
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIGNAL PROCESSING MEETS SGD: FROM MOMENTUM
TO FILTER

Anonymous authors
Paper under double-blind review

ABSTRACT

In deep learning, stochastic gradient descent (SGD) and its momentum-based
variants are widely used for optimization, but they typically suffer from slow
convergence. Conversely, existing adaptive learning rate optimizers speed up
convergence but often compromise generalization. To resolve this issue, we pro-
pose a novel optimization method designed to accelerate SGD’s convergence
without sacrificing generalization. Our approach reduces the variance of the his-
torical gradient, improves first-order moment estimation of SGD by applying
Wiener filter theory, and introduces a time-varying adaptive gain. Empirical results
demonstrate that SGDF (SGD with Filter) effectively balances convergence and
generalization compared to state-of-the-art optimizers. The code is available at
https://anonymous.4open.science/r/SGDF-Optimizer/.

1 INTRODUCTION

During the training process, the optimizer serves as a critical component of the model. It refines and
adjusts model parameters to ensure that the model can recognize underlying data patterns. Beyond
updating weights, the optimizer’s role includes strategically navigating complex loss landscapes (Du
& Lee, 2018) to locate regions that offer the best generalization (Keskar et al., 2022). The chosen
optimizer significantly impacts training efficiency, influencing model convergence speed, gener-
alization performance, and resilience to data distribution shifts (Bengio & Lecun, 2007). A poor
optimizer choice can result in suboptimal convergence or failure to converge, whereas a suitable one
can accelerate learning and ensure robust performance (Ruder, 2016). Thus, continually refining
optimization algorithms is essential for enhancing the capabilities of machine learning models.

Meanwhile, Stochastic Gradient Descent (SGD) (Monro, 1951) and its variants, such as momentum-
based SGD (Sutskever et al., 2013), Adam (Kingma & Ba, 2014), and RMSprop (Hinton et al., 2012),
have secured prominent roles. Despite their substantial contributions to deep learning, these methods
have inherent drawbacks. They primarily exploit first-order moment estimation and frequently
overlook the pivotal influence of historical gradients on current parameter adjustments. Consequently,
they can result in training instability or poor generalization (Chandramoorthy et al., 2022), especially
with high-dimensional, non-convex loss functions common in deep learning (Goodfellow et al., 2016).
Such characteristics render adaptive learning rate methods prone to entrapment in sharp local minima,
which can significantly impair the model’s generalization capability (Zhang et al., 2021). Various
Adam variants (Chen et al., 2018a; Liu et al., 2019; Luo et al., 2019; Zhuang et al., 2020) aim to
improve optimization and enhance generalization performance by adjusting the adaptive learning
rate. Although these variants have achieved some success, they still have not completely resolved the
issue of generalization loss.

To achieve an effective trade-off between convergence speed and generalization capability (Geman
et al., 2014), this paper introduces a novel optimization method called SGDF (SGD with Filter).
SGDF incorporates filter theory from signal processing to enhance first-moment estimation, balancing
historical and current gradient estimates. Through its adaptive weighting mechanism, SGDF precisely
adjusts gradient estimates throughout the training process, thereby accelerating model convergence
while preserving generalization ability.

Initial evaluations demonstrate that SGDF surpasses many traditional adaptive learning rate and
variance reduction optimization methods across various benchmark datasets, particularly in terms
of accelerating convergence and maintaining generalization. This indicates that SGDF successfully

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

navigates the trade-off between speeding up convergence and preserving generalization capability.
By achieving this balance, SGDF offers a more efficient and robust optimization option for training
deep learning models.

The main contributions of this paper can be summarized as follows:

• We introduce SGDF, an optimizer that integrates historical and current gradient data to compute
the gradient’s variance estimate, addressing the slow convergence of the vanilla SGD method.

• We theoretically analyze the benefits of SGDF in terms of generalization (Sec. 3.3)and convergence
(Sec. 3.4), and empirically verify the effectiveness of SGDF (Sec. 4).

• We employ first-moment filter estimation in SGDF, which can also significantly enhance the
generalization capacity of adaptive optimization algorithms (e.g., Adam) (Sec. 4.4), surpassing
traditional momentum strategies.

2 PRELIMINARY ANALYSIS

2.1 PRELIMINARIES

Batch Normalization: Batch Normalization (BN) (Ioffe & Szegedy, 2015) is widely used to
normalize and rescale mini-batch data, reducing internal covariate shift and stabilizing gradient
distributions. BN helps mitigate gradient vanishing/exploding, improving convergence speed and

stability. The core BN operation is x̂(k) =
x(k) − µB√

σ2
B + ϵ

, where µB and σ2
B are the mini-batch mean

and variance, and ϵ is for numerical stability. The normalized values are rescaled as y(k) = γx̂(k)+β.

Signal Processing: Filters in signal processing are used to manipulate the frequency components of
a signal, typically to reduce noise or enhance specific features. One common example is the Low
Pass Filter, which smooths high frequency fluctuations by applying an exponential moving average.
(Liu et al., 2019) generalized that the first-moment (momentum) of adaptive-based optimizers can be

expressed as ϕ(x1, · · · , xt) =
(1− β1)

∑t
i=1 β

t−i
1 xi

1− βt
1

, where β1 is the smoothing factor controlling

the influence of past values in the exponential moving average. To differentiate this from the standard
momentum method discussed in later sections (Sutskever et al., 2013), we refer to this exponential
moving average form of SGD as SGD-LPF (Low Pass Filter) in this section. Another important filter
is the Wiener Filter (Wiener, 1950), which minimizes the mean square error between an estimated
signal and the true signal by filtering out noise. Unlike a simple low-pass filter, the Wiener Filter has
time-varying gain, adapting its response dynamically based on the characteristics of the signal and

noise. The Wiener filter’s frequency response is given by H(f) =
Sxx(f)

Sxx(f) + Snn(f)
, where Sxx(f)

is the power spectral density of the signal and Snn(f) is the power spectral density of the noise. This
adaptive nature allows for more accurate signal recovery by optimally balancing noise reduction and
signal preservation.

2.2 GRADIENT ANALYSIS

We performed a series of experiments to evaluate the overall performance of VGG networks (Si-
monyan & Zisserman, 2014) trained using different techniques with SGD. We first compared Vanilla
SGD, SGD-BN (trained using a VGG with BN), SGD-LPF, and the Wiener Filter applied in our
proposed SGDF algorithm in terms of overall performance. Afterward, we observed the impact of
these techniques on the gradient distributions within the feature layers.

From the Fig. 1, it is clear that the VGG trained without BN using vanilla SGD exhibits lower
accuracy and slower convergence in both the training and testing phases. In contrast, the VGG with
BN significantly improves both convergence speed and accuracy. SGD-LPF helps smooth the gradient
fluctuations and accelerates convergence, but still results in lower performance compared to the BN-
enhanced network. However, the Wiener Filter SGDF algorithm achieves the best performance, with
both training and testing accuracies significantly surpassing other methods, while also converging
faster and more stably throughout the training process.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We recorded the gradient values of the feature layers during the first 100 iterations for each algorithm.
Using kernel density estimation, we sampled these gradients to generate PDF curves, which are
presented in Fig. 2. In the VGG network without BN, the gradient distributions of the feature layers
show significant instability. SGD: As Fig. 2 (a) shown, the gradient of different layers fluctuates
greatly and is unevenly distributed, which causes the network to oscillate during the training process
and makes it difficult to converge stably. SGD-BN: In the VGG network with BN, on the other
hand, the gradient variance is significantly reduced as seen in Fig. 2 (c), and the gradient distribution
becomes smoother and more concentrated. SGD-LPF: Similarly, the Fig. 2(d) shows that SGD-LPF
effectively smooths the gradient fluctuations through the exponential moving average. However,
due to the fixed weighting coefficient, there is still a certain degree of gradient shift during some
iterations, which can lead to systematic bias in the gradient update direction during training, ultimately
preventing the performance from surpassing that of the BN-enhanced network. SGD-WF: Finally,
Fig. 2 (b) presents the gradient distribution of the VGG network trained with the Wiener-filtered
SGDF algorithm. Compared to other methods, SGDF produces a gradient distribution as concentrated
as BN, with less noise and no gradient shift. This improvement leads to a more stable training process
and better convergence across all layers.

0 25 50 75 100 125 150 175 200
20

30

40

50

60

70

80

90

100

Tr
ai

n
Ac

cu
ra

cy

SGD-Vanilla
SGD-Batch Normalization
SGD-Low Pass Filter
SGD-Wiener Filter

0 25 50 75 100 125 150 175 200
Training Epoch

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

SGD-Vanilla
SGD-Batch Normalization
SGD-Low Pass Filter
SGD-Wiener Filter

Figure 1: Training of VGG on the
CIFAR-100 dataset.

Figure 2: The gradient histogram of the VGG on the CIFAR-
100 dataset. The x-axis is the gradient value and the height
is the frequency. SGD trains the VGG without BN, the vari-
ance of the gradient fluctuates dramatically and the update is
unstable.

3 METHOD

We can find from the previous section that reducing the variance can improve the performance of
SGD. However, previous variance reduction techniques (Defazio et al., 2014; Johnson & Zhang,
2013; Schmidt et al., 2017) have in turn impaired the generalization ability of SGD, and we introduce
SGDF in this section and highlight in 3.3 why our method does not impair generalization.

3.1 SGDF GENERAL INTRODUCTION

In algorithm 1, st serves as a key indicator, calculated as the exponential moving average of the
squared difference between the current gradient gt and its momentum mt, acting as a marker for
gradient variation with weight-adjusted by β2. (Zhuang et al., 2020) first proposed the calculation of
st, which is utilized for estimating the fluctuation variance of the stochastic gradient. We derived a
correction factor (1− β1)(1− β2t

1)/(1 + β1) under the assumption that mt and gt are independently
and identically distributed (i.i.d.), to accurately estimate the variance of mt using st. Fig. 12 compares
performances with and without the correction factor, showing superior results with correction. For
the derivation of the correction factor, please refer to Appendix A.2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1: SGDF, Wiener Filter Estimate Gradient. All operations are element-wise.

Input: {αt}Tt=1: step size, {β1, β2}: attenuation coefficient, θ0: initial parameter, f(θ):
stochastic objective function

Output: θT : resulting parameters.
Init: m0 ← 0, s0 ← 0
while t = 1 to T do

gt ← ∇ft(θt−1) (Calculate Gradients w.r.t. Stochastic Objective at Timestep t)
mt ← β1mt−1 + (1− β1)gt (Calculate Exponential Moving Average)
st ← β2st−1 + (1− β2)(gt −mt)

2 (Calculate Exponential Moving Variance)

m̂t ←
mt

1− βt
1

, ŝt ←
(1− β1)(1− β2t

1)st
(1 + β1)(1− βt

2)
(Bias Correction)

Kt ←
ŝt

ŝt + (gt − m̂t)2
(Calculate Estimate Gain)

ĝt ← m̂t +Kt(gt − m̂t) (Update Gradient Estimation)
θt ← θt−1 − αtĝt (Update Parameters)

return θT

At each time step t, gt represents the stochastic gradient for our objective function, while mt

approximates the historical trend of the gradient through an exponential moving average. The
difference gt − mt highlights the gradient’s deviation from its historical pattern, reflecting the
inherent noise or uncertainty in the instantaneous gradient estimate, which can be expressed as
p(gt|D) ∼ N (gt;mt, σ

2
t) (Liu et al., 2019).

SGDF utilizes the gain Kt, where the components of each dimension of the estimated gain range
between 0 and 1, to balance the current observed gradient gt and the past corrected gradient m̂t, thus
optimizing the gradient estimate. This balance plays a crucial role in noisy or complex optimization
scenarios, helping to mitigate noise and achieve stable gradient direction, faster convergence, and
enhanced performance. The computation of Kt, based on st and gt −mt, aims to minimize the
expected variance of the corrected gradient ĝt for optimal linear estimation in noisy conditions. For
the method derivation, please refer to Appendix A.1.

3.2 FUSION OF GAUSSIAN DISTRIBUTIONS FOR GRADIENT ESTIMATE

By fusing two Gaussian distributions, SGDF significantly reduces the variance of gradient estimates,
thereby benefiting in solving complex stochastic optimization problems. In this section, we will delve
into how SGDF achieves the reduction of gradient estimate variance.

The properties of SGDF ensure that the estimated gradient is a linear combination of the current noisy
gradient observation gt and the first-order moment estimate m̂t. These two components are assumed
to have Gaussian distributions, where gi ∼ N

(
µ, σ2

)
. Hence, their fusion by the filter naturally

ensures that the fused estimate ĝt is also Gaussian.

Consider two Gaussian distributions for the momentum term m̂t and the current gradient gt:

• The exponential moving average term m̂t is normally distributed with mean µm and variance
σ2
m, denoted as m̂t ∼ N (µm, σ2

m).
• The current gradient gt is normally distributed with mean µg and variance σ2

g , denoted as
gt ∼ N (µg, σ

2
g).

The product of their probability density functions is given by:

N(m̂t;µm, σm) ·N(gt;µg, σg) =
1

2πσmσg
exp

(
− (m̂t − µm)2

2σ2
m

− (gt − µg)
2

2σ2
g

)
(1)

Through coefficient matching in the exponential terms, we obtain the new mean and variance:

µ′ =
σ2
gµm + σ2

mµg

σ2
m + σ2

g

σ′2 =
σ2
mσ2

g

σ2
m + σ2

g

(2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The new mean µ′ is a weighted average of the two means, µm and µg, with weights inversely
proportional to their variances. This places µ′ between µm and µg, closer to the mean with the
smaller variance. The new standard deviation σ′ is smaller than either of the original standard
deviations σm and σg, reflecting the reduced uncertainty in the estimate due to the combination of
information from both sources. This is a direct consequence of the Wiener Filter’s optimality in the
mean-square error sense. The proof is provided in Appendix A.3.

3.3 GENERALIZATION ANALYSIS OF THE VARIANCE LOWER BOUND

In previous variance reduction techniques, variance is reduced at a rate of ξt−1, ξ ∈ (0, 1). However,
this can lower the variance to a point where it limits necessary stochastic exploration, hindering
optimization. The Wiener Filter, guided by the Cramér-Rao lower bound (CRLB) (Rao, 1992),
ensures a lower bound on variance. We model this advantage using the Fokker-Planck equation to
highlight the optimization benefits of maintaining a variance lower bound.
Theorem 3.1. Consider a system governed by the Fokker-Planck equation, describing the evolution
of the probability density P in parameter space. For a loss function f(θ) and a noise variance matrix
Dij satisfying Di ≥ C > 0, with C as the Cramér-Rao lower bound, the steady-state probability
density (∂P∂t = 0) is:

P (θ) =
1

Z
exp

(
−

n∑
i=1

f(θ)

Di

)
, (3)

where Z is the normalization constant, assuming Dij = Diδij .

The existence of a variance lower bound critically enhances the algorithm’s exploration capabilities,
especially in regions of the loss landscape where gradients are minimal. By preventing the probability
density function from becoming unbounded, it ensures continuous exploration and increases the
probability of converging to flat minima associated with better generalization properties (Yang et al.,
2023). The proof of Theorem 3.1 is provided in Appendix A.4.

3.4 CONVERGENCE ANALYSIS IN CONVEX AND NON-CONVEX OPTIMIZATION

Finally, we provide the convergence property of SGDF as shown in Theorem 3.2 and Theorem 3.3.
The assumptions are common and standard when analyzing the convergence of convex and non-
convex functions via SGD-based methods (Chen et al., 2018b; Kingma & Ba, 2014; Reddi et al.,
2018). Proofs for convergence in convex and non-convex cases are provided in Appendix B and
Appendix C, respectively. In the convergence analysis, the assumptions are relaxed and the upper
bound is reduced due to the estimation gain introduced by SGDF, promoting faster convergence.
Theorem 3.2. (Convergence in convex optimization) Assume that the function ft has bounded
gradients, ∥∇ft(θ)∥2 ≤ G, ∥∇ft(θ)∥∞ ≤ G∞ for all θ ∈ Rd and distance between any θt
generated by SGDF is bounded, ∥θn − θm∥2 ≤ D, ∥θm − θn∥∞ ≤ D∞ for any m,n ∈ {1, ..., T},
and β1, β2 ∈ [0, 1). Let αt = α/

√
t. SGDF achieves the following guarantee, for all T ≥ 1:

R(T) ≤D2

α

d∑
i=1

√
T +

2D∞G∞

1− β1

d∑
i=1

∥g1:T,i∥2 +
2αG2

∞(1 + (1− β1)
2)√

T (1− β1)2

d∑
i=1

∥g1:T,i∥22 (4)

where R(T) =
∑T

t=1 ft(θt)−ft(θ∗) denotes the cumulative performance gap between the generated
solution and the optimal solution.

For the convex case, Theorem 3.2 implies that the regret of SGDF is upper bounded by O(
√
T). In the

Adam-type optimizers, it’s crucial for the convex analysis to decay β1,t towards zero (Kingma & Ba,
2014; Zhuang et al., 2020). We have relaxed the analysis assumption by introducing a time-varying
gain Kt, which can adapt with variance. Moreover, Kt converges with variance at the end of training
to improve convergence (Sutskever et al., 2013).
Theorem 3.3. (Convergence for non-convex stochastic optimization) Under the assumptions:

• A1 Bounded variables (same as convex). ∥θ − θ∗∥2 ≤ D, ∀θ, θ∗ or for any dimension i of the
variable, ∥θi − θ∗i ∥2 ≤ Di, ∀θi, θ∗i

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

• A2 The noisy gradient is unbiased. For ∀t, the random variable ζt is defined as ζt = gt −∇f (θt),

ζt satisfy E [ζt] = 0, E
[
∥ζt∥22

]
≤ σ2, and when t1 ̸= t2, ζt1 and ζt2 are statistically independent,

i.e., ζt1 ⊥ ζt2 .

• A3 Bounded gradient and noisy gradient. At step t, the algorithm can access a bounded noisy
gradient, and the true gradient is also bounded. i.e. ||∇f(θt)|| ≤ G, ||gt|| ≤ G, ∀t > 1.

• A4 The property of function. (1)f is differentiable; (2) ||∇f(x) −∇f(y)|| ≤ L||x − y||, ∀x, y;
(3) f is also lower bounded.

Consider a non-convex optimization problem. Suppose assumptions A1-A4 are satisfied, and let
αt = α/

√
t. For all T ≥ 1, SGDF achieves the following guarantee:

E(T) ≤ C7α
2(log T + 1) + C8

2α
√
T

(5)

where E(T) = mint=1,2,...,T Et−1

[
∥∇f (θt)∥22

]
denotes the minimum of the squared-paradigm

expectation of the gradient, α is the learning rate at the 1-th step, C7 are constants independent
of d and T , C8 is a constant independent of T , and the expectation is taken w.r.t all randomness
corresponding to gt.

Theorem 3.3 indicates that the convergence rate for SGDF in the non-convex case is O(log T/
√
T),

which is comparable to Adam-type optimizers (Chen et al., 2018b; Reddi et al., 2018). Note that
in our derivation, the terms related to the estimated gain Kt were scaled to their maximum upper
bounds, simplifying the upper bound results. Importantly, we did not rely on the µ-strongly convex
assumption (Balles & Hennig, 2018) but used the most general smoothness assumption to obtain this
convergence rate. In practice, convergence speed will improve as variance diminishes, causing Kt

to converge more rapidly and influencing the overall convergence rate. This reduction in the upper
bound due to the convergence of variance explains why SGDF converges faster than SGD.

4 EXPERIMENTS

4.1 EMPIRICAL EVALUATION

In this study, we focus on the following tasks: Image Classification. We employed the VGG (Si-
monyan & Zisserman, 2014), ResNet (He et al., 2016), and DenseNet (Huang et al., 2017) models
for image classification tasks on the CIFAR dataset (Krizhevsky et al., 2009). The major difference
between these three network architectures is the residual connectivity, which we will discuss in
Sec. 4.4. We evaluated and compared the performance of SGDF with other optimizers such as
SGD, Adam, RAdam (Liu et al., 2019), AdamW (Loshchilov & Hutter, 2017), MSVAG (Balles
& Hennig, 2018), Adabound (Luo et al., 2019), Sophia (Liu et al., 2023), and Lion (Chen et al.,
2023), all of which were implemented based on the official PyTorch. Additionally, we further tested
the performance of SGDF on the ImageNet dataset Deng et al. (2009) using the ResNet model.
Object Detection. Object detection was performed on the PASCAL VOC dataset (Everingham
et al., 2010) using Faster-RCNN (Ren et al., 2015) integrated with FPN. For hyper-parameter tuning
related to image classification and object detection, refer to (Zhuang et al., 2020). Image Generation.
Wasserstein-GAN (WGAN) (Arjovsky et al., 2017) on the CIFAR-10 dataset.

Hyperparameter tuning. Following Zhuang et al. (Zhuang et al., 2020), we delved deep into the
optimal hyperparameter settings for our experiments. In the image classification task, we employed
these settings:

• SGDF: We adhered to Adam’s original parameter values: β1 = 0.9, β2 = 0.999, ϵ = 10−8.

• SGD: We set the momentum to 0.9, the default for networks like ResNet and DenseNet. The
learning rate was searched in the set {10.0, 1.0, 0.1, 0.01, 0.001}.

• Adam, RAdam, MSVAG, AdaBound: Traversing the hyperparameter landscape, we scoured β1

values in {0.5, 0.6, 0.7, 0.8, 0.9}, probed α as in SGD, while tethering other parameters to their
literary defaults.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

• AdamW, SophiaG, Lion: Mirroring Adam’s parameter search schema, we fixed weight decay at
5× 10−4; yet for AdamW, whose optimal decay often exceeds norms (Loshchilov & Hutter, 2017),
we ranged weight decay over

{
10−4, 5× 10−4, 10−3, 10−2, 10−1

}
.

• SophiaG, Lion: We searched for the learning rate among {10−3, 10−4, 10−5} and adjusted Lion’s
learning rate (Liu et al., 2023). Following (Liu et al., 2023; Chen et al., 2023), we set β1=0.965,
0.9 and β2=0.99 as the default parameters.

CIFAR-10/100 Experiments. We initially trained on the CIFAR-10 and CIFAR-100 datasets using
the VGG, ResNet, and DenseNet models and assessed the performance of the SGDF optimizer. In
these experiments, we employed basic data augmentation techniques such as random horizontal flip
and random cropping (with a 4-pixel padding). To facilitate result reproduction, we provide the
parameter table for this subpart in Tab. 5. The results represent the mean and standard deviation of 3
runs, visualized as curve graphs in Fig. 3.

(a) VGG11 on CIFAR-10 (b) ResNet34 on CIFAR-10 (c) DenseNet121 on CIFAR-10

(d) VGG11 on CIFAR-100 (e) ResNet34 on CIFAR-100 (f) DenseNet121 on CIFAR-100

Figure 3: Test accuracy ([µ± σ]) on CIFAR.

As Fig. 3 shows, that it is evident that the SGDF optimizer exhibited convergence speeds comparable
to adaptive optimization algorithms. Additionally, SGDF’s final test set accuracy was either better
than or equal to that achieved by SGD.

ImageNet Experiments. We use the best-reported parameters from (Chen et al., 2018a; Liu et al.,
2019). We applied basic data augmentation strategies such as random cropping and random horizontal
flipping. The results are presented in Tab. 1. To facilitate result reproduction, we provide the parameter
table for this subpart in Tab. 6. Detailed training and test curves are depicted in Fig. 9. Additionally,
to mitigate the effect of learning rate scheduling, we employed cosine learning rate scheduling as
suggested by (Chen et al., 2023; Zhang et al., 2023) and trained ResNet18, 34, and 50 models. The
results are summarized in Tab. 2. Experiments on the ImageNet dataset demonstrate that SGDF has
improved convergence speed and achieves similar accuracy to SGD on the test set.

Table 1: Top-1, 5 accuracy of ResNet18 on ImageNet. ∗ † ‡ is reported in Zhuang et al. (2020);
Chen et al. (2018a); Liu et al. (2019).

Method SGDF SGD AdaBound Yogi MSVAG Adam RAdam AdamW

Top-1 70.23 70.23† 68.13† 68.23† 65.99∗ 63.79† (66.54‡) 67.62‡ 67.93†

Top-5 89.55 89.40† 88.55† 88.59† - 85.61† - 88.47†

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Cosine learning rate scheduling train ImageNet. ∗ is reported in Zhang et al. (2023)

Model ResNet18 ResNet34 ResNet50

SGDF 70.16 73.37 76.03
SGD 69.80 73.26 76.01∗

Object Detection. We conducted object detection experiments on the PASCAL VOC dataset (Ever-
ingham et al., 2010). The model used in these experiments was pre-trained on the COCO dataset (Lin
et al., 2014), obtained from the official website. We trained this model on the VOC2007 and VOC2012
trainval dataset (17K) and evaluated it on the VOC2007 test dataset (5K). The utilized model was
Faster-RCNN (Ren et al., 2015) with FPN, and the backbone was ResNet50 (He et al., 2016). Results
are summarized in Tab. 3. To facilitate result reproduction, we provide the parameter table for this
subpart in Tab. 7. As expected, SGDF outperforms other methods. These results also illustrate the
efficiency of our method in object detection tasks.

Table 3: The mAP on PASCAL VOC using Faster-RCNN+FPN.

Method SGDF SGD Adam AdamW RAdam

mAP 83.81 80.43 78.67 78.48 75.21

Image Generation. The stability of optimizers is crucial, especially when training Generative
Adversarial Networks (GANs). If the generator and discriminator have mismatched complexities,
it can lead to imbalance during GAN training, causing the GAN to fail to converge. This is known
as model collapse. For instance, Vanilla SGD frequently causes model collapse, making adaptive
optimizers like Adam and RMSProp the preferred choice. Therefore, GAN training provides a good
benchmark for assessing optimizer stability. For reproducibility details, please refer to the parameter
table in Tab. 8.

Figure 4: FID score of WGAN-GP.

We evaluated the Wasserstein-GAN with gradient penalty (WGAN-GP) (Salimans et al., 2016). Using
well-known optimizers (Bernstein et al., 2020; Zaheer et al., 2018), the model was trained for 100
epochs. We then calculated the Frechet Inception Distance (FID) (Heusel et al., 2017) which is a
metric that measures the similarity between the real image and the generated image distribution and
is used to assess the quality of the generated model (lower FID indicates superior performance). Five
random runs were conducted, and the outcomes are presented in Fig.4. Results for SGD and MSVAG
were extracted from (Zhuang et al., 2020).

Experimental results demonstrate that SGDF significantly enhances WGAN-GP model training,
achieving a FID score higher than vanilla SGD and outperforming most adaptive optimization
methods. The integration of a Wiener filter in SGDF facilitates smooth gradient updates, mitigating
training oscillations and effectively addressing the issue of pattern collapse.

4.2 TOP EIGENVALUES OF HESSIAN AND HESSIAN TRACE

The success of optimization algorithms in deep learning not only depends on their ability to minimize
training loss, but also critically hinges on the nature of the solutions they converge to. We numerically
verified the hessian matrix properties between the different methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We computed the Hessian spectrum of ResNet-18 trained on the CIFAR-100 dataset for 200 epochs
using four optimization methods: SGD, SGDM, Adam, and SGDF. These experiments ensure that all
methods achieve similar results on the training set. We employed power iteration (Yao et al., 2018)
to compute the top eigenvalues of Hessian and Hutchinson’s method (Yao et al., 2020a) to compute
the Hessian trace. Histograms illustrating the distribution of the top 50 Hessian eigenvalues for each
optimization method are presented in Fig. 5.

Trace: 184.14
λmax: 17.03

(a) SGDF

Trace: 344.75
λmax: 26.51

(b) SGDM

Trace: 267.64
λmax: 30.07

(c) SGD

Trace: 3376.97
λmax: 183.11

(d) Adam

Figure 5: Histogram of Top 50 Hessian Eigenvalues. The lower the value, the better the results of the
test dataset.

4.3 VISUALIZATION OF LANDSCAPES

We visualized the loss landscapes of models trained with SGD, SGDM, SGDF, and Adam using
the ResNet-18 model on CIFAR-100, following the method in (Li et al., 2018). All models are
trained with the same hyperparameters for 200 epochs, as detailed in Sec. 4.1. As shown in Fig. 6,
SGDF finds flatter minima. Notably, the visualization reveals that Adam is more prone to converge to
sharper minima.

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.5

1.0

1.5

2.0

(a) Adam

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.5

1.0

1.5

2.0

(b) SGD

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.5

1.0

1.5

2.0

(c) SGDM

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.5

1.0

1.5

2.0

(d) SGDF

Figure 6: Visualization of loss landscape. Adam converges to sharp minima.

4.4 WIENER FILTER COMBINES ADAM

We’ve conducted comparative experiments on the CIFAR-100 dataset, evaluating both the vanilla
Adam algorithm and Wiener Adam, which substitutes the first-moment gradient estimates in the
Adam optimizer with Wiener filter estimates. The results are presented in Tab. 4, and the detailed test
curves are depicted in Fig. 11. This suggests that our first-moment filter estimation method has the
potential to be applied to other optimization methods.

Table 4: Accuracy comparison between Adam and Wiener-Adam.

Model VGG11 ResNet34 DenseNet121

Wiener-Adam 62.64 73.98 74.89
Vanilla-Adam 56.73 72.34 74.89

For VGG without BN, the Wiener filter significantly improves performance by providing more
accurate gradient estimates, reducing noise-induced errors, and ultimately enhancing accuracy. In
contrast, for ResNet and DenseNet, which already incorporate BN and leverage residual and dense
connections to stabilize gradient flow, the benefits of the Wiener filter are less pronounced. These
architectures inherently promote stable gradient updates through their structural design, reducing the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

additional advantages offered by the Wiener filter. This explains why the performance improvements
vary across different architectures, as seen in Tab. 4. While Wiener-Adam provides a notable boost in
simpler architectures like VGG, its impact is diminished in more complex networks where existing
mechanisms already aid gradient stability.

5 RELATED WORKS

Variance Reduction to Adaptive Methods. In the early stages of deep learning development,
optimization algorithms focused on reducing the variance of gradient estimation (Balles & Hennig,
2018; Defazio et al., 2014; Johnson & Zhang, 2013; Schmidt et al., 2017) to achieve a linear
convergence rate. Subsequently, the emergence of adaptive learning rate methods (Dozat, 2016;
Duchi et al., 2011; Zeiler, 2012) marked a significant shift in optimization algorithms. While SGD
and its variants have advanced many applications, they come with inherent limitations. They often
oscillate or become trapped in sharp minima (Wilson et al., 2017). Although these methods can
lead models to achieve low training loss, such minima frequently fail to generalize effectively to
new data (Hardt et al., 2015; Xie et al., 2022). This issue is exacerbated in the high-dimensional,
non-convex landscapes characteristic of deep learning settings (Dauphin et al., 2014; Lucchi et al.,
2022).

Sharp and Flat Solutions. The generalization ability of a deep learning model depends heavily on
the nature of the solutions found during the optimization process. Keskar et al. (Keskar et al., 2017)
demonstrated experimentally that flat minima generalize better than sharp minima. SAM (Foret et al.,
2021) theoretically showed that the generalization error of smooth minima is lower than that of sharp
minima on test data, and further proposed optimizing the zero-order smoothness. GAM (Zhang et al.,
2023) improves SAM by simultaneously optimizing the prediction error and the number of paradigms
of the maximum gradient in the neighborhood during the training process. Adaptive Inertia (Xie
et al., 2020) aims to balance exploration and exploitation in the optimization process by adjusting the
inertia of each parameter update. This adaptive inertia mechanism helps the model avoid falling into
sharp local minima.

Second-Order and Filter Methods. The recent integration of second-order information into op-
timization problems has gained popularity (Liu et al., 2023; Yao et al., 2020b). Methods such as
Kalman Filter (Kalman, 1960) combined with Gradient Descent incorporate second-order curvature
information (Ollivier, 2019; Vuckovic, 2018). The KOALA algorithm (Davtyan et al., 2022) posits
that the optimizer must adapt to the loss landscape. It adjusts learning rates based on both gradient
magnitudes and the curvature of the loss landscape. However, it should be noted that the Kalman
filtering framework introduces more complex parameter settings, which can hinder understanding
and application.

6 CONCLUSION

In this paper, we introduce SGDF, a novel optimization method that estimates the gradient for faster
convergence by leveraging both the variance of historical gradients and the current gradient. We
demonstrate that SGDF yields solutions with a flat spectrum akin to SGD through Hessian spectral
analysis. Through extensive experiments employing various deep learning architectures on benchmark
datasets, we showcase SGDF’s superior performance compared to other state-of-the-art optimizers,
striking a balance between convergence speed and generalization.

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients. In International Conference on Machine Learning, pp. 404–413. PMLR, 2018.

Yoshua Bengio and Yann Lecun. Scaling learning algorithms towards ai. 2007.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jeremy Bernstein, Arash Vahdat, Yisong Yue, and Ming-Yu Liu. On the distance between two neural
networks and the stability of learning. Advances in Neural Information Processing Systems, 33:
21370–21381, 2020.

Nisha Chandramoorthy, Andreas Loukas, Khashayar Gatmiry, and Stefanie Jegelka. On the general-
ization of learning algorithms that do not converge. Advances in Neural Information Processing
Systems, 35:34241–34257, 2022.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. arXiv preprint
arXiv:1806.06763, 2018a.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms. arXiv
preprint arXiv:2302.06675, 2023.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. arXiv preprint arXiv:1808.02941, 2018b.

Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. MIT Press, 2014.

Aram Davtyan, Sepehr Sameni, Llukman Cerkezi, Givi Meishvili, Adam Bielski, and Paolo Favaro.
Koala: A kalman optimization algorithm with loss adaptivity. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 6471–6479, 2022.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in Neural Information
Processing Systems, pp. 1646–1654, 2014.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
2009.

Timothy Dozat. Incorporating nesterov momentum into adam. ICLR Workshop, 2016.

Simon Du and Jason Lee. On the power of over-parametrization in neural networks with quadratic
activation. In International conference on machine learning, pp. 1329–1338. PMLR, 2018.

Duchi, John, Hazan, Elad, Singer, and Yoram. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 2011.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Pierre Foret et al. Sharpness-aware minimization for efficiently improving generalization. In ICLR,
2021. spotlight.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma.
Neural Computation, 4(1):1–58, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. Mathematics, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning lecture
6a overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. JMLR.org, 2015.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 1960.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2022.

Nitish Shirish Keskar et al. On large-batch training for deep learning: Generalization gap and sharp
minima. In ICLR, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. Advances in neural information processing systems, 31, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. European
Conference on Computer Vision (ECCV), 2014.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Aurelien Lucchi, Frank Proske, Antonio Orvieto, Francis Bach, and Hans Kersting. On the theoret-
ical properties of noise correlation in stochastic optimization. Advances in Neural Information
Processing Systems, 35:14261–14273, 2022.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

Robbins Sutton Monro. a stochastic approximation method. Annals of Mathematical Statistics, 22(3):
400–407, 1951.

Yann Ollivier. The extended kalman filter is a natural gradient descent in trajectory space. arXiv:
Optimization and Control, 2019.

C Radhakrishna Rao. Information and the accuracy attainable in the estimation of statistical pa-
rameters. In Breakthroughs in Statistics: Foundations and basic theory, pp. 235–247. Springer,
1992.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Neural Information Processing Systems (NIPS), 2015.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1):83–112, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. Computer Science, 2014.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pp. 1139–1147.
PMLR, 2013.

James Vuckovic. Kalman gradient descent: Adaptive variance reduction in stochastic optimization.
ArXiv, 2018.

Norbert Wiener. The extrapolation, interpolation and smoothing of stationary time series, with
engineering applications. Journal of the Royal Statistical Society Series A (General), 1950.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information processing
systems, 30, 2017.

Zeke Xie, Xinrui Wang, Huishuai Zhang, Issei Sato, and Masashi Sugiyama. Adai: Separating the
effects of adaptive learning rate and momentum inertia. arXiv preprint arXiv:2006.15815, 2020.

Zeke Xie, Qian Yuan Tang, Yunfeng Cai, Mingming Sun, and Ping Li. On the power-law spectrum in
deep learning: A bridge to protein science. arXiv preprint arXiv:2201.13011, 2, 2022.

Ning Yang, Chao Tang, and Yuhai Tu. Stochastic gradient descent introduces an effective landscape-
dependent regularization favoring flat solutions. Physical Review Letters, 130(23):237101, 2023.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based analysis
of large batch training and robustness to adversaries. Advances in Neural Information Processing
Systems, 31, 2018.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Mahoney. Pyhessian: Neural networks
through the lens of the hessian. In International Conference on Big Data, 2020a.

Zhewei Yao, Amir Gholami, Sheng Shen, Kurt Keutzer, and Michael W Mahoney. Adahessian: An
adaptive second order optimizer for machine learning. arXiv preprint arXiv:2006.00719, 2020b.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
for nonconvex optimization. Advances in neural information processing systems, 31, 2018.

Matthew D. Zeiler. Adadelta: An adaptive learning rate method. arXiv e-prints, 2012.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. Gradient norm aware minimization
seeks first-order flatness and improves generalization. IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in neural information processing systems, 33:18795–18806, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A METHOD DERIVATION (SECTION 3 IN MAIN PAPER)

A.1 WIENER FILTER DERIVATION FOR GRADIENT ESTIMATION (MAIN PAPER SECTION 3.1)

Given the sequence of gradients {gt} in a stochastic gradient descent process, we aim to find
an estimate ĝt that incorporates information from both the historical gradients and the current
gradient. The Wiener Filter provides an estimate that minimizes the mean squared error. We begin by
constructing the estimate as a simple average and then refine it using the properties of the Wiener
Filter.

ĝt =
1

T + 1

T∑
t=1

gt +
1

T + 1
gt

=
1

T + 1

T

T

T∑
t=1

gt +
1

T + 1
gt

=
T

T + 1
ḡt +

1

T + 1
gt

(a)
≈ T

T + 1
m̂t +

1

T + 1
gt

=

(
1− 1

T + 1

)
m̂t +

1

T + 1
gt

= m̂t −Ktm̂t +Ktgt

= m̂t +Kt (gt − m̂t)

(6)

In the above derivation, step (a) replaces the arithmetic mean of gradients ḡT with the momentum
term m̂T . The Wiener gain KT = 1

T+1 is then introduced to update the gradient estimate with
information from the new gradient.

By defining ĝt as the weighted combination of the momentum term m̂t and the current gradient gt,
we can compute the variance of ĝt as follows:

Var(ĝt) = Var((1−Kt)m̂t +Ktgt)

= (1−Kt)
2Var(m̂t) +K2

t Var(gt)
(7)

Minimizing the variance of ĝt with respect to Kt, by setting the derivative
dVar(ĝt)

dKt
= 0, yields:

0 =2(1−Kt)Var(m̂t) + 2KtVar(gt)

0 =(1−Kt)Var(m̂t) +KtVar(gt)

Kt =
Var(m̂t)

Var(m̂t) + Var(gt)

(8)

The final expression for Kt shows that the optimal interpolation coefficient is the ratio of the variance
of the momentum term to the sum of the variances of the momentum term and the current gradient.
This result exemplifies the essence of the Wiener Filter: optimally combining past information with
new observations to reduce estimation error due to noisy data.

A.2 VARIANCE CORRECTION (CORRECTION FACTOR IN MAIN PAPER SECTION 3.1)

The momentum term is defined as:

mt = (1− β1)

t∑
i=1

βt−i
1 gt−i+1, (9)

which means that the momentum term is a weighted sum of past gradients, where the weights decrease
exponentially over time.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

To compute the variance of the momentum term mt, we first observe that since gt−i+1 are independent
and identically distributed with a constant variance σ2

g , the variance of the momentum term can be
obtained by summing up the variances of all the weighted gradients.

The variance of each weighted gradient βt−i
1 gt−i+1 is β2(t−i)

1 σ2
g , because the variance operation has

a quadratic nature, so the weight βt−i
1 becomes β2(t−i)

1 in the variance computation.

Therefore, the variance of mt is the sum of all these weighted variances:

σ2
mt

= (1− β1)
2σ2

g

t∑
i=1

β
2(t−i)
1 . (10)

The factor (1− β1)
2 comes from the multiplication factor (1− β1) in the momentum update formula,

which is also squared when calculating the variance.

The summation part
∑t

i=1 β
2(t−i)
1 is a geometric series, which can be formulated as:

t∑
i=1

β
2(t−i)
1 =

1− β2t
1

1− β2
1

. (11)

As t→∞, and given that β1 < 1, we note that β2t
1 → 0, and the geometric series sum converges to:

t∑
i=1

β
2(t−i)
1 =

1− β2t
1

1− β2
1

=
1

1− β2
1

. (12)

Consequently, the long-term variance of the momentum term mt is expressed as:

σ2
mt

=

(
1− β1

1− β2
1

)2

σ2
g =

1− β1

1 + β1
σ2
g . (13)

This result shows how the effective gradient noise is reduced by the momentum term, which is a
factor of 1−β1

1+β1
compared to the variance of the gradients σ2

g .

A.3 FUSION GAUSSIAN DISTRIBUTION (MAIN PAPER SECTION 3.2)

Consider two Gaussian distributions for the momentum term m̂t and the current gradient gt:

• The momentum term m̂t is normally distributed with mean µm and variance σ2
m, denoted as

m̂t ∼ N (µm, σ2
m).

• The current gradient gt is normally distributed with mean µg and variance σ2
g , denoted as

gt ∼ N (µg, σ
2
g).

The product of their probability density functions is given by:

N(m̂t;µm, σm) ·N(gt;µg, σg) =
1

2πσmσg
exp

(
− (m̂t − µm)2

2σ2
m

− (gt − µg)
2

2σ2
g

)
(14)

The goal is to find equivalent mean µ′ and variance σ′2 for the new Gaussian distribution that matches
the product:

N(x;µ′, σ′2) =
1√
2πσ′

exp

(
− (x− µ′)2

2σ′2

)
(15)

We derive the expression for combining these two distributions. For convenience, let us define the
variable t as follows:

t = − (x− µm)
2

2σ2
m

− (x− µg)
2

2σ2
g

= −
σ2
g (x− µm)

2
+ σ2

m (x− µg)
2

2σ2
mσ2

g

= −

(
x− σ2

gµm+σ2
mµg

σ2
m+σ2

g

)2
2σ2

mσ2
g

σ2
m+σ2

g

+
(µm − µg)

2

2
(
σ2
m + σ2

g

) .
(16)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Through coefficient matching in the exponential terms, we obtain the new mean and variance:

µ′ =
σ2
gµm + σ2

mµg

σ2
m + σ2

g

σ′2 =
σ2
mσ2

g

σ2
m + σ2

g

(17)

The new mean µ′ is a weighted average of the two means, µm and µg, with weights inversely
proportional to their variances. This places µ′ between µm and µg, closer to the mean with the
smaller variance. The new standard deviation σ′ is smaller than either of the original standard
deviations σm and σg , which reflects the reduced uncertainty in the estimate due to the combination
of information from both sources. This is a direct consequence of the Wiener Filter’s optimality in
the mean-square error sense.

A.4 FOKKER PLANCK MODELLING (THEOREM 3.1 IN MAIN PAPER)

Theorem A.1. Consider a system described by the Fokker-Planck equation, evolving the probability
density function P in one-dimensional and multi-dimensional parameter spaces. Given a loss function
f(θ), and the noise variance D or diffusion matrix Dij satisfying D ≥ C > 0 or Di ≥ C > 0,
where C is a positive lower bound constant, known as the Cramér-Rao lower bound. In the steady
state condition, i.e., ∂P

∂t = 0, the analytical form of the probability density P can be obtained by
solving the corresponding Fokker-Planck equation. These solutions reveal the probability distribution
of the system at steady state, described as follows:

One-dimensional case In a one-dimensional parameter space, the probability density function P (θ)
is

P (θ) =
1

Z
exp

(
−
∫

1

D

∂f

∂θ
dx

)
, (18)

where Z is a normalization constant, ensuring the total probability sums to one.

Multi-dimensional case In a multi-dimensional parameter space, the probability density function
P (θ) is

P (θ) =
1

Z
exp

(
−

n∑
i=1

f(θ)

Di

)
, (19)

Here, Z is also a normalization constant, ensuring the total probability sums to one, assuming
Dij = Diδij , where δij is the Kronecker delta.

Proof.

one-dimensional Fokker-Planck equation: Given the one-dimensional Fokker-Planck equation:

∂P

∂t
= − ∂

∂θ

(
P
∂f

∂θ

)
+

∂2

∂θ2
(DP) , (20)

where f(θ) is the loss function, and D is the variance of the noise, with D ≥ C > 0 representing a
positive lower bound for the variance. P denotes the probability density of finding the state of the
system near a given point or region

Derivation of the Steady-State Distribution:

In the steady state condition, ∂P
∂t = 0, thus the equation simplifies to:

0 = − ∂

∂θ

(
P
∂f

∂θ

)
+

∂2

∂θ2
(DP) . (21)

Our goal is to find the probability density P as a function of θ.

By integrating, we obtain:
∂

∂θ

(
P
∂f

∂θ

)
=

∂2

∂θ2
(DP) . (22)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Next, we set J = P ∂f
∂θ as the probability current, and we have:

∂J

∂θ
=

∂

∂θ

(
D
∂P

∂θ

)
. (23)

Upon integration, we get:

J = D
∂P

∂θ
+ C1, (24)

where C1 is an integration constant. Assuming the probability current J vanishes at infinity, then
C1 = 0.

Therefore, we have:

D
∂P

∂θ
= P

∂f

∂θ
. (25)

This equation can be rewritten as:
∂P

∂θ
=

P

D

∂f

∂θ
. (26)

Now, leveraging the variance lower bound D ≥ C, we analyze the above equation. Since D is a
positive constant, we can further integrate to get P :

lnP = −
∫

1

D

∂f

∂θ
dθ + C2, (27)

where C2 is an integration constant.

Solving for P , we get:

P = eC2 exp

(
−
∫

1

D

∂f

∂θ
dθ

)
. (28)

Since we know that D has a lower bound, 1
D is bounded above, which suggests that P will not

explode at any specific value of θ.

multi-dimensional Fokker-Planck equation: Consider a multi-dimensional parameter space x ∈ Rn

and a loss function f(θ). The evolution of the probability density function P (θ, t) in this space
governed by the Fokker-Planck equation is given by:

∂P

∂t
= −

n∑
i=1

∂

∂θi

(
P

∂f

∂θi

)
+

n∑
i=1

n∑
j=1

∂2

∂θi∂θj
(DijP) , (29)

where Dij are elements of the diffusion matrix, representing the intensity and correlation of the
stochastic in the directions θi and θj . At the steady state, where the time derivative of P vanishes, we
find:

0 = −
n∑

i=1

∂

∂θi

(
P

∂f

∂θi

)
+

n∑
i=1

n∑
j=1

∂2

∂θi∂θj
(DijP) . (30)

Assuming Dij = Diδij where δij is the Kronecker delta, and Di ≥ C > 0, the equation simplifies
to:

0 = −
n∑

i=1

∂

∂θi

(
P

∂f

∂θi

)
+

n∑
i=1

∂2

∂θ2i
(DiP) . (31)

Integrating with respect to θi, we obtain a set of equations:

Di
∂P

∂θi
= P

∂f

∂θi
+ Ci, (32)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where Ci is an integration constant. Assuming Ci = 0, which corresponds to no flux at the boundaries,
we can solve for P :

P (θ) =
1

Z
exp

(
−

n∑
i=1

f(θ)

Di

)
, (33)

where Z is a normalization constant ensuring that the total probability integrates to one.

Exploration Efficacy of SGD due to Variance Lower Bound The existence of a variance lower
bound in Stochastic Gradient Descent (SGD) critically enhances the algorithm’s exploration capa-
bilities, particularly in regions of the loss landscape where gradients are minimal. By preventing
the probability density function from becoming unbounded, it ensures continuous exploration and
increases the probability of converging to flat minima that are associated with better generalization
properties. This principle holds true across both one-dimensional and multi-dimensional scenarios,
making the variance lower bound an essential consideration for optimizing SGD’s performance in
finding robust, generalizable solutions.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B CONVERGENCE ANALYSIS IN CONVEX ONLINE LEARNING CASE (THEOREM
3.2 IN MAIN PAPER).

Assumption B.1. Variables are bounded: ∃D such that ∀t, ∥θt∥2 ≤ D. Gradients are bounded:
∃G such that ∀t, ∥gt∥2 ≤ G.
Definition B.2. Let ft(θt) be the loss at time t and ft(θ

∗) be the loss of the best possible strategy at
the same time. The cumulative regret R(T) at time T is defined as:

R(T) =

T∑
t=1

ft(θt)− ft(θ
∗) (34)

Definition B.3. If a function f : Rd → R is convex if for all x, y ∈ Rd for all λ ∈ [0, 1],

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y) (35)

Also, notice that a convex function can be lower bounded by a hyperplane at its tangent.
Lemma B.4. If a function f : Rd → R is convex, then for all x, y ∈ Rd ,

f(y) ≥ f(x) +∇f(x)T (y − x) (36)

The above lemma can be used to upper bound the regret, and our proof for the main theorem is
constructed by substituting the hyperplane with SGDF update rules.

The following two lemmas are used to support our main theorem. We also use some definitions
to simplify our notation, where gt ≜ ∇ft (θt) and gt,i as the ith element. We denote g1:t,i ∈
Rt as a vector that contains the ith dimension of the gradients over all iterations till t, g1:t,i =
[g1,i, g2,i, · · · , gt,i]
Lemma B.5. Let gt = ∇ft(θt) and g1:t be defined as above and bounded,

∥gt∥2 ≤ G, ∥gt∥∞ ≤ G∞. (37)

Then,
T∑

t=1

gt,i ≤ 2G∞ ∥g1:T,i∥2 . (38)

Proof. We will prove the inequality using induction over T . For the base case T = 1:

g1,i ≤ 2G∞ ∥g1,i∥2 . (39)

Assuming the inductive hypothesis holds for T − 1, for the inductive step:
T∑

t=1

gt,i =

T−1∑
t=1

gt,i + gT,i

≤ 2G∞ ∥g1:T−1,i∥2 + gT,i

= 2G∞

√
∥g1:T,i∥22 − g2T + g2T,i.

(40)

Given,

∥g1:T,i∥22 − g2T,i +
g4T,i

4 ∥g1:T,i∥22
≥ ∥g1:T,i∥22 − g2T,i, (41)

taking the square root of both sides, we get:√
∥g1:T,i∥22 − g2T,i ≤ ∥g1:T,i∥2 −

g2T,i

2 ∥g1:T,i∥2

≤ ∥g1:T,i∥2 −
g2T,i

2
√

G2
∞
.

(42)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Substituting into the previous inequality:

G∞

√
∥g1:T,i∥22 − g2T,i +

√
g2T,i ≤ 2G∞ ∥g1:T,i∥2 (43)

Lemma B.6. Let bounded gt, ∥gt∥2 ≤ G , ∥gt∥∞ ≤ G∞, the following inequality holds

T∑
t=1

m̂2
t,i ≤

4G2
∞

(1− β1)2
∥g1:T,i∥22 (44)

Proof. Under the inequality: 1

(1−βt
1)

2 ≤ 1
(1−β1)

2 . We can expand the last term in the summation

using the updated rules in Algorithm 1,

T∑
t=1

m̂2
t,i =

T−1∑
t=1

m̂2
t,i +

(∑T
k=1 (1− β1)β

T−k
1 gk,i

)2
(
1− βT

1

)2
≤

T−1∑
t=1

m̂2
t,i +

∑T
k=1 T

(
(1− β1)β

T−k
1 gk,i

)2(
1− βT

1

)2
≤

T−1∑
t=1

m̂2
t,i +

(1− β1)
2(

1− βT
1

)2 T∑
k=1

T
(
β2
1

)T−k ∥gk,i∥22

≤
T−1∑
t=1

m̂2
t,i + T

T∑
k=1

(
β2
1

)T−k ∥gk,i∥22

(45)

Similarly, we can upper-bound the rest of the terms in the summation.
T∑

t=1

m̂2
t,i ≤

T∑
t=1

∥gt,i∥22
T−t∑
j=0

tβj
1

≤
T∑

t=1

∥gt,i∥22
T∑

j=0

tβj
1

(46)

For β1 < 1 , using the upper bound on the arithmetic-geometric series,
∑

t tβ
t
1 < 1

(1−β1)2
:

T∑
t=1

∥gt,i∥22
T∑

j=0

tβj
1 ≤

1

(1− β1)2

T∑
t=1

∥gt,i∥22 (47)

Apply Lemma B.5,
T∑

t=1

m̂2
t,i ≤

4G2
∞

(1− β1)2
∥g1:T,i∥22 (48)

Theorem B.7. Assume that the function ft has bounded gradients, ∥∇ft(θ)∥2 ≤ G, ∥∇ft(θ)∥∞ ≤
G∞ for all θ ∈ Rd and the distance between any θt generated by SGDF is bounded, ∥θn−θm∥2 ≤ D,
∥θm − θn∥∞ ≤ D∞ for any m,n ∈ {1, ..., T}, and β1, β2 ∈ [0, 1). Let αt = α/

√
t. For all T ≥ 1,

SGDF achieves the following guarantee:

R(T) ≤D2

α

d∑
i=1

√
T +

2D∞G∞

1− β1

d∑
i=1

∥g1:T,i∥2 +
2αG2

∞(1 + (1− β1)
2)√

T (1− β1)2

d∑
i=1

∥g1:T,i∥22 (49)

Proof of convex Convergence.

We aim to prove the convergence of the algorithm by showing that R(T) is bounded, or equivalently,

that
R(T)

T
converges to zero as T goes to infinity.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

To express the cumulative regret in terms of each dimension, let ft(θt) and ft(θ
∗) represent the loss

and the best strategy’s loss for the dth dimension, respectively. Define RT,d as:

RT,i =

T∑
t=1

ft(θt)− ft(θ
∗) (50)

Then, the overall regret R(T) can be expressed in terms of all dimensions D as:

R(T) =

D∑
d=1

RT,i (51)

Establishing the Connection: From the Iteration of θt to ⟨gt, θt − θ∗⟩
Using Lemma B.4, we have,

ft(θt)− ft(θ
∗) ≤ gTt (θt − θ∗) =

d∑
i=1

gt,i(θt,i − θ∗,i) (52)

From the update rules presented in algorithm 1,

θt+1 = θt − αtĝt

= θt − αt

(
m̂t +Kt,d(gt − m̂t)

) (53)

We focus on the ith dimension of the parameter vector θt ∈ Rd. Subtract the scalar θ∗,i and square
both sides of the above update rule, we have,

(θt+1,d − θ∗,i)
2 = (θt,i − θ∗,i)

2 − 2αt(m̂t,i +Kt,d(gt,i − m̂t,i))(θt,i − θ∗,i) + α2
t ĝ

2
t (54)

Separating itemsgt,i(θt,i − θ∗,i):

gt,d(θt,i − θ∗,i) =

(
θt,i − θ∗,i

)2 − (θt+1,i − θ∗,i
)2

2αtKt,i︸ ︷︷ ︸
(1)

−1−Kt,i

Kt,i
m̂t,i

(
θt,i − θ∗,i

)
︸ ︷︷ ︸

(2)

+
αt

2Kt,i
(ĝt,i)

2︸ ︷︷ ︸
(3)

(55)

We then deal with (1), (2) and (3) separately.

For the first term (1), we have:
T∑

t=1

(
θt,i − θ∗,i

)2 − (θt+1,i − θ∗,i
)2

2αtKt,i

≤
T∑

t=1

(
θt,i − θ∗,i

)2 − (θt+1,i − θ∗,i
)2

2αtKt,i

=

(
θ1,i − θ∗,i

)2
2α1K1,i

−
(
θT+1,i − θ∗,i

)2
2αTKT,i

+

T∑
t=2

(θt,i − θ∗,i)
2

[
1

2αtKt,i
− 1

2αt−1Kt−1,i

]
(56)

Given that −
(
θT+1,i − θ∗,i

)2
2αT (K1)

≤ 0 and

(
θ1,i − θ∗,i

)2
2α1 (KT)

≤ D2
i

2α1 (KT)
, we can bound it as:

T∑
t=1

(
θt,i − θ∗,i

)2 − (θt+1,i − θ∗,i
)2

2αtKt,i

≤
d∑

i=1

(θt,i − θ∗,i)
2

2αtKt,i

(57)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

For the second term (2), we have:

T∑
t=1

−1−Kt,i

Kt,i
m̂t,i

(
θt,i − θ∗,i

)
=

T∑
t=1

− 1−Kt,i

Kt,i(1− βt
1)

 T∑
i=1

(1− β1,i)

T∏
j=i+1

β1,j

 gt,i
(
θt,i − θ∗,i

)
≤

T∑
t=1

− 1−Kt,i

Kt,d(1− βt
1)

(
1−

T∏
i=1

β1,i

)
gt,i(θt,i − θ∗,i)

≤
T∑

t=1

1−Kt,i

Kt,d(1− βt
1)
gt,i(θt,i − θ∗,i)

(58)

For the third term (3), we have:

T∑
t=1

αt

2Kt,i
(ĝt,i)

2 ≤
T∑

t=1

αt

2Kt,i
(m̂t,i +Kt(gt,i − m̂t,i))

2

≤
T∑

t=1

αt

2Kt,i
((1−Kt,i)m̂t,i +Kt,dgt,i)

2

≤
T∑

t=1

αt

2Kt,i

(
2(1−Kt,i)

2m̂2
t,i + 2K2

t,ig
2
t,i

)
≤

T∑
t=1

αt

Kt,i

(
(1−Kt,i)

2m̂2
t,i +K2

t,ig
2
t,i

)
(59)

Collate all the items that we have:

R(T) ≤
d∑

i=1

T∑
t=1

(θt,i − θ∗,i)
2

2αtKt,i
+

d∑
i=1

T∑
t=1

1−Kt,i

Kt,i(1− βt
1)
gt,i(θt,i − θ∗,i) +

d∑
i=1

T∑
t=1

αt

Kt,i

(
(1−Kt,i)

2m̂2
t,i +K2

t,ig
2
t,i

)
(60)

Using Lemma B.5 and Lemma B.6 From
∑T

t=1 ŝt >
∑T

t=1(gt − m̂t)
2, we have 1

T

∑T
t=1 Kt >

1
2 .

Therefore, from the assumption, ∥θt− θ∗∥22 ≤ D, ∥θm− θn∥∞ ≤ D∞, we have the following regret
bound:

R(T) ≤ D2

α

d∑
i=1

√
T +

2D∞G∞

1− β1

d∑
i=1

∥g1:T,i∥2 +
2αG2

∞(1 + (1− β1)
2)√

T (1− β1)2

d∑
i=1

∥g1:T,i∥22 (61)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C CONVERGENCE ANALYSIS FOR NON-CONVEX STOCHASTIC OPTIMIZATION
(THEOREM 3.3 IN MAIN PAPER).

We have relaxed the assumption on the objective function, allowing it to be non-convex, and adjusted
the criterion for convergence from the statistic R(T) to E(T). Let’s briefly review the assumptions
and the criterion for convergence after relaxing the assumption:

Assumption C.1.

• A1 Bounded variables (same as convex). ∥θ − θ∗∥2 ≤ D, ∀θ, θ∗ or for any dimension i of
the variable, ∥θi − θ∗i ∥2 ≤ Di, ∀θi, θ∗i

• A2 The noisy gradient is unbiased. For ∀t, the random variable ζt is defined as ζt =

gt − ∇f (θt), ζt satisfy E [ζt] = 0, E
[
∥ζt∥22

]
≤ σ2, and when t1 ̸= t2, ζt1 and ζt2 are

statistically independent, i.e., ζt1 ⊥ ζt2 .

• A3 Bounded gradient and noisy gradient. At step t, the algorithm can access a bounded noisy
gradient, and the true gradient is also bounded. i.e. ||∇f(θt)|| ≤ G, ||gt|| ≤ G, ∀t > 1.

• A4 The property of function. The objective function f (θ) is a global loss function, defined
as f (θ) = limT−→∞

1
T

∑T
t=1 ft (θ). Although f (θ) is no longer a convex function, it must

still be a L-smooth function, i.e., it satisfies (1) f is differentiable,∇f exists everywhere in
the domain; (2) there exists L > 0 such that for any θ1 and θ2 in the domain, (first definition)

f (θ2) ≤ f (θ1) + ⟨∇f (θ1) , θ2 − θ1⟩+
L

2
∥θ2 − θ1∥22 (62)

or (second definition)

∥∇f (θ1)−∇f (θ2)∥2 ≤ L ∥θ1 − θ2∥2 (63)

This condition is also known as L - Lipschitz.

Definition C.2. The criterion for convergence is the statistic E (T):

E (T) = min
t=1,2,...,T

Et−1

[
∥∇f (θt)∥22

]
(64)

When T →∞, if the amortized value of E (T), E (T) /T → 0, we consider such an algorithm to be
convergent, and generally, the slower E (T) grows with T , the faster the algorithm converges.

Definition C.3. Define ξt as

ξt =

{
θt t = 1

θt +
β1

1−β1
(θt − θt−1) t ≥ 2

(65)

Theorem C.4. Consider a non-convex optimization problem. Suppose assumptions A1-A5 are
satisfied, and let αt = α/

√
t. For all T ≥ 1, SGDF achieves the following guarantee:

E(T) ≤ C7α
2(log T + 1) + C8

2α
√
T

(66)

where E(T) = mint=1,2,...,T Et−1

[
∥∇f (θt)∥22

]
denotes the minimum of the squared-paradigm

expectation of the gradient, α is the learning rate at the 1-th step, C7 are constants independent
of d and T , C8 is a constant independent of T , and the expectation is taken w.r.t all randomness
corresponding to gt.

Proof of convex Convergence.

Since f is an L-smooth function,

∥∇f (ξt)−∇f (θt)∥22 ≤ L2 ∥ξt − θt∥22 (67)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Thus,

f (ξt+1)− f (ξt)

≤⟨∇f (ξt) , ξt+1 − ξt⟩+
L

2
∥ξt+1 − ξt∥22

=

〈
1√
L
(∇f (ξt)−∇f (θt)) ,

√
L (ξt+1 − ξt)

〉
+ ⟨∇f (θt) , ξt+1 − ξt⟩+

L

2
∥ξt+1 − ξt∥22

≤1

2

(
1

L
∥∇f (ξt)−∇f (θt)∥22 + L ∥ξt+1 − ξt∥22

)
+ ⟨∇f (θt) , ξt+1 − ξt⟩+

L

2
∥ξt+1 − ξt∥22

≤ 1

2L
∥∇f (ξt)−∇f (θt)∥22 + L ∥ξt+1 − ξt∥22 + ⟨∇f (θt) , ξt+1 − ξt⟩

≤ 1

2L
L2 ∥ξt − θt∥22 + L ∥ξt+1 − ξt∥22 + ⟨∇f (θt) , ξt+1 − ξt⟩

=
L

2
∥ξt − θt∥22︸ ︷︷ ︸

(1)

+ L∥ξt+1 − ξt∥22︸ ︷︷ ︸
(2)

+ ⟨∇f (θt) , ξt+1 − ξt⟩︸ ︷︷ ︸
(3)

(68)

Next, we will deal with the three terms (1), (2), and (3) separately.

For term (1)

When t = 1, ∥ξt − θt∥22 = 0

When t ≥ 2,

∥ξt − θt∥22 =

∥∥∥∥ β1

1− β1
(θt − θt−1)

∥∥∥∥2
2

=
β2
1

(1− β1)
2α

2
t−1 ∥ĝt−1,i∥22

=
β2
1

(1− β1)
2α

2
t−1

d∑
i=1

(1−Kt) (m̂t−1,i)
2
+Ktg

2
t

(a)

≤ β2
1

(1− β1)
2α

2
t−1

d∑
i=1

G2
i

(69)

Where (a) holds because for any t:

• |m̂t,i| ≤ 1
1−βt

1

∑t
s=1 (1− β1)β

t−s
1 |gs,i| ≤ 1

1−βt
1

∑t
s=1 (1− β1)β

t−s
1 Gi = Gi.

• ∥gt∥2 ≤ G, ∀t, or for any dimension of the variable i: ∥gt,i∥2 ≤ Gi, ∀t

For term (2)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

When t = 1,

ξt+1 − ξt =θt+1 +
β1

1− β1
(θt+1 − θt)− θt

=
1

1− β1
(θt+1 − θt)

=− αt

1− β1
(ĝt)

=− αt

1− β1

(
1−Kt

1− βt
1

mt +Ktgt

)
=− αt

1− β1

1−Kt

1− βt
1

(
β1���:0mt−1 + (1− β1) gt

)
− αt

1− β1
Ktgt

=− αt (1−Kt)

1− βt
1

gt −
αtKt

1− β1
gt

=− αt

1− β1
gt

(70)

Thus,

∥ξt+1 − ξt∥22 =

∥∥∥∥−αt(1−Kt)

1− β1
gt −

αtKt

1− β1
gt

∥∥∥∥2
2

=

(
− αt

1− β1

)2

∥gt∥22

=
α2
t

(1− β1)2
∥gt∥22

=
α2
t

(1− β1)
2

d∑
i=1

g2t,i

≤ α2
t

(1− β1)
2

d∑
i=1

G2
i

(71)

When t ≥ 2,

ξt+1 − ξt =θt+1 +
β1

1− β1
(θt+1 − θt)− θt −

β1

1− β1
(θt − θt−1)

=
1

1− β1
(θt+1 − θt)−

β1

1− β1
(θt − θt−1)

(72)

Due to
θt+1 − θt =− αtĝt

=− αt(1−Kt)

1− βt
1

mt − αtKtgt

=− αt(1−Kt)

1− βt
1

(β1mt−1 + (1− β1) gt)− αtKtgt

(73)

So,
ξt+1 − ξt

=
1

1− β1

(
−αt(1−Kt)

1− βt
1

(β1mt−1 + (1− β1) gt)− αtKtgt

)
− β1

1− β1

(
−αt−1(1−Kt−1)

1− βt−1
1

mt−1 − αt−1Kt−1gt−1

)
=− β1

1− β1
mt−1 ⊙

(
αt(1−Kt)

1− βt
1

− αt−1(1−Kt−1)

1− βt−1
1

)
− αt(1−Kt)

1− βt
1

gt −
αtKt

1− β1
gt +

β1

1− β1
αt−1Kt−1gt−1

=− β1

1− β1
mt−1 ⊙

(
αt(1−Kt)

1− βt
1

− αt−1(1−Kt−1)

1− βt−1
1

)
−
(
αt(1−Kt)

1− βt
1

+
αtKt

1− β1

)
gt +

β1αt−1Kt−1

1− β1
gt−1

(74)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

We have:

∥ξt+1 − ξt∥22 ≤ 2

∥∥∥∥∥− β1

1− β1
mt−1 ⊙

(
αt(1−Kt)

1− βt
1

−αt−1(1−Kt−1)

1− βt−1
1

)∥∥∥∥∥
2

2

+ 2

∥∥∥∥−(αt(1−Kt)

1− βt
1

+
αtKt

1− β1

)
gt

∥∥∥∥2
2

+ 2

∥∥∥∥β1αt−1Kt−1

1− β1
gt−1

∥∥∥∥2
2

≤ 2
β2
1

(1− β1)
2 ∥mt−1∥2∞

∥∥∥∥αt(1−Kt)

1− βt
1

− αt−1(1−Kt−1)

1− βt−1
1

∥∥∥∥
∞
·
∥∥∥∥αt(1−Kt)

1− βt
1

− αt−1(1−Kt−1)

1− βt−1
1

∥∥∥∥
1

+ 2

∥∥∥∥−(αt(1−Kt)

1− βt
1

+
αtKt

1− β1

)
gt

∥∥∥∥2
2

+ 2

∥∥∥∥β1αt−1Kt−1

1− β1
gt−1

∥∥∥∥2
2

(75)

Because

• |mt−1,i| = (1− βt
1) |m̂t, i| ≤ |m̂t, i| ≤ Gi, ∥mt−1∥∞2 ≤ (max iGi)

2

• ∥gt∥22 =
∑d

i=1 g
2
t,i ≤

∑d
i=1 G

2
i

• Kt ∈ 0, 1d, we have ∥Kt∥∞ ≤
∑d

i=1 1i, ∥1−Kt∥∞ ≤
∑d

i=1 1i ≤ d

αt/
(
1− βt

1

)
≥ 0, αt−1/

(
1− βt−1

1

)
/ ≥ 0

αt ≤ αt−1,
1

1− βt
1

≤ 1

1− βt−1
1

=⇒ αt

1− βt
1

≤ αt−1

1− βt−1
1

=⇒
∣∣∣∣ αt

1− βt
1

− αt−1

1− βt−1
1

∣∣∣∣
= αt−1/

(
1− βt−1

1

)
− αt/

(
1− βt

1

)
≤ αt−1/

(
1− βt−1

1

)
≤ α1/ (1− β1)

=⇒
∥∥∥∥αt (1−Kt)

1− βt
1

− αt−1 (1−Kt−1)

1− βt−1
1

∥∥∥∥
∞
≤ α1

(1− β1)

(76)

∥∥∥∥αt (1−Kt)

1− βt
1

− αt−1 (1−Kt−1)

1− βt−1
1

∥∥∥∥
1

≤
d∑

i=1

(
αt−1/

(
1− βt−1

1

)
− αt/

(
1− βt

1

))
1i ≤ d

(
αt−1/

(
1− βt−1

1

)
− αt/

(
1− βt

1

))
(77)

Therefore

∥ξt+1 − ξt∥22 ≤2
β2
1

(1− β1)
2

(
max

i
Gi

)2 dα1

(1− β1)
·

(
αt−1(

1− βt−1
1

) − αt

(1− βt
1)

)
+ 4

α2
t

(1− β1)
2

d∑
i=1

G2
i

(78)

For term (3)

When t = 1, referring to the case of t = 1 in the previous subsection,

⟨∇f (θt) , ξt+1 − ξt⟩ =
〈
∇f (θt) ,−

αt

1− β1
gt

〉
=

〈
∇f (θt) ,−

αt

1− β1
∇f (θt)

〉
+

〈
∇f (θt) ,−

αt

1− β1
ζt

〉 (79)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

The last equality is due to the definition of gt: gt = ∇f (θt) + ζt. Let’s consider them separately:〈
∇f (θt) ,−

αt

1− β1
∇f (θt)

〉
=− αt

1− β1
[∇f (θt)] [∇f (θt)]

≤− αt

1− β1
∥∇f (θt)∥22

(80)

〈
∇f (θt) ,−

αt

1− β1
ζt

〉
≤ αt

1− β1
∥∇f (θt)∥2 ∥ζt∥2

=
αt

1− β1
∥∇f (θt)∥2 ∥gt −∇f (θt)∥2

≤ αt

1− β1
· 2

d∑
i=1

G2
i

(81)

Thus

⟨∇f (θt) , ξt+1 − ξt⟩

≤ − αt

(1− β1)
∥∇f (θt)∥22 +

2αt

1− β1
·

d∑
i=1

G2
i

(82)

When t ≥ 2,

⟨∇f (θt) , ξt+1 − ξt⟩ =
〈
∇f (θt) ,−

β1

1− β1
mt−1⊙

(
αt(1−Kt)

1− βt
1

− αt−1(1−Kt−1)

1− βt−1
1

)〉
+

〈
∇f (θt) ,−

(
αt(1−Kt)

1− βt
1

+
αtKt

1− β1

)
∇f (θt)

〉
+

〈
∇f (θt) ,−

(
αt(1−Kt)

1− βt
1

+
αtKt

1− β1

)
ζt

〉
+

〈
∇f (θt−1) ,

β1αt−1Kt−1

1− β1
∇f (θt−1)

〉
+

〈
∇f (θt−1) ,

β1αt−1Kt−1

1− β1
ζt−1

〉
(83)

Start by looking at the first item after the equal sign:〈
∇f (θt) ,−

β1

1− β1
mt−1⊙

(
αt(1−Kt)

1− βt
1

− αt−1(1−Kt−1)

1− βt−1
1

)〉
≤ β1

1− β1
∥∇f (θt)∥∞ ∥mt−1∥∞ ·

∥∥∥∥αt(1−Kt)

1− βt
1

− αt−1(1−Kt−1)

1− βt−1
1

∥∥∥∥
1

≤ β1

1− β1

(
max

i
Gi

)(
max

i
Gi

)
·

d∑
i=1

(
αt−1(

1− βt−1
1

) − αt

(1− βt
1)

)
1i

≤ β1

1− β1

(
max

i
Gi

)(
max

i
Gi

)
· d

(
αt−1(

1− βt−1
1

) − αt

(1− βt
1)

)
(84)

The second and third terms after the equal sign:〈
∇f (θt) ,−

(
αt(1−Kt)

1− βt
1

+
αtKt

1− β1

)
∇f (θt)

〉
+

〈
∇f (θt) ,−

(
αt(1−Kt)

1− βt
1

+
αtKt

1− β1

)
ζt

〉
≤− αt

1− βt
1

∥∇f (θt)∥22 +
〈
∇f (θt) ,−

αt

1− βt
1

ζt

〉
(85)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

The fourth and fifth terms after the equal sign:

〈
∇f (θt−1) ,

β1αt−1Kt−1

1− β1
∇f (θt−1)

〉
+

〈
∇f (θt−1) ,

β1αt−1Kt−1

1− β1
ζt−1

〉
≤β1αt−1

1− β1
∥∇f (θt)∥∞ ∥∇f (θt)∥∞ ∥1i∥1 +

β1αt−1

1− β1
∥∇f (θt)∥∞ ∥ζt∥∞ ∥1i∥1

≤β1αt−1

1− β1

(
max

i
Gi

)(
max

i
Gi

) d∑
i=1

1i +
β1αt−1

1− β1

(
max

i
Gi

)(
2max

i
Gi

) d∑
i=1

1i

≤β1αt−1

1− β1

(
max

i
Gi

)(
max

i
Gi

)
d+

β1αt−1

1− β1

(
max

i
Gi

)(
2max

i
Gi

)
d

(86)

Final:

⟨∇f (θt) , ξt+1 − ξt⟩

≤ β1

1− β1

(
max

i
Gi

)(
max

i
Gi

)
· d

(
αt−1(

1− βt−1
1

) − αt

(1− βt
1)

)
− αt

(1− βt
1)
∥∇f (θt)∥22

+
β1αt−1

1− β1

(
max

i
Gi

)(
max

i
Gi

)
d+

β1αt−1

1− β1

(
max

i
Gi

)(
2max

i
Gi

)
d+

〈
∇f (θt) ,−

αt

1− βt
1

ζt

〉
(87)

Summarizing the results

Let’s start summarizing: when t = 1,

f (ξt+1)− f (ξt) ≤
L

2
· 0 + L · α2

t

(1− β1)
2

d∑
i=1

G2
i −

αt

(1− β1)
∥∇f (θt)∥22 +

2αt

1− β1
·

d∑
i=1

G2
i

(88)

Taking the expectation over the random distribution of ζ1, ζ2, . . . , ζt on both sides of the inequality:

Et [f (ξt+1)− f (ξt)] ≤L ·
α2
t

(1− β1)
2

d∑
i=1

G2
i −

αt

(1− β1)
Et ∥∇f (θt)∥22 +

2αt

1− β1
·

d∑
i=1

G2
i

(89)

When t ≥ 2,

f (ξt+1)− f (ξt)

≤L

2

β2
1

(1− β1)
2α

2
t−1

d∑
i=1

G2
i + L · 2 β2

1

(1− β1)
2

(
max

i
Gi

)2 dα1

(1− β1)
·

(
αt−1(

1− βt−1
1

) − αt

(1− βt
1)

)

+ L · 4 α2
t

(1− β1)
2

d∑
i=1

G2
i +

β1

1− β1

(
max

i
Gi

)(
max

i
Gi

)
· d

(
αt−1(

1− βt−1
1

) − αt

(1− βt
1)

)

− αt

(1− βt
1)
∥∇f (θt)∥22 +

β1αt−1

1− β1

(
max

i
Gi

)(
max

i
Gi

)
d+

β1αt−1

1− β1

(
max

i
Gi

)(
2max

i
Gi

)
d

+

〈
∇f (θt) ,−

αt

1− βt
1

ζt

〉
(90)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Taking the expectation over the random distribution of ζ1, ζ2, . . . , ζt on both sides of the inequality:

Et [f (ξt+1)− f (ξt)]

≤L

2

β2
1

(1− β1)
2α

2
t−1

d∑
i=1

G2
i + L · 2 β2

1

(1− β1)
2

(
max

i
Gi

)2 dα1

(1− β1)
·

(
αt−1(

1− βt−1
1

) − αt

(1− βt
1)

)

+ L · 4 α2
t

(1− β1)
2

d∑
i=1

G2
i +

β1

1− β1

(
max

i
Gi

)(
max

i
Gi

)
· d

(
αt−1(

1− βt−1
1

) − αt

(1− βt
1)

)

− αt

(1− βt
1)
Et ∥∇f (θt)∥22 +

β1αt−1

1− β1

(
max

i
Gi

)(
max

i
Gi

)
d+

β1αt−1

1− β1

(
max

i
Gi

)(
2max

i
Gi

)
d

+ Et

〈
∇f (θt) ,−

αt

1− βt
1

ζt

〉
(91)

Since the value of θt is independent of gt, they are statistically independent of ζt:

Et

[〈
∇f (θt) ,−

αt

1− βt
1

ζt

〉]
=Et

[〈
− αt

1− βt
1

∇f (θt) , ζt

〉]
=

〈
− αt

1− βt
1

Et [∇f (θt)] ,����:0Et [ζt]

〉
= 0

(92)

Summing up both sides of the inequality for t = 1, 2, . . . , T :

• Left side of the inequality (can be reduced to maintain the inequality)

T∑
t=1

LHS of the inequality =

T∑
t=1

Et [f (ξt+1)− f (ξt)]

=

T∑
t=1

Et [f (ξt+1)]− Et [f (ξt)]

=

T∑
t=1

Et [f (ξt+1)]− Et−1 [f (ξt)]

=ET [f (ξT+1)]− E0 [f (ξ1)]

(93)

Since f (ξT+1) ≥ minθ f (θ) = f (θ∗), ξ1 = θ1, and both are deterministic:

T∑
t=1

Et [f (ξt+1)− f (ξt)] ≥ET [f (θ∗)]− E0 [f (θ1)]

=f (θ∗)− f (θ1)

(94)

• The right side of the inequality (can be enlarged to keep the inequality valid)

We perform a series of substitutions to simplify the symbols:

When t > 2,

1. L
2

β2
1

(1−β1)
2α2

t−1

∑d
i=1 G

2
i ≜ C1α

2
t−1

2. L · 2 β2
1

(1−β1)
2 (maxi Gi)

2 dα1

(1−β1)
·
(

αt−1

(1−βt−1
1)
− αt

(1−βt
1)

)
≜ C2

(
αt−1

(1−βt−1
1)
− αt

(1−βt
1)

)
3. L · 4 α2

t

(1−β1)
2

∑d
i=1 G

2
i ≤ L · 4 α2

t

(1−β1)
2

∑d
i=1 G

2
i ≜ C3α

2
t

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

4. β1

1−β1
(maxi Gi) (maxi Gi) · d

(
αt−1

(1−βt−1
1)
− αt

(1−βt
1)

)
≜ C4

(
αt−1

(1−βt−1
1)
− αt

(1−βt
1)

)

5. − αt

(1−βt
1)
Et

[
∥∇f (θt)∥22

]
≤ −αtEt

[
∥∇f (θt)∥22

]
6. β1αt−1

1−β1
(maxi Gi) (maxi Gi) d+

β1αt−1

1−β1
(maxi Gi) (2maxi Gi) d ≜ C5αt−1

When t = 1,

1. L · α2
t

(1−β1)
2

∑d
i=1 G

2
i ≤ L · 4 α2

t

(1−β1)
2

∑d
i=1 G

2
i = C3α

2
t

2. − αt

(1−β1)
Et

[
∥∇f (θt)∥22

]
≤ −αtEt

[
∥∇f (θt)∥22

]
3. 2αt

1−β1
·
∑d

i=1 G
2
i ≜ C6αt

After substitution,

T∑
t=1

RHS of the inequality ≤
T∑

t=2

C1α
2
t−1 +

T∑
t=1

C3α
2
t −

T∑
t=1

αtEt

[
∥∇f (θt)∥22

]
+

T∑
t=2

(C2 + C4)

(
αt−1(

1− βt−1
1

) − αt

(1− βt
1)

)
+

T∑
t=1

C5αt−1 +

T∑
t=1

C6αt

=

T∑
t=2

C1α
2
t−1 +

T∑
t=1

C3α
2
t −

T∑
t=1

αtEt

[
∥∇f (θt)∥22

]
+

T∑
t=1

C5αt−1 +

T∑
t=1

C6αt

+

d∑
i=1

(C2 + C4)

T∑
t=2

(
αt−1(

1− βt−1
1

) − αt

(1− βt
1)

)

=

T∑
t=2

C1α
2
t−1 +

T∑
t=1

C3α
2
t −

T∑
t=1

αtEt

[
∥∇f (θt)∥22

]
+

T∑
t=1

C5αt−1 +

T∑
t=1

C6αt

+
d∑

i=1

(C2 + C4)

(
α1

(1− β1)
− αT(

1− βT
1

))

≤ (C1 + C3 + C5 + C6)

T∑
t=1

α2
t −

T∑
t=1

αtEt

[
∥∇f (θt)∥22

]
+

d∑
i=1

(C2 + C4)
α1

(1− β1)

≤ (C1 + C3 + C5 + C6)

T∑
t=1

α2
t −

T∑
t=1

αtEt

[
∥∇f (θt)∥22

]
+ (C2 + C4)

α1

(1− β1)

(95)

Combining the results of scaling on both sides of the inequality:

f (θ∗)− f (θ1) ≤ (C1 + C3 + C5 + C6)

T∑
t=1

α2
t −

T∑
t=1

αtEt

[
∥∇f (θt)∥22

]
+ (C2 + C4)

α1

(1− β1)

=⇒
T∑

t=1

αtEt

[
∥∇f (θt)∥22

]
≤ (C1 + C3 + C5 + C6)

T∑
t=1

α2
t + f (θ1)− f (θ∗) + (C2 + C4)

α1

(1− β1)

(96)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Due to Et

[
∥∇f (θt)∥22

]
= Et−1

[
∥∇f (θt)∥22

]
,

T∑
t=1

αtEt

[
∥∇f (θt)∥22

]
=

T∑
t=1

αtEt−1

[
∥∇f (θt)∥22

]
≥

T∑
t=1

αt min
t=1,2,...,T

Et−1

[
∥∇f (θt)∥22

]
= min

t=1,2,...,T
Et−1

[
∥∇f (θt)∥22

] T∑
t=1

αt

= · E (T) ·
T∑

t=1

αt

(97)

Then let C1 + C3 + C5 + C6 ≜ C7, f (θ1)− f (θ∗)︸ ︷︷ ︸
≥0

+ (C2 + C4)
α1

(1−β1)
≜ C8, therefore

E (T) ·
T∑

t=1

αt ≤ C7

T∑
t=1

α2
t + C8

=⇒E (T) ≤
C7

∑T
t=1 α

2
t + C8∑T

t=1 αt

(98)

Since αt = α/
√
t,
∑T

t=1
1
t ≤ 1 + log T , we have:

E(T) ≤ C7α
2(log T + 1) + C8

2α
√
T

(99)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

D DETAILED EXPERIMENTAL SUPPLEMENT

We performed extensive comparisons with other optimizers, including SGD Monro (1951),
AdamKingma & Ba (2014), RAdamLiu et al. (2019) and AdamWLoshchilov & Hutter (2017).
The experiments include: (a) image classification on CIFAR datasetKrizhevsky et al. (2009) with
VGG Simonyan & Zisserman (2014), ResNet He et al. (2016) and DenseNet Huang et al. (2017), and
image recognition with ResNet on ImageNet Deng et al. (2009).

D.1 IMAGE CLASSIFICATION WITH CNNS ON CIFAR

For all experiments, the model is trained for 200 epochs with a batch size of 128, and the learning
rate is multiplied by 0.1 at epoch 150. We performed extensive hyperparameter search as described
in the main paper. Detailed experimental parameters we place in Tab. 5. Here we report both training
and test accuracy in Fig. 7 and Fig. 8. SGDF not only achieves the highest test accuracy, but also a
smaller gap between training and test accuracy compared with other optimizers.

Table 5: Hyperparameters used for CIFAR-10 and CIFAR-100 datasets.

Optimizer Learning Rate β1 β2 Epochs Schedule Weight Decay Batch Size ε

SGDF 0.3 0.9 0.999 200 StepLR 0.0005 128 1e-8
SGD 0.1 0.9 - 200 StepLR 0.0005 128 -
Adam 0.001 0.9 0.999 200 StepLR 0.0005 128 1e-8
RAdam 0.001 0.9 0.999 200 StepLR 0.0005 128 1e-8
AdamW 0.001 0.9 0.999 200 StepLR 0.01 128 1e-8
MSVAG 0.1 0.9 0.999 200 StepLR 0.0005 128 1e-8
AdaBound 0.001 0.9 0.999 200 StepLR 0.0005 128 -
Sophia 0.0001 0.965 0.99 200 StepLR 0.1 128 -
Lion 0.00002 0.9 0.99 200 StepLR 0.1 128 -

Note: StepLR indicates a learning rate decay by a factor of 0.1 at the 150th epoch.

D.2 IMAGE CLASSIFICATION ON IMAGENET

We experimented with a ResNet18 on ImageNet classification task. For SGD, we set an initial
learning rate of 0.1, and multiplied by 0.1 every 30 epochs; for SGDF, we use an initial learning rate
of 0.5, set β1 = 0.5. Weight decay is set as 10−4 for both cases. To match the settings in Liu et al.
(2019). Detailed experimental parameters we place in Tab. 6. As shown in Fig. 9, SGDF achieves an
accuracy very close to SGD.

Table 6: Hyperparameters used for ImageNet.

Optimizer Learning Rate β1 β2 Epochs Schedule Weight Decay Batch Size ε

SGDF 0.5 0.5 0.999 100 StepLR 0.0005 256 1e-8
SGD 0.1 - - 100 StepLR 0.0005 256 -
SGDF 0.5 0.5 0.999 90 Cosine 0.0005 256 1e-8
SGD 0.1 - - 90 Cosine 0.0005 256 -

Note: StepLR indicates a learning rate decay by a factor of 0.1 every 30 epochs.

D.3 OBJECTIVE DETECTION ON PASCAL VOC

We show the results on PASCAL VOCEveringham et al. (2010). Object detection with a Faster-
RCNN modelRen et al. (2015). Detailed experimental parameters we place in Fig. 7. The results are
reported in Tab. 3, and detection examples shown in Fig. 10. These results also illustrate that our
method is still efficient in object detection tasks.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 7: Hyperparameters for object detection on PASCAL VOC using Faster-RCNN+FPN with
different optimizers.

Optimizer Learning Rate β1 β2 Epochs Schedule Weight Decay Batch Size ε

SGDF 0.01 0.9 0.999 4 StepLR 0.0001 2 1e-8
SGD 0.01 0.9 - 4 StepLR 0.0001 2 -
Adam 0.0001 0.9 0.999 4 StepLR 0.0001 2 1e-8
AdamW 0.0001 0.9 0.999 4 StepLR 0.0001 2 1e-8
RAdam 0.0001 0.9 0.999 4 StepLR 0.0001 2 1e-8

Note: StepLR schedule indicates a learning rate decay by a factor of 0.1 at the last epoch.

D.4 IMAGE GENERATION.

We experiment with one of the most widely used models, the Wasserstein-GAN with gradient penalty
(WGAN-GP)Salimans et al. (2016) using a small model with a vanilla CNN generator. Using popular
optimizerLuo et al. (2019); Zaheer et al. (2018); Balles & Hennig (2018); Bernstein et al. (2020), we
train the model for 100 epochs, generate 64,000 fake images from noise, and compute the Frechet
Inception Distance (FID)Heusel et al. (2017) between the fake images and real dataset (60,000 real
images). FID score captures both the quality and diversity of generated images and is widely used
to assess generative models (lower FID is better). For SGD and MSVAG, we report results from
Zhuang et al. (2020). We perform 5 runs of experiments, and report the results in Fig. 4. Detailed
experimental parameters we place in Tab. 8.

Table 8: Hyperparameters for Image Generation Tasks.

Optimizer Learning Rate β1 β2 Epochs Batch Size ε

SGDF 0.01 0.5 0.999 100 64 1e-8
Adam 0.0002 0.5 0.999 100 64 1e-8
AdamW 0.0002 0.5 0.999 100 64 1e-8
Fromage 0.01 0.5 0.999 100 64 1e-8
RMSProp 0.0002 0.5 0.999 100 64 1e-8
AdaBound 0.0002 0.5 0.999 100 64 1e-8
Yogi 0.01 0.9 0.999 100 64 1e-8
RAdam 0.0002 0.5 0.999 100 64 1e-8

D.5 EXTENDED EXPERIMENT.

The study involves evaluating the vanilla Adam optimization algorithm and its enhancement with
a Wiener filter on the CIFAR-100 dataset. Fig. 11 contains detailed test accuracy curves for both
methods across different models. The results indicate that the adaptive learning rate algorithms
exhibit improved performance when supplemented with the proposed first-moment filter estimation.
This suggests that integrating a Wiener filter with the Adam optimizer may improve performance.

D.6 OPTIMIZER TEST.

We derived a correction factor (1− β1)(1− β2t
1)/(1 + β1) from the geometric progression to correct

the variance of by the correction factor. So we test the SGDF with or without correction in VGG,
ResNet, DenseNet on CIFAR. We report both test accuracy in Fig. 12. It can be seen that the SGDF
with correction exceeds the uncorrected one.

We built a simple neural network to test the convergence speed of SGDF compared to SGDM and
vanilla SGD. We trained 5 epochs and recorded the loss every 30 iterations. As Fig. 13 shown, the
convergence rate of the filter method surpasses that of the momentum method, which in turn exceeds
that of vanilla SGD.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(a) VGG11 on CIFAR-10 (b) ResNet34 on CIFAR-10 (c) DenseNet121 on CIFAR-10

(d) VGG11 on CIFAR-10 (e) ResNet34 on CIFAR-10 (f) DenseNet121 on CIFAR-10

Figure 7: Training (top row) and test (bottom row) accuracy of CNNs on CIFAR-10 dataset. We
report confidence interval ([µ± σ]) of 3 independent runs.

(a) VGG11 on CIFAR-100 (b) ResNet34 on CIFAR-100 (c) DenseNet121 on CIFAR-100

(d) VGG11 on CIFAR-100 (e) ResNet34 on CIFAR-100 (f) DenseNet121 on CIFAR-100

Figure 8: Training (top row) and test (bottom row) accuracy of CNNs on CIFAR-100 dataset. We
report confidence interval ([µ± σ]) of 3 independent runs.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure 9: Training and test accuracy (top-1) of ResNet18 on ImageNet.

(a) SGDF (b) SGDM (c) Adam (d) AdamW (e) RAdam

Figure 10: Detection examples using Faster-RCNN + FPN trained on PASCAL VOC.

(a) VGG11 on CIFAR-100 (b) ResNet34 on CIFAR-100 (c) DenseNet121 on CIFAR-100

Figure 11: Test accuracy of CNNs on CIFAR-100 dataset. We train vanilla Adam and Adam combined
with Wiener Filter.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

(a) VGG11 on CIFAR-10 (b) ResNet34 on CIFAR-10 (c) DenseNet121 on CIFAR-10

(d) VGG11 on CIFAR-100 (e) ResNet34 on CIFAR-100 (f) DenseNet121 on CIFAR-100

Figure 12: SGDF with or without the correction factor. The curve shows the accuracy of the test.

Figure 13: Comparison of convergence rates.

36

	Introduction
	Preliminary Analysis
	Preliminaries
	Gradient Analysis

	Method
	SGDF General Introduction
	Fusion of Gaussian Distributions for Gradient Estimate
	Generalization Analysis of the Variance Lower Bound
	Convergence Analysis in Convex and Non-convex Optimization

	Experiments
	Empirical Evaluation
	Top Eigenvalues of Hessian and Hessian Trace
	Visualization of Landscapes
	Wiener Filter combines Adam

	Related Works
	Conclusion
	Method Derivation (Section 3 in main paper)
	Wiener Filter Derivation for Gradient Estimation (Main paper Section 3.1)
	Variance Correction (Correction factor in main paper Section 3.1)
	Fusion Gaussian distribution (Main paper Section 3.2)
	Fokker Planck modelling (Theorem 3.1 in main paper)

	Convergence analysis in convex online learning case (Theorem 3.2 in main paper).
	Convergence analysis for non-convex stochastic optimization (Theorem 3.3 in main paper).
	Detailed Experimental Supplement
	Image classification with CNNs on CIFAR
	Image Classification on ImageNet
	Objective Detection on PASCAL VOC
	Image Generation.
	Extended Experiment.
	Optimizer Test.

