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ABSTRACT

Estimating heterogeneous treatment effects in network settings is complicated by
interference, meaning that the outcome of an instance can be influenced by the
treatment status of others. Existing causal machine learning approaches usually
assume a known exposure mapping that summarizes how the outcome of a given
instance is influenced by others’ treatment, a simplification that is often unre-
alistic. Furthermore, the interaction between homophily—the tendency of sim-
ilar instances to connect—and the treatment assignment mechanism can induce
a network-level covariate shift that may lead to inaccurate treatment effect esti-
mates, a phenomenon that has not yet been explicitly studied. To address these
challenges, we propose HINet—a novel method that integrates graph neural net-
works with domain adversarial training. This combination allows estimating treat-
ment effects under unknown exposure mappings while mitigating the impact of
(network-level) covariate shift. An extensive empirical evaluation on synthetic and
semi-synthetic network datasets demonstrates the effectiveness of our approach.

1 INTRODUCTION

Individualized treatment effect estimation enables data-driven optimization of decision-making in
applications such as medicine (Feuerriegel et al., 2024), operations management (Vanderschueren
et al., 2023), and economics (Varian, 2016). Traditionally, no interference is assumed, meaning that
the treatment assigned to one instance does not affect the outcome of other instances (Imbens &
Rubin, 2015; Rubin, 1980). However, this assumption is often violated in real-world settings due
to spillover effects (Sobel, 2006; Forastiere et al., 2021), such as in vaccination, where a vaccine
protects not only its recipient but also indirectly benefits their social contacts.

Recent advances in causal machine learning have introduced methods for estimating treatment ef-
fects in network settings (Ma & Tresp, 2021; Jiang & Sun, 2022; Chen et al., 2024). These methods
often rely on a predefined exposure mapping, which specifies how the treatments of other instances
in a network influence the outcome of a given instance (Aronow & Samii, 2017). A common choice
is to define exposure as the sum or proportion of treated one-hop neighbors (Ma & Tresp, 2021;
Forastiere et al., 2021; Jiang & Sun, 2022). While relying on such a predefined mapping simpli-
fies the modeling of spillover effects, it is often unrealistic in real-world scenarios where the exact
mechanisms behind these effects are unknown (Sävje, 2023). Moreover, spillover effects may be
heterogeneous, i.e., dependent on the features of the instances involved (Huang et al., 2023; Zhao
et al., 2024; Adhikari & Zheleva, 2025).

In this work, we propose Heterogeneous Interference Network (HINet), a novel method that com-
bines expressive GNN layers (Xu et al., 2019)—enabling the estimation of heterogeneous spillover
effects—with domain adversarial training (Ganin et al., 2016; Bica et al., 2020) to balance rep-
resentations for estimating treatment effects in the presence of interference, without relying on a
predefined exposure mapping.

Additionally, we analyze how the interaction between homophily—the tendency of similar instances
to connect—and the treatment assignment mechanism (e.g., a policy or self-selection) impacts the
estimation of treatment effects in network settings with interference. This interaction can create
clusters of treated and untreated nodes, introducing a network-level covariate shift (see Figure 1) in
addition to the standard covariate shift between treated and control units. For example, older indi-
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viduals may be more likely both to connect with each other in a social network (due to homophily)
as well as to receive a vaccine (due to the treatment assignment mechanism).

Control

Treatment

(a) Network w/ homophily

Control

Treatment

(b) Network w/o homophily

Figure 1: Homophily and the treatment assignment
mechanism interact to create clusters of treated and un-
treated nodes within the network, i.e., network-level co-
variate shift. When there is no homophily, the treatment
is allocated randomly with respect to network topology.

Contributions. (1) We introduce HINet,
a novel method for treatment effect esti-
mation in network settings with interfer-
ence. HINet combines expressive GNN
layers—to learn an exposure mapping—
with domain adversarial training—to ad-
dress (network-level) covariate shift; (2)
we empirically demonstrate HINet’s ef-
fectiveness in estimating treatment ef-
fects in the presence of interference with
unknown exposure mappings; (3) we pro-
pose two new metrics for evaluating treat-
ment effect estimates in these scenarios;
and (4) we empirically show that domain
adversarial training reduces the impact of
the covariate shift resulting from the in-
teraction between homophily and a treat-
ment assignment mechanism on treat-
ment effect estimation.

2 RELATED WORK

Heterogeneous treatment effect estimation. A large body of work has been dedicated to Condi-
tional Average Treatment Effect (CATE) estimation (Hill, 2011; Shalit et al., 2017; Künzel et al.,
2019; Curth & Van der Schaar, 2021; Vanderschueren et al., 2025). In contrast to the Average Treat-
ment Effect (ATE), CATEs capture heterogeneity across subpopulations, enabling tailored treatment
allocation decisions (Feuerriegel et al., 2024). A key challenge in estimating heterogeneous effects
from observational data is the covariate shift between treated and control units induced by the treat-
ment assignment mechanism, which can lead to inaccurate treatment effect estimates (Johansson
et al., 2016; 2022; Shalit et al., 2017). To address this challenge, various machine learning methods
have been developed, such as propensity weighting and balancing the representations of the treat-
ment and control groups (Shalit et al., 2017; Yao et al., 2018; Hassanpour & Greiner, 2019). One
notable method closely related to our work is CRN (Bica et al., 2020), which employs an adversarial
representation balancing approach for estimating treatment effects over time.

Heterogeneous treatment effect estimation in the presence of interference. Recently, several
methods have been developed to estimate treatment effects in network settings with interference.
These methods often rely on a predefined exposure mapping that uses a basic aggregation function
to summarize the treatments of the neighbors of an instance into a single variable that affects the
outcome of the instance (Aronow & Samii, 2017). Most methods use the proportion of treated
one-hop neighbors as mapping function. Under this assumption, a variety of estimators have been
proposed, including inverse probability weighted (IPW) (Forastiere et al., 2021) and doubly robust
(Chen et al., 2024) estimation. Other methods use graph neural networks (GNNs) and balance the
representations of the treatment and control groups by incorporating an Integral Probability Metric
(IPM) into the loss function (Ma & Tresp, 2021; Cai et al., 2023), while Jiang & Sun (2022) employs
adversarial training.

Since the assumption of a predefined exposure mapping may be unrealistic, there has been growing
interest in learning this mapping directly from data. IDE-Net (Adhikari & Zheleva, 2025) uses
multiple plausible and expressive candidate mappings and concatenates them, allowing the model
to learn a weighted combination that best approximates the true exposure mapping. SPNet (Huang
et al., 2023) leverages masked attention, while Zhao et al. (2024) combine attention weights with
Dual Weighted Regression to address covariate shift. In contrast, we propose an alternative approach
that integrates Graph Isomorphism Networks (Xu et al., 2019) with domain adversarial training
(Ganin et al., 2016; Bica et al., 2020) to mitigate the impact of (network-level) covariate shift.
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A related line of research examines treatment effects in the presence of interference over time,
i.e., contagion effects, where the outcomes of different entities can also influence each other over
time (Jiang et al., 2023; Fatemi & Zheleva, 2023). Another strand of work, which maintains the
no-interference assumption, leverages network information to mitigate confounding bias in CATE
estimation (Guo et al., 2020; 2021).

Homophily in causal inference. Disentangling causal (network) effects from homophily is a well-
known and important problem in network influence research (Shalizi & Thomas, 2011; Aral et al.,
2009; McFowland III & Shalizi, 2023). The problem is that, when latent homophily is present, it
becomes impossible to identify whether an observed outcome is caused by network influence or
by latent homophily. For example, obese individuals have been shown to cluster in social networks
(Christakis & Fowler, 2007). However, identifying whether this pattern arises from latent homophily
or from actual contagion of obesity is very difficult using observational data (Shalizi & Thomas,
2011; Ogburn et al., 2024).

3 PROBLEM SETUP

Notation. We consider an undirected network G = {V, E} where V is the set of nodes and E the
set of edges connecting the nodes. The set of edges of node i is denoted as Ei. Each node i is an
instance or unit in the network with covariates Xi ∈ X ⊆ Rd, a treatment Ti ∈ T = {0, 1}, and an
outcome Yi ∈ Y ⊆ R. In marketing, for example, Xi can represent customer features, Ti whether a
customer was targeted with a marketing campaign, and Yi customer expenditure. The set of directly
connected instances, or one-hop neighbors, of instance i are denoted Ni. Ni is used as a subscript
to describe the set of covariates XNi

= {Xj}j∈Ni
or treatments TNi

= {Tj}j∈Ni
of i’s neighbors.

The potential outcome for unit i with treatment ti and the set of treatments of its neighbors tNi
is

denoted as Yi(ti, tNi
).

Xi

Xj

Xk

Ti

Tj

Tk

Yi

Yj

Yk

Figure 2: DAG of the assumed causal structure.

Assumptions. We adopt the Markov assump-
tion: only directly connected instances influ-
ence each other. The Directed Acyclic Graph
(DAG) of the assumed causal structure is visu-
alized in Figure 2 (Greenland et al., 1999; Og-
burn & VanderWeele, 2014). Three mutually
connected instances i, j, and k are shown. The
features of a unit i, Xi, influence both the treat-
ment T and outcome Y of itself as well as of its
neighbors. The treatment Ti, in turn, affects the
outcome of both itself and its neighbors. The
arrows from Xk and Tk to Yj , and from Xj and
Tj to Yk are omitted for visual clarity.

We further assume access to observational data D =
(
{xi, ti, yi, }|V|

i=1;G
)
. Importantly, this data

does not necessarily come from a randomized controlled trial (RCT), and a treatment assignment
mechanism might be present, as represented in the DAG in Figure 2 by the arrows from a unit’s
features to its own treatment and the treatments of its neighbors.

For the exposure mapping, i.e., a function z : T Ni × XNi → R that maps treatments of neighbors
in the network, together with their relevant features, to an exposure zi (Aronow & Samii, 2017), we
only assume its existence. Hence, in contrast to other recent work (Ma & Tresp, 2021; Jiang & Sun,
2022; Chen et al., 2024) that assumes a predefined form, we estimate this function from data.

Finally, the classical assumptions from causal inference are slightly modified to ensure identifiability
in a network setting (Forastiere et al., 2021; Jiang & Sun, 2022):

Consistency: If Ti = ti and TNi = tNi , then Yi = Yi(ti, tNi).

Overlap: ∃ δ ∈ (0, 1) such that δ < p(Ti = ti,TNi
= tNi

| Xi = xi,XNi
= xNi

) < 1− δ.

Strong ignorability: Yi(ti, tNi) ⊥⊥ Ti,TNi | Xi,XNi ,∀ti ∈ T , tNi ∈ T Ni ,Xi ∈ X ,XNi ∈ XNi .

3
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Objective. We aim to estimate the Individual Total Treatment Effect (ITTE) (Caljon et al., 2025),
defined as:

ωi(ti, tNi
) = E

[
Yi(ti, tNi

)− Yi(0,0) | xi,xNi

]
. (1)

To this end, we train a modelM(xi, ti,xNi
, tNi

) to predict Yi(ti, tNi
), which is plugged into the

defintion of ITTE to obtain ω̂i(ti, tNi
) =M(xi, ti,xNi

, tNi
)−M(xi, 0,xNi

,0).

Interaction between homophily and the treatment assignment mechanism. In observational
data, the treatment assignment mechanism—such as a policy or self-selection—can induce covari-
ate shift, meaning that the treatment and control groups have different covariate distributions. As a
result, an additional source of variance of treatment effect estimates is introduced (Johansson et al.,
2016; Shalit et al., 2017). In a network setting with interference, this issue can also arise and may
even be amplified by homophily. Homophily is a social phenomenon referring to the tendency of
individuals with similar features to be connected in a social network (McPherson et al., 2001). When
the features that drive homophily also influence treatment assignment, an additional form of covari-
ate shift emerges—namely, network-level covariate shift. This occurs because similar instances are
not only more likely to be connected but also more likely to receive the same treatment. Conse-
quently, an instance that is likely to be treated (due to the treatment assignment mechanism) is also
more likely to have treated neighbors (due to the interaction between homophily and the treatment
assignment mechanism). This can create clusters of treated and untreated instances within a net-
work, as depicted in Figure 1a, resulting in network-level covariate shift, where instances with many
treated neighbors and those with few treated neighbors have different feature distributions. We hy-
pothesize that this can lead to more inaccurate treatment effect estimates and that learning balanced
node representations can help reduce estimation error. We empirically investigate this in Section 5.2.

For homophilous networks, the DAG in Figure 2 changes. Connections between individuals are no
longer exogenous but instead dependent on their characteristics through homophily. This means that
conditioning on a node’s connections creates a collider structure, inducing an association between
the features of those nodes (Pearl, 2009). Nevertheless, under the strong ignorability assumption,
treatment effects remain identifiable. More details are provided in Appendix B.

4 METHODOLOGY

x ϕ

GINT

GINY

G
R
L

t

eϕ

dT

pY

t̂

ŷ

G
R
L

Figure 3: HINet architecture.

Architecture. The architecture of HINet—our pro-
posed neural method for estimating treatment effects
in the presence of interference, which models het-
erogeneous spillover effects and uses domain adver-
sarial training to learn balanced representations—
is visualized in Figure 3. Following Bica et al.
(2020) and Berrevoets et al. (2020), the neural net-
work first learns node representations and then splits
into two branches. More specifically, for each node
k ∈ {i} ∪ Ni, the features xk are transformed into
a representation ϕk = eϕ(xk) via a multi-layer per-
ceptron (MLP), and these representations are then
used to predict both the treatment t̂i and the outcome
ŷi of node i.

The lower branch predicts the outcome of node i. To learn the exposure mapping and to account
for other network information, a Graph Isomorphism Network (GIN) is used (Xu et al., 2019). This
module takes as input the node representations ϕk and treatments tk for k ∈ {i} ∪Ni. Unlike some
other GNN architectures, such as GCN (Kipf & Welling, 2016) and GraphSAGE (Hamilton et al.,
2017), GIN offers maximal representational capacity, making it particularly well-suited for learning
different exposure mapping functions and heterogeneous spillover effects. GINY first concatenates
the node representations and treatments for all nodes k, i.e., ck = ϕk ⊕ tk, ∀k, and then outputs

MLP
(
(1 + ϵ) · ci +

∑
j∈Ni

cj
)
. (2)

This GINY output is subsequently combined with ϕi and ti (for the direct treatment effect), and fed
into the MLP pY to generate the outcome prediction ŷi.

4
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The upper branch is used to learn treatment-invariant, or balanced, representations. Its output is
the predicted treatment t̂i. Its setup is similar to that of the lower branch, with two key differences:
treatments are not used as inputs, and Gradient Reversal Layers (GRLs) (Ganin et al., 2016) are
used. GRLs do not affect the forward pass but reverse the gradient in the backward pass.

Loss function. HINet is trained by combining two different losses: the outcome loss and the treat-
ment prediction loss, defined respectively asLy = 1

n

∑n
i=1(yi−ŷi)2 andLt =

1
n

∑n
i=1 BCE(ti, t̂i),

where BCE is the binary cross-entropy loss. Thanks to the GRL, we can optimize the combined loss

Lcomb = Ly + α · Lt, (3)

where α determines the importance of adversarial balancing. Note that Ly does not affect the upper
(treatment) branch, while Lt does not affect the lower (outcome) branch. However, both affect eϕ.

Representation balancing. More formally, HINet aims to learn node representations ϕi that are
invariant to their treatments:

p(ϕi,ϕNi
| Ti = ti) = p(ϕi,ϕNi

) ∀i ∈ V. (4)

Given our assumptions on the causal graph and Equation (4), invariance to the treatments of each of
its neighbors is also induced (see Appendix A for proof):

p(ϕi,ϕNi | Tj = tj) = p(ϕi,ϕNi) ∀i ∈ V, j ∈ Ni. (5)

Together, these properties imply that the learned representations are invariant not only to a node’s
own treatment but also to the treatments of its neighbors. This yields node representations that are
effectively treatment-invariant with respect to the marginal distributions of all treatments, which in
turn aids in reducing the impact of network-level covariate shift on estimation accuracy (Shalit et al.,
2017; Bica et al., 2020; Berrevoets et al., 2020). We empirically validate this effect in Section 5.4.
Nevertheless, because of the trade-off in the loss function between predictive accuracy and treatment
invariance, the resulting representations are not guaranteed to be perfectly treatment-invariant.

Measuring model performance in the presence of interference. In a traditional no-interference
setting with binary treatment, the Precision in Estimation of Heterogeneous Effects (PEHE) (Hill,
2011) is often used to evaluate treatment effect estimates on (semi-)synthetic data. PEHE is defined
as the root mean squared error of the estimated CATEs, which is uniquely defined since there is
a single counterfactual. In a network setting, this is no longer the case as there are many possible
treatment assignments, each resulting in a different potential outcome. How to best evaluate treat-
ment effect estimation methods in the presence of interference using (semi-)synthetic data remains
an open question. Previous work has typically assessed performance based on only one counterfac-
tual network—i.e., a network in which at least one node receives a different treatment than in the
observed network (see, e.g., Jiang & Sun (2022); Chen et al. (2024)). However, some models may
be accurate for certain counterfactual networks (e.g., those with a low treatment rate) but perform
poorly for others. Therefore, we argue that a good evaluation procedure should account for perfor-
mance across multiple counterfactual networks. Yet, since there are 2|V|−1 possible counterfactual
networks, it is computationally infeasible to evaluate all of these for large networks.

To address this issue, we propose two novel evaluation metrics inspired by the Mean Integrated
Squared Error (MISE) (Schwab et al., 2020), which is used for evaluating continuous treatment
effect estimates: the Precision in Estimation of Heterogeneous Network Effects (PEHNE) and the
Counterfactual Network Estimation Error (CNEE). The first measures estimation error in terms of
ITTE, while the second uses counterfactual outcomes. For both metrics, we sample m counterfac-
tual networks and calculate the estimation error for each node within each sampled counterfactual
network. The final score is obtained by averaging across all nodes and all sampled counterfactual
networks. The key difference is that CNEE places less emphasis on the estimation of potential
outcomes without any treatment, Yi(0,0). Further details, including pseudocode, are provided in
Appendix C.

5 EXPERIMENTS AND DISCUSSION

Data. Synthetic and semi-synthetic data are commonly used in causal machine learning to eval-
uate treatment effect estimators, as ground truth effects are unobservable in real-world datasets
(Berrevoets et al., 2020; Feuerriegel et al., 2024). Following related work (Ma & Tresp, 2021;
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Jiang & Sun, 2022; Chen et al., 2024), we use the Flickr and BlogCatalog (BC) datasets for semi-
synthetic dataset generation. To further evaluate generalization across different network structures,
we also simulate two fully synthetic datasets: one using the Barabási–Albert (BA Sim) random net-
work model (Barabási & Albert, 1999), and another using a procedure that generates homophilous
(Homophily Sim) graphs based on cosine similarity. The latter allows us to examine the potential
impact of homophily-induced network-level covariate shift on estimation accuracy.

For each dataset, a training, validation, and test set is generated. Each fully synthetic dataset (BA
Sim and Homophily Sim) contains 5,000 nodes per split, while the real-world datasets have smaller
splits: Flickr contains approximately 2,400 nodes per split, and BC contains about 1,700 nodes per
split. For the first two experiments, a weighted sum depending on the node features is used as the ex-
posure mapping, i.e., zi = 1

|Ni|
∑

j∈Ni
w(xj)tj , with w(·) a function that maps the features of each

node to a weight. Note, however, that HINet makes no assumptions about the form of the exposure
mapping. Full details on the data-generating processes (DGPs) are provided in Appendix D.

To assess whether network-level covariate shift is present in our datasets, we measure treatment
and outcome assortativity (Newman, 2002; 2003). Intuitively, treatment (outcome) assortativity
quantifies whether nodes with similar treatments (outcomes) are more likely to be connected in a
network than would be expected by chance, yielding a score between -1 and 1. Table 1 shows that
in the Homophily Sim dataset, both treatment and outcome assortativity are positive, indicating that
nodes with similar treatments or outcomes are more likely to be connected and that a network-level
covariate shift is present. In the other datasets, assortativities are close to zero. Appendix E provides
more details on the quantification of homophily.

BC Flickr BA Sim Homophily Sim

Treatment assortativity 0.06 0.00 -0.01 0.56
Outcome assortativity 0.06 -0.01 -0.17 0.71

Table 1: Treatment and outcome assortativity for the different datasets used in our experiments.

Methods for comparison. We compare HINet to the following methods for estimating treatment
effects: TARNet (Shalit et al., 2017), which ignores network information; NetDeconf (Guo et al.,
2020), which incorporates network information but does not account for spillover effects; NetEst
(Jiang & Sun, 2022), which relies on a predefined exposure mapping to estimate spillover effects;
TNet (Chen et al., 2024), which also relies on a predefined exposure mapping, but leverages targeted
learning for doubly robust estimation of spillover effects; and SPNet (own implementation) (Zhao
et al., 2024), which estimates heterogeneous spillover effects using a masked attention mechanism.
Finally, we also include a GIN model, which uses node features and treatments as inputs to a GIN
layer that is followed by an MLP that outputs a prediction ŷi. This baseline is included to contrast
our method with vanilla graph machine learning methods. The main difference with HINet is that it
does not use balancing. Following the literature, we use zassumed

i = 1
|Ni|

∑
j∈Ni

tj as the assumed
exposure mapping in TNet and NetEst. Given that the true exposure mapping is unknown, these two
methods use a misspecified exposure mapping for most experiments.

Hyperparameter selection. Selecting hyperparameters in causal machine learning is challenging
due to the fundamental problem of causal inference: treatment effects cannot be directly observed,
making it impossible to optimize models for treatment effect estimation accuracy. As a result, met-
rics such as PEHNE and CNEE cannot be used during model selection. Instead, alternative metrics
must be used for hyperparameter selection (Curth & van der Schaar, 2023; Vanderschueren et al.,
2025). In this work, we tune all hyperparameters—except the treatment prediction loss weight α—
using the factual validation loss, i.e., the prediction error on the observed outcomes in the validation
set. Selecting α via the factual loss would typically lead to α = 0, since a positive α may cause the
model to discard relevant information for predicting the observed outcomes in favor of constructing
treatment-invariant representations. However, both theoretical and empirical work indicate that rep-
resentation balancing can improve treatment effect estimation (Shalit et al., 2017; Bica et al., 2020;
Berrevoets et al., 2020). Therefore, we determine α heuristically by selecting the largest value for
which the factual validation loss is below (1+ p) · lossα=0. As a rule of thumb, we set p = 0.10, al-
lowing for a maximum increase in validation error of 10% compared to setting α = 0. An important
advantage of this approach is that it allows for α = 0 when representation balancing would result in
excessive information loss. More details are provided in Appendix F.
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5.1 PERFORMANCE ON (SEMI-)SYNTHETIC DATA

Table 2 reports the test set results for all datasets in terms of the PEHNE and CNEE metrics. HINet
achieves the lowest error in terms of both metrics on all datasets except BA Sim, demonstrating
its superior ability to estimate treatment effects in the presence of interference under an unknown
exposure mapping. On the BA Sim dataset, TNet performs best in terms of PEHNE, but not in
terms of CNEE, suggesting that TNet is better at predicting Yi(0,0) than HINet for this dataset.
A possible explanation is that TNet assumes the correct exposure mapping when no neighbors are
treated (i.e., zi = 0). Nevertheless, since HINet still attains the lowest CNEE, it is on average more
accurate at predicting potential outcomes across counterfactual networks than TNet, which relies on
a misspecified exposure mapping.

Dataset Metric TARNet NetDeconf NetEst TNet GIN model SPNet HINet (ours)

BC PEHNE 3.45 ± 0.03 5.52 ± 0.24 2.76 ± 0.23 1.95 ± 0.20 1.33 ± 0.18 4.93 ± 0.37 0.77 ± 0.18
CNEE 4.13 ± 0.04 5.53 ± 0.23 2.82 ± 0.23 2.28 ± 0.26 1.20 ± 0.17 5.11 ± 0.46 0.80 ± 0.20

Flickr PEHNE 3.85 ± 0.10 5.67 ± 0.09 2.67 ± 0.16 1.30 ± 0.16 1.07 ± 0.09 6.35 ± 0.22 0.65 ± 0.06
CNEE 6.17 ± 0.20 7.21 ± 0.14 4.20 ± 0.21 2.07 ± 0.04 0.99 ± 0.09 7.76 ± 0.13 0.73 ± 0.09

BA Sim PEHNE 3.03 ± 0.02 4.61 ± 0.03 0.85 ± 0.08 0.68 ± 0.03 1.39 ± 0.04 4.11 ± 0.05 0.80 ± 0.08
CNEE 5.96 ± 0.01 6.66 ± 0.03 1.79 ± 0.11 1.26 ± 0.02 1.22 ± 0.04 6.02 ± 0.04 0.85 ± 0.08

Homophily Sim PEHNE 2.23 ± 0.01 1.09 ± 0.05 0.62 ± 0.09 0.93 ± 0.06 0.89 ± 0.09 1.75 ± 0.09 0.22 ± 0.02
CNEE 4.49 ± 0.01 1.21 ± 0.05 0.86 ± 0.10 0.95 ± 0.04 1.06 ± 0.09 1.73 ± 0.09 0.23 ± 0.02

Table 2: Test set results (mean ± SD over five different initializations). Lower is better for both
metrics. The best-performing method is in bold; the second-best is underlined.

5.2 IMPACT OF HOMOPHILY

Figure 4 presents the performance of HINet on the BA Sim (No Homophily) and Homophily Sim
(Homophily) networks across three different DGPs and varying levels of treatment assignment
mechanism strength βXT (βXT = 0 resembles an RCT). The DGPs are: (a) individual (direct)
treatment effects without interference, (b) spillover effects without direct effects, and (c) both in-
dividual and spillover effects. CNEE test set results are visualized with and without (α = 0)
balancing node representations. As expected, CNEE generally increases with rising βXT , due to
stronger covariate shift (Shalit et al., 2017). Notably, we also observe that representation balancing
has a greater positive impact on performance in the homophilous networks compared to the non-
homophilous ones when spillover effects—both with and without individual effects—are present.
These findings support our hypothesis that balancing node representations can partly offset the esti-
mation error introduced by network-level covariate shift. The results in terms of PEHNE, provided
in Appendix G.1, are similar.
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Figure 4: Impact of balancing node representations on test CNEE (mean ± SD over five different
initializations). The two rows correspond to the BA and Homophily Sim datasets. The columns cor-
respond to different DGPs. The x-axis shows increasing treatment assignment mechanism strength
βXT . Lower values indicate better performance.
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5.3 LEARNING EXPOSURE MAPPINGS

A key advantage of HINet is its ability to learn an exposure mapping without imposing assumptions
on its functional form. To substantiate this claim, we replicate the experiment from Section 5.1 using
alternative exposure mappings in the DGP.

Table 3 reports results for the exposure mapping zi =
∑

j∈Ni
tj . The results show that both NetEst

and TNet perform poorly because their assumed exposure mappings differ substantially from the true
one. This highlights how misspecification of the exposure mapping can lead to inaccurate treatment
effect estimates. In contrast, HINet and the GIN model—both of which do not rely on assumptions
regarding the exposure mapping—achieve the best performance.

Dataset Metric TARNet NetDeconf NetEst TNet GIN model SPNet HINet (ours)

BC PEHNE 572.78 ± 12.24 625.37 ± 15.01 324.58 ± 29.46 541.69 ± 70.55 51.31 ± 8.46 552.80 ± 4.83 25.22 ± 1.69
CNEE 325.18 ± 4.22 408.75 ± 9.23 261.20 ± 12.54 507.97 ± 82.85 40.43 ± 5.87 370.72 ± 17.83 23.57 ± 1.28

Flickr PEHNE 2854.51 ± 8.34 2865.66 ± 77.69 2817.39 ± 79.31 2.25 · 109 ± 3.65 · 109 306.11 ± 34.20 2736.06 ± 12.54 229.72 ± 37.89
CNEE 2540.88 ± 16.33 2634.20 ± 59.32 2505.10 ± 21.09 2.12 · 109 ± 3.38 · 109 271.94 ± 28.31 1013.38 ± 59.93 231.86 ± 32.76

BA Sim PEHNE 71.60 ± 0.32 76.05 ± 0.12 55.05 ± 0.30 64.07 ± 10.85 10.75 ± 0.62 76.24 ± 0.89 11.61 ± 0.69
CNEE 61.33 ± 0.11 64.53 ± 0.24 53.76 ± 0.28 59.38 ± 8.60 9.93 ± 0.47 38.23 ± 0.95 12.20 ± 0.86

Homophily Sim PEHNE 32.32 ± 0.16 35.94 ± 1.30 7.19 ± 0.30 9.82 ± 0.53 0.63 ± 0.15 23.61 ± 0.35 0.20 ± 0.07
CNEE 18.89 ± 0.09 27.63 ± 1.34 6.73 ± 0.25 9.38 ± 0.43 0.61 ± 0.12 17.02 ± 0.26 0.22 ± 0.07

Table 3: Test set results (mean ± SD over five different initializations) for the sum of treatments
of neighbors used as exposure mapping in the DGP. Lower is better for both metrics. The best-
performing method is in bold; the second-best is underlined.

Table 4 reports results for the exposure mapping zi =
1

|Ni|
∑

j∈Ni
tj , which is the exposure mapping

assumed by TNet and NetEst. For this DGP, the performance of both methods is much closer to
that of HINet. Interestingly, however, neither method matches nor surpasses HINet’s performance,
despite relying on a correctly specified exposure mapping. A possible explanation is that TNet and
NetEst are unable to capture the nonlinear nature of the effect of XNi on Yi, which is present in the
DGP of this experiment (see Appendix D). To substantiate this, we perform another experiment in
which we set the influence of XNi

on Yi to zero. The results for this simplified DGP, presented in
Appendix G.2.1, show that TNet indeed becomes the best-performing model in this setting.

Dataset Metric TARNet NetDeconf NetEst TNet GIN model SPNet HINet (ours)

BC PEHNE 4.10 ± 0.03 5.39 ± 0.19 1.48 ± 0.16 1.50 ± 0.28 1.42 ± 0.23 4.94 ± 0.28 0.62 ± 0.20
CNEE 3.77 ± 0.03 5.39 ± 0.19 1.44 ± 0.16 1.72 ± 0.32 1.14 ± 0.20 4.90 ± 0.36 0.59 ± 0.15

Flickr PEHNE 4.04 ± 0.02 4.30 ± 0.06 2.28 ± 0.18 1.15 ± 0.23 1.27 ± 0.10 5.02 ± 0.24 0.50 ± 0.16
CNEE 4.80 ± 0.01 5.63 ± 0.09 3.69 ± 0.22 1.46 ± 0.09 1.14 ± 0.12 6.29 ± 0.16 0.60 ± 0.17

BA Sim PEHNE 3.28 ± 0.02 3.60 ± 0.03 0.41 ± 0.08 0.12 ± 0.02 1.38 ± 0.06 3.29 ± 0.03 0.21 ± 0.05
CNEE 4.53 ± 0.01 5.02 ± 0.04 1.10 ± 0.11 0.56 ± 0.03 1.12 ± 0.08 4.56 ± 0.02 0.23 ± 0.06

Homophily Sim PEHNE 3.56 ± 0.04 1.58 ± 0.07 0.36 ± 0.02 0.09 ± 0.02 0.50 ± 0.08 1.87 ± 0.14 0.07 ± 0.01
CNEE 3.49 ± 0.02 1.51 ± 0.07 0.54 ± 0.03 0.22 ± 0.02 0.60 ± 0.08 1.71 ± 0.14 0.09 ± 0.01

Table 4: Test set results (mean ± SD over five different initializations) for the proportion of
treated neighbors used as exposure mapping in the DGP. Lower is better for both metrics. The
best-performing method is in bold; the second-best is underlined.

Additional results for several other alternative exposure mappings are provided in Appendix G.2.2
and further demonstrate the superior performance of HINet.

5.4 ABLATION STUDY

Representation balancing. To assess the impact of balancing node representations on treatment
effect estimation error, we report results from an experiment in which specific components of the
upper (treatment) branch of HINet (see Figure 3) are removed. Three variants of HINet are compared
using the same datasets as in Section 5.1, with the same exposure mapping but increasing treatment
assignment mechanism strength βXT . We compare: (1) HINet with all its components, (2) HINet
without balancing (α = 0), and (3) HINet without GINT (No GINT ), and hence only balances the
individual node representations with respect to their own treatment. Therefore, in this last variant,
Equation (5) no longer holds, and the representations are not balanced with respect to the treatments
of neighbors.
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Figure 5: CNEE across datasets with increasing treatment assignment mechanism strength βXT .

The results in Figure 5 indicate that balancing improves treatment effect estimation accuracy for
the two larger datasets, BA Sim and Homophily Sim. For the considerably smaller semi-synthetic
datasets, balancing has little effect, with even a slightly negative effect observed for the Flickr
dataset. Nevertheless, for larger datasets—and especially when homophily is present—balancing
improves estimation accuracy. Notably, balancing with respect to neighbors’ treatments (via GINT )
appears to matter most when homophily—and thus network-level covariate shift—is present, as ev-
idenced by the results for Homophily Sim. These findings provide additional evidence that this type
of balancing helps mitigate the estimation error caused by network-level covariate shift.

Dataset Metric GIN GAT GraphSAGE GCN

BC PEHNE 0.77 ± 0.18 1.20 ±0.39 0.82±0.19 0.79±0.14
CNEE 0.80 ± 0.20 1.21 ±0.33 0.76±0.17 0.94±0.19

Flickr PEHNE 0.65 ± 0.06 0.75 ±0.24 0.48±0.12 2.27±0.19
CNEE 0.73 ± 0.09 1.12 ± 0.30 0.47±0.11 3.81±0.24

BA Sim PEHNE 0.80 ± 0.08 0.66 ± 0.11 0.64±0.13 0.89±0.13
CNEE 0.85 ± 0.08 0.81 ± 0.11 0.67±0.13 1.33±0.16

Homophily Sim PEHNE 0.22 ± 0.02 0.34 ± 0.07 0.17±0.01 0.62±0.09
CNEE 0.23 ± 0.02 0.35 ± 0.06 0.17±0.01 0.60±0.08

Table 5: Test set results (mean ± SD over five differ-
ent initializations) for HINet with different GNN architec-
tures. Lower is better for both metrics. The best-performing
method is in bold; the second-best is underlined.

GNN architectures. Prior work
on treatment effect estimation in
network settings has primarily re-
lied on Graph Convolutional Net-
works (GCNs) (Jiang & Sun, 2022;
Chen et al., 2024), which have lim-
ited representational capacity. Other
GNN architectures, such as Graph
Attention Networks (GATs) (Velick-
ovic et al., 2018) and GraphSAGE
(Hamilton et al., 2017), can learn
more flexible aggregation functions,
as is the case for GINs. To assess the
impact of using GINs, we report re-
sults from an experiment with the same experimental settings as in Section 5.1, in which the GIN
components of HINet, GINT and GINY , are replaced with these alternative architectures.

The results in Table 5 show that GCN often performs poorly compared to the other architectures.
GraphSAGE achieves the best performance across all datasets, closely followed by GIN. How-
ever, this does not imply that GraphSAGE is intrinsically superior for treatment effect estimation
in networks. As shown in Appendix G.3, using a different exposure mapping in the DGP yields a
considerably different ranking, with GIN substantially outperforming the other architectures.

6 CONCLUSION

We introduced HINet, a novel method for estimating heterogeneous treatment effects in network
settings with interference. In contrast to many prior works that rely on predefined exposure map-
pings, HINet learns directly from data how the treatments of an instance’s neighbors influence its
outcome. We empirically demonstrated the benefits of learning the exposure mapping and showed
that a mismatch between the true exposure mapping (DGP) and an imposed one during modeling can
have a profound impact—an issue resolved when the mapping is learned from data. Additionally,
we introduced the notion of network-level covariate shift, which arises from the interaction between
homophily and the treatment assignment mechanism, and we empirically showed that HINet’s bal-
anced node representations substantially mitigate this covariate shift’s impact on estimation error.

Limitations. Representation balancing may introduce bias in treatment effect estimates if the
learned representations are not invertible, as this can make the treatment effect non-identifiable
(Melnychuk et al., 2023; 2025). Although HINet achieves state-of-the-art empirical performance,
its representations are not guaranteed to be invertible, which may lead to biased treatment effect
estimates. Future work could explore alternative approaches for estimating treatment effects under
unknown exposure mappings that provide theoretical guarantees for the expected estimation error.
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Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286
(5439):509–512, 1999.

Jeroen Berrevoets, James Jordon, Ioana Bica, Alexander Gimson, and Mihaela van der Schaar. Or-
ganITE: Optimal transplant donor organ offering using an individual treatment effect. Advances
in Neural Information Processing Systems, 33:20037–20050, 2020.

Ioana Bica, Ahmed M Alaa, James Jordon, and Mihaela van der Schaar. Estimating counterfactual
treatment outcomes over time through adversarially balanced representations. In International
Conference on Learning Representations, 2020.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of Machine
Learning Research, 3(Jan):993–1022, 2003.

Ruichu Cai, Zeqin Yang, Weilin Chen, Yuguang Yan, and Zhifeng Hao. Generalization bound for
estimating causal effects from observational network data. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management, pp. 163–172, 2023.

Daan Caljon, Jente Van Belle, Jeroen Berrevoets, and Wouter Verbeke. Optimizing treatment allo-
cation in the presence of interference. European Journal of Operational Research, 2025. doi:
https://doi.org/10.1016/j.ejor.2025.09.015. URL https://www.sciencedirect.com/
science/article/pii/S0377221725007325.

Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 199–208, 2009.

Weilin Chen, Ruichu Cai, Zeqin Yang, Jie Qiao, Yuguang Yan, Zijian Li, and Zhifeng Hao. Doubly
robust causal effect estimation under networked interference via targeted learning. In International
Conference on Machine Learning, 2024.

Nicholas A Christakis and James H Fowler. The spread of obesity in a large social network over 32
years. New England journal of medicine, 357(4):370–379, 2007.

Alicia Curth and Mihaela Van der Schaar. Nonparametric estimation of heterogeneous treatment
effects: From theory to learning algorithms. In International Conference on Artificial Intelligence
and Statistics, pp. 1810–1818. PMLR, 2021.

Alicia Curth and Mihaela van der Schaar. In search of insights, not magic bullets: Towards de-
mystification of the model selection dilemma in heterogeneous treatment effect estimation. In
International Conference on Machine Learning, pp. 6623–6642. PMLR, 2023.

Zahra Fatemi and Elena Zheleva. Contagion effect estimation using proximal embeddings. arXiv
preprint arXiv:2306.02479, 2023.

Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Ali-
cia Curth, Stefan Bauer, Niki Kilbertus, Isaac S Kohane, and Mihaela van der Schaar. Causal
machine learning for predicting treatment outcomes. Nature Medicine, 30(4):958–968, 2024.

10

https://doi.org/10.1214/16-AOAS1005
https://doi.org/10.1214/16-AOAS1005
https://www.sciencedirect.com/science/article/pii/S0377221725007325
https://www.sciencedirect.com/science/article/pii/S0377221725007325


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Laura Forastiere, Edoardo M Airoldi, and Fabrizia Mealli. Identification and estimation of treatment
and interference effects in observational studies on networks. Journal of the American Statistical
Association, 116(534):901–918, 2021.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of Machine Learning Research, 17(59):1–35, 2016.

Sander Greenland, Judea Pearl, and James M Robins. Causal diagrams for epidemiologic research.
Epidemiology, 10(1):37–48, 1999.

Ruocheng Guo, Jundong Li, and Huan Liu. Learning individual causal effects from networked
observational data. In Proceedings of the 13th International Conference on Web Search and Data
Mining, pp. 232–240, 2020.
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A PROOF OF BALANCED REPRESENTATIONS WITH RESPECT TO TREATMENTS
OF NEIGHBORS

Proposition A.1. If the hidden representations (ϕi,ϕNi
) are treatment-invariant with respect to Ti,

i.e., p(ϕi,ϕNi
| Ti) = p(ϕi,ϕNi

), then these representations are also invariant with respect to the
treatments of each of its neighbors: p(ϕi,ϕNi

| Tj) = p(ϕi,ϕNi
) ∀i ∈ V, j ∈ Ni.

Proof. For any neighbor j of i define Aij and Bij :

Aij := Ni ∩Nj , Bij := Ni \
(
Aij ∪ {j}

)
,

so that Ni = Aij ∪ Bij ∪ {j}.
We explicitly train our model to balance the representations for each node i as follows:

(ϕi,ϕNi) ⊥ Ti, i.e., p(ϕi,ϕNi | Ti) = p(ϕi,ϕNi) ∀i ∈ V. (6)

Additionally, from the assumed causal graph and Markov assumption (see Section 3), i.e., only one-
hop neighbors causally affect each other, we have that the features of the nodes in set Bij—which
are neighbors of node i that are not directly connected to node j—are independent of Tj :

XBij ⊥ Tj .

Therefore, Tj is also independent of the representations learned via ϕBij
= eϕ(XBij

):

ϕBij
⊥ Tj . (7)

Write the collection (ϕi,ϕNi
) as

(ϕi,ϕNi
) ≡ (ϕi,ϕj ,ϕAij

,ϕBij
).

Apply the chain rule to the joint distribution conditional on Tj :

p(ϕi,ϕj ,ϕAij ,ϕBij | Tj) = p(ϕBij | ϕi,ϕj ,ϕAij , Tj) p(ϕi,ϕj ,ϕAij | Tj). (8)

By 7:
p(ϕBij

| ϕi,ϕj ,ϕAij
, Tj) = p(ϕBij

| ϕi,ϕj ,ϕAij
). (9)

Next, since (ϕi,ϕj ,ϕAij
) is a subset of (ϕj ,ϕNj

), Equation (6) for node j implies that

p(ϕi,ϕj ,ϕAij
| Tj) = p(ϕi,ϕj ,ϕAij

). (10)

Substituting these two equalities into Equation (8) yields

p(ϕi,ϕj ,ϕAij ,ϕBij | Tj) = p(ϕBij | ϕi,ϕj ,ϕAij ) p(ϕi,ϕj ,ϕAij ). (11)

Now, applying the chain rule again, we have that

p(ϕi,ϕj ,ϕAij
,ϕBij

| Tj) = p(ϕi,ϕj ,ϕAij
,ϕBij

). (12)

Therefore,
p(ϕi,ϕNi | Tj) = p(ϕi,ϕNi), (13)

which is the claimed independence from Tj .

If there is homophily, the assumptions on the causal graph slightly change. Therefore, the proof has
to be slightly modified as explained in Appendix B.2. Nevertheless, Proposition A.1 still holds.
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B HOMOPHILY AND INTERFERENCE

B.1 CAUSAL DIAGRAM

Xi

Xj

Eij

Ti

Tj

Yi

Yj

(a) Eij = 1

Xi

Xj

Eij

Ti

Tj

Yi

Yj

(b) Eij = 0

Figure 6: DAGs representing the causal structure when homophily is present. Conditioning on the
presence of an edge reveals the underlying causal structure.

In Figure 6, we depict the causal DAGs that arise when homophily is present (Shalizi & Thomas,
2011). In contrast to Figure 2, the presence of an edge between nodes i and j—denoted by the binary
variable Eij—is now itself a random variable that depends on the features of i and j. When Eij = 1,
there can be direct causal (interference) effects from i to j; when Eij = 0, these interference
effects are absent. Such DAGs are known as labeled, or context-specific DAGs (Pensar et al., 2015),
meaning that the structure of the DAG depends on the value of a conditioned variable. In Figure 6,
the two possible DAGs corresponding to the two values of Eij are shown. Importantly, conditioning
on a node i’s one-hop neighborhood implicitly conditions on the edge variables in {Eik}k∈V , which
act as colliders, inducing an association between the features Xi and Xk of these nodes (Pearl,
2009). However, under the strong ignorability assumption,

Yi(Ti = ti,TNi = tNi) ⊥⊥ Ti,TNi | Xi,XNi , ∀ti ∈ T , tNi ∈ T Ni ,Xi ∈ X ,XNi ∈ XNi ,

this induced association does not jeopardize the identifiability of the treatment effects. Conditioning
on Xi and XNi

still d-separates Yi and Tj for all i and j.

B.2 BALANCED REPRESENTATIONS WITH RESPECT TO TREATMENTS OF NEIGHBORS

Proposition A.1 still holds when homophily is present, but its proof requires a small modification.
Due to homophily, the independence XBij

⊥ Tj no longer holds after we condition on one-hop
neighborhoods. Conditioning on the neighborhoods of i and j, which we do in our proof, amounts
to conditioning on all edges in {Eki}k∈V ∪ {Ekj}k∈V . More specifically, the problem is that we
condition on the binary edge indicator variables Ebi and Ebj for every b ∈ Bij . These variables
act as colliders that create a pathway from each Xb to Xi and Xj . Concretely, conditioning on the
neighborhoods of i and j opens the paths

Xb → Ebi ← Xi → Tj and Xb → Ebj ← Xj → Tj ∀b ∈ Bij ,
which creates an association between XBij

and Tj . Note that we do not condition on other edges
than the ones in the set {Eki}k∈V ∪ {Ekj}k∈V , meaning no associations between b and other nodes
in the graph are induced. Additionally, given that by construction Ebj = 0 for all b ∈ Bij , there is
no direct causal effect from XBij to Tj .

Now, to recover the conditional independence of XBij
and Tj needed for the proof, we must close

these paths by conditioning on Xi and Xj . This yields
XBij

⊥⊥ Tj | Xi,Xj ,

and hence
ϕBij

⊥⊥ Tj | ϕi,ϕj .
Using the above conditional independence gives:

p(ϕBij | ϕi,ϕj ,ϕAij , Tj) = p(ϕBij | ϕi,ϕj ,ϕAij )

The remaining steps of the proof remain unchanged.
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C PERFORMANCE METRICS

In a traditional no-interference setting with binary treatment, there is only one counterfactual: the
outcome under the opposite treatment, Yi(1 − ti). In network settings, however, counterfactuals
must be considered at the level of the entire network, since the potential outcome of any given unit
may depend on the treatments of others. Therefore, we argue that a good evaluation procedure
should account for counterfactual networks rather than only individual-level counterfactuals. A
counterfactual network is a network in which at least one unit receives a different treatment than in
the observed network. Note that the number of counterfactual networks is 2|V| − 1, each with |V|
potential outcomes.

When simulated data is available, the Precision in Estimation of Heterogeneous Effects (PEHE)
(Hill, 2011) is often used to evaluate methods in a traditional no-interference setting with binary
treatment. PEHE is defined as the root mean squared error of the estimated Conditional Average
Treatment Effects (CATEs), which is uniquely defined since there is a single counterfactual. In the
presence of interference, however, this is no longer the case and estimated ITTEs could in principle
be evaluated for each counterfactual network in a similar manner. For large networks, however, this
becomes computationally intractable. Therefore, we propose two new metrics that sample a diverse
set of counterfactual networks. These metrics are inspired by the Mean Integrated Squared Error
(MISE), which is used for evaluating treatment effects with a continuous treatment (Schwab et al.,
2020). In the continuous setting, a similar challenge arises due to the existence of more than two
counterfactuals per unit.

The first proposed metric is the Precision in Estimation of Heterogeneous Network Effects
(PEHNE), which evaluates ITTE estimation error over m sampled counterfactual networks. The
calculation of PEHNE is described in Algorithm 1.

Algorithm 1 PEHNE calculation

1: for j = 1, 2, ...,m do
2: Percentage of nodes to treat pj = 100·j

m %

3: Sample treatment for each node i: tji ∼ Bernoulli(pj)
4: Estimate ITTE for each node i: ω̂j

i (t
j
i , t

j
Ni

) = ŷji (t
j
i , t

j
Ni

)− ŷji (0,0)

5: Calculate MSEj =
1
|V|

∑
i(ω

j
i (t

j
i , t

j
Ni

)− ω̂j
i (t

j
i , t

j
Ni

))2

6: end for
7: return PEHNE = 1

m

∑
j MSEj

The second proposed metric is the Counterfactual Network Estimation Error (CNEE), which evalu-
ates counterfactual outcome estimation error over m sampled counterfactual networks. The calcula-
tion of CNEE is described in Algorithm 2.

Algorithm 2 CNEE calculation

1: for j = 1, 2, ...,m do
2: Percentage of nodes to treat pj = 100·j

m %

3: Sample treatment for each node i: tji ∼ Bernoulli(pj)
4: Estimate the potential outcome Yi(ti, tNi

) for each node i: ŷji (t
j
i , t

j
Ni

)

5: Calculate MSEj =
1
|V|

∑
i(y

j
i (t

j
i , t

j
Ni

)− ŷji (t
j
i , t

j
Ni

))2

6: end for
7: return CNEE = 1

m

∑
j MSEj

By sampling treatments according to the percentage pj , we ensure that models are evaluated across a
variety of treatment rates. However, PEHNE places stronger emhasis on the estimation of the “zero”
counterfactual network, i.e., the network in which no unit receives treatment, because of the term
Yi(0,0) in Equation (1). If a model estimates these outcomes poorly, its performance in terms of
PEHNE will be significantly penalized. In contrast, CNEE assigns equal importance to all sampled
counterfactual networks.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In our experiments, we set m = 50 for both PEHNE and CNEE. Note that these metrics are used
solely for performance evaluation, not for hyperparameter tuning (see Appendix F), as they cannot
be calculated in practice from observational data—they require that all potential outcomes be known.
Consequently, validation PEHNE/CNEE cannot be used for hyperparameter selection.
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D DATA-GENERATING PROCESS

We adjust the DGP proposed by Jiang & Sun (2022) and Caljon et al. (2025). Instead of using a pre-
defined exposure mapping zi =

1
|Ni|

∑
j∈Ni

tj , we define a function that allows for heterogeneous
spillover effects.

For the fully synthetic datasets, we first generate d features from a standard normal distribution:
xj
i ∼ N (0, 1), j = 1, . . . , d. For the semi-synthetic datasets (Flickr and BC), we follow Jiang &

Sun (2022) to partition each network into training, validation, and test sets using METIS (Karypis
& Kumar, 1998). Then, following Guo et al. (2020); Jiang & Sun (2022), we use Latent Dirichlet
Allocation (Blei et al., 2003) to reduce the sparse features to a lower-dimensional representation.
Following the literature, we set the feature dimensionality to d = 10. More details on the network
size of these two datasets are provided in Table 6.

Flickr BC

Train Validation Test Train Validation Test

Nodes 2,482 2,461 2,358 1,716 1,696 1,784
Edges 46,268 14,419 23,529 17,937 25,408 14,702

Table 6: Summary statistics for the Flickr and BC datasets.

For the fully synthetic datasets, we generate the network structure as follows. For the simulated BA
dataset (BA Sim), each network of 5,000 nodes (i.e., training, validation, and test) is simulated based
on the Barabási-Albert random network model (Barabási & Albert, 1999). The hyperparameter m
is set to 2. For the simulated homophilous dataset (Homophily Sim), homophilous networks with
5,000 nodes are generated based on the cosine similarity between the feature vectors of all node
pairs in the network (some noise is added to the cosine similarity to allow unlikely edges to occur).
Then, the node pairs are sorted according to cosine similarity. Edges are created between nodes
with the highest cosine similarity until the average degree (number of edges per node) is equal to the
average degree of the simulated BA network ( ¯deg = 4).

To induce the causal structure (see Figure 2), we generate the following parameters:

wXT
j ∼ Unif(−1, 1) for j ∈ {1, 2, . . . , d}

wXY
j ∼ Unif(−1, 1) for j ∈ {1, 2, . . . , d}

wTY
j ∼ Unif(−1, 1) for j ∈ {1, 2, . . . , d}

wXNY
j ∼ Unif(−1, 1) for j ∈ {1, 2, . . . , d}

wTNY
j ∼ Unif(−1, 1) for j ∈ {1, 2, . . . , d}

wXT = [wXT
1 , wXT

2 , . . . , wXT
d ],

wXY = [wXY
1 , wXY

2 , . . . , wXY
d ],

wTY = [wTY
1 , wTY

2 , . . . , wTY
d ],

wXNY = [wXNY
1 , wXNY

2 , . . . , wXNY
d ],

wTNY = [wTNY
1 , wTNY

2 , . . . , wTNY
d ].

These parameters influence the effect of Xi on Ti, Xi on Yi, the heterogeneous effect of Ti on Yi,
the effect of XNi on Yi, and the heterogeneous spillover effect of TNi on Yi, respectively.

The treatment ti is generated as follows. We first calculate νi as:

νi = βXT ·wXT · xi,

with βXT ≥ 0 the treatment assignment mechanism strength and xi = [x1, x2, . . . , xd]
′. Next, to

set the percentage of nodes treated to approximately 25%, we calculate the 75-th percentile ν75 and
transform ν′ = ν − ν75. Finally, we apply the sigmoid function σ to ν′, and obtain ti by sampling:

ti ∼ Bernoulli(σ(ν′i)).

To generate the outcomes, we first create a transformed feature vector x̃i by applying the sigmoid
function σ to half of the features in order to introduce nonlinearities. The outcomes are obtained as
follows:

yi = βindividual · hi · ti + βspillover · zi + βXY · ui + βXNY · uNi
+ βϵ · ϵ; ϵ ∼ N (0, 1),
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with

hi = wTY · x̃i,

zi =
1

|Ni|
∑
j∈Ni

tj ·wTNY · x̃j ,

ui = wXY · x̃i,

uNi =
1

|Ni|
∑
j∈Ni

wXNY · x̃j .

Unless explicitly specified otherwise, we use the following parameter values in the experiments
presented in Section 5: βXT = 6, βindividual = 2, βspillover = 2, βXY = 1.5, βXNY = 1.5, βϵ = 0.2.
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E MEASURING HOMOPHILY

Homophily (McPherson et al., 2001), also known as assortative mixing (Newman, 2002; 2003),
refers to the tendency of nodes in a network to associate with similar nodes. For example, indi-
viduals with similar interests are more likely to be friends. The degree of assortative mixing for a
given feature can be quantified using the assortativity coefficient, which lies between -1 and 1. It is
positive when an attribute is assortative, negative when it is disassortative, and zero when there is
no assortativity. By calculating this coefficient for the treatment variable, we can objectively assess
whether treated nodes are more likely to have treated neighbors. Similarly, outcome assortativity
is positive when the outcomes of neighbors are positively correlated. We report these measures in
Table 1 for the four datasets used in our experiments (Section 5).

To calculate assortativity for a categorical attribute, a mixing matrix, M , is defined, where the el-
ement Mij represents the fraction of all edges in the network that connect a node of category i to
a node of category j. The trace of this matrix, Tr(M) =

∑
i Mii, thus quantifies the total frac-

tion of edges connecting nodes within the same category. To assess whether this observed fraction
is greater than what would be expected by chance, it is compared against the expected fraction of
within-category edges of a network with random connections, which is given by

∑
i aibi, where

ai =
∑

j Mij is the fraction of edges starting at nodes of category i, and bi =
∑

j Mji is the frac-
tion of edges ending at nodes of category i. For undirected networks, the matrix M is symmetric,
and therefore ai = bi. The assortativity coefficient, r, is then defined as the normalized difference
between the observed and expected fractions of within-category edges (Newman, 2003):

r =

∑
i Mii −

∑
i aibi

1−
∑

i aibi
. (14)

A value of r > 0 indicates an assortative network, where connections occur more frequently between
similar nodes. A value of r < 0 indicates a disassortative network, where connections occur more
frequently between dissimilar nodes. A value of r = 0 signifies that connections are random with
respect to the attribute.

For numerical attributes, the calculation of r is slightly different, but the interpretation remains the
same. For more details, we refer to Newman (2003).
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F HYPERPARAMETER SELECTION AND IMPLEMENTATION DETAILS

Due to the fundamental problem of causal inference (Holland, 1986), individualized treatment ef-
fects are unobservable. As a result, selecting hyperparameters is challenging, since we cannot di-
rectly optimize based on treatment effect estimation error. For standard machine learning hyperpa-
rameters, such as hidden layer size or learning rate, we can rely on the factual validation loss for
hyperparameter selection. The factual validation loss is the average estimation error for outcomes
actually observed in the validation set and can always be calculated. However, the factual loss may
not reflect the treatment effect estimation performance. Nevertheless, this approach has been shown
to work reasonably well (Curth & van der Schaar, 2023).

The weight for adversarial balancing, α, is a special type of hyperparameter. A positive α may cause
the model to discard relevant information for predicting the observed outcomes in favor of construct-
ing treatment-invariant representations, which will likely impair the factual validation loss. Conse-
quently, if the factual loss is used to select this hyperparameter, α will often be chosen as zero—
meaning that the upper branch of HINet would not be used. However, both theoretical and empirical
work suggests that balancing representations can improve treatment effect estimates (Shalit et al.,
2017; Bica et al., 2020; Berrevoets et al., 2020). Based on this, we propose the following approach
for hyperparameter selection. First, the standard machine learning hyperparameters are tuned using
the factual validation loss. Once these hyperparameters are set, the factual loss is calculated for dif-
ferent values of α. As α increases, the factual loss typically increases as well. Our intuition is that a
modest increase in factual loss is acceptable and merely indicates the representations have become
more treatment-invariant. However, a substantial increase may suggest that valuable information is
being discarded in favor of learning treatment-invariant representations. As a heuristic, we propose
selecting the largest value of α for which the factual loss remains below (1+p)·lossα=0. As a rule of
thumb, we set p = 0.10, meaning that we allow for a maximum increase in validation error of 10%.
An important advantage of this approach is that it allows α = 0 to be selected when representation
balancing would otherwise result in excessive information being discarded.

For HINet, NetEst, and SPNet, the range for α is {0, 0.025, 0.05, 0.1, 0.2, 0.3}. The other hyperpa-
rameters are selected from the ranges shown in Table 7.

Parameter Value

Hidden size {16, 32}
Num. epochs {500, 1000, 2000}
Initial learning rate {0.001, 0.0005, 0.0001}
Dropout probability {0.0, 0.1, 0.2}

Table 7: Hyperparameter ranges.

All GIN layers internally use a 2-layer MLP. The encoder block eϕ in HINet consists of two hidden
layers, whereas the MLP blocks dT and pY , as well as the MLP block in the GIN model, each
consist of three hidden layers. All MLP blocks (for every method) use ReLU activations after each
layer. Other hyperparameters are set to author-recommended values. Each model is trained using
the Adam optimizer (Kingma & Ba, 2015) with weight decay set to 0.001. For all models except
TNet and SPNet, we use the implementation provided by Jiang & Sun (2022). Since there is no
publicly available implementation of SPNet, we implemented it ourselves based on the description
in Zhao et al. (2024). For TNet, the implementation from Chen et al. (2009) is used and α = γ = 1
because it gave stable results in terms of factual validation loss for all datasets.

All reported results are averages over five different initializations, affecting both weight initialization
and training data shuffling.

Reproducibility. Our code is available at https://anonymous.4open.science/r/HINet-12C5.
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G ADDITIONAL RESULTS

G.1 IMPACT OF HOMOPHILY

In Figure 7, we visualize the impact of representation balancing on the test set results in terms of
PEHNE. The results are similar to those presented in Section 5.2 for CNEE (Figure 4). When only
individual (direct) effects are present, representation balancing improves performance for both the
homophilous and non-homophilous networks with high values of βXT . However, when spillover
effects are present, differences between the non-homophilous and homophilous networks emerge.
Specifically, when only spillover effects are present, balancing considerably improves performance
for the homophilous networks but has little effect on the non-homophilous networks. When both
individual and spillover effects are present, the performance gain from balancing is relatively larger
under homophily.
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Figure 7: Impact of balancing node representations on test PEHNE (mean ± SD over five different
initializations). The two rows correspond to the BA and Homophily Sim datasets. The columns cor-
respond to different DGPs. The x-axis shows increasing treatment assignment mechanism strength
βXT . Lower values indicate better performance.
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G.2 LEARNING DIFFERENT EXPOSURE MAPPINGS

G.2.1 SETTING THE INFLUENCE OF NEIGHBOR FEATURES TO ZERO

As discussed in Section 5.3, it is surprising that TNet and NetEst perform worse than HINet when
their assumed exposure mapping is correctly specified. A likely reason is that they are unable to
capture the nonlinear nature of the effect of XNi

on Yi, which is present in the default DGP used
in our experiments (see Appendix D). In the DGP, the strength of this effect is controlled by the
parameter βXNY . To further analyze the impact of using the correctly specified exposure mapping
on the estimation accuracy of TNet and NetEst, we set this parameter to zero. The results for this
simplified DGP, shown in Table 8, indicate that TNet achieves the best performance in this setting.

Dataset Metric TARNet NetDeconf NetEst TNet GIN model SPNet HINet (ours)

BC PEHNE 3.98 ± 0.02 5.31 ± 0.11 1.26 ± 0.10 0.54 ± 0.09 0.97 ± 0.09 5.80 ± 0.65 1.18 ± 0.29
CNEE 3.42 ± 0.01 4.66 ± 0.08 1.23 ± 0.13 0.56 ± 0.11 0.90 ± 0.10 5.06 ± 0.38 1.12 ± 0.29

Flickr PEHNE 4.05 ± 0.01 4.07 ± 0.06 4.28 ± 0.86 0.90 ± 0.53 0.85 ± 0.11 5.19 ± 0.24 2.93 ± 0.31
CNEE 3.45 ± 0.00 3.83 ± 0.08 4.23 ± 0.89 0.89 ± 0.56 0.82 ± 0.11 5.30 ± 0.26 2.92 ± 0.32

BA Sim PEHNE 3.51 ± 0.01 3.80 ± 0.01 1.15 ± 0.51 0.03 ± 0.00 0.47 ± 0.03 3.79 ± 0.47 1.38 ± 0.19
CNEE 2.92 ± 0.01 3.21 ± 0.02 1.15 ± 0.51 0.03 ± 0.00 0.45 ± 0.02 3.29 ± 0.52 1.40 ± 0.20

Homophily Sim PEHNE 3.80 ± 0.02 1.53 ± 0.06 0.81 ± 0.13 0.03 ± 0.01 0.36 ± 0.09 3.66 ± 0.32 0.95 ± 0.16
CNEE 2.97 ± 0.02 1.20 ± 0.05 0.82 ± 0.13 0.04 ± 0.01 0.36 ± 0.09 3.39 ± 0.30 0.95 ± 0.16

Table 8: Test set results (mean ± SD over five different initializations) for the proportion of treated
neighbors used as exposure mapping in the DGP, and the influence of XNi

on Yi set to zero. Lower
is better for both metrics. The best-performing method is in bold; the second-best is underlined.

G.2.2 ALTERNATIVE EXPOSURE MAPPINGS

To provide further evidence that HINet can learn a wide variety of different exposure mappings, we
report results for two additional exposure mappings. In Table 9, we use information entropy as the
exposure mapping: zi = −p log2(p)− (1−p) log2(1−p)−0.5, where p is the proportion of treated
neighbors. Additionally, we subtract 0.5 to allow for negative spillover effects. In Table 10, we use
the squared weighted average exposure: zi = 1

|Ni|
∑

j∈Ni
w2(xj)tj . The results for both mappings

indicate that HINet achieves the best performance, followed by the GIN model, highlighting the
importance of the representational power of GINs in learning exposure mappings.

Dataset Metric TARNet NetDeconf NetEst TNet GIN model SPNet HINet (ours)

BC PEHNE 4.37 ± 0.03 6.03 ± 0.19 2.43 ± 0.23 1.73 ± 0.36 1.46 ± 0.08 5.27 ± 0.11 0.92 ± 0.21
CNEE 4.48 ± 0.05 6.21 ± 0.18 2.61 ± 0.22 1.72 ± 0.37 1.52 ± 0.12 5.31 ± 0.33 0.93 ± 0.23

Flickr PEHNE 4.01 ± 0.07 5.01 ± 0.11 2.50 ± 0.05 1.23 ± 0.24 1.19 ± 0.06 6.29 ± 0.43 0.76 ± 0.16
CNEE 7.17 ± 0.21 7.74 ± 0.15 4.10 ± 0.07 1.57 ± 0.14 1.15 ± 0.09 9.49 ± 0.39 0.90 ± 0.18

BA Sim PEHNE 3.16 ± 0.01 3.77 ± 0.03 0.60 ± 0.10 0.27 ± 0.16 1.23 ± 0.05 4.36 ± 0.35 0.25 ± 0.07
CNEE 5.49 ± 0.02 5.85 ± 0.03 1.28 ± 0.11 0.72 ± 0.16 1.08 ± 0.03 6.18 ± 0.29 0.24 ± 0.06

Homophily Sim PEHNE 3.11 ± 0.03 1.94 ± 0.05 0.41 ± 0.08 0.10 ± 0.01 0.83 ± 0.16 1.89 ± 0.08 0.13 ± 0.04
CNEE 3.68 ± 0.03 1.76 ± 0.05 0.55 ± 0.06 0.24 ± 0.01 0.92 ± 0.15 1.65 ± 0.10 0.14 ± 0.04

Table 9: Test set results (mean ± SD over five different initializations) for the information entropy
of treatments of neighbors used as exposure mapping in the DGP. Lower is better for both metrics.
The best-performing method is in bold; the second-best is underlined.

Dataset Metric TARNet NetDeconf NetEst TNet GIN model SPNet HINet (ours)

BC PEHNE 3.64 ± 0.04 5.51 ± 0.24 1.87 ± 0.17 2.37 ± 0.37 1.82 ± 0.20 4.67 ± 0.15 0.88 ± 0.08
CNEE 4.05 ± 0.02 5.81 ± 0.24 1.88 ± 0.14 2.77 ± 0.38 1.76 ± 0.25 4.85 ± 0.06 0.89 ± 0.09

Flickr PEHNE 3.80 ± 0.06 4.98 ± 0.09 3.02 ± 0.10 1.88 ± 0.20 1.50 ± 0.09 6.05 ± 0.58 0.81 ± 0.08
CNEE 5.45 ± 0.02 6.75 ± 0.10 4.36 ± 0.14 2.34 ± 0.11 1.42 ± 0.09 7.79 ± 0.57 0.90 ± 0.09

BA Sim PEHNE 3.61 ± 0.03 4.11 ± 0.02 1.49 ± 0.18 1.09 ± 0.04 1.74 ± 0.04 4.63 ± 0.25 1.31 ± 0.20
CNEE 5.22 ± 0.01 5.77 ± 0.04 2.24 ± 0.19 1.45 ± 0.03 1.60 ± 0.03 6.10 ± 0.26 1.33 ± 0.19

Homophily Sim PEHNE 3.84 ± 0.04 1.93 ± 0.04 1.20 ± 0.05 44.27 ± 34.39 1.13 ± 0.05 2.22 ± 0.17 0.69 ± 0.17
CNEE 4.31 ± 0.02 1.86 ± 0.05 1.35 ± 0.06 48.59 ± 37.50 1.15 ± 0.05 2.08 ± 0.15 0.66 ± 0.15

Table 10: Test set results (mean ± SD over five different initializations) for the squared weighted
average of treatments of neighbors used as exposure mapping in the DGP. Lower is better for both
metrics. The best-performing method is in bold; the second-best is underlined.
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G.3 ABLATION STUDY

To further investigate the importance of the GNN architecture used in HINet, we repeat the exper-
iment from Section 5.4 using the sum exposure mapping, zi =

∑
j∈Ni

tj , instead of the default
weighted average exposure mapping (see Appendix D). In contrast to the results reported in Sec-
tion 5.4, the results in Table 11 show that the GIN architecture performs best for the sum exposure
mapping. Moreover, GraphSAGE—which performed best for the weighted average exposure map-
ping, now performs poorly.

Dataset Metric GIN GAT GraphSAGE GCN

BC PEHNE 25.22 ± 1.69 266.38 ±17.04 392.30±14.5 69.63±7.43
CNEE 23.57 ± 1.28 256.37± 13.65 357.89±16.95 60.23±6.49

Flickr PEHNE 229.72 ±37.89 2586.48 ±154.24 2628.21±87.46 2582.09±145.21
CNEE 231.86 ± 32.76 2529.27± 397.00 2384.61±89.27 1235.13±67.43

BA Sim PEHNE 11.61 ± 0.69 54.68 ± 1.39 51.45±0.52 18.57±1.18
CNEE 12.20 ± 0.86 52.81 ± 0.74 49.12±0.74 10.69±0.52

Homophily Sim PEHNE 0.20 ± 0.07 7.60 ± 0.16 7.77±0.21 3.10±0.20
CNEE 0.22 ± 0.07 7.48 ± 0.10 7.49±0.24 3.17±0.17

Table 11: Test set results (mean ± SD over five different initializations) for HINet with different
GNN architectures, with the sum of treatments of neighbors used as exposure mapping in the DGP.
Lower is better for both metrics. The best-performing method is in bold; the second-best is under-
lined.

H LLM USAGE

In this paper, we used LLMs to polish the writing and as an assistant to write the code.
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