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ABSTRACT

In deep learning, stochastic gradient descent (SGD) and its momentum-based
variants are widely used for optimization, but they typically suffer from slow
convergence. Conversely, existing adaptive learning rate optimizers speed up
convergence but often compromise generalization. To resolve this issue, we pro-
pose a novel optimization method designed to accelerate SGD’s convergence
without sacrificing generalization. Our approach reduces the variance of the his-
torical gradient, improves first-order moment estimation of SGD by applying
Wiener filter theory, and introduces a time-varying adaptive gain. Empirical results
demonstrate that SGDF (SGD with Filter) effectively balances convergence and
generalization compared to state-of-the-art optimizers. The code is available at
https://anonymous.4open.science/r/SGDF-Optimizer/.

1 INTRODUCTION

During the training process, the optimizer serves as a critical component of the model. It refines and
adjusts model parameters to ensure that the model can recognize underlying data patterns. Beyond
updating weights, the optimizer’s role includes strategically navigating complex loss landscapes (Du
& Lee, [2018)) to locate regions that offer the best generalization (Keskar et al.,[2022). The chosen
optimizer significantly impacts training efficiency, influencing model convergence speed, gener-
alization performance, and resilience to data distribution shifts (Bengio & Lecun, 2007). A poor
optimizer choice can result in suboptimal convergence or failure to converge, whereas a suitable one
can accelerate learning and ensure robust performance (Ruder, 2016). Thus, continually refining
optimization algorithms is essential for enhancing the capabilities of machine learning models.

Meanwhile, Stochastic Gradient Descent (SGD) (Monrol [1951) and its variants, such as momentum-
based SGD (Sutskever et al.,2013)), Adam (Kingma & Bal|2014)), and RMSprop (Hinton et al., 2012),
have secured prominent roles. Despite their substantial contributions to deep learning, these methods
have inherent drawbacks. They primarily exploit first-order moment estimation and frequently
overlook the pivotal influence of historical gradients on current parameter adjustments. Consequently,
they can result in training instability or poor generalization (Chandramoorthy et al.| [2022), especially
with high-dimensional, non-convex loss functions common in deep learning (Goodfellow et al., [ 2016).
Such characteristics render adaptive learning rate methods prone to entrapment in sharp local minima,
which can significantly impair the model’s generalization capability (Zhang et al.l 2021). Various
Adam variants (Chen et al., [2018a; |Liu et al.l |2019; [Luo et al., |2019; |[Zhuang et al., [2020) aim to
improve optimization and enhance generalization performance by adjusting the adaptive learning
rate. Although these variants have achieved some success, they still have not completely resolved the
issue of generalization loss.

To achieve an effective trade-off between convergence speed and generalization capability (Geman
et al.l [2014)), this paper introduces a novel optimization method called SGDF (SGD with Filter).
SGDF incorporates filter theory from signal processing to enhance first-moment estimation, balancing
historical and current gradient estimates. Through its adaptive weighting mechanism, SGDF precisely
adjusts gradient estimates throughout the training process, thereby accelerating model convergence
while preserving generalization ability.

Initial evaluations demonstrate that SGDF surpasses many traditional adaptive learning rate and
variance reduction optimization methods across various benchmark datasets, particularly in terms
of accelerating convergence and maintaining generalization. This indicates that SGDF successfully
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navigates the trade-off between speeding up convergence and preserving generalization capability.
By achieving this balance, SGDF offers a more efficient and robust optimization option for training
deep learning models.

The main contributions of this paper can be summarized as follows:

* We introduce SGDF, an optimizer that integrates historical and current gradient data to compute
the gradient’s variance estimate, addressing the slow convergence of the vanilla SGD method.

* We theoretically analyze the benefits of SGDF in terms of generalization (Sec. [3.3])and convergence
(Sec.[3.4), and empirically verify the effectiveness of SGDF (Sec. ).
* We employ first-moment filter estimation in SGDF, which can also significantly enhance the

generalization capacity of adaptive optimization algorithms (e.g., Adam) (Sec. d.4), surpassing
traditional momentum strategies.

2 PRELIMINARY ANALYSIS

2.1 PRELIMINARIES

Batch Normalization: Batch Normalization (BN) (loffe & Szegedy, 2015) is widely used to
normalize and rescale mini-batch data, reducing internal covariate shift and stabilizing gradient
distributions. BN helps mitigate gradient vanishing/exploding, improving convergence speed and
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Signal Processing: Filters in signal processing are used to manipulate the frequency components of
a signal, typically to reduce noise or enhance specific features. One common example is the Low
Pass Filter, which smooths high frequency fluctuations by applying an exponential moving average.
(Liu et al.; 2019) generalized that the first-moment (momentum) of adaptive-based optimizers can be
(1—51) Z§=1 1w
1= 3]
the influence of past values in the exponential moving average. To differentiate this from the standard
momentum method discussed in later sections (Sutskever et al., [2013)), we refer to this exponential
moving average form of SGD as SGD-LPF (Low Pass Filter) in this section. Another important filter
is the Wiener Filter (Wiener, |1950), which minimizes the mean square error between an estimated
signal and the true signal by filtering out noise. Unlike a simple low-pass filter, the Wiener Filter has
time-varying gain, adapting its response dynamically based on the characteristics of the signal and

Seelf)
Sen(F) + Sy VhETE Seal)

is the power spectral density of the signal and S,,,,(f) is the power spectral density of the noise. This
adaptive nature allows for more accurate signal recovery by optimally balancing noise reduction and
signal preservation.

expressed as ¢(xy, -+ ,x¢) = , where /37 is the smoothing factor controlling

noise. The Wiener filter’s frequency response is given by H(f) =

2.2 GRADIENT ANALYSIS

We performed a series of experiments to evaluate the overall performance of VGG networks (Si14
monyan & Zisserman, 2014) trained using different techniques with SGD. We first compared Vanilla
SGD, SGD-BN (trained using a VGG with BN), SGD-LPF, and the Wiener Filter applied in our
proposed SGDF algorithm in terms of overall performance. Afterward, we observed the impact of
these techniques on the gradient distributions within the feature layers.

From the Fig. [1] it is clear that the VGG trained without BN using vanilla SGD exhibits lower
accuracy and slower convergence in both the training and testing phases. In contrast, the VGG with
BN significantly improves both convergence speed and accuracy. SGD-LPF helps smooth the gradient
fluctuations and accelerates convergence, but still results in lower performance compared to the BN-
enhanced network. However, the Wiener Filter SGDF algorithm achieves the best performance, with
both training and testing accuracies significantly surpassing other methods, while also converging
faster and more stably throughout the training process.
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We recorded the gradient values of the feature layers during the first 100 iterations for each algorithm.
Using kernel density estimation, we sampled these gradients to generate PDF curves, which are
presented in Fig. 2] In the VGG network without BN, the gradient distributions of the feature layers
show significant instability. SGD: As Fig. 2] (a) shown, the gradient of different layers fluctuates
greatly and is unevenly distributed, which causes the network to oscillate during the training process
and makes it difficult to converge stably. SGD-BN: In the VGG network with BN, on the other
hand, the gradient variance is significantly reduced as seen in Fig.[2](c), and the gradient distribution
becomes smoother and more concentrated. SGD-LPF: Similarly, the Fig. J(d) shows that SGD-LPF
effectively smooths the gradient fluctuations through the exponential moving average. However,
due to the fixed weighting coefficient, there is still a certain degree of gradient shift during some
iterations, which can lead to systematic bias in the gradient update direction during training, ultimately
preventing the performance from surpassing that of the BN-enhanced network. SGD-WEF: Finally,
Fig. 2] (b) presents the gradient distribution of the VGG network trained with the Wiener-filtered
SGDF algorithm. Compared to other methods, SGDF produces a gradient distribution as concentrated
as BN, with less noise and no gradient shift. This improvement leads to a more stable training process
and better convergence across all layers.
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3 METHOD

We can find from the previous section that reducing the variance can improve the performance of
SGD. However, previous variance reduction techniques (Defazio et al., 2014; Johnson & Zhang,
2013} Schmidt et al.,2017) have in turn impaired the generalization ability of SGD, and we introduce
SGDF in this section and highlight in[3.3]why our method does not impair generalization.

3.1 SGDF GENERAL INTRODUCTION

In algorithm [T] s; serves as a key indicator, calculated as the exponential moving average of the
squared difference between the current gradient g; and its momentum m,, acting as a marker for
gradient variation with weight-adjusted by 35. (Zhuang et al.| [2020) first proposed the calculation of
s¢, which is utilized for estimating the fluctuation variance of the stochastic gradient. We derived a
correction factor (1 — 31)(1 — 3%!)/(1 + 1) under the assumption that m; and g; are independently
and identically distributed (i.i.d.), to accurately estimate the variance of m; using s;. Fig.[I2lcompares
performances with and without the correction factor, showing superior results with correction. For
the derivation of the correction factor, please refer to Appendix [A.2}
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Algorithm 1: SGDF, Wiener Filter Estimate Gradient. All operations are element-wise.

Input: {o;}]_,: step size, {31, 32}: attenuation coefficient, f: initial parameter, f(6):
stochastic objective function

Output: f7: resulting parameters.

Init: mg < 0, 59 < 0

whilet = 1to T do

gt < V fi(0:—1) (Calculate Gradients w.r.t. Stochastic Objective at Timestep t)

my < Bimy—1 + (1 — B1)g; (Calculate Exponential Moving Average)

St Basi—1+ (1 — B2)(g: — mt)2 (Calculate Exponential Moving Variance)

me . (1=p)(1 = B)s:
=B T (- By

K + As—t,\Z (Calculate Estimate Gain)
8¢ + (gt —my)

gt < my + Ki(g: — my) (Update Gradient Estimation)
0; + 0;_1 — a;g; (Update Parameters)

return O

My (Bias Correction)

At each time step ¢, g; represents the stochastic gradient for our objective function, while m;
approximates the historical trend of the gradient through an exponential moving average. The
difference g, — m; highlights the gradient’s deviation from its historical pattern, reflecting the
inherent noise or uncertainty in the instantaneous gradient estimate, which can be expressed as
p(g:|D) ~ N (g¢;my, 02) (Liu et al., 2019).

SGDF utilizes the gain K;, where the components of each dimension of the estimated gain range
between 0 and 1, to balance the current observed gradient g; and the past corrected gradient 7, thus
optimizing the gradient estimate. This balance plays a crucial role in noisy or complex optimization
scenarios, helping to mitigate noise and achieve stable gradient direction, faster convergence, and
enhanced performance. The computation of K, based on s; and g; — m;, aims to minimize the
expected variance of the corrected gradient g, for optimal linear estimation in noisy conditions. For
the method derivation, please refer to Appendix [A.T]

3.2 FUSION OF GAUSSIAN DISTRIBUTIONS FOR GRADIENT ESTIMATE

By fusing two Gaussian distributions, SGDF significantly reduces the variance of gradient estimates,
thereby benefiting in solving complex stochastic optimization problems. In this section, we will delve
into how SGDF achieves the reduction of gradient estimate variance.

The properties of SGDF ensure that the estimated gradient is a linear combination of the current noisy
gradient observation g; and the first-order moment estimate 771;. These two components are assumed
to have Gaussian distributions, where g; ~ N (,u7 02). Hence, their fusion by the filter naturally
ensures that the fused estimate g; is also Gaussian.

Consider two Gaussian distributions for the momentum term 7 and the current gradient g,:

* The exponential moving average term 77 is normally distributed with mean ,,, and variance

2 = 2
oz, denoted as My ~ N (i, 07,).

* The current gradient g; is normally distributed with mean (., and variance 03, denoted as
gt ~ N(,Ltg, 03)

The product of their probability density functions is given by:

. 1 (M = pm)® (g — p1g)?
N (my; - N(gt; =— — — g 1
(7245 pams 0m) - N (45 119, 09) dromay P ( 502 202 ¢))
Through coefficient matching in the exponential terms, we obtain the new mean and variance:
L 02 fim + oy fig o ol0l @
K o2, +o2 oz, +o2



Under review as a conference paper at ICLR 2025

The new mean 1’ is a weighted average of the two means, /i,,, and /4, With weights inversely
proportional to their variances. This places p/ between pi,,, and fi4, closer to the mean with the
smaller variance. The new standard deviation ¢’ is smaller than either of the original standard
deviations o, and o, reflecting the reduced uncertainty in the estimate due to the combination of
information from both sources. This is a direct consequence of the Wiener Filter’s optimality in the
mean-square error sense. The proof is provided in Appendix [A.3]

3.3 GENERALIZATION ANALYSIS OF THE VARIANCE LOWER BOUND

In previous variance reduction techniques, variance is reduced at a rate of €71, ¢ € (0,1). However,
this can lower the variance to a point where it limits necessary stochastic exploration, hindering
optimization. The Wiener Filter, guided by the Cramér-Rao lower bound (CRLB) (Rao, [1992),
ensures a lower bound on variance. We model this advantage using the Fokker-Planck equation to
highlight the optimization benefits of maintaining a variance lower bound.

Theorem 3.1. Consider a system governed by the Fokker-Planck equation, describing the evolution
of the probability density P in parameter space. For a loss function f(0) and a noise variance matrix
D;; satisfying D; > C > 0, with C as the Cramér-Rao lower bound, the steady-state probability

density (%—f =0)is:
P9) = %exp (— Z fé@)) , (3)

i=1
where Z is the normalization constant, assuming D;; = D;6;;.

The existence of a variance lower bound critically enhances the algorithm’s exploration capabilities,
especially in regions of the loss landscape where gradients are minimal. By preventing the probability
density function from becoming unbounded, it ensures continuous exploration and increases the
probability of converging to flat minima associated with better generalization properties (Yang et al.,
2023)). The proof of Theorem [3.1]is provided in Appendix[A.4]

3.4 CONVERGENCE ANALYSIS IN CONVEX AND NON-CONVEX OPTIMIZATION

Finally, we provide the convergence property of SGDF as shown in Theorem [3.2]and Theorem 3.3]
The assumptions are common and standard when analyzing the convergence of convex and non-
convex functions via SGD-based methods (Chen et al., 2018b; |Kingma & Bal [2014; [Reddi et al.,
2018). Proofs for convergence in convex and non-convex cases are provided in Appendix [B| and
Appendix [C] respectively. In the convergence analysis, the assumptions are relaxed and the upper
bound is reduced due to the estimation gain introduced by SGDF, promoting faster convergence.

Theorem 3.2. (Convergence in convex optimization) Assume that the function f; has bounded
gradients, M2 < G, (O)|lo < Go for all § € R? and distance between any 0,
] n *9m||2 > mfan”oo SDoofOVa"y mane {17'--7T};
and By, B2 € [0,1). Let ay = a/\/t. SGDF achieves the following guarantee, for all T > 1:

2D.G o 200G (1
<—Z\F 7BZ||91T1H2 “ \/%(—'— ZHEHTZ

where R(T') = Zthl ft(0¢) — f1(0%) denotes the cumulative performance gap between the generated
solution and the optimal solution.

“

For the convex case, Theorem 3.2|implies that the regret of SGDF is upper bounded by O(+/T'). In the
Adam-type optimizers, it’s crucial for the convex analysis to decay 3 ; towards zero (Kingma & Ba,
2014;|Zhuang et al.,[2020). We have relaxed the analysis assumption by introducing a time-varying
gain K, which can adapt with variance. Moreover, K; converges with variance at the end of training
to improve convergence (Sutskever et al., [2013]).

Theorem 3.3. (Convergence for non-convex stochastic optimization) Under the assumptions:

* Al Bounded variables (same as convex). ||0 — 6*||, < D, Y0,0" or for any dimension i of the
6, — 07|, < D;, V0,07

1y Y
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* A2 The noisy gradient is unbiased. For V't, the random variable (; is defined as s = g: — V f (0¢),
G satisfy E[¢:] =0, E {HQH?} < 02 and when t| # ta, (i, and (;, are statistically independent,
i.e., Ctl 1 <t2.

* A3 Bounded gradient and noisy gradient. At step i, the algorithm can access a bounded noisy
gradient, and the true gradient is also bounded. i.e. ||V f(0,)| < G, ||g:]| < G, Vt > 1.

* A4 The property of function. (1)f is differentiable; (2) ||V f(z) — Vf(y)|| < L||lz — yl|, Vz,y;
(3) f is also lower bounded.

Consider a non-convex optimization problem. Suppose assumptions Al-A4 are satisfied, and let
a; = a//t. Forall T > 1, SGDF achieves the following guarantee:

C7a2(logT + 1) + Cg
<
2&\/T

where E(T) = ming=1 2. 7 E,4 {HVf (Gt)H;] denotes the minimum of the squared-paradigm

E(T) )

expectation of the gradient, « is the learning rate at the 1-th step, C; are constants independent
of d and T, Cg is a constant independent of T, and the expectation is taken w.r.t all randomness
corresponding to gy.

Theorem 3.3|indicates that the convergence rate for SGDF in the non-convex case is O(log T/V/T),
which is comparable to Adam-type optimizers (Chen et al., [2018bj [Reddi et al., 2018)). Note that
in our derivation, the terms related to the estimated gain K; were scaled to their maximum upper
bounds, simplifying the upper bound results. Importantly, we did not rely on the p-strongly convex
assumption (Balles & Hennig| 2018]) but used the most general smoothness assumption to obtain this
convergence rate. In practice, convergence speed will improve as variance diminishes, causing K
to converge more rapidly and influencing the overall convergence rate. This reduction in the upper
bound due to the convergence of variance explains why SGDF converges faster than SGD.

4 EXPERIMENTS

4.1 EMPIRICAL EVALUATION

In this study, we focus on the following tasks: Image Classification. We employed the VGG (Si+
monyan & Zisserman, 2014)), ResNet (He et al., [2016), and DenseNet (Huang et al., 2017) models
for image classification tasks on the CIFAR dataset (Krizhevsky et al.l|2009). The major difference
between these three network architectures is the residual connectivity, which we will discuss in
Sec. We evaluated and compared the performance of SGDF with other optimizers such as
SGD, Adam, RAdam (Liu et al., [2019), AdamW (Loshchilov & Hutter, [2017), MSVAG (Balles
& Hennigl 2018]), Adabound (Luo et al., 2019), Sophia (Liu et al. 2023)), and Lion (Chen et al.,
2023)), all of which were implemented based on the official PyTorch. Additionally, we further tested
the performance of SGDF on the ImageNet dataset Deng et al.| (2009) using the ResNet model.
Object Detection. Object detection was performed on the PASCAL VOC dataset (Everingham
et al.,2010) using Faster-RCNN (Ren et al., [2015)) integrated with FPN. For hyper-parameter tuning
related to image classification and object detection, refer to (Zhuang et al.,[2020). Image Generation.
Wasserstein-GAN (WGAN) (Arjovsky et al.,[2017) on the CIFAR-10 dataset.

Hyperparameter tuning. Following Zhuang et al. (Zhuang et al.| 2020), we delved deep into the
optimal hyperparameter settings for our experiments. In the image classification task, we employed
these settings:

* SGDF: We adhered to Adam’s original parameter values: 81 = 0.9, 82 = 0.999, ¢ = 108,

e SGD: We set the momentum to 0.9, the default for networks like ResNet and DenseNet. The
learning rate was searched in the set {10.0, 1.0, 0.1, 0.01, 0.001}.

* Adam, RAdam, MSVAG, AdaBound: Traversing the hyperparameter landscape, we scoured (;
values in {0.5,0.6,0.7,0.8,0.9}, probed « as in SGD, while tethering other parameters to their
literary defaults.



Under review as a conference paper at ICLR 2025

* AdamW, SophiaG, Lion: Mirroring Adam’s parameter search schema, we fixed weight decay at
5 x 10~%; yet for AdamW, whose optimal decay often exceeds norms (Loshchilov & Hutter, [2017),
we ranged weight decay over {107%,5 x 107%,107%,1072,107! }.

s SophiaG, Lion: We searched for the learning rate among {10~2,10~#, 10~°} and adjusted Lion’s

learning rate (Liu et al.,[2023). Following (Liu et al.} 2023}, [Chen et all, 2023)), we set 3,=0.965,
0.9 and 32=0.99 as the default parameters.

CIFAR-10/100 Experiments. We initially trained on the CIFAR-10 and CIFAR-100 datasets using
the VGG, ResNet, and DenseNet models and assessed the performance of the SGDF optimizer. In
these experiments, we employed basic data augmentation techniques such as random horizontal flip
and random cropping (with a 4-pixel padding). To facilitate result reproduction, we provide the
parameter table for this subpart in Tab. |5 The results represent the mean and standard deviation of 3
runs, visualized as curve graphs in Fig%
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Figure 3: Test accuracy ([px &= o]) on CIFAR.

As Fig. 3] shows, that it is evident that the SGDF optimizer exhibited convergence speeds comparable
to adaptive optimization algorithms. Additionally, SGDF’s final test set accuracy was either better
than or equal to that achieved by SGD.

ImageNet Experiments. We use the best-reported parameters from (Chen et al.}, 2018a; [Liu et al}
[2019). We applied basic data augmentation strategies such as random cropping and random horizontal
flipping. The results are presented in Tab.[T] To facilitate result reproduction, we provide the parameter
table for this subpart in Tab.[6] Detailed training and test curves are depicted in Fig. [0} Additionally,
to mitigate the effect of learning rate scheduling, we employed cosine learning rate scheduling as
suggested by (Chen et al., |Zhang et al.,|2023)) and trained ResNet18, 34, and 50 models. The
results are summarized in Tab. |2} Experiments on the ImageNet dataset demonstrate that SGDF has
improved convergence speed and achieves similar accuracy to SGD on the test set.

Table 1: Top-1, 5 accuracy of ResNet18 on ImageNet. * T ¥ is reported in|Zhuang et al.| (2020);

Chen et al.|(2018a)); [L1u et al.| (2019).

Method | SGDF  SGD  AdaBound  Yogi MSVAG Adam RAdam AdamW
Top-1 | 70.23 70.23" 68.131 68.231  65.99*  63.791 (66.54}) 67.62¢  67.93%
Top-5 | 89.55 89.40f 88.557  88.591 - 85.611 - 88.47%
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Table 2: Cosine learning rate scheduling train ImageNet. * is reported in Zhang et al.[(2023))

Model | ResNetl8 ResNet34 ResNet50
SGDF ‘ 70.16 73.37 76.03
SGD ‘ 69.80 73.26 76.01*

Object Detection. We conducted object detection experiments on the PASCAL VOC dataset (Every
ingham et al., 2010). The model used in these experiments was pre-trained on the COCO dataset (Lin
et al.,2014), obtained from the official website. We trained this model on the VOC2007 and VOC2012
trainval dataset (17K) and evaluated it on the VOC2007 test dataset (5K). The utilized model was
Faster-RCNN (Ren et al., 2015) with FPN, and the backbone was ResNet50 (He et al.| 2016). Results
are summarized in Tab.[3] To facilitate result reproduction, we provide the parameter table for this
subpart in Tab.[/| As expected, SGDF outperforms other methods. These results also illustrate the
efficiency of our method in object detection tasks.

Table 3: The mAP on PASCAL VOC using Faster-RCNN+FPN.

RAdam
75.21

Method | SGDF  SGD  Adam AdamW
mAP ‘83.81 80.43 78.67 78.48

Image Generation. The stability of optimizers is crucial, especially when training Generative
Adversarial Networks (GANs). If the generator and discriminator have mismatched complexities,
it can lead to imbalance during GAN training, causing the GAN to fail to converge. This is known
as model collapse. For instance, Vanilla SGD frequently causes model collapse, making adaptive
optimizers like Adam and RMSProp the preferred choice. Therefore, GAN training provides a good
benchmark for assessing optimizer stability. For reproducibility details, please refer to the parameter
table in Tab. 8l

160

140 A

120 4

100

801

i
i L]
o -

T

| -

T

i

280
270
260
250
240
230
220
210

(o]

=

o

SGDF  Adam RMSProp RAdam Fromage Yogi AdaBound

SGD MSVAG

Figure 4: FID score of WGAN-GP.

We evaluated the Wasserstein-GAN with gradient penalty (WGAN-GP) (Salimans et al.|[2016)). Using
well-known optimizers (Bernstein et al., [2020; |Zaheer et al.,|2018)), the model was trained for 100
epochs. We then calculated the Frechet Inception Distance (FID) (Heusel et al., 2017) which is a
metric that measures the similarity between the real image and the generated image distribution and
is used to assess the quality of the generated model (lower FID indicates superior performance). Five
random runs were conducted, and the outcomes are presented in Fig[] Results for SGD and MSVAG
were extracted from (Zhuang et al.| [2020).

Experimental results demonstrate that SGDF significantly enhances WGAN-GP model training,
achieving a FID score higher than vanilla SGD and outperforming most adaptive optimization
methods. The integration of a Wiener filter in SGDF facilitates smooth gradient updates, mitigating
training oscillations and effectively addressing the issue of pattern collapse.

4.2 Top EIGENVALUES OF HESSTAN AND HESSIAN TRACE

The success of optimization algorithms in deep learning not only depends on their ability to minimize
training loss, but also critically hinges on the nature of the solutions they converge to. We numerically
verified the hessian matrix properties between the different methods.
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We computed the Hessian spectrum of ResNet-18 trained on the CIFAR-100 dataset for 200 epochs
using four optimization methods: SGD, SGDM, Adam, and SGDF. These experiments ensure that all
methods achieve similar results on the training set. We employed power iteration (Yao et al.,
to compute the top eigenvalues of Hessian and Hutchinson’s method 2020a)) to compute
the Hessian trace. Histograms illustrating the distribution of the top 50 Hessian eigenvalues for each
optimization method are presented in Fig. [5]

Trace: 184.14 Trace: 344.75 Trace: 267.64 Trace: 3376.97
Amax: 17.03 Amax: 26.51 Amax: 30.07 Amax: 183.11
all 1 . i TR NTRTENTY ) Mlmls 111 " ) II||"I 11 ,
35 0 35 0 35 0 200
(a) SGDF (b) SGDM (c) SGD (d) Adam

Figure 5: Histogram of Top 50 Hessian Eigenvalues. The lower the value, the better the results of the
test dataset.

4.3 VISUALIZATION OF LANDSCAPES

We visualized the loss landscapes of models trained with SGD, SGDM, SGDF, and Adam using
the ResNet-18 model on CIFAR-100, following the method in (Li et al., 2018). All models are
trained with the same hyperparameters for 200 epochs, as detailed in Sec.4.1] As shown in Fig.[6}
SGDF finds flatter minima. Notably, the visualization reveals that Adam is more prone to converge to

sharper minima.
(a) Adam (b) SGD (c) SGDM (d) SGDF

Figure 6: Visualization of loss landscape. Adam converges to sharp minima.

4.4  WIENER FILTER COMBINES ADAM

We’ve conducted comparative experiments on the CIFAR-100 dataset, evaluating both the vanilla
Adam algorithm and Wiener Adam, which substitutes the first-moment gradient estimates in the
Adam optimizer with Wiener filter estimates. The results are presented in Tab.[d] and the detailed test
curves are depicted in Fig.[TT] This suggests that our first-moment filter estimation method has the
potential to be applied to other optimization methods.

Table 4: Accuracy comparison between Adam and Wiener-Adam.

Model \ VGG11 ResNet34 DenseNetl121
Wiener-Adam \ 62.64 73.98 74.89
Vanilla-Adam | 56.73 72.34 74.89

For VGG without BN, the Wiener filter significantly improves performance by providing more
accurate gradient estimates, reducing noise-induced errors, and ultimately enhancing accuracy. In
contrast, for ResNet and DenseNet, which already incorporate BN and leverage residual and dense
connections to stabilize gradient flow, the benefits of the Wiener filter are less pronounced. These
architectures inherently promote stable gradient updates through their structural design, reducing the



Under review as a conference paper at ICLR 2025

additional advantages offered by the Wiener filter. This explains why the performance improvements
vary across different architectures, as seen in Tab. 4] While Wiener-Adam provides a notable boost in
simpler architectures like VGG, its impact is diminished in more complex networks where existing
mechanisms already aid gradient stability.

5 RELATED WORKS

Variance Reduction to Adaptive Methods. In the early stages of deep learning development,
optimization algorithms focused on reducing the variance of gradient estimation (Balles & Hennig,
2018} |Defazio et al., |2014; Johnson & Zhang, 2013} |Schmidt et al.l [2017) to achieve a linear
convergence rate. Subsequently, the emergence of adaptive learning rate methods (Dozatl 2016
Duchi et al., 2011} Zeiler, 2012)) marked a significant shift in optimization algorithms. While SGD
and its variants have advanced many applications, they come with inherent limitations. They often
oscillate or become trapped in sharp minima (Wilson et al., 2017). Although these methods can
lead models to achieve low training loss, such minima frequently fail to generalize effectively to
new data (Hardt et al.| 2015; [Xie et al., 2022)). This issue is exacerbated in the high-dimensional,
non-convex landscapes characteristic of deep learning settings (Dauphin et al., 2014; |[Lucchi et al.|
2022).

Sharp and Flat Solutions. The generalization ability of a deep learning model depends heavily on
the nature of the solutions found during the optimization process. Keskar et al. (Keskar et al.,[2017)
demonstrated experimentally that flat minima generalize better than sharp minima. SAM (Foret et al.,
2021)) theoretically showed that the generalization error of smooth minima is lower than that of sharp
minima on test data, and further proposed optimizing the zero-order smoothness. GAM (Zhang et al.|
2023)) improves SAM by simultaneously optimizing the prediction error and the number of paradigms
of the maximum gradient in the neighborhood during the training process. Adaptive Inertia (Xie
et al.,|2020) aims to balance exploration and exploitation in the optimization process by adjusting the
inertia of each parameter update. This adaptive inertia mechanism helps the model avoid falling into
sharp local minima.

Second-Order and Filter Methods. The recent integration of second-order information into op-
timization problems has gained popularity (Liu et al.| 2023; [Yao et al.,|2020b). Methods such as
Kalman Filter (Kalman| |1960) combined with Gradient Descent incorporate second-order curvature
information (Ollivier, |2019; |Vuckovic} 2018)). The KOALA algorithm (Davtyan et al., [2022) posits
that the optimizer must adapt to the loss landscape. It adjusts learning rates based on both gradient
magnitudes and the curvature of the loss landscape. However, it should be noted that the Kalman
filtering framework introduces more complex parameter settings, which can hinder understanding
and application.

6 CONCLUSION

In this paper, we introduce SGDF, a novel optimization method that estimates the gradient for faster
convergence by leveraging both the variance of historical gradients and the current gradient. We
demonstrate that SGDF yields solutions with a flat spectrum akin to SGD through Hessian spectral
analysis. Through extensive experiments employing various deep learning architectures on benchmark
datasets, we showcase SGDF’s superior performance compared to other state-of-the-art optimizers,
striking a balance between convergence speed and generalization.
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A  METHOD DERIVATION (SECTION 3 IN MAIN PAPER)

A.1 WIENER FILTER DERIVATION FOR GRADIENT ESTIMATION (MAIN PAPER SECTION 3.1)

Given the sequence of gradients {g;} in a stochastic gradient descent process, we aim to find
an estimate g; that incorporates information from both the historical gradients and the current
gradient. The Wiener Filter provides an estimate that minimizes the mean squared error. We begin by
constructing the estimate as a simple average and then refine it using the properties of the Wiener
Filter.

1 & 1
gt:7T+1;gt+7T+1gt

T
1T 1
_T+1T;gt+:ﬁ+19t

- r .1
AR EA AL (6)
(a) T 1

S rri™mt

1 1
(1o~ Vi, o -
< T+1>mt+T+1gt
=my — Kymy + Kigy
iy + Ky (g¢ — )

In the above derivation, step (a) replaces the arithmetic mean of gradients g with the momentum
term my. The Wiener gain K7 = T%H is then introduced to update the gradient estimate with
information from the new gradient.

By defining g; as the weighted combination of the momentum term 77, and the current gradient g,
we can compute the variance of g; as follows:

Var(g;) = Var((1 — K¢)my + Kigt)

7
= (1 — K;)*Var(my) + K?Var(g;) 2
dVar(g,
Minimizing the variance of g; with respect to K, by setting the derivative % = 0, yields:
t
0 =2(1 — Ky)Var(m;) + 2K;Var(g;)
0=(1— K;)Var(m;) + K;Var(g:) ®

B Var ()
~ Var(my) + Var(g¢)

The final expression for K; shows that the optimal interpolation coefficient is the ratio of the variance
of the momentum term to the sum of the variances of the momentum term and the current gradient.
This result exemplifies the essence of the Wiener Filter: optimally combining past information with
new observations to reduce estimation error due to noisy data.

K

A.2  VARIANCE CORRECTION (CORRECTION FACTOR IN MAIN PAPER SECTION 3.1)

The momentum term is defined as:
t

me=(1—-B1)_ B groita, ©

i=1

which means that the momentum term is a weighted sum of past gradients, where the weights decrease
exponentially over time.
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To compute the variance of the momentum term m, we first observe that since g; ;1 are independent
and identically distributed with a constant variance 0'3, the variance of the momentum term can be
obtained by summing up the variances of all the weighted gradients.

The variance of each weighted gradient Bi” Jt—it1 18 Bf (tﬂ)ag, because the variance operation has

a quadratic nature, so the weight ﬁfi becomes ﬁf(t_i) in the variance computation.

Therefore, the variance of m; is the sum of all these weighted variances:
or, = (1-B)? 2262“ 0. (10)

The factor (1 — (31)? comes from the multiplication factor (1 — 1) in the momentum update formula,
which is also squared when calculating the variance.

The summation part Z:Il ﬁf (=D isa geometric series, which can be formulated as:
2t

g = (1n
W
As t — 0o, and given that 8, < 1, we note that BQt — 0, and the geometric series sum converges to:
oy _ 1B 1
20 - . (12)
YA -
Consequently, the long-term variance of the momentum term m; is expressed as:
1-— 1-—
U?n ﬁl 2 ﬁl (13)
' 1-p7 %0 T 14 B,

This result shows how the effective gradient noise is reduced by the momentum term, which is a
L compared to the variance of the gradients o

1+ﬁ
A.3 FUSION GAUSSIAN DISTRIBUTION (MAIN PAPER SECTION 3.2)

Consider two Gaussian distributions for the momentum term 7 and the current gradient g,:

. The momentum term 77 is normally distributed with mean f1,,, and variance o2,, denoted as
t ~ N (IU/ma m)

* The current gradient g; is normally distributed with mean j, and variance 03, denoted as
gt ~ N (g, 7).
The product of their probability density functions is given by:

~ 1 (e — pm)? — (ge — 1g)°
N(et; poms om) - N(gts gy 09) = o o &P ( t202 — = 202g (14)
m0g m 9

The goal is to find equivalent mean  and variance 0’2 for the new Gaussian distribution that matches

the product:
2
exp (_M) (15)

N(x;,u/,U/Q) = 2052

2o’

We derive the expression for combining these two distributions. For convenience, let us define the

variable t as follows: ) )
po @ —pn)” (2= py)
202, 207

2 2
Cog (@ = pm)” + o7 (T — )

202,02 (16)
U2Mm+tf 1 2
94 mhMg 2
_ (m omtog ) + (1m — pig)
- 202,02 2 2)°
s 2(03, +03)

m
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Through coefficient matching in the exponential terms, we obtain the new mean and variance:

2 2 2 2
!l Uglu‘m + Umﬂg 2 Jm,o—g
o= mhe 2 mg (17)
0-2 + 0-2 0-2 + 0-2
m g m g9

The new mean 1’ is a weighted average of the two means, fi,,, and /4, With weights inversely
proportional to their variances. This places y/ between fi,,, and 1, closer to the mean with the
smaller variance. The new standard deviation ¢’ is smaller than either of the original standard
deviations o, and o4, which reflects the reduced uncertainty in the estimate due to the combination
of information from both sources. This is a direct consequence of the Wiener Filter’s optimality in
the mean-square error sense.

A.4 FOKKER PLANCK MODELLING (THEOREM 3.1 IN MAIN PAPER)

Theorem A.1. Consider a system described by the Fokker-Planck equation, evolving the probability
density function P in one-dimensional and multi-dimensional parameter spaces. Given a loss function
f(0), and the noise variance D or diffusion matrix D;; satisfying D > C > 0 or D; > C > 0,
where C' is a positive lower bound constant, known as the Cramér-Rao lower bound. In the steady

state condition, i.e., % = 0, the analytical form of the probability density P can be obtained by

solving the corresponding Fokker-Planck equation. These solutions reveal the probability distribution
of the system at steady state, described as follows:
One-dimensional case In a one-dimensional parameter space, the probability density function P(6)

is
Po) = L exp ( ;ggdx> , (18)

where Z is a normalization constant, ensuring the total probability sums to one.

Multi-dimensional case In a multi-dimensional parameter space, the probability density function

P(6) is
P(0) = %exp (— Z fg?) ; (19)

Here, Z is also a normalization constant, ensuring the total probability sums to one, assuming
D;; = D;d;;, where §;; is the Kronecker delta.

Proof.

one-dimensional Fokker-Planck equation: Given the one-dimensional Fokker-Planck equation:

oP of
ot 09 (Paa> aez(DP) e

where f(0) is the loss function, and D is the variance of the noise, with D > C' > 0 representing a
positive lower bound for the variance. P denotes the probability density of finding the state of the
system near a given point or region

Derivation of the Steady-State Distribution:

In the steady state condition, %}; = 0, thus the equation simplifies to:

_ pof
0=— aa( 89>+892(DP). 1)

Our goal is to find the probability density P as a function of 6.

ar\ o2
55 (P55) = 32 (0P). 22)

By integrating, we obtain:
20) ~ 90
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Next, we set J = P % as the probability current, and we have:

aJ 0 oP
Upon integration, we get:
J = Da—P +C (24)
- 90 1

where (] is an integration constant. Assuming the probability current J vanishes at infinity, then
Cy =0.

Therefore, we have:

opP  _of
D% = P%. (25)
This equation can be rewritten as:
orP  Pof
0 Do 20

Now, leveraging the variance lower bound D > C, we analyze the above equation. Since D is a
positive constant, we can further integrate to get P:

10f
nP=- [ == 27
n D0 df + Cs, (27)
where (' is an integration constant.
Solving for P, we get:
10
P =% exp <— Da‘éd&) . (28)

Since we know that D has a lower bound, % is bounded above, which suggests that P will not
explode at any specific value of 6.

multi-dimensional Fokker-Planck equation: Consider a multi-dimensional parameter space x € R™
and a loss function f(#). The evolution of the probability density function P(6,t) in this space
governed by the Fokker-Planck equation is given by:

oP 0 L D2
EZ_Z <Pag-) 22 a0,08, D) @
i=1 g i

where D;; are elements of the diffusion matrix, representing the intensity and correlation of the
stochastic in the directions 6; and ;. At the steady state, where the time derivative of P vanishes, we
find:

0
00;

&0 (. of o2
0= 2%, <Pae-) +2_2_ op.08, (PP (30)

Assuming D;; = D;d;; where d;; is the Kronecker delta, and D; > C > 0, the equation simplifies
to:

"0 af "L 92
0=— — | P=—= — (D;P). 31
> g (7o) + 2 gy 0P @
Integrating with respect to 6;, we obtain a set of equations:

oP  _of

)

D,
' 00,

+ C; (32)

17



Under review as a conference paper at ICLR 2025

where C; is an integration constant. Assuming C; = 0, which corresponds to no flux at the boundaries,
we can solve for P:

P(O) = ~exp (- > fg”) , (33)

where Z is a normalization constant ensuring that the total probability integrates to one.

Exploration Efficacy of SGD due to Variance Lower Bound The existence of a variance lower
bound in Stochastic Gradient Descent (SGD) critically enhances the algorithm’s exploration capa-
bilities, particularly in regions of the loss landscape where gradients are minimal. By preventing
the probability density function from becoming unbounded, it ensures continuous exploration and
increases the probability of converging to flat minima that are associated with better generalization
properties. This principle holds true across both one-dimensional and multi-dimensional scenarios,
making the variance lower bound an essential consideration for optimizing SGD’s performance in
finding robust, generalizable solutions.
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B CONVERGENCE ANALYSIS IN CONVEX ONLINE LEARNING CASE (THEOREM
3.2 IN MAIN PAPER).

Assumption B.1. Variables are bounded: 3D such that V¢, ||0;||2 < D. Gradients are bounded:
3G such that V¢, || g:]|2 < G.

Definition B.2. Let f;(6;) be the loss at time ¢ and f;(0*) be the loss of the best possible strategy at
the same time. The cumulative regret R(7") at time T is defined as:

T
R(T) =" ful6y) — £i(67) (34)

Definition B.3. If a function f: R? — R is convex if for all 2,y € R? for all A € [0, 1],
M)+ A=A fly) = fAz + (1= N)y) 35)

Also, notice that a convex function can be lower bounded by a hyperplane at its tangent.
Lemma B.4. If a function f : RY — R is convex, then for all x,3y € R?,

f) > f@)+ V@) (y—=) (36)

The above lemma can be used to upper bound the regret, and our proof for the main theorem is
constructed by substituting the hyperplane with SGDF update rules.

The following two lemmas are used to support our main theorem. We also use some definitions
to simplify our notation, where g, £ v fi (0¢) and g;; as the ith element. We denote Gi:ti €
R? as a vector that contains the i dimension of the gradients over all iterations till ¢, g1.;; =
[9171‘,92,2‘, T 7915,1‘]

Lemma B.5. Ler g; = V f+(0;) and g1.; be defined as above and bounded,

lgelly < G llgtllo < Goo- (37)
Then,

T

> g1i < 2Go g1l - (38)

t=1

Proof. We will prove the inequality using induction over 7'. For the base case T' = 1:
g1,i < 2G ||91,illy - (39

Assuming the inductive hypothesis holds for 7" — 1, for the inductive step:

T T-1
Z gti = Z 9t,i + 91,0
t=1 t=1

40
<2G |lgrr-1illy + 9754 (40)
2
=2Goo\/llg1:1ll5 — 9% + 974
Given,
2 94T i 2
HQI:T,iHQ - g%,i + = 7 2 Hgl:T,iHQ - g%,iv (41)
4 ||gl:T,i||2
taking the square root of both sides, we get:
2
2 97
\V ”gl:T,i”z - Q%_i < llgr.7q 2 TP
i 2 ||gl:T,iH2
5 (42)
971,i

< |lg1:1,i]

2 9/Ge)
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Substituting into the previous inequality:

/ 2
Goo Hgl:T7i||2 - g%ﬂ + g%ﬂ S 2GOO ||91:T,i||2 (43)

Lemma B.6. Ler bounded g, HgtH2 <G, |9t oo £ Goo, the following inequality holds

G2 2
E m2 < — T 44
ti > 51)2 Hgl.T, ”2 44

Proof. Under the inequality: . We can expand the last term in the summation

1 < 1
(1-p1)" = (1=B1)*
using the updated rules in Algorithm 1,

2
vt o (S =80 AT )
Z My = mii+ (1 ﬁT)2
t=1 t=1 et
T—1 2
1— )
< ’mf,l + Zk 1 (( 51T) 1 gk,z)
t=1 (1 - pBi ) (45)
T-1
~92 Bl 2
< my =+ 2 Z 51 ||gk,i||2
=1 (1-87)" =
T-1 i T Tk ,
<D+ TY (B Mgl
t=1 k=1

Similarly, we can upper-bound the rest of the terms in the summation.

T T T—t
~ 2
Sz < Mgl S 18]
t=1 t=1 3:0
. (46)
Z [l Z t6]
For 81 < 1, using the upper bound on the arithmetic-geometric series, Zt tﬂf < 7(1_}31)2 :
Z llgt,i tﬁj a=p)2 Z lgti] (47)
Apply Lemma[B.3]
T
4G?
~92 fore) 2
my; < — =5 911, (48)
tz:; M- )2 vzl
Theorem B.7. Assume that the function f; @)]2 < D) loo <

G forall § € R? and the distance between any 0; generated by SGDF is bounded, ||0,, — 0,,||2 < D,
10 — Onlloo < Doo forany m,n € {1,...,T}, and By, B2 € [0,1). Let oy = a//t. Forall T > 1,
SGDF achieves the following guarantee:

2D Goo 200G
<f2f Z||gm||2 “\/(T( Z||gm||2 49)

Proof of convex Convergence.

We aim to prove the convergence of the algorithm by showing that R(7") is bounded, or equivalently,

R(T
that % converges to zero as T’ goes to infinity.
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To express the cumulative regret in terms of each dimension, let f;(6;) and f;(0*) represent the loss
and the best strategy’s loss for the dth dimension, respectively. Define R 4 as:

T
Ry, = th(et) — fi(67) (50)
=1

Then, the overall regret R(T") can be expressed in terms of all dimensions D as:

D
T)=Y Rr; (51)
d=1

Establishing the Connection: From the Iteration of 8, to (g, 6; — 0*)
Using Lemma[B.4] we have,

fe(0) — fu(0%) < g (6, — 6%) ng@tﬁ (52)

From the update rules presented in algorithm 1,
0111 = 0y — 4Gy

~ ~ (53)
=0 — oy (mt + Ky a(g: — mt))

We focus on the i dimension of the parameter vector #; € R?. Subtract the scalar 0% and square
both sides of the above update rule, we have,

(9t+1,d - 9:’})2 = (et,i - 9:’;)2 - 2at(ﬁlt,i + Kt,d(gt,i - ﬁlt,z‘))(@t,i - 9*1) + Off?]\f (54)

Separating itemsg; ;(0;,; — 0%;):

2 2
. Ori —0%)" — (Opy1, — 07 1-Kiji . 1%
91,401 — 0%) = ( : )2atf<(t : 3 Tk, g (0 — 0%) + QKI; (9e.4)°
(1) (2) (3)
(55)
We then deal with (1), (2) and (3) separately.
For the first term (1), we have:
2
Z (9t [ 9 ) (9t+1,i - 9’*1)
p 200Ky
< (0 — 9?})2 — (0441 — 97*7;)2 (56)
- ; 204 Ky ;
)2 2
_ (01 —0%)"  (Ors1:—0%) N zT:(g ) I 1
200Ky ; 2a7K7; — b 200K 204 1K
2 2
. (07410 — 0%) (61, — 0%) D2 .
G that - ——— 7 < d : < L bound it as:
iven tha 207 (K2 0 an 2or (y) = 9o (KT),we can bound it as
2
oo e
— 200 Ky
= , (57)
< Z (et,i -0 z)
T 204Ky
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For the second term (2), we have:

T
1- Kt 7~
S (- )
t=1 K.i
T T T
1-K; .
= ; TR0 =80 Z} — B1.4) 4_11151,1‘ i (Or, — 0%)
- = = (58)
T
1-K;;
< — 7 [ 9 [ 9 :
= ; Kt,d(l—ﬁl ( I[lﬂl )gt t, 71)
T
Kt 7
= 7%,1(% —0%)
; a(l—pi) '
For the third term (3), we have:
T T
& Gui)® < > O (i + Kolgei — i)’
—~ 2K, 7 T p 2K ; ’ ’ ’
T
(6% ~
< Z 2Kt ] (1= Kyi)me + Kt,dgt,i)2
t=1 “Tbi
(59
T
o 22 )
< ; 3K, (2(1 — Kyi)*my,; + 2Kt,igt,i)
T
Qi ~
<D g (O K mi; + Kigl)
t=1 b
Collate all the items that we have:
et % i X Kt ) L& Qi 2~2 2
ZZ 204th1 ZZ tzl_ﬁ gtzetz* JrZZK“((l*Km) merK““)
i=1 t=1 i=1 t=1 1 i=1t=1"1
(60)

Using Lemma B.5|and LemmaFrom S5 > S (90— e)?, wehave 0T K, >
— 0112 < D, |0 — 0nlloo < Doo, we have the following regret

bound:

D2 : 2D Goo 20&G (1+
T) < ; T 5 ;HQITZHQ VT~ Zl\mmll2 (61)
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C CONVERGENCE ANALYSIS FOR NON-CONVEX STOCHASTIC OPTIMIZATION
(THEOREM 3.3 IN MAIN PAPER).

We have relaxed the assumption on the objective function, allowing it to be non-convex, and adjusted
the criterion for convergence from the statistic R(T) to E(T'). Let’s briefly review the assumptions
and the criterion for convergence after relaxing the assumption:

Assumption C.1.

* Al Bounded variables (same as convex). ||§ — 0*||, < D, V8, 60* or for any dimension 7 of
the variable, ||0; — 6}, < D;, Vb;,0;

* A2 The noisy gradient is unbiased. For V¢, the random variable (; is defined as (; =
gt — Vf(0), ¢ satisfy E[¢] =0, E [HQH;} < 02, and when t; # t3, (¢, and (;, are
statistically independent, i.e., (¢, L (.

* A3 Bounded gradient and noisy gradient. At step ¢, the algorithm can access a bounded noisy
gradient, and the true gradient is also bounded. i.e. ||V f(0)| < G, |lg:|| < G, ¥Vt > 1.

* A4 The property of function. The objective function f (6) is a global loss function, defined

as f(0) =limp_o0 7 Zthl f+ (9). Although f () is no longer a convex function, it must
still be a L-smooth function, i.e., it satisfies (1) f is differentiable, V f exists everywhere in
the domain; (2) there exists L > 0 such that for any #; and 6 in the domain, (first definition)

L
f(82) < £ (62) +(VF (1), 02 = 01) + 5 1162 — 01l (62)
or (second definition)
IVf(01) =V f(2)lly < L0 — 2], (63)
This condition is also known as L - Lipschitz.

Definition C.2. The criterion for convergence is the statistic E (7'):

E(T)= min Eey [|V7 (0] (64)

=1,2,...,

When T' — oo, if the amortized value of E (T'), E (T') /T — 0, we consider such an algorithm to be
convergent, and generally, the slower E (T') grows with 7', the faster the algorithm converges.

Definition C.3. Define &; as

.o t=1 ©5)
P04 s (6 —6) t>2

Theorem C.4. Consider a non-convex optimization problem. Suppose assumptions AI-AS5 are
satisfied, and let o, = a/\/f. For all T > 1, SGDF achieves the following guarantee:

< Cra?(logT + 1) + Cy
o 20T

where E(T) = ming—; o 7 E; 1 {HVf (9&”3} denotes the minimum of the squared-paradigm

E(T) (66)

expectation of the gradient, « is the learning rate at the 1-th step, C; are constants independent
of d and T, Cg is a constant independent of T, and the expectation is taken w.r.t all randomness
corresponding to gy.

Proof of convex Convergence.

Since f is an L-smooth function,

IVf (&) — V@) < L& — 643 (67)
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Thus,

f
V(&) &1 — &)+ fmﬂ &lls

1(Vf@0 Vfwnx¢f@wl—&»+wVfwafH1—&%PLMwl—&ﬁ
—WVNm Vﬂ@ﬁ+LmH@@)HVNM@Hlsw =€ — &l
< VF (&) = VL O+ Lligers — &+ (VS (80) &1 — €0)

2L
<o D6 — B3+ L leess — &3 + (V5 (60)  Eurr — &)

L
=§H§t — 04|53 + Ll|€er1 — &l + (Vf (82) , €1 — &)
———
(1) (2) (3)

(68)
Next, we will deal with the three terms (1), (2), and (3) separately.
For term (1)
Whent =1, & — 6;]5 =0
When t > 2,
B ?
e 03 = |25 0 000
2 1— B )
B s e
= ————o; 1 |G-l
1-5)" " e
32 d (69)
1
= Oét 1 (1 - Ky) (M- z) + K97
(-5 ) z;
(a) 9
< %1§:G

u—

Where (a) holds because for any ¢:

* el < 725 et (1= B1) 87" gl < 257 Zomy (1= B1) B1°Gi = G

* |lgtll2 < G, Vt, or for any dimension of the variable i: ||g; :||2 < G;, Vt

For term (2)
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Whent =1,
Eir1 — & =01 + (Op41 —0¢) — 0,
1-75
— (B~ 6)
-5 t+1 t
I o AN
- 1 _ﬁl (gt)
Qg 1-—
:‘1—/31 1—ﬁtmt+tht 7
_ o . o
=—1- ﬂ — 5 (51%"‘@ (1-51) 9t> l_Bthgt
__ (6% (1*Kf)g _ O[th g
1-gt 7 1-8"
1 —ﬁ1gt
Thus,
. 2 704t(1_Kt) . a Ky
[§e41 — &l H 1— 5 9t =73 —51% ,
o 2
t
(-1 )ttt
2
. 2
—7(1 — B1)? llg¢112 (71)
O‘? Zd:gz
(1 —61)2 P t,1
< O[% zd:GZ
_(1 —,81)2 P )
Whent > 2,
B B1 B1
§epr — & =01+ ——— (01 — 0¢) — 0 — (0 — 0i—1)
1—-p 1-5 7
1 3 (72)
= (0441 —0;) — 0 — 06—
1_ﬂ1(t+1 +) 1_Bl(t 1)
Due to R
Orp1 — 0r = — 4Gt
- O[t(l —Kt)
= 71 — ﬁf my — o K gy (73)
(1l — K
=- ti_ﬂtt) (Brmi—1 + (1 = B1) g¢) — e Kige
1
So,
§tr1 — &t
1 (1 — K, o 1-K,
=1 5 (— ti — 5 : (Bimi—1 + (1= B1) g¢) — othtgt) 1 flﬁl (— - i(_ = f 1)mt—1 - OZt—th—lgt—1>
B1 a(1-K;)  api(1—-Kiq) ai(1 — Ky) ar Ky B1
1_6177%—1@ 11— gt - - 1- 4 gt — 1_619t+1_ﬁ10¢t—1Kt—1gt—1
_ B ai(1 - Ky) ap1(1— K 1) ay(1 — Ky) ar Ky Brog—1 K1
BT N e -8 T1-p)%t Tiop 0
(74)

25



Under review as a conference paper at ICLR 2025

‘We have:
8 1-K) a(l-K)|
2 1 Qi(l — ¢ Qi1 (1L — g
_ <oll——FL o _
€61 — &ellz < 1_6177% 1®< 1— 3 1 > i
a(1-Ky) oKy Brog_1K;_1 2
21— 2||—————— g —
i H ( =g T1-p)" + -5 77,
% ||mt 1“ Ozt(l — Kt) _ Oét_l(l — Kt—l) ’ at(l —Kt) . Oét_l(l _Kt—l)
Ta-p)t =4 11— | 1-a g1
a1 —Ky) oKy Prog—1Ki—1 ?
2||— 2| ——————q;_
" H ( -5 T1-p)" + 1—p 77,
(75)
Because
o |my_1,] = (1= BY) [mt, i < |mt,i] < Gy, |me—1]| o0? < (maXiGi)2
2 d d
* lgelly =225y 9:‘21 <>im G?
« K, €0,1% wehave | K|, <0 1, |1 — Koo < 3¢, 1, < d
ar/(1=81) 20, apa/ (1=5171) /20
1 1
Oftgat—17 1_ﬂ{S1* {—1
Qi a1
== < —
l_ﬁt 1— i 1
Ay—1 7
:‘1ﬂt_1_ t—1 (76)
=a;1/(1=87") —au/ (1 - BY)
</ (=B <o/ (1-5)
Oét(l—Kt)_Oét 1(1—Kt 1) (651
1- gt 1- Bt T (=5
d
a; (1 - K a1 (1 — K _
tf_ﬁtt)* tll( tl) SZ(O&t—l/@* f1)—Ozt/(lfﬂf))liﬁd(at—l/(lf
1 - 1 =1
(77
Therefore
B3 2 do oy oy 2
i1 = &ll3 <21 (max ) : - e
t+ til2 (1_51)2 i (l—ﬂl) (1_ t— 1) (1_[3%) 1_512;
(78)

For term (3)

When ¢ = 1, referring to the case of ¢ = 1 in the previous subsection,

(16061 - &) = (57 0.~ 250

(Vr 00~ 12w 00) + (V00 - 25a)
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The last equality is due to the definition of g;: g = V f (6;) + (;. Let’s consider them separately:

823 %
(V00— 259 60) == {25 IV 00197 (60) o
8% 2
S e AL
(V00 ~125-6) <25 197 60l il
Qi
1.5 IVF @2 llge = V()] (81)

d
Qg 2

Thus
(Vf(0r), &1 — &)
L 2 200 ;o (82)
Whent > 2,
1-K, 11— K-
<Vf (9,5) ,§t+1 - £t> = <Vf (Ht),_l flﬂl mi_1© (atg — ﬂ{ t) _ Qi i(_ ﬂi_lt 1)>>
s(vron - (Mg« P e )+ (vren, - (M ) )
(V0. PY2EE 6 )+ (97 0 P2 )
1-— ﬂl 1- Bl
Start by looking at the first item after the equal sign:
B (1= Ky)  ap1(1— Kyq)
<Vf(9t>’_1ﬂlm“® ( B >>
B ap(1-K) o (1 - K q)
ST IV @l el |55 = S5 55
(84)

Sl flﬂl (miaxGi) (miaxGZ) -d (<1 fzgfl) - (1 atg{))

d
s ecr) ) 55 (25 )

The second and third terms after the equal sign:

(7o - (S 4 25 ) v o)+ (Vo - (504 125 ) o)

IV 65+ <Vf 8 —1ftﬂ§<t>

(0%
< _ t

- 158

(85)
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The fourth and fifth terms after the equal sign:

<Vf (01-1) ﬁmit:ilgt_lVf (et—1)> + <Vf (01-1) ﬂwfjg{lt_l@—1>

VS 00l 195 60) o 1l + 5“” 1||Vf<of>||ooHct||oo||11;||1

(86)
fflf%f (s (ms ) Y1+ flftéf (<) (o) 1

1=

< ﬂllftéll (miax Gi> (mlax Gi) d+ Blli%téll (m?X Gq;) (2 max Gi) d

<510lt 1
—1-

Final:

(VF(0r), 841 — &)
A ) <G . Q-1 oy o )
T3 (max G;) (max Gs) d<(1_ ) (1_%)) g V7 @l

+ ﬁlliétﬁ_ll (mzax Gi) (miaXG ) fl_tﬁll (miax Gi) (2 max Gi) d+ <Vf 04), —1(_%55Ct>

(87)
Summarizing the results
Let’s start summarizing: when ¢ = 1,
9 d d
Pl =€) <30+ b 00 36 = s VT @0l + 1 36
(88)
Taking the expectation over the random distribution of (1, (s, . .., (; on both sides of the inequality:

2 d
Blf (€)= (€] < 705 36— 2y IV @+ ZG2
B S ®Y
When t > 2,
[ (&e+1) — f(&)
£ Bi 9 L . N2 dag ' aa o
2a W " 1;G o 2( —W( mG) G- <(1— ) (1—B§)>

+ L ZGQ - 51 (m?XGO (m?XGi) -d <(1 ftg£_1) - (1 f%{))

IV f (9,5)||2 ﬁl_tﬁll (mlax Gi) (mlax Gi> d+ ﬁlliétéll (m?x Gi) (2 max Gi) d

_(1 p1)

(V100 -0 )

(90)
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Taking the expectation over the random distribution of (3, (s, . .., (; on both sides of the inequality:

Bt [f (§ev1) — f (&)

L B o~ . B N odan e w
SQ;(l—iﬂ )QOét—liX;GiJrL 27(1_&)2 (m?XGz) 1—5) <(1 = 1) (1_59)

i 1*512; 1—/31 (mpx) (m?XGi)'d<(1at_§l—l)<1ftﬁi>>

—E |Vf (Gt)”2 Bliytﬂll (mz_ax GZ-> (mlax Gi> d+ Blliytéll (mlax Gi> (2 max Gi) d

e Bt)

+E, <Vf (61, 1f‘tt<t>
' 1)

Since the value of 6, is independent of g;, they are statistically independent of (;:

-
=K, [< 51 7V (0), Ct>] 92)

:< T VS (0) M@OZO

Summing up both sides of the inequality fort =1,2,...,T":

* Left side of the inequality (can be reduced to maintain the inequality)

T T

Z LHS of the inequality = Z B¢ [f (§e41) — f (&)
t=1 t=1
= ZEt (&e+1)] — E¢ [f (&0)] 93)

—ZEt (e1)] = Een [f (&)
—ET f (Ers1)] — Eo [f (&1)]

Since f (&741) > ming f (0) = f (6*), & = 01, and both are deterministic:

ZEt (€e+1) = [ (&)] ZEx [f (07)] — Eo [f (61)] 94)
=f(0") = f(61)

* The right side of the inequality (can be enlarged to keep the inequality valid)

We perform a series of substitutions to simplify the symbols:

Whent > 2,
L. %uﬂﬁl ;02 (S G2ACe2
2 2t e 0 iy (e~ %) 2.0 (%~ %)
3. L a al; )? ZZ 1GE < (1f51>2 Z?:l G} 2 C3af
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2 (ma; G) (max; G) - d ((ﬁggl) - <1f‘m>) = ((ftﬁilw - <1a’61>)

25y B IV @0I3] < —auk [IVF 0)13]

6. 6113“6 L (max; G;) (max; G;) d + ﬁllf;;ll (max; G;) (2max; G;) d = Csay_q
Whent =1,
ocf d _
I L- - 5 )2 Z’L 1 GE < B2 >ie1 GF = Csof
2 — 7255 IV 0)113] <~k [V (80)113]
(= e t/ll2
2af Zz 1 G2 C6at

After substitution,

T

T
ZRHS of the inequality < Z Clat 1+ Z Csat Z oy [va (@)HZ]
t=1

t=2 t=1

~
Il
-

M=

+

T
Qi — Q.
(C2 + Cy) <(1 _t tlfl) B _tﬁ§)> + ; Csap—1 + ;CGO%

1

T T T T
Craf_y+) Caaf =) il {va (ﬂ)“g} +Y Csa1+ ) Coay
t=1 t=1 t=1

~
||
[\

'M& agh

t=1
T
g1 Qi
Cy+C -
z:l( : 4);<(1— ) (1_59> 95
- . ., . " 95)
=Y Cia?, + Y Csal -k, [||Vf (et)ng] +3 Csar + Y Coan
t=2 =1 t=1 t=1 t=1
d
(651 ar
+ Cy +C -
2 (Gt ((1—&) (15?))
T d o
<O+ 0o+ Ot O Yot~ Y [I9 00 + 3+ € Ewen)
t=1 t=1 i=1
T
<(C1+4C3+C5+Co) Y a? ZatEt {HVf (00l } (C2 + C) a flgl)
t=1 t=1
Combining the results of scaling on both sides of the inequality:
T T a
F(0%) = f(01) < (C1+ Cs + Cs + Cg) Z =Y R [HVf (@)”3} + (C2 + C4) (i _151)
t=1 t=1
T T a
— " ol [IVF 03] < (Cr+ Cs+ G5+ Co) Yo ad + 1 (02) = £ (0%) + (G2 + Ca) a5
t=1 t=1
(96)
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Dueto &, [|V7 (6] = Evcr [IVF @0)I3].

L T
Sl [V 0013] =Y ek [IVF 6013
t=1 P
T
Z;at :ﬂ%?.,TEt_l [HVf (90”3}
7 C0)

T
= :Egn TEt_l [|Vf et H }Z:

Thenlet C; + Cs + Cs + Cs 2 Cy, f(61) — f(6%) 4 (Cy + Cy) (127}31) £ (4, therefore
—_—

>0

T T
T)-Zat SC7ZO(%+C$

(98)
:>E(T) < C7Et 1at +Cg
Zt 1%
Since oy, = a/Vt, Y1, 1 < 1+ log T, we have:
Cra2(logT + 1) + C
E(T) < 7a”(log T+ 1) + Cs (99)

- 20v/T
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D DETAILED EXPERIMENTAL SUPPLEMENT

We performed extensive comparisons with other optimizers, including SGD Monro| (1951),
AdamKingma & Bal (2014), RAdamLiu et al.| (2019) and AdamW|_Loshchilov & Hutter (2017)).
The experiments include: (a) image classification on CIFAR datasetKrizhevsky et al.[|(2009) with
VGG [Simonyan & Zisserman|(2014), ResNet He et al.|(2016) and DenseNet Huang et al.| (2017), and
image recognition with ResNet on ImageNet Deng et al.| (2009).

D.1 IMAGE CLASSIFICATION WITH CNNs oN CIFAR

For all experiments, the model is trained for 200 epochs with a batch size of 128, and the learning
rate is multiplied by 0.1 at epoch 150. We performed extensive hyperparameter search as described
in the main paper. Detailed experimental parameters we place in Tab.[5] Here we report both training
and test accuracy in Fig.[7]and Fig.[8] SGDF not only achieves the highest test accuracy, but also a
smaller gap between training and test accuracy compared with other optimizers.

Table 5: Hyperparameters used for CIFAR-10 and CIFAR-100 datasets.

Optimizer  Learning Rate 51 Ba Epochs Schedule Weight Decay Batch Size €

SGDF 0.3 09  0.999 200 StepLR 0.0005 128 le-8
SGD 0.1 0.9 - 200 StepLR 0.0005 128 -
Adam 0.001 0.9 0.999 200 StepLR 0.0005 128 le-8
RAdam 0.001 0.9  0.999 200 StepLR 0.0005 128 le-8
AdamW 0.001 09  0.999 200 StepLR 0.01 128 le-8
MSVAG 0.1 09  0.999 200 StepLR 0.0005 128 le-8
AdaBound 0.001 0.9 0.999 200 StepLR 0.0005 128 -
Sophia 0.0001 0.965 0.99 200 StepLR 0.1 128 -
Lion 0.00002 0.9 0.99 200 StepLR 0.1 128 -

Note: StepLR indicates a learning rate decay by a factor of 0.1 at the 150th epoch.

D.2 IMAGE CLASSIFICATION ON IMAGENET

We experimented with a ResNet18 on ImageNet classification task. For SGD, we set an initial
learning rate of 0.1, and multiplied by 0.1 every 30 epochs; for SGDF, we use an initial learning rate
of 0.5, set 31 = 0.5. Weight decay is set as 10~* for both cases. To match the settings in|Liu et al.
(2019). Detailed experimental parameters we place in Tab.[6} As shown in Fig.[9] SGDF achieves an
accuracy very close to SGD.

Table 6: Hyperparameters used for ImageNet.

Optimizer Learning Rate (31 Ba Epochs Schedule Weight Decay Batch Size €

SGDF 0.5 0.5 0.999 100 StepLR 0.0005 256 le-8
SGD 0.1 - - 100 StepLR 0.0005 256 -
SGDF 0.5 0.5 0.999 90 Cosine 0.0005 256 le-8
SGD 0.1 - - 90 Cosine 0.0005 256 -

Note: StepLR indicates a learning rate decay by a factor of 0.1 every 30 epochs.

D.3 OBIJECTIVE DETECTION ON PASCAL VOC

We show the results on PASCAL VOCEveringham et al.| (2010). Object detection with a Faster-
RCNN modelRen et al.|(2015). Detailed experimental parameters we place in Fig. [/} The results are
reported in Tab. [3| and detection examples shown in Fig.[T0] These results also illustrate that our
method is still efficient in object detection tasks.
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Table 7: Hyperparameters for object detection on PASCAL VOC using Faster-RCNN+FPN with
different optimizers.

Optimizer Learning Rate (33 Ba Epochs Schedule Weight Decay Batch Size €

SGDF 0.01 0.9 0.999 4 StepLR 0.0001 2 le-8
SGD 0.01 0.9 - 4 StepLR 0.0001 2 -

Adam 0.0001 0.9 0.999 4 StepLR 0.0001 2 le-8
AdamW 0.0001 0.9 0.999 4 StepLR 0.0001 2 le-8
RAdam 0.0001 0.9 0.999 4 StepLR 0.0001 2 le-8

Note: StepLR schedule indicates a learning rate decay by a factor of 0.1 at the last epoch.

D.4 IMAGE GENERATION.

We experiment with one of the most widely used models, the Wasserstein-GAN with gradient penalty
(WGAN-GP)Salimans et al.|(2016)) using a small model with a vanilla CNN generator. Using popular
optimizerLuo et al.|(2019); [Zaheer et al.|(2018)); Balles & Hennig|(2018); [Bernstein et al.|(2020)), we
train the model for 100 epochs, generate 64,000 fake images from noise, and compute the Frechet
Inception Distance (FID)Heusel et al.|(2017) between the fake images and real dataset (60,000 real
images). FID score captures both the quality and diversity of generated images and is widely used
to assess generative models (lower FID is better). For SGD and MSVAG, we report results from
Zhuang et al.|(2020). We perform 5 runs of experiments, and report the results in Fig.[4] Detailed
experimental parameters we place in Tab.

Table 8: Hyperparameters for Image Generation Tasks.

Optimizer  Learning Rate [ Bo Epochs  Batch Size €

SGDF 0.01 0.5 0.999 100 64 le-8
Adam 0.0002 0.5 0.999 100 64 le-8
AdamW 0.0002 0.5 0.999 100 64 le-8
Fromage 0.01 0.5 0.999 100 64 le-8
RMSProp 0.0002 0.5 0.999 100 64 le-8
AdaBound 0.0002 0.5 0.999 100 64 le-8
Yogi 0.01 0.9 0.999 100 64 le-8
RAdam 0.0002 0.5 0.999 100 64 le-8

D.5 EXTENDED EXPERIMENT.

The study involves evaluating the vanilla Adam optimization algorithm and its enhancement with
a Wiener filter on the CIFAR-100 dataset. Fig. [IT]contains detailed test accuracy curves for both
methods across different models. The results indicate that the adaptive learning rate algorithms
exhibit improved performance when supplemented with the proposed first-moment filter estimation.
This suggests that integrating a Wiener filter with the Adam optimizer may improve performance.

D.6 OPTIMIZER TEST.

We derived a correction factor (1 — 31)(1 — 87!)/(1 + 1) from the geometric progression to correct
the variance of by the correction factor. So we test the SGDF with or without correction in VGG,
ResNet, DenseNet on CIFAR. We report both test accuracy in Fig.[I2] It can be seen that the SGDF
with correction exceeds the uncorrected one.

We built a simple neural network to test the convergence speed of SGDF compared to SGDM and
vanilla SGD. We trained 5 epochs and recorded the loss every 30 iterations. As Fig. [I3|shown, the
convergence rate of the filter method surpasses that of the momentum method, which in turn exceeds
that of vanilla SGD.
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Figure 7: Training (top row) and test (bottom row) accuracy of CNNs on CIFAR-10 dataset. We
report confidence interval ([4 = o]) of 3 independent runs.
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report confidence interval ([¢ + o]) of 3 independent runs.
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Figure 10: Detection examples using Faster-RCNN + FPN trained on PASCAL VOC.
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Figure 13: Comparison of convergence rates.
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