
Addressing Long-Horizon Tasks by Integrating
Program Synthesis and State Machines

Yu-An Lin∗ Chen-Tao Lee∗ Guan-Ting Liu∗ Pu-Jen Cheng Shao-Hua Sun
National Taiwan University

{b06204039, b06703027, f07944014, pjcheng, shaohuas}@ntu.edu.tw

Abstract

Deep reinforcement learning excels in various domains but lacks generalizability
and interoperability. Programmatic RL methods [56, 39] reformulate solving RL
tasks as synthesizing interpretable programs that can be executed in the environ-
ments. Despite encouraging results, these methods are limited to short-horizon
tasks. On the other hand, representing RL policies using state machines [27] can
inductively generalize to long-horizon tasks; however, it struggles to scale up to
acquire diverse and complex behaviors. This work proposes Program Machine
Policies (POMPs), which bridge the advantages of programmatic RL and state
machine policies, allowing for the representation of complex behaviors and the
address of long-term tasks. Specifically, we introduce a method that can retrieve
a set of effective, diverse, compatible programs. Then, we use these programs as
modes of a state machine and learn a transition function to transition among mode
programs, allowing for capturing long-horizon repetitive behaviors. Our proposed
framework outperforms programmatic RL and deep RL baselines on various tasks
and demonstrates the ability to generalize to even longer horizons without any
fine-tuning inductively. Ablation studies justify the effectiveness of our proposed
search algorithm for retrieving a set of programs as modes.

1 Introduction

Deep reinforcement learning (deep RL) has recently achieved tremendous success in various do-
mains, such as controlling robots [20, 25], playing strategy board games [48, 49], and mastering
video games [60, 64]. However, the black-box neural network policies learned by deep RL methods
are not human-interpretable, posing challenges in scrutinizing model decisions and establishing user
trust [38, 46]. Moreover, deep RL policies often suffer from overfitting and struggle to generalize to
novel scenarios [67, 12], limiting their applicability in the context of most real-world applications.

To address these issues, Trivedi et al. [56], Liu et al. [39] explored representing policies as programs,
which detail task-solving procedures in a formal programming language and can be executed to
solve tasks described by Markov Decision Processes (MDPs). Such program policies are human-
readable and demonstrate significantly improved generalizability that allows for learning in smaller
state spaces and zero-shot generalizing to larger state spaces. Despite the encouraging results, these
methods are limited to synthesizing concise programs (i.e., shorter than 120 tokens) that can only
tackle short-horizon tasks (i.e., less than 400 time steps) [39].

To solve tasks requiring generalizing to longer horizons, Inala et al. [27] proposed representing a
policy using a state machine. By learning to transition between modes encapsulating actions corre-
sponding to specific states, such state machine policies can naturally model long-horizon repetitive
behaviors. Yet, this approach is constrained by highly simplified, task-dependent grammar that can

∗Contributed equally.

NeurIPS 2023 Workshop on Generalization in Planning (GenPlan 2023).

only structure constant or proportional primitive actions. Additionally, its teacher-student training
scheme requires model-based trajectory optimization with an accurate environment model, which
can often be challenging to attain in practice [43].

This work aims to bridge the best of both worlds — the interpretability and scalability of program
policies and the inductive generalizability of state machine policies. We propose program machine
policies (POMP), which learn a state machine upon a set of diverse programs. Intuitively, POMP
can tackle long-horizon tasks by repetitively transitioning between programs and is scalable since
each mode is a high-level skill described by a program instead of the agent’s primitive action.

We propose a three-stage framework to learn such a program machine policy. (1) Constructing a
program embedding space: To establish a program embedding space that smoothly, continuously
parameterizes programs with diverse behaviors, we adopt the method proposed by Trivedi et al. [56].
(2) Retrieving a diverse set of effective and reusable programs: Then, we introduce a searching
algorithm to retrieve a set of programs from the learned program embedding space. Each program
can be executed in the MDP and achieve satisfactory performance; more importantly, these programs
are compatible and can be sequentially executed in any order. (3) Learning the transition function:
To alter between a set of programs as state machine modes, the transition function takes the current
environment state and the current mode (i.e., program) as input and predicts the next mode. We
propose to learn this transition function using RL via maximizing the task rewards from the MDP.

To evaluate our proposed framework POMP, we adopt the Karel domain [42], which characterizes
an agent that navigates a grid world and interacts with objects. POMP outperforms programmatic
reinforcement learning and deep RL baselines on existing benchmarks proposed by Trivedi et al.
[56], Liu et al. [39]. We design a new set of tasks with long-horizon on which POMP demonstrates
superior performance and the ability to generalize to even longer horizons without fine-tuning in-
ductively. Ablation studies justify the effectiveness of our proposed search algorithm for retrieving
a set of programs as modes.

2 Related Work

Program Synthesis. Program synthesis techniques revolve around program generation to convert
given inputs into desired outputs. These methods have demonstrated notable successes across di-
verse domains such as array and tensor manipulation [3, 15], string transformation [13, 24, 68], gen-
erating computer commands [37] and code [7, 34], graphics and 3D shape modeling [63, 40, 54],
and describing agent behaviors [6, 51, 8, 50, 35]. Most program synthesis methods focus on task
specifications such as input/output pairs, demonstrations, or language descriptions; in contrast, this
work aims to synthesize human-readable programs as policies to solve reinforcement learning tasks.

Programmatic Reinforcement Learning. Programmatic reinforcement learning methods [11, 62,
39] explore structured representations for representing RL policies, including decision trees [5],
state machines [27], symbolic expressions [32], and programs [57, 58, 1]. Trivedi et al. [56], Liu
et al. [39] attempted to produce policies described by domain-specific language programs to solve
simple RL tasks. We aim to take a step toward addressing complex, long-horizon, repetitive tasks.

State Machines for Reinforcement Learning. Recent works adopt state machines to model re-
wards [26, 55, 19, 65], segment tasks [22, 18], or achieve inductive generalization [27]. Prior works
explore using symbolic programs [27] or neural networks [26, 55, 22] as modes (i.e., states) in state
machines. However, the learned policy of such designs is not easy to interpret compared to DSL
programs. On the contrary, our goal is to exploit human-readable programs for each mode of state
machines so that the resulting state machine policies are more easily interpreted.

Extended discussions on related work can be found in Section A.

3 Problem Formulation

Our goal is to devise a framework that can produce a program machine policy (POMP), a state
machine whose modes are programs structured in a domain-specific language, to address complex,
long-horizon tasks described by Markov Decision Processes (MDPs). To this end, we first synthesize
a set of task-solving, diverse, compatible programs as modes, and then learn a transition function to
alter between modes.

2

Program ρ := DEF run m(s m)

Repetition n := Number of repetitions

Perception h := frontIsClear | leftIsClear | rightIsClear |
markerPresent | noMarkerPresent

Condition b := perception h | not perception h

Action a := move | turnLeft | turnRight |
putMarker | pickMarker

Statement s := while c(b c) w(s w) | s1; s2 | a |
repeat R=n r(s r) | if c(b c) i(s i) |
ifelse c(b c) i(s1 i) else e(s2 e)

Figure 1: Karel domain-specific language (DSL),
designed for describing the Karel agent’s behaviors.

Domain Specific Language. This work adopts
the domain-specific language (DSL) of the
Karel domain [6, 8, 56], as illustrated in Fig-
ure 1. This DSL describes the control flows as
well as the perception and actions of the Karel
agent. Actions including move, turnRight,
and putMarker define how the agent can in-
teract with the environment. Perceptions, such
as frontIsClear and markerPresent, for-
mulate how the agent observes the environ-
ment. Control flows, e.g., if, else, while,
enable representing divergent and repetitive be-
haviors. Furthermore, Boolean and logical op-
erators like and, or, and not allow for composing more intricate conditions. This work uses pro-
grams structured in this DSL to construct the modes of a program machine policy.

Markov Decision Process (MDP). The tasks considered in this work can be formulated as finite-
horizon discounted Markov Decision Processes (MDPs). The performance of a program machine
policy is evaluated based on the execution traces of a series of programs selected by the state machine
transition function. The rollout of a program ρ consists of a T -step sequence of state-action pairs
{(st, at)}t=1, ..., T obtained from a program executor EXEC(·) that executes program ρ to interact
with an environment, resulting in the discounted return

∑T
t=0 γ

t(rt), where rt = R(st, at) denotes
the reward function. We aim to maximize the total rewards by executing a series of programs
following the state machine transition function.

Program Machine Policy (POMP). This work proposes a novel RL policy representation, a pro-
gram machine policy, which consists of a finite set of modes M = {mk}k=1, ...,|M | as internal states
of the state machine and a state machine transition function f that determines how to transition
among these modes. Each mode mi encapsulates a human-readable program ρmi that will be exe-
cuted when this mode is selected during policy execution. On the other hand, the transition function
f(mi,mj , s) outputs the probability of transitioning from the current mode mi to mode mj given
the current MDP state s. To rollout a POMP, the state machine starts at initial mode minit, which will
not execute any action, and transits to the next mode mi+1 based on the current mode mi and MDP
state s. If mi+1 equals the termination mode mterm, the program machine policy will terminate and
finish the rollout. Otherwise, the mode program ρmi+1

will be executed and generates state-action
pairs {(sit, ait)}t=1, ..., T i before the state machine transits to the next state mi+2.

4 Approach

We design a three-stage framework to produce a program machine policy that can be executed
and maximize the return given a task described by an MDP. First, constructing a program embed-
ding space that smoothly, continuously parameterizes programs with diverse behaviors is introduced
in Section 4.1. Then, Section 4.2 presents a method that retrieves a set of effective, diverse, compat-
ible programs as POMP modes. Given retrieved modes, Section 4.3 describes learning the transition
function determining transition probability among the modes. An overview of the proposed frame-
work is illustrated in Figure 2.

4.1 Constructing Program Embedding Space

We follow the approach and the program dataset presented in [56] to learn a program embedding
space that smoothly and continuously parameterizes programs with diverse behaviors. The training
objectives include a VAE loss and two losses that encourage learning a behaviorally smooth program
embedding space. Once trained, we can use the learned decoder pθ to map any program embedding
z to a program ρz = pθ(z) consisting of a sequence of program tokens.

4.2 Retrieving Mode Programs

With a program embedding space, we aim to retrieve a set of programs as modes of a program
machine policy given a task. This set of programs should satisfy the following properties.

3

CEM
+Diversity

+Compatibility

Encoder Decoder

Latent
Program

Mode Program
Embeddings

def run():
 while frontIsClear():
 move()
 turnRight()
 putMarker()

Decoder

def run():
 while not frontIsClear():
 turnRight()
 move()
 turnLeft()

def run():
while markerPresent():

pickMarker()
move()

turnRight()

def run():
while noMarkerPresent():

putMarker()
move
move()

ProgramProgram

Reconstructed
Program

def run():
if markerPresent():

pickMarker()
else:

move()

(b) Retrieving Mode Programs

def run():
while noMarkerPresent():

putMarker()
move
move()

def run():
while markerPresent():

pickMarker()
move()

turnRight()

def run():
 while not frontIsClear():
 turnRight()
 move()
 turnLeft()

def run():
 while frontIsClear():
 move()
 turnRight()
 putMarker()

Termination
Mode

Initial
Mode

(c) Learning a Mode Transition Function

Mode Transition Function

ProgramProgram

Input
Program

def run():
if markerPresent():

pickMarker()
else:

move()

(a) Learning Program Embedding Space

Figure 2: Learning Program Machine Policy. (a): Learning a program embedding space. To learn a
program embedding space that encodes program semantics behaviors, we follow the framework proposed in
[56], employing an encoder qϕ and a decoder pθ . (b): Retrieving mode programs. After learning the program
embedding space, we propose an advanced search scheme built upon the Cross-Entropy Method (CEM) to
search program embeddings zm1, zm2, zm3, zm4 of different skills. These embeddings can be decoded by
pθ to get the executable programs ρm1 , ρm2 , ρm3 , ρm4 as policies for the modes of the state machine. (c):
Learning a mode transition function. Given the current environment state s and the current mode (m1 in this
example), the mode transition function predicts the transition probability over each mode of the state machine
with the aim of maximizing the total accumulative reward from the environment.

• Effective: Each program can solve the task to some extent (i.e., obtain some task rewards).

• Diverse: The more behaviorally diverse the programs are, the richer behaviors can be cap-
tured by the program machine policy.

• Compatible: Sequentially executing some programs with specific orders can potentially lead
to improved task performance.

In the following, we present techniques that allow retrieving such an effective, diverse, and compat-
ible set of programs from a learned program embedding space.

4.2.1 Retrieving Effective Programs

To obtain a task-solving program, we can apply the Cross-Entropy Method [CEM; 44], iteratively
searching in a learned program embedding space [56], described below and illustrated in Figure 3a.

(1) Randomly initialize a program embedding vector zr as the search center.

(2) Add random noises to zr to generate a population of program embeddings Z =
{zi}i=1,...,n, where n denotes the population size.

(3) Evaluate every program embedding z ∈ Z with the evaluation function G to get a list of
fitness score [G(zi)]i=1,...,n.

(4) Average the top k program embeddings in Z according to fitness scores [G(zi)]i=1,...,n and
assign it to the search center zr.

(5) Repeat (2) to (4) until the fitness score G(zr) of zr converges or the maximum number of
steps is reached.

Since we aim to retrieve a set of effective programs, we can define the evaluation function as the pro-
gram execution return of a decoded program embedding, i.e., G(z) =

∑T
t=0 γ

tE(st,at)∼EXEC(ρz)[rt].
To retrieve a set of |M | programs as the modes of a program machine policy, we can run this

4

...

Noise

Sampling

TopK
Candidate

Combination

Program
Evaluation
Function

Program
Embedding

after
iteration

For
Each

(a) Cross Entropy Method (CEM)

Program
Decoder

(b) Evaluation Function

CEM
Program

Embedding

Program
Embedding Best

Program
Embedding

CEM

(c) CEM+diversity

CEM
+ diversity

Program
Embedding

Program
Embedding

CEM
+ diversity

From previous Mode

Randomly
sampled

Sequences

(d) CEM+diversity+compatibility

Figure 3: Searching for a set of effective and reusable program embedding that can be decoded to programs
of various skills. (a): Using the Cross-Entropy Method to search for a program with high execution reward
in the learned program embedding space. (b): The program evaluation function G is used during program
search. (c): Conducting CEM multiple times and selecting the best program. The diversity multiplier is used to
avoid identical results and increase diversity among multiple CEM searches. (d): Searching for a diverse set of
program embeddings that are compatible with each other in terms of execution order SQ1 and SQ2.

CEM search N times, take |M | best program embeddings, and obtain the decoded program set
{ρzri = pθ(zri)}i=1,...,|M |. Section B.1 presents more details and the CEM search pseudocode.

4.2.2 Retrieving Effective, Diverse Programs

We will use the set of retrieved programs as the modes of a program machine policy. Hence, a
program set with diverse behaviors can lead to a program machine policy representing complex,
rich behavior. However, the program set obtained by running the CEM search for |M | times can
have low diversity, preventing the policy from solving tasks requiring various skills.

To address this issue, we propose considering previous search results to encourage diversity among
the retrieved programs by employing a diversity multiplier in the evaluation function G. Specif-
ically, during the (j + 1)st CEM search, each program embedding z is evaluated by G(z, Zj) =

(
∑T

t=0 γ
tE(st,at)∼EXEC(ρz)[rt]) · diversity(z, Zj), where diversity(z, Zj) is the proposed diver-

sity multiplier defined as Sigmoid(−maxzi∈(Zj)
z·zi

∥z∥∥zi∥). Thus, the program execution return
is scaled down by diversity(z, Zj) based on the maximum cosine similarity between z and the
retrieved program embeddings Zj = {zi}i=1,...,j from the previous j CEM searches. This diver-
sity multiplier encourages searching for program embeddings different from previously retrieved
programs. An illustration of this process is shown in Figure 3c.

To retrieve a set of |M | programs as the modes of a program machine policy, we can run this
CEM+diversity search N times, take |M | best program embeddings, and obtain the decoded pro-
gram set. The procedure and the search trajectory visualization can be found in Section B.2.

4.2.3 Retrieving Effective, Diverse, Compatible Programs

Our program machine policy executes a sequence of programs by learning a transition function to
select from mode programs. Therefore, these programs need to be compatible with each other, i.e.,
executing a program following the execution of other programs can improve task performance. Yet,
CEM+diversity discussed in Section 4.2.2 searches every program independently.

In order to account for the compatibility among programs during the search, we propose a method,
CEM+diversity+compatibility, as illustrated in Figure 3d. When searching the program for the

5

(k + 1)st mode, we randomly sample two lists of programs from the determined mode set with k
programs: Ψbefore and Ψafter. Then, during each iteration of the CEM search, we compute the return
of each program embedding z by sequentially executing this list of programs: [Ψbefore, ρz,Ψafter],
where ρz denotes the program decoded from z. That said, a program achieving a good return is
compatible with the k previously found modes under some execution orders.

Note that to compute the diversity multiplier, when running the (j + 1)st search with k determined
modes, we consider all the j + k previously found program embeddings Zj ∪ Zk by calculating
diversity(z, Zj ∪ Zk). As a result, the evaluation function is G(z, Zj ∪ Zk,Ψbefore,Ψafter) = Rρ ·
diversity(z, Zj ∪ Zk), where Rρ is the total reward obtained from sequentially executing decoded
programs of Ψbefore, z, and Ψafter and can be written as follows:

Rρ =

|Ψbefore|∑
i=1

γi−1
T i∑
t=0

γtE(st,at)∼EXEC(Ψbefore[i])[rt] + γ|Ψbefore|
T∑

t=0

γtE(st,at)∼EXEC(ρz)[rt]

+ γ|Ψbefore|+1

|Ψafter|∑
i=1

γi−1
T i∑
t=0

γtE(st,at)∼EXEC(Ψafter[i])[rt].

(1)

We can run this search for |M | times to obtain a set of programs that are effective, diverse, and
compatible with each other, which can be used as mode programs for a program machine policy.
More details and the whole search procedure can be found in Section B.3.

4.3 Learning Transition Function

Mode Transition Function

Current
Mode

State
Next Mode

Execution

Actions

def run():
 while frontIsClear():
 move()
 putMarker()

def run():
 while not frontIsClear():
 move()
 turnLeft()

def run():
while noMarkerPresent():

putMarker()
move()

def run():
while markerPresent():

pickMarker()
move()

Environment
State

Termination

Reward

Figure 4: Program Machine Policy Execution.

Given a set of modes (i.e., programs) M =
{mk}k=1, ..., |M |, we formulate learning a tran-
sition function f that determines how to transi-
tion between modes as a reinforcement learn-
ing problem aiming to maximize the task re-
turn. In practice, we define an initial mode
minit that initializes the program machine pol-
icy at the beginning of each episode; also, we
define a termination mode mterm, which termi-
nate the episode if chosen. Specifically, the
transition function f(mi,mj , s) outputs the
probability of transitioning from the current
mode mi to mode mj , given the current en-
vironment s.

At i-th transition function step, given the cur-
rent state s and the current mode mcurrent, the
transition function predicts the probability of
transition to mterm∪{mk}k=1, ..., |M |. We sam-
ple a mode mnext based on the predicted probability distribution. If the sampled mode is the termi-
nation mode, the episode terminates; otherwise, we execute the corresponding program ρ, yielding
the next state (i.e., the last state siT i of the state sequence returned by EXEC(ρ), where T i denotes

the horizon of the i-th program execution) and the cumulative reward ri+1 =
∑T i

t=1 r
i
t. Note that

the program execution EXEC(ρ) will terminate after full execution or the number of actions emitted
during EXEC(ρ) reaches 200. We assign the next state to the current state and the next mode to the
current mode. Then, we start the next (i+ 1)st transition function step. This process stops when the
termination mode is sampled, or a maximum step is reached. Figure 4 illustrates this procedure.

Intuitively, the transition function learns to maximize the total rewards obtained from the entire
program machine policy execution

∑H
t=1 r

i, where H denotes the horizon of the execution. To
make the transition function interpretable, we adopt approaches proposed in [30] to extract the state
machine structure. Examples of extracted state machines are shown in Section E.

6

(a) SEESAW (b) UP-N-DOWN (c) FARMER (d) INF-DOORKEY (e) INF-HARVESTER

Figure 5: KAREL-LONG Problem Set: This work introduces a new set of tasks in the Karel domain.
These tasks necessitate learning diverse, repetitive, and task-specific skills. For example, in our
designed INF-HARVESTER, the agent needs to traverse the whole map and pick nearly 400 markers
to solve the tasks since the environment randomly generates markers; in contrast, the HARVESTER
from the KAREL problem set [56] can be solved by picking 36 markers.

Table 1: Comparing CEM and CEM+diversity. The accumulated rewards of programs retrieved
by CEM and CEM+diversity. The mean and standard deviation are evaluated over five random
seeds. CEM+diversity outperforms CEM with significantly smaller standard deviations across 8 out
of 10 tasks, highlighting the effectiveness and stability of CEM+diversity.

Method FOUR
CORNER

TOP
OFF

CLEAN
HOUSE

STAIR
CLIMBER

HARVESTER MAZE
DOOR
KEY

ONE
STROKE

SEEDER SNAKE

CEM 0.45 ± 0.40 0.81 ± 0.07 0.18 ± 0.14 1.00 ± 0.00 0.45 ± 0.28 1.00 ± 0.00 0.50 ± 0.00 0.65 ± 0.19 0.51 ± 0.21 0.21 ± 0.15
CEM+diversity 1.00 ± 0.00 1.00 ± 0.00 0.37 ± 0.06 1.00 ± 0.00 0.80 ± 0.07 1.00 ± 0.00 0.50 ± 0.00 0.62 ± 0.01 0.69 ± 0.07 0.36 ± 0.02

5 Experiments

We aim to answer the following questions with the experiments and ablation studies. (1) Can our
proposed diversity multiplier introduced in Section 4.2.2 enhance CEM and yield programs with
improved performance? (2) Can our proposed CEM+diversity+compatibility introduced in Section
4.2.3 retrieve a set of programs that are diverse yet compatible with each other? (3) Can the whole
proposed framework produce a program machine policy that can be executed and maximize the
return given a task described by an MDP and outperform existing methods?

5.1 Karel Problem Sets

To this end, we consider the Karel domain [42], which is widely adopted in program synthe-
sis [6, 47, 51, 8] and programmatic reinforcement learning [56, 39]. Specifically, we utilize the
KAREL problem set [56] and the KAREL-HARD problem set [39]. Detailed hyperparameters for the
following experiments can be found in Section F.

The KAREL problem set includes six basic tasks, each of which can be solved by a short program
(less than 45 tokens), with a horizon shorter than 200 steps per episode. On the other hand, the four
tasks introduced in the KAREL-HARD problem require longer, more complex programs (i.e., 45 to
120 tokens) with longer execution horizons (i.e., up to 500 actions). Solving the tasks in these two
problem sets requires conducting the same behavior repetitively, traversing through multiple rooms,
performing some specific actions in particular locations, etc. More details about the two problem
sets can be found in Section G and Section H.

KAREL-LONG Problem Set. To evaluate the performance of our proposed framework and existing
methods on tasks with extended horizons, we design a new set of Karel tasks, dubbed KAREL-
LONG problem set, whose tasks require thousands of steps to be completed. As illustrated in Figure
5, the tasks requires the agent to fulfill extra constraints (e.g., not placing multiple markers on the
same spot in FARMER, receiving penalties imposed for not moving along stairs in UP-N-DOWN)
and conduct extended exploration (e.g., repetitively locating and collecting markers in SEESAW,
INF-DOORKEY, and INF-HARVESTER). More details about the KAREL-LONG tasks can be found
in Section I.

7

Table 2: KAREL-LONG Performance. Mean return and standard deviation of all methods across
the KAREL-LONG problem set, evaluated over five random seeds. By learning a program machine
policy with a set of effective, diverse, and compatible mode programs, our proposed framework
achieves the best mean reward in SEESAW, UP-N-DOWN, and FARMER. It also performs competi-
tively in INF-DOORKEY and INF-HARVESTER.

Method SEESAW UP-N-DOWN FARMER INF-DOORKEY INF-HARVESTER

CEM ×|M | 0.31 ± 0.18 0.88 ± 0.12 0.22 ± 0.00 0.39 ± 0.46 0.56 ± 0.12
CEM+diversity top k, k = |M | 0.09 ± 0.11 0.72 ± 0.36 0.23 ± 0.00 0.92± 0.01 0.71 ± 0.02

CEM+diversity ×|M | 0.47 ± 0.39 0.76 ± 0.31 0.24 ± 0.03 0.89 ± 0.02 0.66 ± 0.07

DRL 0.00 ± 0.00 0.00 ± 0.00 0.55 ± 0.16 0.97 ± 0.01 0.45 ± 0.03
Random Transition 0.08 ± 0.03 0.03 ± 0.17 0.09 ± 0.03 0.13 ± 0.08 0.14 ± 0.07

PSMP 0.25 ± 0.39 0.00 ± 0.00 0.58 ± 0.06 0.97 ± 0.01 0.59 ± 0.06
MMN 0.10 ± 0.00 0.00 ± 0.00 0.57 ± 0.12 0.87 ± 0.05 0.41 ± 0.10

LEAPS 0.10 ± 0.10 0.38 ± 0.05 0.15 ± 0.06 0.10 ± 0.04 0.06 ± 0.06
HPRL 0.00 ± 0.00 0.00 ± 0.00 0.40 ± 0.18 0.15 ± 0.21 0.85 ± 0.06

POMP (Ours) 0.90 ± 0.02 0.97 ± 0.00 0.88 ± 0.01 0.91± 0.01 0.67 ± 0.03

5.2 Cross-Entropy Method with Diversity Multiplier

We aim to investigate whether our proposed diversity multiplier can enhance CEM and yield pro-
grams with improved performance. To this end, for each KAREL or KAREL-HARD task, we use
CEM and CEM+diversity to find 10 programs. Then, for each task, we evaluate all the programs
and report the best performance in Table 1. The results suggest that our proposed CEM+diversity
achieves better performance on most of the tasks, highlighting the improved search quality induced
by covering wider regions in the search space with the diversity multiplier. Visualized search trajec-
tories of CEM+diversity can be found in Section B.2.

5.3 Ablation Study

We propose CEM+diversity+compatibility to retrieve a set of effective, diverse, compatible pro-
grams as modes of our program machine policy. This section compares a variety of implementations
that consider the diversity and the compatibility of programs when retrieving them.

• CEM ×|M |: Conduct the CEM search described in Section 4.2.1 |M | = 5 times and take
the resulting |M | programs as the set of mode programs for each task.

• CEM+diversity top k, k = |M |: Conduct the CEM search with the diversity multiplier
described in Section 4.2.2 N = 10 times and take the top |M | = 5 results as the set of mode
program embeddings for each task.

• CEM+diversity ×|M |: Conduct the CEM search with the diversity multiplier described
in Section 4.2.2 N = 10 times and take the best program as the ith mode. Repeat this
process |M | = 5 times and take all |M | programs as the mode program set for each task.

• POMP (Ours).: Conduct CEM+diversity+compatibility (i.e., CEM with the diversity mul-
tiplier and Rρ as described in Section 4.2.3) for N = 10 times and take the best result as
the ith mode. Repeat the above process |M | = 5 times and take all |M | results as the set
of mode program embeddings for each task. Note that the whole procedure of retrieving
programs using CEM+diversity+compatibility and learning a program machine policy with
retrieved mode programs is essentially our proposed framework, POMP.

We evaluate the quality of retrieved program sets according to the performance of program ma-
chine policies learned given these program sets on the KAREL-LONG tasks. The results presented
in Table 2 show that our proposed framework, POMP, outperforms its variants that ignore compat-
ibility among modes on all the tasks. This justifies our proposed CEM+diversity+compatibility for
retrieving a set of effective, diverse, compatible programs as modes of our program machine policy.

5.4 Comparing with Deep RL and Programmatic RL Methods

In this section, we compare our proposed framework and its variant to state-of-the-art deep RL and
programmatic RL methods on the KAREL-LONG tasks.

8

101 103 105 107

0.0

0.2

0.4

0.6

0.8

Farmer
POMP
Mode Searching
LEAPS
HPRL

101 103 105 107

0.0

0.2

0.4

0.6

0.8

Inf-DoorKey
POMP
Mode Searching
LEAPS
HPRL

Excecuted Programs

Re
tu

rn

(a) Sample Efficiency

×1 ×2 ×4 ×8 ×16

-80

-60

-40

-20

0
Farmer

POMP
PSMP
DRL
MMN
LEAPS
HPRL

×1 ×2 ×4 ×8 ×16
-100

-80

-60

-40

-20

0
Inf-DoorKey

POMP
PSMP
DRL
MMN
LEAPS
HPRL

Expected Horizon Length

Pe
rfo

rm
an

ce
 D

ro
p

(%
)

(b) Inductive Generalization

Figure 6: (a) Program sample efficiency. The training curves of POMP and other programmatic RL ap-
proaches, where the x-axis is the total number of executed programs for interacting with the environment,
and the y-axis is the maximum validation return. This demonstrates that our proposed framework has better
program sample efficiency and converges to better performance. (b) Inductive generalization performance.
We evaluate and report the performance drop in the testing environments with an extended horizon, where the
x-axis is the extended horizon length compared to the horizon of the training environments, and the y-axis is
the performance drop in percentage. Our proposed framework can inductively generalize to longer horizons
without any fine-tuning.

• Random Transition uses the same set of mode programs as POMP but with a random tran-
sition function (i.e., uniformly randomly select the next mode at each step). The performance
of this method examines the necessity to learn a transition function.

• Programmatic State Machine Policy (PSMP) learns a transition function as POMP while
using primitive actions (e.g., move, pickMarker) as modes. Comparing POMP with this
method highlights the effect of retrieving programs with higher-level behaviors as modes.

• DRL represents a policy as a neural network and is learned using PPO [45]. The policy takes
raw states (i.e., Karel grids) as input and predicts the probability distribution over the set of
primitive actions, e.g., move, pickMarker.

• Moore Machine Network (MMN) [30] represents a recurrent policy with quantized memory
and observations, which can be further extracted as a finite state machine. The policy takes
raw states (i.e., Karel grids) as input and predicts the probability distribution over the set of
primitive actions, e.g., move, pickMarker.

• Learning Embeddings for Latent Program Synthesis (LEAPS) [56] searches for a single
task-solving program using the vanilla CEM in a learned program embedding space.

• Hierarchical Programmatic Reinforcement Learning (HPRL) [39] learns a meta-policy,
whose action space is a learned program embedding space, to compose a series of programs
to produce a program policy.

POMP excels in three of the five tasks we devised, with particular prowess in FARMER and SEESAW
while performing competitively in the other two tasks. FARMER requires two distinct skills (e.g.,
pick and put markers) and the capability to persistently execute one skill for an extended period
before transitioning to another. POMP adeptly addresses this challenge due to the consideration of
diversity when seeking mode programs, which ensures the acquisition of both skills concurrently.
Furthermore, the state machine architecture of our approach provides not only the sustained execu-
tion of a singular skill but also the timely transition to another, as needed. Unlike the other tasks,
SEESAW demands an extended traverse to obtain a marker, resulting in a more sparse reward distri-
bution. During the search for mode programs, the emphasis on compatibility allows POMP to secure
a set of mutually compatible modes that collaborate effectively to perform extended traversal. Some
retrieved programs are shown in Figure 21, Figure 22 and Figure 23.

5.5 Program Sample Efficiency

To accurately evaluate the sample efficiency of programmatic RL methods, we propose the concept
of program sample efficiency, which measures the total number of program executions required to
learn a program policy. We report the program sample efficiency of LEAPS, HPRL, and POMP
on FARMER and INF-DOORKEY, as shown in Figure 6a. POMP has better sample efficiency than
LEAPS and HPRL, indicating that our framework requires fewer environmental interactions and
computational costs. More details can be found in Section C.

9

5.6 Inductive Generalization

We aim to compare the inductive generalization ability of all the methods, which requires generaliz-
ing to instances requiring an arbitrary number of repetitions [27]. To this end, we vary the horizons
of FARMER and INF-DOORKEY and report the performance in Figure 6b. The results show that
POMP experiences a smaller decline in performance in these testing environments with signifi-
cantly extended horizons. This suggests that our approach exhibits superior inductive generalization
in these tasks. Note that the longest execution of POMP runs up to 500k environment steps. More
details about the tasks with extended horizons can be found in Section D.

6 Conclusion

This work aims to produce reinforcement learning policies that are human-interpretable and can
inductively generalize by bridging program synthesis and state machines. To this end, we present
the Program Machine Policy (POMP) framework for representing complex behaviors and addressing
long-horizon tasks. Specifically, we introduce a method that can retrieve a set of effective, diverse,
compatible programs by modifying the Cross Entropy Method (CEM). Then, we propose to use
these programs as modes of a state machine and learn a transition function to transit among mode
programs using reinforcement learning. To evaluate the ability to solve tasks with extended horizons,
we design a set of tasks that requires thousands of steps in the Karel domain. Our framework
POMP outperforms various deep RL and programmatic RL methods on the tasks. Also, POMP
demonstrates superior performance in inductively generalizing to even longer horizons without fine-
tuning. We conduct ablation studies that justify the effectiveness of our proposed search algorithm
to retrieve mode programs and our proposed method to learn a transition function.

7 Acknowledgement

This work was partially supported by the National Taiwan University and its Department of Electri-
cal Engineering, Graduate Institute of Networking and Multimedia, Graduate Institute of Commu-
nication Engineering, and College of Electrical Engineering and Computer Science. Shao-Hua Sun
was partially supported by the Yushan Fellow Program by the Ministry of Education, Taiwan.

References

[1] David S Aleixo and Levi HS Lelis. Show me the way! bilevel search for synthesizing pro-
grammatic strategies. In Association for the Advancement of Artificial Intelligence, 2023.

[2] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Association
for the Advancement of Artificial Intelligence, 2017.

[3] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. In International Conference on Learning Represen-
tations, 2017.

[4] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Dynamic Systems, 2003.

[5] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via
policy extraction. In Neural Information Processing Systems, 2018.

[6] Rudy R Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli.
Leveraging grammar and reinforcement learning for neural program synthesis. In Interna-
tional Conference on Learning Representations, 2018.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias

10

Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

[8] Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In
International Conference on Learning Representations, 2019.

[9] Shuo Cheng and Danfei Xu. LEAGUE: Guided skill learning and abstraction for long-horizon
manipulation. IEEE Robotics and Automation Letters, 2023.

[10] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. arXiv
preprint arXiv:2306.13831, 2023.

[11] Dongkyu Choi and Pat Langley. Learning teleoreactive logic programs from problem solving.
In International Conference on Inductive Logic Programming, 2005.

[12] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying gener-
alization in reinforcement learning. In International Conference on Machine Learning, 2019.

[13] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed,
and Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In International
Conference on Machine Learning, 2017.

[14] Thomas G Dietterich. Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research, 2000.

[15] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas Morales,
Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Growing gen-
eralizable, interpretable knowledge with wake-sleep bayesian program learning. arXiv preprint
arXiv:2006.08381, 2020.

[16] Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies. In International Conference on Learning Representations, 2018.

[17] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model
for a mechanism of visual pattern recognition. In Competition and Cooperation in Neural
Nets: Proceedings of the US-Japan Joint Seminar, 1982.

[18] Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia Broda, and Alessandra Russo.
Induction and exploitation of subgoal automata for reinforcement learning. Journal of Artificial
Intelligence Research, 2021.

[19] Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia Broda, and Alessandra Russo.
Hierarchies of reward machines. In International Conference on Machine Learning, 2023.

[20] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In IEEE International Confer-
ence on Robotics and Automation, 2017.

[21] Lin Guan, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging approximate symbolic
models for reinforcement learning via skill diversity. In International Conference on Machine
Learning, 2022.

[22] Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate, Thomas F. Mel-
ham, and Daniel Kroening. Deepsynth: Automata synthesis for automatic task segmentation
in deep reinforcement learning. In Association for the Advancement of Artificial Intelligence,
2021.

11

[23] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual con-
cepts with a constrained variational framework. In International Conference on Learning Rep-
resentations, 2016.

[24] Joey Hong, David Dohan, Rishabh Singh, Charles Sutton, and Manzil Zaheer. Latent program-
mer: Discrete latent codes for program synthesis. In International Conference on Machine
Learning, 2021.

[25] Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine.
How to train your robot with deep reinforcement learning: lessons we have learned. The
International Journal of Robotics Research, 2021.

[26] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward
machines for high-level task specification and decomposition in reinforcement learning. In
International Conference on Machine Learning, 2018.

[27] Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing
programmatic policies that inductively generalize. In International Conference on Learning
Representations, 2020.

[28] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski.
Vizdoom: A doom-based ai research platform for visual reinforcement learning. In IEEE
Conference on Computational Intelligence and Games, 2016.

[29] Martin Klissarov and Doina Precup. Flexible option learning. In Neural Information Process-
ing Systems, 2021.

[30] Anurag Koul, Alan Fern, and Sam Greydanus. Learning finite state representations of recurrent
policy networks. In International Conference on Learning Representations, 2019.

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 2017.

[32] Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt,
Nathan Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering symbolic policies with
deep reinforcement learning. In International Conference on Machine Learning, 2021.

[33] Youngwoon Lee, Shao-Hua Sun, Sriram Somasundaram, Edward Hu, and Joseph J. Lim. Com-
posing complex skills by learning transition policies. In International Conference on Learning
Representations, 2019.

[34] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes
Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Suther-
land Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
Competition-level code generation with alphacode. Science, 2022.

[35] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control. In arXiv
preprint arXiv:2209.07753, 2022.

[36] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control. In Inter-
national Conference on Robotics and Automation, 2023.

[37] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D Ernst. Nl2bash: A
corpus and semantic parser for natural language interface to the linux operating system. In
International Conference on Language Resources and Evaluation, 2018.

[38] Zachary C Lipton. The mythos of model interpretability. In ICML Workshop on Human
Interpretability in Machine Learning, 2016.

12

[39] Guan-Ting Liu, En-Pei Hu, Pu-Jen Cheng, Hung-Yi Lee, and Shao-Hua Sun. Hierarchical pro-
grammatic reinforcement learning via learning to compose programs. In International Confer-
ence on Machine Learning, 2023.

[40] Yunchao Liu, Jiajun Wu, Zheng Wu, Daniel Ritchie, William T. Freeman, and Joshua B. Tenen-
baum. Learning to describe scenes with programs. In International Conference on Learning
Representations, 2019.

[41] Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J. Lim. Skill-based
meta-reinforcement learning. In International Conference on Learning Representations, 2022.

[42] Richard E Pattis. Karel the robot: a gentle introduction to the art of programming. John Wiley
& Sons, Inc., 1981.

[43] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforcement learn-
ing: Applications on robotics. Journal of Intelligent & Robotic Systems, 2017.

[44] Jürgen Schmidhuber, Jieyu Zhao, and Marco Wiering. Shifting inductive bias with success-
story algorithm, adaptive levin search, and incremental self-improvement. Machine Learning,
1997.

[45] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[46] Owen Shen. Interpretability in ML: A broad overview, 2020. URL https://mlu.red/muse/
52906366310.

[47] Eui Chul Shin, Illia Polosukhin, and Dawn Song. Improving neural program synthesis with
inferred execution traces. In Neural Information Processing Systems, 2018.

[48] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of go with deep neural networks and tree search. Nature, 2016.

[49] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lill-
icrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis.
Mastering the game of go without human knowledge. Nature, 2017.

[50] Tom Silver, Kelsey R Allen, Alex K Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. Few-
shot bayesian imitation learning with logical program policies. In Association for the Advance-
ment of Artificial Intelligence, 2020.

[51] Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph Lim. Neural program syn-
thesis from diverse demonstration videos. In International Conference on Machine Learning,
2018.

[52] Shao-Hua Sun, Te-Lin Wu, and Joseph J. Lim. Program guided agent. In International Con-
ference on Learning Representations, 2020.

[53] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 1999.

[54] Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B.
Tenenbaum, and Jiajun Wu. Learning to infer and execute 3d shape programs. In International
Conference on Learning Representations, 2019.

[55] Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita Castro, and
Sheila McIlraith. Learning reward machines for partially observable reinforcement learning.
In Neural Information Processing Systems, 2019.

[56] Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize pro-
grams as interpretable and generalizable policies. In Neural Information Processing Systems,
2021.

13

https://mlu.red/muse/52906366310
https://mlu.red/muse/52906366310

[57] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaud-
huri. Programmatically interpretable reinforcement learning. In International Conference on
Machine Learning, 2018.

[58] Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected program-
matic reinforcement learning. In Neural Information Processing Systems, 2019.

[59] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg,
David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learn-
ing. In International Conference on Machine Learning, 2017.

[60] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grand-
master level in starcraft ii using multi-agent reinforcement learning. Nature, 2019.

[61] Huaxiaoyue Wang, Gonzalo Gonzalez-Pumariega, Yash Sharma, and Sanjiban Choudhury.
Demo2code: From summarizing demonstrations to synthesizing code via extended chain-of-
thought. arXiv preprint arXiv:2305.16744, 2023.

[62] Elly Winner and Manuela Veloso. Distill: Learning domain-specific planners by example. In
International Conference on Machine Learning, 2003.

[63] Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-rendering. In IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[64] Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subrama-
nian, Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs,
et al. Outracing champion gran turismo drivers with deep reinforcement learning. Nature,
2022.

[65] Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, and
Bo Wu. Joint inference of reward machines and policies for reinforcement learning. In Inter-
national Conference on Automated Planning and Scheduling, 2020.

[66] Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. PEORL: Integrating symbolic
planning and hierarchical reinforcement learning for robust decision-making. In International
Joint Conference on Artificial Intelligence, 2018.

[67] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018.

[68] Linghan Zhong, Ryan Lindeborg, Jesse Zhang, Joseph J Lim, and Shao-Hua Sun. Hierarchical
neural program synthesis. arXiv preprint arXiv:2303.06018, 2023.

14

Appendix

Table of Contents
A Extended Related Work 16

B Details of the Cross Entropy Method 16
B.1 CEM . 16
B.2 CEM+Diversity . 16
B.3 CEM+Diversity+Compatibility . 18

C Program Sample Efficiency 18
C.1 POMP . 19
C.2 LEAPS . 19
C.3 HPRL . 19

D Inductive Generalization 19
D.1 FARMER . 20
D.2 INF-DOORKEY . 20
D.3 INF-HARVESTER . 20

E State Machine Extraction 20

F Hyperparameters and Settings of Experiments 20
F.1 POMP . 20
F.2 PSMP . 22
F.3 DRL . 22
F.4 MMN . 23
F.5 LEAPS . 24
F.6 HPRL . 24

G Details of KAREL Problem Set 24
G.1 STAIRCLIMBER . 24
G.2 FOURCORNER . 25
G.3 TOPOFF . 25
G.4 MAZE . 25
G.5 CLEANHOUSE . 25
G.6 HARVESTER . 25

H Details of KAREL-HARD Problem Set 25
H.1 DOORKEY . 25
H.2 ONESTROKE . 26
H.3 SEEDER . 26
H.4 SNAKE . 26

I Details of KAREL-LONG Problem Set 26
I.1 Experiment Result Discussion . 26
I.2 SEESAW . 27
I.3 UP-N-DOWN . 27
I.4 FARMER . 27
I.5 INF-DOORKEY . 27
I.6 INF-HARVESTER . 27

J Designing Domain-Specific Languages 28

15

A Extended Related Work

Hierarchical Reinforcement Learning and Semi-Markov Decision Processes. HRL frame-
works [53, 4, 59, 2, 33] focus on learning and operating across different levels of temporal ab-
straction, enhancing the efficiency of learning and exploration, particularly in sparse-reward envi-
ronments. In this work, our proposed Program Machine Policy shares the same spirit and some
ideas with HRL frameworks if we view the transition function as a “high-level” policy and the set of
mode programs as “low-level” policies or skills. While most HRL frameworks either pre-define and
pre-learned low-level policies [33, 41], or jointly learn the high-level and low-level policies from
scratch [59, 2, 16], our proposed framework first retrieves a set of effective, diverse, and compatible
low-level policies (i.e., program modes) via a search method, and then learns the high-level (i.e., the
mode transition function).

The POMP framework also resembles the option framework [53, 2, 29]. More specifically, one
can characterize POMP as using interpretable options as sub-policies since there is a high-level
neural network being used to pick among retrieved programs as described in Section 4.3. Besides
interpretable options, our work differs from the option frameworks in the following aspects. Our
work first retrieves a set of mode programs and then learns a transition function; this differs from
most option frameworks that jointly learn options and a high-level policy that chooses options. Also,
the transition function in our work learns to terminate, while most high-level policies in option
frameworks do not.

On the other hand, based on the definition of the recursive optimality described in [14], POMP can
be categorized as recursively optimal since it is locally optimal given the policies of its children.
Specifically, one can view the mode program retrieval process of POMP as solving a set of subtasks
based on the proposed CEM-based search method that considers effectiveness, diversity, and com-
patibility. Then, POMP learns a transition function according to the retrieved programs, resulting in
a policy as a whole. We have revised the paper to include this point of view.

Symbolic Planning for Long-Horizon Tasks. Another line of research uses symbolic opera-
tors [66, 21, 9] for long-horizon planning. The major difference between POMP and [9] and [21] is
the interpretability of the skills or options. In POMP, each learned skill is represented by a human-
readable program. On the other hand, neural networks used in [9] and tabular approaches used
in [21] are used to learn the skill policies. In [66], the option set is assumed as input without learn-
ing and cannot be directly compared with [9], [21] and POMP.

Another difference between the proposed POMP framework, [9], [21], and [66] is whether the high-
level transition abstraction is provided as input. In [9], a library of skill operators is taken as input and
serves as the basis for skill learning. In [21], the set of “landmarks” is taken as input to decompose
the task into different combinations of subgoals. In PEORL [66], the options set is taken as input,
and each option has a 1-1 mapping with each transition in the high-level planning. On the other
hand, the proposed POMP framework utilized the set of retrieved programs as modes, which is
conducted based on the reward from the target task without any guidance from framework input.

B Details of the Cross Entropy Method

B.1 CEM

The pseudo-code of CEM described in Algorithm 1, where G is the evaluation function, g is the
input of G, P is the distribution initial vector sampled from, Ns is the maximum number of the
iteration, n is the population size, σ is the standard deviation of the noise added to zr, and e is the
percent of the population elites.

B.2 CEM+Diversity

The procedure of running CEM+diversity N times is as follows:

(1) Search the 1st program embedding z1 by CEM(G, g = ({} ∪ Zk,Ψbefore,Ψafter))

(2) Search the 2nd program embedding z2 by CEM(G, g = ({z1} ∪ Zk,Ψbefore,Ψafter))
...

16

Algorithm 1 Cross Entropy Method

procedure CEM(G, g, P = N , Ns = 1000, n = 64, σ = 0.1, e = 0.1)
zr ← [z0, z1, ..., zi, ..., z255], zi ∼ P
step← 0
while step < Ns do

Z ← []
LG ← []
for i← 1 to n do

ε← [ε0, ε1, ..., εi, ..., ε255], εi ∼ N (0, σn)
Z ← Z + [zr + ε]
LG ← LG + [G(Z[i− 1], g)]

end for
Rkl ← KthLargest(LG, n · e)
Zkl ← []
for i← 0 to n− 1 do

if LG[i] ≤ Rkl then
Zkl ← Zkl + [Z[i]]

end if
end for
zr ← mean(Zkl)
step← step+ 1

end while
end procedure

Figure 7: CEM+Diversity Searching Trajectories. It shows the trajectories of the procedure of running
CEM+diversity 3 times. The program embeddings searched during the CEM are reduced to 2-dimensional
embeddings using PCA. Since the diversity design, the 2nd CEM is forced to explore the opposite direction
related to the searching path of the 1st CEM, and the 3rd CEM is urged to search a path that is perpendicular
to the 1st and 2nd searching paths.

17

(N) Search the Nth program embedding zN by CEM(G, g = ({z1, ..., zN−1} ∪
Zk,Ψbefore,Ψafter))

In the simplest case, Zk is an empty set, Ψbefore and Ψafter are empty sequences. It will then reduce to
the process described in Section 4.2.2. An example of the search trajectories can be seen in Figure
7.

B.3 CEM+Diversity+Compatibility

B.3.1 Sample Program Sequence

The procedure H(z1, z2, z3, ..., zk) for sampling program embedding sequences SQ1 and SQ2

in Figure 3d from a total of k programs is as follows:

(1) Randomly choose from the following options:
a. With (1− 1

k+1) probability, sample a program embedding from Zy with replacement.
Decode it to a program and append this program to Ψ.

b. With 1
k+1 probability, stop sampling.

(2) Repeat (1) until the stop option is chosen.

After SQ1 and SQ2 are sampled, they are then decoded to be Ψbefore and Ψafter, respectively.

B.3.2 Whole Procedure

The procedure of running CEM+diversity+Compatibility |M | times in order to retrieve |M | mode
programs is as follows:

(1) Retrieve 1st mode program z1.
a. Run CEM+diversity N times with Zk = {}, Ψbefore = [] and Ψafter = [] to get N program

embeddings.
b. Choose the program embedding with the highest G(z, {},Ψbefore,Ψafter) among the N

program embeddings as z1.
(2) Retrieve 2nd mode program z2.

a. Sample SQ1 and SQ2 from H(z1), and deocde SQ1 and SQ2 to Ψbefore and Ψafter,
respectively.

b. Run CEM+diversity N times with Zk = {z1}, to get N program embeddings.
c. Choose the program embedding with the highest G(z, {},Ψbefore,Ψafter) among the N

program embeddings as z2.
...

(|M |) Retrieve |M |th mode program z|M |.

a. Sample SQ1 and SQ2 from H(z1, z2, ..., z|M |−1), and decode SQ1 and SQ2 to Ψbefore
and Ψafter, respectively.

b. Run CEM+diversity N times with Zk = {z1, z2, ..., z|M |−1}, to get N program embed-
dings.

c. Choose the program embedding with the highest G(z, {},Ψbefore,Ψafter) among the N
program embeddings as z|M |.

C Program Sample Efficiency

During the training of programmatic RL approaches, programs will be synthesized and executed in
the environment of a given task to evaluate whether these programs are good enough. This three-step
procedure (synthesis, execution, and evaluation) will be repeatedly done until the return converges
or the maximum training steps are reached. The purpose of the analysis of the program sample
efficiency is to figure out how many times this procedure needs to be done to achieve a certain
return. As shown in Figure 8, POMP has the best program sample efficiencies in FARMER and INF-
DOORKEY, but lower program sample efficiency than HPRL in INF-HARVESTER. The details of
the return calculation for each approach are described below.

18

101 103 105 107

0.0

0.2

0.4

0.6

0.8

Farmer
POMP
Mode Searching
LEAPS
HPRL

101 103 105 107

0.0

0.2

0.4

0.6

0.8

Inf-DoorKey
POMP
Mode Searching
LEAPS
HPRL

101 103 105 107

0.0

0.2

0.4

0.6

0.8

Inf-Harvester
POMP
Mode Searching
LEAPS
HPRL

Excecuted Programs

Re
tu

rn

Figure 8: Program Sample Efficiency. Results of different programmatic RL approaches in FARMER, INF-
DOORKEY, and INF-HARVESTER.

×1 ×2 ×4 ×8 ×16

-80

-60

-40

-20

0
Farmer

POMP
PSMP
DRL
MMN
LEAPS
HPRL

×1 ×2 ×4 ×8 ×16
-100

-80

-60

-40

-20

0
Inf-DoorKey

POMP
PSMP
DRL
MMN
LEAPS
HPRL

×1 ×2 ×4 ×8 ×16

-80

-60

-40

-20

0
Inf-Harvester

POMP
PSMP
DRL
MMN
LEAPS
HPRL

Expected Horizon Length

Pe
rfo

rm
an

ce
 D

ro
p

(%
)

Figure 9: Inductive Generalization. Experiment Results on different baselines in FARMER, INF-DOORKEY,
and INF-HARVESTER.

C.1 POMP

During the mode program searching process of POMP, a total of 265 CEMs are done to search 5
mode programs. In each CEM, a maximum of 1000 iterations will be done, and in each iteration
of the CEM, n (population size of the CEM) times of the three-step procedure are done. The return
of a certain number of executed programs in the first half of the figure is recorded as the maximum
return obtained from executing the previously searched programs solely.

During the transition function training process, the three-step procedure is done once in each PPO
training step. The return of a certain number of executed programs in the remainder of the figure is
recorded as the maximum validation return obtained by POMP.

C.2 LEAPS

During the program searching process of LEAPS, the CEM is used to search the program, and the
hyperparameters of the CEM are tuned. A total of 216 CEMs are done. In each CEM, a maximum
of 1000 iterations will be done, and in each iteration of the CEM, n (population size of the CEM)
times of the three-step procedure are done. The return of a certain number of executed programs
in the figure is recorded as the maximum return obtained from executing the previously searched
programs solely.

C.3 HPRL

During the meta-policy training process of HPRL, the three-step procedure is done once in each
PPO training step. Therefore, with the setting of the experiment described in Section F.6, as the
training is finished, the three-step procedure will be done 25M times. The return of a certain number
of executed programs in the figure is recorded as the maximum return obtained from the cascaded
execution of 10 programs, which are decoded from latent programs output by the meta-policy.

D Inductive Generalization

To test the ability of the inductive generalization of different methods, we scale up the expected
horizon of the environment by increasing the upper limit of the target for each KAREL-LONG task.

19

To elaborate, using INF-DOORKEY as an example, the upper limit number of marker-picking and
marker-placing is 16 under a training environment setting. Therefore, all policies are trained to
terminate after 16 markers are picked and placed. However, the upper limit number is set to 32, 64,
etc, in the testing environment.

Since most of the baselines don’t perform well on SEESAW and UP-N-DOWN, we do the induc-
tive generalization experiments mainly on FARMER, INF-DOORKEY, and INF-HARVESTER. The
expected horizon lengths of the testing environments will be 2, 4, 8, and 16 times longer compared
to the training environment setting. Also, rewards gained from picking or placing markers and the
penalty for actions are divided by 2, 4, 8, and 16 to normalize the maximum total reward of the
tasks to 1. The detailed setting and the experiment result for each of these three tasks are shown as
follows.

D.1 FARMER

During the training phases of our and other baseline methods, we set the maximum iteration number
to 2. However, we adjusted this number for the testing phase to 4, 8, 16, and 32. As shown in Figure
9, when the expected horizon length grows, the performances of all the baselines except POMP drop
dramatically, which means that our method has a much better inductive generalization property on
this task.

D.2 INF-DOORKEY

During the training phases of our and other baseline methods, we set the upper limit number of
marker-picking and marker-placing to 16. However, we adjusted this number for the testing phase
to 32, 64, 128, and 256. As shown in Figure 9, when the expected horizon length grows, the
performances of all the baselines drop considerably. Nevertheless, POMP has a minor performance
drop compared to other baselines on this task.

D.3 INF-HARVESTER

During the training phases of our and other baseline methods, we set the emerging probability to 1
2 .

However, we adjust this number for the testing phase to 3
4 , 7

8 , 15
16 and 31

32 . As shown in Figure 9, when
the expected horizon length grows, the performances of POMP, PSMP, and DRL drop slightly, but
the performances of MMN, LEAPS, and HPRL drop extensively. Overall, POMP has a minimum
performance drop among all baselines on this task.

E State Machine Extraction

In our approach, since we employ the neural network transition function, the proposed program
machine policies are only partially or locally interpretable – once the transition function selects a
mode program, human users can read and understand the following execution of the program.

To further increase the interpretability of the trained mode transition function f , we extracted the
state machine structure by the approach proposed in [30]. In this setup, since POMP utilizes the
previous mode as one of the inputs and predicts the next mode, we focus solely on encoding the
state observations. Each state observation is extracted by convolutional neural networks and fully
connected layers to a 1× 128 vector, which is then quantized into a 1× 5 vector. We can construct
a state-transition table using these quantized vectors and modes. The final step involves minimizing
these quantized vectors, which allows us to represent the structure of the state machine effectively.
Examples of extracted state machine are shown in Figure 10, Figure 11 and Figure 12.

F Hyperparameters and Settings of Experiments

F.1 POMP

Encoder & Decoder. We follow the training procedure and the model structure proposed in [56],
which uses recurrent networks to implement both the encoder qϕ and the decoder pθ with hidden di-
mensions of 256 and trains them on programs randomly sampled from the Karel DSL. The model is

20

start

M1

O24

O2, O4, O6, O7, O8, O10, O11, O12, O14, O16, O21, O22, O23, O24

M2

O5, O9, O20

M4

O15, O18

M5

O1, O13, O17, O19

end

O3

O2, O4, O7, O14, O20, O22, O24

O1, O5, O6, O8, O10, O19, O21

M3

O9

O11, O12, O15, O16, O17, O18, O23

O13

O3

O2, O4, O6, O7, O11, O12, O20, O21, O22, O24

O1, O5, O8, O9, O10, O19

O15, O16, O18, O23

O13, O14

O3, O17

O4, O8, O12, O24

O5, O6, O7, O9, O10, O19, O20

O18

O21, O22, O23

O1, O2, O11, O13, O14, O15, O16

O3, O17

O2, O4, O6, O7, O8, O11, O12, O14, O21, O22, O23, O24

O5, O9, O10, O19, O20

O15, O16, O18

O1, O13

O3, O17

Figure 10: Example of extracted state machine on FARMER. O1 to O24 represent the unique quantized
vectors encoded from observations. The corresponding mode programs of M1 to M5 are displayed in Figure
22.

start

M3

O17

M1

M2

O15, O16, O27, O33, O38, O40, O41, O43, O48, O49, O50

O1, O7, O8, O10, O11, O17, O19, O23, O25, O26, O28, O31, O32, O35, O36, O37, O46, O47

M4

O4, O6, O9, O14

M5

O2, O3, O5, O12, O13, O34

end

O18, O20, O21, O22, O24, O29, O30, O39, O42, O44, O45

O36

O13, O42

O8, O10, O11, O15, O17, O37

O1, O2, O4, O5, O7, O9, O14, O16

O3, O6, O12, O18, O19, O23, O25, O26, O27, O28, O29, O30, O31, O32, O33, O34, O35, O38, O39, O40, O41, O43, O46, O47, O48, O49, O50

O20, O21, O22, O24, O44, O45

O36, O46, O47, O48, O49, O50

O10, O11, O15, O16, O31, O44, O45

O7, O8, O9, O13, O17, O18, O21, O23, O24, O25, O26, O28, O29, O32, O33, O34, O37, O38, O40, O41, O42

O1, O4, O6, O12, O14

O2, O3, O5, O19, O27, O30, O35, O43

O20, O22, O39O25, O31, O36, O41, O46, O47, O48, O50

O10, O14, O15, O16, O32, O37, O44

O7, O8, O11, O13, O17, O18, O23, O33, O34, O42

O1, O4, O5, O6, O9, O12, O26

O2, O3, O19, O21, O22, O24, O27, O28, O29, O30, O35, O38, O39, O40, O43, O49

O20, O45

O46

O10, O11, O15, O16, O36, O38, O43, O48

O7, O8, O9, O13, O17, O18, O23, O24, O25, O26, O28, O29, O31, O32, O33, O34, O35, O37, O40, O41, O42, O47, O49, O50

O1, O4, O6, O12, O14

O2, O3, O5, O19, O27, O30

O20, O21, O22, O39, O44, O45

Figure 11: Example of extracted state machine on INF-DOORKEY. O1 to O50 represent the unique
quantized vectors encoded from observations. The corresponding mode programs of M1 to M5 are displayed
in Figure 22.

updated through PPO [45] algorithm and trained to optimize the β-VAE [23], the program behavior
reconstruction loss and the latent behavior reconstruction loss described in [56].

The program dataset consists of 35,000 programs for training and 7,500 programs for validation and
testing that were randomly sampled from the Karel DSL. We sequentially sample program tokens
for each random program based on defined probabilities until an ending token or when a maximum
program length is reached. The defined probability of each kind of token is listed below:

• WHILE: 0.15

• REPEAT: 0.03

• STMT STMT: 0.5

• ACTION: 0.2

• IF: 0.08

• IFELSE: 0.04

where STMT STMT represents dividing the current token into two separate tokens, each chosen based
on the same probabilities defined above. This token primarily dictates the length of the programs,
as well as the quantity and complexity of nested loops and statements.

Mode Program Synthesis. To increase the diversity of the set of mode programs, we conducted
10 CEM searches in CEM+diversity to synthesize each mode program, and each program machine
policy used 5 modes from 5 CEM+diversity searches in the experiments. Only the hyperparameter
set of the first CEM in the whole process is tuned. The rest of the CEMs use the same hyperparameter
set as the first. The range of the hyperparameters is the same as Section F.5.

21

start

M1

O3

O3, O5, O8, O15

M2

O2, O4, O6, O9, O11, O12

M3

O1, O7, O10, O13, O16, O17

M4

O14, O18

end

O19

O3, O5

O1, O2, O7, O8, O10, O11, O13, O14, O15, O16, O17, O18

O4, O6, O12M5

O9

O19

O3, O5, O8, O11, O12, O16

O1, O2, O4, O7, O9, O10, O13, O14, O15, O17, O18

O6

O19

O3, O5, O8, O11, O12, O15, O16

O1, O2, O4, O6, O7, O9, O13, O14, O17, O18

O10

O19

O3, O5, O8, O13, O15, O16

O1, O2, O4, O6, O9, O11, O12, O14

O7, O10

O17, O18

O19

Figure 12: Example of extracted state machine on INF-HARVESTER. O1 to O19 represent the unique
quantized vectors encoded from observations. The corresponding mode programs of M1 to M5 are displayed
in Figure 23.

Mode Transition Function. The mode transition function f consists of convolutional layers [17,
31] to derive features from the Karel states and the fully connected layers to predict the transition
probabilities among each mode. Meanwhile, we utilize one-hot encoding to represent the current
mode index of the program machine policy. The detail setting of the convolutional layers is the same
as those described in Section F.3. The training process of the mode transition function f can be
optimized using the PPO [45] algorithm. The hyperparameters are listed below:

• Maximum program number: 1000
• Batch size : 128
• Clipping: 0.05
• α: 0.99
• γ: 0.99
• GAE lambda: 0.95
• Value function coefficient: 0.5
• Entropy coefficient: 0.1
• Number of updates per training iteration: 4
• Number of environment steps per set of training iterations: 32
• Number of parallel actors: 32
• Optimizer : Adam
• Learning rate: {0.1, 0.01, 0.001, 0.0001, 0.00001}

F.2 PSMP

It resembles the setting in Section F.1. The input, output, and structure of the mode transition
function f remain the same. However, the 5 modes programs are replaced by 5 primitive actions
(move, turnLeft, turnRight, putMarker, pickMarker).

F.3 DRL

DRL training on the Karel environment uses the PPO [45] algorithm with 20 million timesteps.
Both the policies and value networks share a convolutional encoder that interprets the state of the
grid world. This encoder comprises two layers: the initial layer has 32 filters, a kernel size of 4,

22

and a stride of 1, while the subsequent layer has 32 filters, a kernel size of 2, and maintains the
same stride of 1. The policies will predict the probability distribution of primitive actions (move,
turnLeft, turnRight, putMarker, pickMarker) and termination. During our experiments with DRL
on KAREL-LONG tasks, we fixed most of the hyperparameters and did hyperparameters grid search
over learning rates. The hyperparameters are listed below:

• Maximum horizon: 10000

• Batch size : 128

• Clipping: 0.05

• α: 0.99

• γ: 0.99

• GAE lambda: 0.95

• Value function coefficient: 0.5

• Entropy coefficient: 0.1

• Number of updates per training iteration: 4

• Number of environment steps per set of training iterations: 32

• Number of parallel actors: 32

• Optimizer : Adam

• Learning rate: {0.1, 0.01, 0.001, 0.0001, 0.00001}

F.4 MMN

Aligned with the approach described in [30], we trained and quantized a recurrent policy with a
GRU cell and convolutional neural network layers to extract information from gird world states.
During our experiments with MMN on KAREL-LONG tasks, we fixed most of the hyperparameters
and did a hyperparameter grid search over learning rates. The hyperparameters are listed below:

• Hidden size of GRU cell: 128

• Number of quantized bottleneck units for observation: 128

• Number of quantized bottleneck units for hidden state: 16

• Maximum horizon: 10000

• Batch size : 128

• Clipping: 0.05

• α: 0.99

• γ: 0.99

• GAE lambda: 0.95

• Value function coefficient: 0.5

• Entropy coefficient: 0.1

• Number of updates per training iteration: 4

• Number of environment steps per set of training iterations: 32

• Number of parallel actors: 32

• Optimizer : Adam

• Learning rate: {0.1, 0.01, 0.001, 0.0001, 0.00001}

23

F.5 LEAPS

In line with the setup detailed in [56], we conducted experiments over various hyperparameters of
the CEM to optimize rewards for LEAPS. The hyperparameters are listed below:

• Population size (n): {8, 16, 32, 64}
• σ: {0.1, 0.25, 0.5}
• e: {0.05, 0.1, 0.2}
• Exponential σ decay: {True, False}
• Initial distribution P : {N (1, 0), N (0, σ), N (0, 0.1σ)}

F.6 HPRL

In alignment with the approach described in [39], we trained the meta policy for each task to predict
a program sequence. To adapt this method to tasks with longer horizons, we increased the number
of programs from 5 to 10. The hyperparameters are listed below:

• Max subprogram: 10

• Max subprogram Length: 40

• Batch size : 128

• Clipping: 0.05

• α: 0.99

• γ: 0.99

• GAE lambda: 0.95

• Value function coefficient: 0.5

• Entropy coefficient: 0.1

• Number of updates per training iteration: 4

• Number of environment steps per set of training iterations: 32

• Number of parallel actors: 32

• Optimizer : Adam

• Learning rate: 0.00001

• Training steps: 25M

G Details of KAREL Problem Set

The KAREL problem set is presented in Trivedi et al. [56], consisting of the following tasks: STAIR-
CLIMBER, FOURCORNER, TOPOFF, MAZE, CLEANHOUSE and HARVESTER. Figure 13 and Fig-
ure 14 provide visual depictions of a randomly generated initial state, an internal state sampled from
a legitimate trajectory, and the desired final state for each task. The experiment results presented in
Table 1 and Table 3 are evaluated by averaging the rewards obtained from 32 randomly generated
initial configurations of the environment.

G.1 STAIRCLIMBER

This task takes place in a 12 × 12 grid environment, where the agent’s objective is to successfully
climb the stairs and reach the marked grid. The marked grid and the agent’s initial location are both
randomized at certain positions on the stairs, with the marked grid being placed on the higher end
of the stairs. The reward is defined as 1 if the agent reaches the goal in the environment, −1 if the
agent moves off the stairs, and 0 otherwise.

24

G.2 FOURCORNER

This task takes place in a 12× 12 grid environment, where the agent’s objective is to place a marker
at each of the four corners. The reward received by the agent will be 0 if any marker is placed on
the grid other than the four corners. Otherwise, the reward is calculated by multiplying 0.25 by the
number of corners where a marker is successfully placed.

G.3 TOPOFF

This task takes place in a 12× 12 grid environment, where the agent’s objective is to place a marker
on every spot where there’s already a marker in the environment’s bottom row. The agent should
end up in the rightmost square of this row when the rollout concludes. The agent is rewarded for
each consecutive correct placement until it either misses placing a marker where one already exists
or places a marker in an empty grid on the bottom row.

G.4 MAZE

This task takes place in an 8 × 8 grid environment, where the agent’s objective is to find a marker
by navigating the grid environment. The location of the marker, the initial location of the agent,
and the configuration of the maze itself are all randomized. The reward is defined as 1 if the agent
successfully finds the marker in the environment, 0 otherwise.

G.5 CLEANHOUSE

This task takes place in a 14 × 22 grid environment, where the agent’s objective is to collect as
many scattered markers as possible. The initial location of the agent is fixed, and the positions of
the scattered markers are randomized, with the additional condition that they will only randomly
be scattered adjacent to some wall in the environment. The reward is defined as the ratio of the
collected markers to the total number of markers initially placed in the grid environment.

G.6 HARVESTER

This task takes place in an 8 × 8 grid environment, where the environment is initially populated
with markers appearing in all grids. The agent’s objective is to pick up a marker from each location
within this grid environment. The reward is defined as the ratio of the picked markers to the total
markers in the initial environment.

H Details of KAREL-HARD Problem Set

The KAREL-HARD problem set proposed by Liu et al. [39] consists of the following tasks:
DOORKEY, ONESTROKE, SEEDER and SNAKE. Each task in this benchmark is designed to have
more constraints and be more structurally complex than tasks in the KAREL problem set. Figure 15
provides a visual depiction of a randomly generated initial state, some internal state(s) sampled from
a legitimate trajectory, and the desired final state for each task. The experiment results presented in
Table 1 and Table 3 are evaluated by averaging the rewards obtained from 32 randomly generated
initial configurations of the environment.

H.1 DOORKEY

This task takes place in an 8 × 8 grid environment, where the grid is partitioned into a 6 × 3 left
room and a 6× 2 right room. Initially, these two rooms are not connected. The agent’s objective is
to collect a key (marker) within the left room to unlock a door (make the two rooms connected) and
subsequently position the collected key atop a target (marker) situated in the right room. The agent’s
initial location, the key’s location, and the target’s location are all randomized. The agent receives a
0.5 reward for collecting the key and another 0.5 reward for putting the key on top of the target.

25

Table 3: KAREL and KAREL-HARD Performance. Mean return and standard deviation of all
methods across the KAREL and KAREL-HARD problem set, evaluated over five random seeds. As
the table shows, POMP outperforms LEAPS and HPRL on most KAREL and KAREL HARD tasks,
except ONESTROKE and SNAKE, which need good long-term planning abilities. One thing to notice
is that, unlike KAREL-LONG, KAREL and KAREL-HARD do not have per-action cost in design, so
for POMP here, we did not let it learn to terminate but gave a maximum mode program execution
number. Therefore, the whole policy will stop when this number is reached, or the task is solved.
Method Four

Corner
Top
Off

Clean
House

Stair
Climber Harvester Maze Door

Key
One

Stroke Seeder Snake

DRL 0.29 ± 0.05 0.32 ± 0.07 0.00 ± 0.00 1.00 ± 0.00 0.90 ± 0.10 1.00 ± 0.00 0.48 ± 0.03 0.89 ± 0.04 0.96 ± 0.02 0.67 ± 0.17
LEAPS 0.45 ± 0.40 0.81 ± 0.07 0.18 ± 0.14 1.00 ± 0.00 0.45 ± 0.28 1.00 ± 0.00 0.50 ± 0.00 0.65 ± 0.19 0.51 ± 0.21 0.21 ± 0.15

HPRL (5) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.50 ± 0.00 0.80 ± 0.02 0.58 ± 0.07 0.28 ± 0.11

POMP 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.62 ± 0.01 0.97 ± 0.02 0.36 ± 0.02

H.2 ONESTROKE

This task takes place in an 8×8 grid environment, where the agent’s objective is to navigate through
all grid cells without revisiting any of them. Once a grid cell is visited, it transforms into a wall. If
the agent ever collides with these walls, the episode ends. The reward is defined as the ratio of grids
visited to the total number of empty grids in the initial environment.

H.3 SEEDER

This task takes place in an 8× 8 grid environment, where the agent’s objective is to place a marker
on every single grid. If the agent repeatedly puts markers on the same grid, the episode will then
terminate. The reward is defined as the ratio of the number of markers successfully placed to the
total number of empty grids in the initial environment.

H.4 SNAKE

This task takes place in an 8×8 grid environment, where the agent plays the role of the snake’s head
and aims to consume (pass-through) as much food (markers) as possible while avoiding colliding
with its own body. Each time the agent consumes a marker, the snake’s body length grows by 1, and
a new marker emerges at a different location. Before the agent successfully consumes 20 markers,
exactly one marker will consistently exist in the environment. The reward is defined as the ratio of
the number of markers consumed by the agent to 20.

I Details of KAREL-LONG Problem Set

Since none of the tasks in the KAREL and KAREL-HARD problem sets are truly long-horizon tasks,
it is inadequate to use any of them as the environment when investigating the ability of our proposed
framework. Hence, we introduce a newly designed KAREL-LONG problem set as a benchmark to
evaluate the capability of POMP. Each task is designed to possess long-horizon properties based on
the Karel states. Besides, we design the tasks in our KAREL-LONG benchmark to have a constant
per-action cost (i.e., 0.0001). Figure 16, Figure 17, Figure 18, Figure 19 and Figure 20 provide
visual depictions of all the tasks within the KAREL-LONG problem set. For each task, a randomly
generated initial state and some internal states sampled from a legitimate trajectory are provided.

I.1 Experiment Result Discussion

As shown in Table 2, all approaches except ours struggle at the tasks in the KAREL-LONG problem
set that require long-horizon exploration with sparse rewards (i.e., SEESAW and UP-N-DOWN). On
the other hand, most approaches can achieve satisfactory performance on the tasks that provide dense
rewards (i.e., FARMER, INF-DOORKEY, and INF-HARVESTER), even when the episode horizon is
long.

In INF-DOORKEY, the environment consists of four small chambers (i.e., one 3x3, two 2x3, and
one 2x2) connected. Therefore, each stage of INF-DOORKEY requires only moderate exploration

26

compared to FARMER and INF-HARVESTER, allowing DRL to perform best. Besides, in INF-
HARVESTER, the rewards provided are very dense, which is suitable for HPRL for optimizing the
meta-policy and allowing it to perform best.

I.2 SEESAW

This task takes place in a 16× 16 grid environment, where the agent’s objective is to move back and
forth between two 4× 4 chambers, namely the left chamber and the right chamber, to continuously
collect markers. To facilitate movement between the left and right chambers, the agent must traverse
through a middle 2×6 corridor. Initially, exactly one marker is randomly located in the left chamber,
awaiting the agent to collect. Once a marker is picked in a particular chamber, another marker is
then randomly popped out in the other chamber, further waiting for the agent to collect. Hence, the
agent must navigate between the two chambers to pick markers continuously. The reward is defined
as the ratio of the number of markers picked by the agent to the total number of markers that the
environment is able to generate (emerging markers).

I.3 UP-N-DOWN

This task takes place in an 8 × 8 grid environment, where the agent’s objective is to ascend and
descend the stairs repeatedly to collect markers (loads) appearing both above and below the stairs.
Once a marker below (above) the stairs is picked up, another marker will appear above (below) the
stairs, enabling the agent to continuously collect markers. If the agent moves to a grid other than
those right near the stairs, the agent will receive a constant penalty (i.e., 0.005). The reward is
defined as the ratio of the number of markers picked by the agent to the total number of markers that
the environment is able to generate (emerging loads).

I.4 FARMER

This task takes place in an 8 × 8 grid environment, where the agent’s objective is to repeatedly fill
the entire environment layout with markers and subsequently collect all of these markers. Initially,
all grids in the environment are empty except for the one in the upper-right corner. The marker in
the upper-right corner is designed to be a signal that indicates the agent needs to start populating
the environment layout with markers. After most of the grids are placed with markers, the agent
is then asked to pick up markers as much as possible. Then, the agent is further asked to fill the
environment again, and the whole process continues in this back-and-forth manner. We have set
a maximum iteration number to represent the number of the filling-and-collecting rounds that we
expect the agent to accomplish. The reward is defined as the ratio of the number of markers picked
and placed by the agent to the total number of markers that the agent is theoretically able to pick and
place (max markers).

I.5 INF-DOORKEY

This task takes place in an 8 × 8 grid environment, where the agent’s objective is to pick up a
marker in certain chambers, place a marker in others, and continuously traverse between chambers
until a predetermined upper limit number of marker-picking and marker-placing that we have set
is reached. The entire environment is divided into four chambers, and the agent can only pick up
(place) markers in one of these chambers. Once the agent does so, the passage to the next chamber
opens, allowing the agent to proceed to the next chamber to conduct another placement (pick-up)
action. The reward is defined as the ratio of markers picked and placed by the agent to the total
number of markers that the agent can theoretically pick and place (max keys).

I.6 INF-HARVESTER

This task takes place in a 16 × 16 grid environment, where the agent’s objective is to continuously
pick up markers until no markers are left, and no more new markers are further popped out in the
environment. Initially, the environment is entirely populated with markers. Whenever the agent
picks up a marker from the environment, there is a certain probability (emerging probability) that
a new marker will appear in a previously empty grid within the environment, allowing the agent to
collect markers both continuously and indefinitely. The reward is defined as the ratio of the number

27

of markers picked by the agent to the expected number of total markers that the environment can
generate at a certain probability.

J Designing Domain-Specific Languages

Our program policies are designed to describe high-level task-solving procedures or decision-
making logics of an agent. Therefore, our principle of designing domain-specific languages (DSLs)
considers a general setting where an agent can perceive and interact with the environment to fulfill
some tasks. DSLs consist of control flows, perceptions, and actions. While control flows are domain-
independent, perceptions and actions can be designed based on the domain of interest, which would
require specific expertise and domain knowledge.

Such DSLs are proposed and utilized in various domains, including ViZDoom [28], 2D
MineCraft [52], and gym-minigrid [10]. Recent works [36, 61] also explore describing agents’
behaviors using programs with functions taking arguments.

28

(a) STAIRCLIMBER

(b) FOURCORNER

(c) TOPOFF

(d) MAZE

Figure 13: Visualization of STAIRCLIMBER, FOURCORNER, TOPOFF, and MAZE in the KAREL
problem set presented in Trivedi et al. [56]. For each task, a random initial state, a legitimate internal
state, and the ideal end state are shown. In most tasks, the position of markers and the initial location
of the Karel agent are randomized. More details of the KAREL problem set can be found in Section
G.

29

(a) CLEANHOUSE

(b) HARVESTER

Figure 14: Visualization of CLEANHOUSE and HARVESTER in the KAREL problem set presented
in Trivedi et al. [56]. For each task, a random initial state, a legitimate internal state, and the ideal
end state are shown. More details of the KAREL problem set can be found in Section G.

30

(a) DOORKEY

(b) ONESTROKE

(c) SEEDER

(d) SNAKE

Figure 15: Visualization of each task in the KAREL-HARD problem set proposed by Liu et al. [39].
For each task, a random initial state, some legitimate internal state(s), and the ideal end state are
shown. More details of the KAREL-HARD problem set can be found in Section H.

31

(d)

．．．．．．

(b)

(e)

(a)

(c)

(f)

Figure 16: Visualization of SEESAW in the KAREL-LONG problem set. This partially shows a
typical trajectory of the Karel agent during the task SEESAW. (a): Once the Karel agent collects
a marker in the left chamber, a new marker will appear in the right chamber. (b): The agent must
navigate through a middle corridor to collect the marker in the right chamber. (c): Upon the Karel
agent collecting a marker in the right chamber, a new marker further appears in the left chamber.
(d): Once again, the agent is traversing through the corridor to the left chamber. (e): A new marker
appears in the right chamber again after the agent picks up the marker in the left chamber. (f):
The agent will move back and forth between the two chambers to collect the emerging markers
continuously. Note that the locations of all the emerging markers are randomized. Also, note that
we have set the number of emerging markers to 10 during the training phase, meaning the agent has
to pick up 10 markers to fully complete the task. More details of the task SEESAW can be found in
Section I.

32

(d)

．．．．．．

(b)

(e)

(a)

(c)

(f)

(g)

Figure 17: Visualization of UP-N-DOWN in the KAREL-LONG problem set. This partially shows
a typical trajectory of the Karel agent during the task UP-N-DOWN. (a): The Karel agent is ascend-
ing the stairs to collect a load located above the stairs. Note that the agent can theoretically collect
the load without directly climbing up the stairs, but it will receive some penalties if it does so. (b):
Once the agent collects the load, a new load appears below the stairs. (c): The agent is descending
the stairs to collect a load located below the stairs. Still, note that the agent can theoretically col-
lect the load without directly climbing down the stairs, but it will receive some penalties if it does
so. (d): Upon the agent collecting the load, a new load appears above the stairs. (e): The agent is
again ascending the stairs to collect a load. (f): A new load appears below the stairs again after the
agent collects the load located above the stairs. (g): The agent will then descend and ascend the
stairs repeatedly to collect the emerging loads. Note that the locations of all the emerging loads are
randomized right near the stairs, and they will always appear above or below the stairs, depending
on the position of the agent. Also, note that we have set the number of emerging loads to 10 during
the training phase, meaning the agent has to collect 10 loads to complete the task fully. More details
of the task UP-N-DOWN can be found in Section I.

33

(a)

(b)(d)

(c)

(e)

Figure 18: Visualization of FARMER in the KAREL-LONG problem set. This partially shows
a typical trajectory of the Karel agent during the task FARMER. (a): The Karel agent is filling
(placing) the entire environment layout with markers. Note that, in the initial state, there is a single
marker located in the upper-right corner. The marker is designed to be a signal indicating the agent
to start filling the environment layout. (b): The agent successfully populates the entire environment.
(c): The agent is then asked to pick up markers as much as possible. (d): The agent successfully
picks all markers up, leaving the environment empty. (e): If there is another filling-and-collecting
round, a marker will appear in the upper-right corner to indicate that the agent should start the filling
process again. Otherwise, the agent completes the entire task, and no further marker will appear. For
simplicity, here, we only show the former case. Note that we have set the number of max markers
to 144 during the training phase, meaning the agent has to fill the entire environment layout with
markers and pick up all markers twice to fully complete the task. More details of the task FARMER
can be found in Section I.

34

(d)

．．．．．．

(b)

(e)

(a)

(c)

(f)

(g)

Figure 19: Visualization of INF-DOORKEY in the KAREL-LONG problem set. This partially
shows a typical trajectory of the Karel agent during the task INF-DOORKEY. (a): The Karel agent
picks up a marker in the upper-left chamber. Then, a passage to the upper-right chamber opens,
allowing the agent to traverse through. (b): The agent successfully places a marker at a marked
grid located in the upper-right chamber. Subsequently, a passage to the lower-right chamber opens,
allowing the agent to traverse through. (c): After the agent collects a marker in the lower-right
chamber, a passage to the lower-left chamber opens, allowing the agent to traverse through. (d):
The agent properly places a marker at a marked grid located in the lower-left chamber. After that,
a passage to the upper-left chamber opens, and a new marker appears in the upper-left chamber.
(e): Upon the agent picking up a marker in the upper-left chamber, the passage to the upper-right
chamber opens again, and a grid is marked randomly in the upper-right chamber. (f): The agent
accurately places a marker at a marked grid located in the upper-right chamber. Afterward, the pas-
sage to the lower-right chamber opens again, and a new marker emerges in the lower-right chamber.
(g): The agent will repeatedly pick up and place markers in this fashion until the number of max
keys is reached. We have set the number of max keys to 16 during the training phase, meaning the
agent has to pick up and place 16 markers in total to fully complete the task. More details of the task
INF-DOORKEY can be found in Section I.

35

(d)

．．．．．．

(b)

(e)

(a)

(c)

(f)

Figure 20: Visualization of INF-HARVESTER in the KAREL-LONG problem set. This partially
shows a legitimate trajectory of the Karel agent during the task INF-HARVESTER. (a): The Karel
agent is picking up markers in the last row. Meanwhile, no new markers are popped out in the last
row. (b): The agent turns left and picks up 6 markers in the 7th column. During this picking-up
process, 3 markers appeared in 3 previously empty grids in the last row. (c): The agent is collecting
markers in the 8th row. During this picking-up process, 1 marker appeared in a previously empty
grid in the 7th column. (d): The agent picks up 6 markers in the 5th column. During this picking-up
process, 2 markers appeared in 2 previously empty grids in the 7th column. (e): The agent picks up
2 more markers in the last row. During this picking-up process, 2 markers appeared in 2 previously
empty grids in the 5th column. (f): Since markers will appear in previously empty grids based on the
emerging probability, the agent will continuously and indefinitely collect markers until no markers
are left, and no more new markers are further popped out in the environment. Note that we have set
the emerging probability to 1

2 during the training phase. More details of the task INF-HARVESTER
can be found in Section I.

36

Karel Programs

SEESAW
Mode 1
DEF run m(

IFELSE c(frontIsClear c

) i(

turnLeft

i)

ELSE e(

turnLeft

e)

m)

Mode 2
DEF run m(

IF c(leftIsClear c) i(

move

turnLeft

WHILE c(

frontIsClear c)

w(

move

pickMarker

w)

i)

m)

Mode 3
DEF run m(

IF c(markersPresent c)

i(

REPEAT R=2 r(

turnLeft

r)

putMarker

i)

m)

Mode 4

DEF run m(

WHILE c(

noMarkersPresent c)

w(

turnLeft

move

w)

IFELSE c(frontIsClear c)

i(

pickMarker

i)

ELSE e(

move

e)

turnRight

m)

Mode 5
DEF run m(

WHILE c(frontIsClear c)

w(

IF c(markersPresent

c) i(

move

i)

w)

IFELSE c(frontIsClear c

) i(

pickMarker

move

i)

ELSE e(

move

turnRight

e)

m)

UP-N-DOWN
Mode 1
DEF run m(

WHILE c(markersPresent

c) w(

turnRight

turnLeft

w)

IF c(frontIsClear c) i(

turnRight

move

i)

m)

Mode 2
DEF run m(

WHILE c(rightIsClear c)

w(

turnRight

move

w)

IF c(frontIsClear c) i(

WHILE c(

markersPresent

c) w(

IF c(

leftIsClear

c) i(

pickMarker

i)

w)

i)

m)

Mode 3
DEF run m(

WHILE c(

noMarkersPresent c)

w(

turnRight

move

IFELSE c(

leftIsClear c)

i(

move

i)

ELSE e(

move

e)

w)

m)

Mode 4
DEF run m(

REPEAT R=16 r(

move

turnRight

r)

REPEAT R=0 r(

move

move

r)

m)

Mode 5
DEF run m(

WHILE c(frontIsClear c)

w(

turnRight

w)

WHILE c(leftIsClear c)

w(

turnLeft

move

turnRight

move

w)

REPEAT R=17 r(

turnLeft

move

turnRight

move

r)

m)

Figure 21: Example programs on Karel-Long tasks: SEESAW and UP-N-DOWN. The programs
with best rewards out of all random seeds are shown.

37

Karel Programs

FARMER
Mode 1
DEF run m(

IFELSE c(markersPresent

c) i(

move

i)

ELSE e(

move

move

move

putMarker

e)

m)

Mode 2
DEF run m(

IF c(frontIsClear c) i(

move

turnRight

i)

IF c(noMarkersPresent c

) i(

turnLeft

move

i)

m)

Mode 3
DEF run m(

REPEAT R=0 r(

turnRight

move

turnLeft

turnRight

r)

m)

Mode 4
DEF run m(

REPEAT R=9 r(

REPEAT R=9 r(

move

pickMarker

r)

turnRight

r)

REPEAT R=0 r(

pickMarker

r)

turnRight

move

turnRight

pickMarker

turnRight

move

m)

Mode 5
DEF run m(

REPEAT R=16 r(

turnRight

move

putMarker

move

putMarker

move

putMarker

move

putMarker

move

putMarker

move

turnRight

putMarker

move

r)

m)

INF-DOORKEY
Mode 1
DEF run m(

WHILE c(

noMarkersPresent c)

w(

WHILE c(

noMarkersPresent

c) w(

turnRight

move

w)

pickMarker

putMarker

w)

WHILE c(rightIsClear c)

w(

move

w)

WHILE c(rightIsClear c)

w(

move

w)

pickMarker

putMarker

move

m)

Mode 2
DEF run m(

WHILE c(

noMarkersPresent c)

w(

move

turnLeft

w)

WHILE c(

noMarkersPresent c)

w(

move

w)

m)

Mode 3
DEF run m(

move

turnLeft

move

turnLeft

move

turnLeft

m)

Mode 4
DEF run m(

pickMarker

IF c(not c(leftIsClear

c) c) i(

move

i)

IF c(not c(leftIsClear

c) c) i(

turnRight

i)

m)

Mode 5
DEF run m(

putMarker

REPEAT R=13 r(

pickMarker

turnRight

move

putMarker

move

pickMarker

move

turnRight

move

r)

move

pickMarker

move

move

m)

Figure 22: Example programs on Karel-Long tasks: FARMER and INF-DOORKEY. The pro-
grams with best rewards out of all random seeds are shown.

38

Karel Programs

INF-HARVESTER
Mode 1
DEF run m(

WHILE c(markersPresent

c) w(

WHILE c(

frontIsClear c)

w(

pickMarker

move

w)

turnLeft

w)

turnLeft

m)

Mode 2
DEF run m(

REPEAT R=9 r(

turnRight

REPEAT R=9 r(

move

pickMarker

r)

r)

m)

Mode 3
DEF run m(

turnRight

turnRight

move

move

move

move

move

move

m)

Mode 4
DEF run m(

move

REPEAT R=13 r(

turnRight

REPEAT R=13 r(

move

pickMarker

r)

r)

m)

Mode 5
DEF run m(

REPEAT R=8 r(

turnRight

move

pickMarker

WHILE c(

frontIsClear c)

w(

move

pickMarker

w)

r)

m)

Figure 23: Example programs on Karel-Long tasks: INF-HARVESTER. The programs with best
rewards out of all random seeds are shown.

39

	Introduction
	Related Work
	Problem Formulation
	Approach
	Constructing Program Embedding Space
	Retrieving Mode Programs
	Retrieving Effective Programs
	Retrieving Effective, Diverse Programs
	Retrieving Effective, Diverse, Compatible Programs

	Learning Transition Function

	Experiments
	Karel Problem Sets
	Cross-Entropy Method with Diversity Multiplier
	Ablation Study
	Comparing with Deep RL and Programmatic RL Methods
	Program Sample Efficiency
	Inductive Generalization

	Conclusion
	Acknowledgement
	References
	
	Extended Related Work
	Details of the Cross Entropy Method
	CEM
	CEM+Diversity
	CEM+Diversity+Compatibility
	Sample Program Sequence
	Whole Procedure

	Program Sample Efficiency
	POMP
	LEAPS
	HPRL

	Inductive Generalization
	Farmer
	Inf-DoorKey
	Inf-Harvester

	State Machine Extraction
	Hyperparameters and Settings of Experiments
	POMP
	PSMP
	DRL
	MMN
	LEAPS
	HPRL

	Details of Karel Problem Set
	StairClimber
	FourCorner
	TopOff
	Maze
	CleanHouse
	Harvester

	Details of Karel-Hard Problem Set
	DoorKey
	OneStroke
	Seeder
	Snake

	Details of Karel-Long Problem Set
	Experiment Result Discussion
	Seesaw
	Up-N-Down
	Farmer
	Inf-Doorkey
	Inf-Harvester

	Designing Domain-Specific Languages

