E.1, which

depends on MAk.

A naïve analysis of this algorithm would have a sample complexity that depends on the size of the
ancestral set A; note that our more fine-grained analysis depends instead on the size of the Markov
boundary MB(Xk;A). We assume with sample size large enough, δ2MAk

is small such that the
right hand side remains to be positive and goes to 1. The proof of Proposition 4.1 is deferred to
Appendix E.2.

Condition 2 ensures the success of the greedy PPS algorithm. Although this assumption is not strictly
necessary for structure learning (see Appendix C.5 for details), it significantly improves the sample
complexity of the structure learning algorithm (Algorithm 1). Thus, it is worthwhile to ask when
Condition 2 holds: We will take up this question again in Section 5.3.

5 Learning DAGs

Thus far, we have accomplished two important subtasks for learning a DAG: In Section 3, we
identified its layer decomposition L = (L1, . . . , Lr). In Section 4, we showed that the PPS procedure
successfully recovers (ancestral) Markov boundaries. Combining these steps, we obtain a complete
algorithm for learning G. In this section, we study the computational and sample complexity of this
algorithm; proofs are deferred to the appendices.

We adopt the notations for Markov boundaries as in (2):

mjk := MB(Xk;Aj) Mjk := |mjk| (4)

Therefore, Xk ⊥⊥ (Aj \mjk) |mjk. A critical quantity in the sequel will be the size of the largest
Markov boundary mjk, which we denote by M :

M := max
jk

Mjk = max
jk
|mjk|. (5)

This quantity depends on the number of nodes d and the structure of the DAG. For example, if the
maximum in-degree of G is 1, then M = 1. A related quantity that appears in existing work is the
size of the largest Markov boundary relative to all of X , which may be substantially larger than M .
The former quantity includes both ancestors and descendants, whereas mjk only contains ancestors.
Analogously, let Mj = maxkMjk.
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5.1 Algorithm

By combining Algorithms 1 and 2, we obtain a complete algorithm for learning the DAG G, which
we refer to as the TAM algorithm, short for Testing and Masking. It consists of two parts:

1. Learning the layer decomposition (L1, . . . , Lr) by minimizing conditional entropy and
TAM step (Algorithm 1);

2. Learning the parental sets and reducing the size of conditioning sets by learning the Markov
boundary mjk = MB(Xk;Aj) (Algorithm 2).

Specifically, we use PPS (Algorithm 2) to estimate the conditional entropies (Step 3(a)), conditional
mutual information (Step 3c(ii)), and the Markov boundary (Step 3(d)). For completeness, the
complete procedure is detailed in Algorithm 3 in the supplement. More generally, Algorithm 2 can
be replaced with any Markov boundary recovery algorithm or conditional entropy estimator; this
highlights the utility of Algorithm 1 as a separate meta-algorithm for DAG learning.

One missing piece is the choice of estimators for conditional entropy and mutual information in
steps (1a) and (2) of the PPS procedure. We adopt the minimax entropy estimator from Wu and Yang
[47] by treating (without loss of generality) the joint entropy as the entropy of a multivariate discrete
variable, although other estimators can be used without changing the analysis. The complexity of
this estimator is exponential in M (i.e. since there are up to 2M states to sum over in any Markov
boundary mjk), so the computational complexity of Algorithm 2 is O(Md2M ). In addition, for the
TAM step, there are at most maxj dj nodes in each layer to estimate conditional mutual information
with remaining at most d nodes, thus this step has computational complexity O(dmaxj dj2

M ).
Thus assuming M . log d, the overall computational complexity of Algorithm 1 is at most O

(
r ×

(d×Md2M + d×maxj dj2
M )
)

= O(d3r log d). Specifically, for r layers, we must estimate the
conditional entropy of at most d nodes, and call TAM step once.

5.2 Main statistical guarantees

In order to analyze the sample complexity of Algorithm 3 under Conditions 1 and 2, we introduce
following positive quantities:

∆ := min
j

min
k∈V \Aj+1

(H(Xk |Aj)−H(Xi |Aj) > 0

η := min
j

min
k∈V \Aj+1

I(Xk;Xi |Aj) > 0

where Xi ∈ imj(k) is defined in Condition 1. These two quantities are corresponding to the two
conditions (C1) and (C2), which are used to distinguish each layer with its descendants. Compared to
strong faithfulness, which is needed on finite samples, we only require a much smaller, restricted
set of information measures to be bounded from zero. We also adopt the quantities defined in (3) by
setting A = Aj and drop the notation A such that ∆̃jk := ∆̃Ajk and ξjk := ξAjk.

Finally we are ready to state the main theorem about sample complexity of Algorithm 1:
Theorem 5.1. Suppose P satisfies Conditions 1 and 2, and let G be the minimal I-map identified
by Theorem 3.1. Let Ĝ be output of Algorithm 3 applied with ω ≤ η/2 and κ ≤ minjk ξjk. Denote
∆∗ω,κ = minjk(∆/2, ω, κ, ∆̃jk/2). If M . log d and

n &
d2r log3 d

(∆∗ω,κ)2ε
,

then Ĝ = G with probability 1− ε.

Up to log factors, the sample complexity scales quadratically with the number of nodes d2 and
linearly in the depth r ≤ d. In the worst case, this is cubic in the dimension. For example, if G is
a Markov chain then M = 1 and r = d, thus it suffices to have n = Ω(d3 log3 d). Comparatively,
most of previous work [6, 21, 44] only consider linear or parametric models. One recent work
that provides nonparametric guarantees without assuming faithfulness is [17], who show that in
general, Ω((dr/ε)1+d/2) samples suffice to recover the topological ordering under an equal variance
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assumption similar in spirit to (C3). Unlike the current work, which considers exact recovery of the
full graph G, [17] does not include the reduction to Markov boundary search that is crucial to our
exact recovery results.

In fact, as the proof indicates, the sample complexity of our result also depends exponentially on M .
This explains the assumption that M . log d; the logarithmic assumption is analogous to sparsity
and results from not making any parametric assumptions on the model. Since our setting is fully
nonparametric, exponential rates in the dimension d are to be expected. Under stronger parametric
assumptions, these exponential rates can likely be avoided. A detailed analysis of the dependency on
M can be found in the proofs, which are deferred to Appendix E.

Finally, in practice the quantities η, ξjk needed in Theorem 5.1 may not be known, which hinders the
choice of tuning parameters ω, κ. In Appendix E.4 (see Theorem E.2) we discuss the selection of
these tuning parameters in a data-dependent way.

5.3 Application to learning polytrees

Learning polytrees is one of the simplest DAG learning problems. This problem was introduced
in Rebane and Pearl [37] and in a seminal work, Dasgupta [10] showed that learning polytrees is
NP-hard in general. In this section, we note that when the underlying DAG is a polytree (or more
generally, a polyforest), Condition 2 is always satisfied, and therefore we have an efficient algorithm
for learning identifiable polyforests that satisfy Condition 1.

Recall that a polyforest is a DAG whose skeleton (i.e. underlying undirected graph) has no cycles.
Theorem 5.2. If P satisfies (1) for some polyforest G, then Condition 2 is satisfied.

The detailed proof can be found in Appendix F. As a result, it follows immediately (by combining
Theorems 5.1 and 5.2 with Lemma G.1) that any polytree satisfying (C1) is learnable.

The crucial property of a poly-forest used in proving Theorem 5.2 is that there exists at most one
directed path between any two nodes in the graph. However, the existence of multiple directed paths
between two nodes does not necessarily imply that Condition 2 will fail: There are concrete examples
of graphs satisfying Condition 2 with arbitrarily many paths between two nodes. An example is given
by the DAG G = (V,E) with V = (Z,X1, . . . , Xk, Y ) such that Z → Xi → Y for each i. Thus,
this assumption holds more broadly than suggested by Theorem 5.2. It is an interesting problem for
future work to study this further.

6 Experiments

We conduct a brief simulation study to demonstrate the performance of Algorithm 1 and compare
against some common baselines: PC [39], GES [7]. We focus on the fully discrete setting. All imple-
mentation details can be found in Appendix I. The code implementing TAM algorithm is available at
https://github.com/MingGao97/TAM. We stress that the purpose of these experiments is simply
to illustrate that the proposed algorithm can be implemented in practice, and successfully recovers
the edges in G as predicted by our theoretical results.

We evaluate the performance of aforementioned algorithms by Structural Hamming distance (SHD):
This is a standard metric for DAG learning that counts the total number of edge additions, deletions,
and reversals needed to convert the estimated graph into the reference one. Since PC and GES both
return a CPDAG that may contain undirected edges, we evaluate these algorithms favourably by
assuming correct orientation for undirected edges wherever they are present.

We simulate DAGs from three graph types: Poly-trees (Tree) , Erdös-Rényi (ER), and Scale-Free (SF)
graphs. As discussed in Section 5.3, poly-tree models are guaranteed to satisfy Condition 2, whereas
general DAGs such as ER or SF graphs are not, so this provides a test case for when this condition
may fail. We generate data according to two models satisfying the “equal entropy” condition (C3).
As discussed in Appendix C.3, (C3) implies our main identifiability Condition 1.

• “Mod” model (MOD): Xk = (Sk mod 2)Zk × (1 − (Sk mod 2))1−Zk where Sk =∑
`∈pa(k)X` with Zk ∼ Ber(0.2)

• Additive model (ADD): Xk =
∑
`∈pa(k)X` + Zk with Zk ∼ Ber(0.2)
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Figure 2: SHD vs sample size n for different dimensions and graph types. Left panel is for MOD
model; Right panel is for ADD model.

Figure 2 (left, right) illustrates the performance in terms of structural Hamming distance (SHD)
between the true graph and the estimated graph. As expected, our algorithm successfully recovers the
underlying DAG G and performs comparably to PC and GES, which also perform quite well. We
stress that the current experiments are used for simple illustration thus not well-optimized compared
to existing algorithms or fully exploited the main condition either. The relatively good performance
of PC/GES partially comes from the fact that our synthetic models are all in fact faithful, see
Appendix C.7 for further discussion.

7 Conclusion

The main goal of this paper has been to better understand the underlying assumptions required for
DAG models to be estimated from data. To this end, we have provided a new identifiability result
along with a learning algorithm, which turns out to generalize existing ones, and analyzed a greedy,
local search algorithm for discovering Markov boundaries. This local search algorithm can be used to
provably learn the structure of a minimal I-map in polynomial time and sample complexity as long as
the Markov boundaries are not too large. Nonetheless, there are many interesting directions for future
work. Perhaps the most obvious is relaxing the logarithmic dependence on d in M . It would also
interesting to investigate lower bounds on the sample complexity of this model, as well as additional
identifiability conditions.

Acknowledgements

We thank the anonymous reviewers for their helpful comments in improving the manuscript. B.A.
was supported by NSF IIS-1956330, NIH R01GM140467, and the Robert H. Topel Faculty Research
Fund at the University of Chicago Booth School of Business. All statements made are solely due to
the authors and have not been endorsed by the NSF.

References
[1] C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. Local causal and

Markov blanket induction for causal discovery and feature selection for classification Part I:
Algorithms and empirical evaluation. Journal of Machine Learning Research, 11:171–234,
2010.

[2] B. Aragam, A. Amini, and Q. Zhou. Globally optimal score-based learning of directed acyclic
graphs in high-dimensions. In Advances in Neural Information Processing Systems 32, pages
4450–4462. 2019.

10



[3] A. Barik and J. Honorio. Learning bayesian networks with low rank conditional probability
tables. In Advances in Neural Information Processing Systems, pages 8964–8973, 2019.

[4] A. Barik and J. Honorio. Provable efficient skeleton learning of encodable discrete bayes nets
in poly-time and sample complexity. In 2020 IEEE International Symposium on Information
Theory (ISIT), pages 2486–2491. IEEE, 2020.

[5] E. Brenner and D. Sontag. Sparsityboost: A new scoring function for learning bayesian network
structure. In 29th Conference on Uncertainty in Artificial Intelligence, UAI 2013, pages 112–121,
2013.

[6] W. Chen, M. Drton, and Y. S. Wang. On causal discovery with an equal-variance assumption.
Biometrika, 106(4):973–980, 09 2019. ISSN 0006-3444. doi: 10.1093/biomet/asz049.

[7] D. M. Chickering. Optimal structure identification with greedy search. Journal of Machine
Learning Research, 3:507–554, 2003.

[8] D. M. Chickering and C. Meek. Finding optimal Bayesian networks. In Proceedings of
the Eighteenth conference on Uncertainty in artificial intelligence, pages 94–102. Morgan
Kaufmann Publishers Inc., 2002.

[9] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons, 2012.

[10] S. Dasgupta. Learning polytrees. In Proceedings of the Fifteenth conference on Uncertainty in
artificial intelligence, pages 134–141, 1999.

[11] A. P. Dawid. Conditional independence for statistical operations. Annals of Statistics, pages
598–617, 1980.

[12] A. P. Dempster. Covariance selection. Biometrics, 28(1):157–175, 1972.

[13] M. Drton, B. Sturmfels, and S. Sullivant. Lectures on algebraic statistics. Springer, 2009.

[14] N. Friedman and Z. Yakhini. On the sample complexity of learning bayesian networks. In
Uncertainty in Artifical Intelligence (UAI), 02 1996.

[15] N. Friedman, I. Nachman, and D. Peér. Learning Bayesian network structure from massive
datasets: The Sparse Candidate algorithm. In Proceedings of the Fifteenth conference on
Uncertainty in artificial intelligence, pages 206–215. Morgan Kaufmann Publishers Inc., 1999.

[16] S. Fu and M. C. Desmarais. Fast markov blanket discovery algorithm via local learning within
single pass. In Conference of the Canadian Society for Computational Studies of Intelligence,
pages 96–107. Springer, 2008.

[17] M. Gao, Y. Ding, and B. Aragam. A polynomial-time algorithm for learning nonparametric
causal graphs. In Advances in Neural Information Processing Systems, 2020.

[18] T. Gao and Q. Ji. Efficient markov blanket discovery and its application. IEEE transactions on
Cybernetics, 47(5):1169–1179, 2016.

[19] A. Ghoshal and J. Honorio. Learning identifiable gaussian bayesian networks in polynomial
time and sample complexity. In Advances in Neural Information Processing Systems 30, pages
6457–6466. 2017.

[20] A. Ghoshal and J. Honorio. Learning linear structural equation models in polynomial time and
sample complexity. In A. Storkey and F. Perez-Cruz, editors, Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings
of Machine Learning Research, pages 1466–1475, Playa Blanca, Lanzarote, Canary Islands,
09–11 Apr 2018. PMLR.

[21] A. Ghoshal and J. Honorio. Learning linear structural equation models in polynomial time and
sample complexity. In International Conference on Artificial Intelligence and Statistics, pages
1466–1475. PMLR, 2018.

11



[22] Y. Han, J. Jiao, T. Weissman, Y. Wu, et al. Optimal rates of entropy estimation over lipschitz
balls. Annals of Statistics, 48(6):3228–3250, 2020.

[23] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine learning, 20(3):197–243, 1995.

[24] P. O. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal discovery
with additive noise models. In Advances in neural information processing systems, pages
689–696, 2009.

[25] D. Janzing and B. Schölkopf. Causal inference using the algorithmic markov condition. IEEE
Transactions on Information Theory, 56(10):5168–5194, 2010.

[26] D. Janzing, J. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniušis, B. Steudel, and
B. Schölkopf. Information-geometric approach to inferring causal directions. Artificial Intelli-
gence, 182:1–31, 2012.

[27] M. Kocaoglu, A. Dimakis, S. Vishwanath, and B. Hassibi. Entropic causal inference. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

[28] M. Kocaoglu, A. G. Dimakis, S. Vishwanath, and B. Hassibi. Entropic causality and greedy
minimum entropy coupling. In 2017 IEEE International Symposium on Information Theory
(ISIT), pages 1465–1469. IEEE, 2017.

[29] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

[30] W. Lam and F. Bacchus. Learning Bayesian belief networks: An approach based on the MDL
principle. Computational intelligence, 10(3):269–293, 1994.

[31] S. L. Lauritzen. Graphical models. Oxford University Press, 1996.

[32] S. Ordyniak and S. Szeider. Parameterized complexity results for exact bayesian network
structure learning. Journal of Artificial Intelligence Research, 46:263–302, 2013.

[33] G. Park and G. Raskutti. Learning quadratic variance function (QVF) dag models via overdis-
persion scoring (ODS). The Journal of Machine Learning Research, 18(1):8300–8342, 2017.

[34] J. M. Pena, R. Nilsson, J. Björkegren, and J. Tegnér. Towards scalable and data efficient learning
of markov boundaries. International Journal of Approximate Reasoning, 45(2):211–232, 2007.

[35] J. Peters. On the intersection property of conditional independence and its application to causal
discovery. Journal of Causal Inference, 3(1):97–108, 2015.

[36] J. Peters and P. Bühlmann. Identifiability of Gaussian structural equation models with equal
error variances. Biometrika, 101(1):219–228, 2013.

[37] G. Rebane and J. Pearl. The recovery of causal poly-trees from statistical data. arXiv preprint
arXiv:1304.2736, 2013.

[38] S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen. A linear non-Gaussian acyclic model
for causal discovery. Journal of Machine Learning Research, 7:2003–2030, 2006.

[39] P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review, 9(1):62–72, 1991.

[40] A. Statnikov, N. I. Lytkin, J. Lemeire, and C. F. Aliferis. Algorithms for discovery of multiple
markov boundaries. Journal of Machine Learning Research, 14(Feb):499–566, 2013.

[41] I. Tsamardinos, C. F. Aliferis, and A. Statnikov. Time and sample efficient discovery of markov
blankets and direct causal relations. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 673–678, 2003.

[42] I. Tsamardinos, C. F. Aliferis, A. R. Statnikov, and E. Statnikov. Algorithms for large scale
markov blanket discovery. In FLAIRS conference, volume 2, pages 376–380, 2003.

12



[43] C. Uhler, G. Raskutti, P. Bühlmann, and B. Yu. Geometry of the faithfulness assumption in
causal inference. Annals of Statistics, 41(2):436–463, 2013.

[44] Y. S. Wang and M. Drton. High-dimensional causal discovery under non-gaussianity. Biometrika,
107(1):41–59, 2020.

[45] S. Wright. Correlation and causation. Journal of agricultural research, 20(7):557–585, 1921.

[46] S. Wright. The method of path coefficients. The Annals of Mathematical Statistics, 5(3):
161–215, 1934.

[47] Y. Wu and P. Yang. Minimax rates of entropy estimation on large alphabets via best polynomial
approximation. IEEE Transactions on Information Theory, 62(6):3702–3720, 2016.

[48] K. Zhang and A. Hyvärinen. On the identifiability of the post-nonlinear causal model. In
Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, pages 647–
655. AUAI Press, 2009.

[49] X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in Neural Information Processing Systems, 31,
2018.

[50] X. Zheng, C. Dan, B. Aragam, P. Ravikumar, and E. Xing. Learning sparse nonparametric dags.
In International Conference on Artificial Intelligence and Statistics, pages 3414–3425. PMLR,
2020.

[51] O. Zuk, S. Margel, and E. Domany. On the number of samples needed to learn the correct
structure of a bayesian network. 06 2012.

13


	Introduction
	Contributions
	Related work

	Preliminaries
	Identifiability of minimal I-maps
	Conditions for identifiability
	Algorithmic interpretation

	Local Markov boundary search
	Learning DAGs
	Algorithm
	Main statistical guarantees
	Application to learning polytrees

	Experiments
	Conclusion
	Complete algorithm description
	Graphical model background
	Extensions and further examples
	Positivity and a nondegeneracy condition
	More general version of Condition 1
	Comparison with ``equal entropy'' condition
	Examples of PPS condition
	Relaxing Condition 2
	Extension to general distributions
	Unfaithful example

	Proof of Theorem 3.1
	Proof of Theorem 5.1
	Preliminary bounds
	Proof of Proposition 4.1
	Proof of Theorem 5.1
	Tuning parameters

	Proof of Theorem 5.2
	Condition (C2) and poly-forests
	Proof of Theorem C.7
	Experiment details
	Experiment settings
	Implementation and baselines


