ICE-Pick: Iterative Cost-Efficient Pruning for DNNs

Wenhao Hu'! Perry Gibson'! José Cano!

Abstract

Pruning is one of the main compression methods
for Deep Neural Networks (DNNs), where less
relevant parameters are removed from a DNN
model to reduce its memory footprint. To get
better final accuracy, pruning is often performed
iteratively with increasing amounts of parame-
ters being removed in each step, and fine-tuning
(i.e., additional training epochs) being applied to
the remaining parameters. However, this pro-
cess can be very time-consuming, since the fine-
tuning process is applied after every pruning step
and calculates gradients for the whole model.
Motivated by these overheads, in this paper we
propose ICE-Pick, a novel threshold-guided fine-
tuning method which freezes less sensitive lay-
ers and leverages a custom pruning-aware learn-
ing rate scheduler. We evaluate ICE-Pick using
ResNet-110, ResNet-152, and MobileNetV2 (all
defined for CIFAR-10), and show that it can save
up to 87.6% of the pruning time while maintain-
ing accuracy.

1. Introduction

Pruning is a popular method to compress large Deep Neu-
ral Network (DNN) models, making them more compact
and potentially faster (Deng et al., 2020). Typically, less im-
portant parameters are removed from a pre-trained model.
The remaining parameters are fine-tuned on the training
dataset to compensate for any potential accuracy loss.

To better maintain accuracy, some pruning methods lever-
age iterative fine-tuning, where an increasing proportion of
the model is pruned, with additional training (fine-tuning)
being performed after each pruning step. This continues
until a target compression ratio is reached. However, this
process can be prohibitively expensive. One-shot pruning

'School of Computing Science, University of Glasgow, Glas-
gow, Scotland, United Kingdom. Correspondence to: Wenhao Hu
<2692597H@student.gla.ac.uk>.

Proceedings of the 40" International Conference on Machine Learn-
ing, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright 2023 by
the author(s).

attempts to mitigate this issue by pruning all of the param-
eters in a single step, and fine-tuning once (Li et al., 2016).
However, this may come with high accuracy penalties.

Motivated by these observations, in this work we propose
ICE-Pick (iterative cost-efficient), a simple yet effective ac-
curacy threshold-guided fine-tuning method that leverages
a custom pruning-aware learning rate scheduler and layer
freezing to reduce training costs, while still maintaining
similar accuracy. ICE-Pick accelerates the pruning process
by skipping fine-tuning when a given pruning step has
a tolerable impact on accuracy. Even when fine-tuning
is required, we adapt the concept of layer freezing seen
in transfer learning (Liu et al., 2021b). We identify layers
whose parameters are less likely to change significantly
during fine-tuning and freeze them for cheaper training.

The contributions of this paper include the following:

« We propose and describe our ICE-Pick method,
with components including layer freezing, threshold-
guided fine-tuning, and a tunable pruning-aware
learning rate scheduler.

« We validate the components of ICE-Pick, justifying
the use of layer freezing and the benefits of using our
pruning-aware learning rate scheduler.

+ We evaluate ICE-Pick using ResNet-110, ResNet-152,
and MobileNetV2 with the CIFAR-10 dataset, showing
that it can save up to 87.6% of the pruning time while
maintaining accuracy.

2. Background and Related Work

Pruning methods can be characterized using four key di-
mensions (Blalock et al., 2020): Structure, Scoring, Schedul-
ing, and Fine-tuning. Structure is the level of granularity
of the pruning, and is generally divided into two classes:
unstructured and structured. In unstructured pruning indi-
vidual weights are removed, whereas structured pruning re-
moves groups of parameters such as whole filters/channels.
In this paper, our ICE-Pick method is formulated to focus
on filter pruning. Scoring is how we decide which parame-
ters to prune. For example, a popular approach is to use the
L1-norm (Li et al., 2016), where we prune parameters with
absolute values closer to zero. Scheduling is how much

ICE-Pick: Iterative Cost-Efficient Pruning for DNNs

we prune in each step. For example, we might perform
all of the pruning in a single step (one-shot pruning), or
gradually increase the amount of pruning in iterative steps.
Finally, fine-tuning is how we recover lost accuracy by
training the model for a small number of epochs.

As compared to one-shot pruning, iterative pruning can
yield better accuracies if we fine-tune after every prun-
ing step (Li et al., 2016). However, the larger the model is,
the more expensive fine-tuning can be. Therefore, many
methods only fine-tune for 1 or 2 epochs with some accu-
racy penalty, sometimes training more epochs for the final
pruning step (Joo et al., 2021; Luo & Wu, 2017; Luo et al.,
2017). Note that even with a low number of epochs the
fine-tuning stage can still be prohibitively expensive.

Fine-tuning is not a concept exclusive to pruning. In trans-
fer learning (Brock et al., 2017), fine-tuning is also an im-
portant step that adapts the models to new data. Similar to
pruning, fine-tuning in transfer learning is also very time-
consuming (Liu et al., 2021b). To address this problem, some
methods use layer freezing to accelerate the fine-tuning
process (Brock et al., 2017; Lee et al., 2019; Liu et al., 2021b),
where the parameters of some layers are ‘frozen’ such that
they cannot be changed during training. We believe this
idea can be adapted and applied to model pruning, due to
the similar role of fine-tuning in both tasks.

3. Proposed Method

3.1. Overview

To reduce the fine-tuning time in iterative pruning, we
propose ICE-Pick, a technique that combines threshold-
guided fine-tuning and layer freezing. The intuition behind
ICE-Pick is that instead of fine-tuning the full model on
every pruning step, we freeze less sensitive layers and skip
retraining when the accuracy reduction is lower than a user-
defined threshold. Figure 1 gives an overview of ICE-Pick,
showing how the learning rate is adjusted dynamically,
with Algorithm 1 describing the steps in more detail.

As shown in Figure 1, our method has 2 main stages. In
Stage 1, we freeze the model’s less sensitive layers; and
in Stage 2, after applying a pruning step, we fine-tune the
non-frozen layers adjusting the learning rate dynamically.
As well as the user-defined accuracy loss threshold, we also
use ‘width’, which is the number of non-pruned filters in a
given layer using the average across the model. Cases (1),
(2), and (3) show how we gradually reduce the learning rate
as the level of pruning increases, and in case (4) we stop
fine-tuning when the accuracy loss is below our threshold.

Algorithm 1 is a more detailed description of the ICE-Pick
method. The following subsections discuss the stages of
the algorithm, and further motivate our design choices.

Algorithm 1 ICE-Pick Pruning Method

1: Input: (1) Layer-wise Pruning operator P(.), (2) Freeze
operator Freeze(.), (3) Accuracy testing operator Test(.),
(4) Parameter calculating operator Param(.), (5) Fine-tuning
operator F'T(.), (6) Model M, (7) Original accuracy acCorig,
(8) Accuracy drop threshold 0, (9) Percentage of frozen lay-
ers 7, (10) Initial learning rate (LR) base, (11) Maximum LR
change A, (12) The level of pruning where the midpoint of
the A is reached p, (13) The shape control 3

: Output: Pruned Model Mp

M¥rozen < Freeze(M, n)

: for layer L € MFprozen do

MFrozen «— P(MFrozen, L)

if accorig — Test(Mrrozen) = 0 then
Param (Mpyozen)
Param (M)

maz_lr < Eq. 1(A, a, p, base);
9: FT(Mrrozen, maz_lr)

10: end if

11: end for

12: MP <~ MFrozen

13: return Mp

= In forward direction

o <

® FadReL

3.2. Layer Freezing

As Stage 1 in Figure 1 and line 3 of Algorithm 1 shows,
we adapt the layer freezing technique commonly used in
transfer learning (Brock et al., 2017; Lee et al., 2019; Liu et al.,
2021b). This is motivated by our observation in Section 4.1
that there are some layers that see smaller gradient shifts
than others during fine-tuning, typically layers earlier in
the model. Therefore we can skip training them, reducing
our fine-tuning costs.

3.3. Pruning and Fine-tuning

Lines 4-11 of Algorithm 1 show the pruning and fine-tuning
steps. For each layer, including the frozen ones, we apply
filter pruning. If we observe an accuracy drop higher than
or equal to our threshold (line 6), then we trigger fine-
tuning, otherwise we skip it. The user provides the accuracy
threshold, with its value varying depending on the learning
task and the user’s tolerance for accuracy loss.

If we trigger fine-tuning, we want to minimize training
time by converging on a higher accuracy more quickly. Dy-
namic learning rates are widely used to adapt the changing
learning conditions (Li et al., 2019; Liu et al., 2019). It has
been shown that narrower models (i.e., smaller width, with
fewer filters per layer) have a narrower loss landscape (Li
et al,, 2018), which may require lower maximum learning
rates. When we prune, we also shrink the loss landscape.
Therefore, inspired by S-Cyc (Liu et al., 2021a), we design
a pruning-aware learning rate scheduler where the maxi-
mum learning rate is determined by the level of pruning,
defined by the average width. Our maximum learning rate
is defined by:

ICE-Pick: Iterative Cost-Efficient Pruning for DNNs

Stage 1

Case (D

Case ()

« Accuracy loss = threshold
« High avg. width

-

Apply fine-tuning
with high learning rate

* Accuracy loss = threshold
* Medium avg. width

* Apply fine-tuning with
medium learning rate
Repeat
until

‘ i ‘ Freeze ‘ i

Case (@)

Case @ last

* Accuracy loss = threshold
« Small avg. width

-

Apply fine-tuning
with low learning rate

* Accuracy loss < threshold

epoch
»‘ No fine-tuning ‘

ao

«—>
Avg. Width

Figure 1: Overview of ICE-Pick. First, less sensitive layers are frozen (Stage 1), then for each layer we prune (the dotted
lines are the edges of the pruned parts) and fine-tune the model (Stage 2). The learning rate is adjusted dynamically, and
fine-tuning for a given step is halted if our accuracy loss is low.

25 8 1 2 Layer
e CREl EU T Th Ik
= = 2°1 e o
u§4 26 ‘L °§ \ 5 21 —— 43
\ \
= g \ g
o3 o \\ o4 =
o (= N o
5 g N 5
&2 = \N =
c S N EP
5 52 Mty y . 5
g g N g Y. g
0 10 20 30 40 50 0 10 20 30 40 50 60 70 2 4 6 8 10 12 14 16

Pruning step

(a) ResNet-110

Pruning step

(b) ResNet-152

Pruning step

(c) MobileNetV2

Figure 2: Weights L1 shift delta after full DNN fine-tuning during iterative pruning; the learning rate is 0.001.

A

+ (=)

mazx_learning_rate = base —

(1)

where « is the proportion of unpruned parameters, and the
hyper-parameters are: base, the initial learning rate; A, the
maximum change in the learning rate during pruning, with
range (0, base); p, the level of pruning where the midpoint
of A is reached, with range (0, 50%]; and (3, which con-
trols the shape of the curve, with range (0, +00). By tuning
these hyper-parameters, we can flexibly formulate different
types of decreasing learning schedules for different situ-
ations. Table 1 shows the comparison in total number of
fine-tunings triggered to achieve comparable performance
between the fixed learning rate and our ICE-Pick learning
rate scheduler.

4. Evaluation

In this section, we validate ICE-Pick and demonstrate its
applicability in reducing the costs of pruning while main-
taining accuracy. In Section 4.1 we show how some DNN
layers change much less than others during fine-tuning,
justifying the use of layer freezing. Section 4.2 discusses
the performance of ICE-Pick under varying parameter con-
figurations. In Section 4.3 we validate the use of our custom
ICE-Pick learning rate scheduler. Section 4.4 discusses the
potential impact of ICE-Pick on future pruning works.

In our evaluation, we run three DNN models: ResNet-110
and ResNet-152 (He et al., 2016), and MobileNetV2 (Howard
etal., 2017), all defined on the CIFAR-10 dataset (Krizhevsky

et al., 2009). We evaluate them on an NVIDIA TITAN RTX
GPU, taking the mean value of 10 evaluations for each
experiment. We use filter-pruning with L1-norm scoring,
and prune one block per step for our scheduling, where a
block is a sequence of consecutive layers. For fine-tuning,
we use SGD (Ruder, 2016) enhanced by knowledge distilla-
tion (Hinton et al., 2015), with at most one epoch for each
step, a momentum of 0.9, a weight decay of le—4, and a
batch size of 128 for train and test.

4.1. Validation of Layer Freezing

Figure 2 shows how the weights of different layers change
as the amount of fine-tuning increases. We observe that
across our three DNN models, earlier layers tend to see
smaller shifts, and the ordering of the layers is generally
maintained. This justifies both freezing less sensitive layers
(determined by observing weight shifts from one pruning
step), and applying the freezing step only once.

4.2. Parameter Perturbation

We compare the impact on accuracy and overall pruning
time for different parameter combinations and pruning
ratios. For our baseline, we prune with a fixed learning
rate of 0.001 and do not exploit any of the features of ICE-
Pick such as freezing and an accuracy drop threshold. For
ICE-Pick, we prune using varying freezing ratios and an
accuracy drop threshold of 1.5%. We observe that higher
freezing ratios give higher reductions in overall time. For
example, at a 40% pruning level (Figures 3(a)-3(c)), we re-

ICE-Pick: Iterative Cost-Efficient Pruning for DNNs

©
© ©

Accuracy(%)

91

©
© ©

Accuracy(%)

—+— 0: 1.5%, n: 70%, T: 159s

Pruning step

(a) ResNet-110, Pruning ratio: 40%

5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Pruning step

(b) ResNet-152, Pruning ratio: 40%

1
Pruning step

(c) MobileNetV2, Pruning ratio: 40%

93 93 93
92 92 92

_o1 o1 _o1

: 9 :

90 Eo0 90

o Q o

g9 £89 £89

S:’ 88 ;)88 —+— Baseline, T: 5413s S:’ 88 —+— Baseline, T: 578s
87 87 —— 0:1.5%, n: 0%, T: 1860s 87{{—— 6:1.5%, n: 0%, T: 3455

—+— 0: 1.5%, n: 30%, T: 1599s —+— 0:1.5%, n: 30%, T: 355s

86 86 —+— 0: 1.5%, n: 70%, T: 1252s 86 —+— 0:1.5%, n: 70%, T: 393s
85055 10 15 20 25 30 35 40 45 50 8555 10 15 20 25 30 35 40 45 50 55 60 65 70 8575 5 10 15

Pruning step

(d) ResNet-110, Pruning ratio: 60%

Pruning step

(e) ResNet-152, Pruning ratio: 60%

Pruning step

(f) MobileNetV2, Pruning ratio: 60%

Figure 3: Impact of varying parameter configurations, in terms of accuracy as pruning increases. The freezing ratios 7 are
0%, 30%, 70%, with the legends reporting the total time required. 6 is the value of the accuracy drop threshold.

Table 1: Comparison between fixed and ICE-Pick learning
rates (LR). The pruning ratios are 60% and 40% for the
ResNets and MobileNetV2 respectively and the accuracy
drop threshold is 2.5%. For ICE-Pick, base is 0.001, A =
7.5e—4, p = 0.12, and 8 = 50. #Ft is the total number of
fine-tunings triggered in 10 experiments.

Model Freeze LR Accuracy #Ft
30% 0.001 90.38% 132
30% ICE-Pick 90.67% 102

ResNet-110 70% 0.001 9022% 133
70% ICE-Pick 90.55% 116

30% 0.001 90.35% 196
30% ICE-Pick 91.35% 124

ResNet-152 70% 0.001 9034% 131
70% ICE-Pick 90.61% 112

30% 0.001 89.56% 21

. 30% ICE-Pick 89.26% 20
MobileNetV2 —5c 0.001 90.1% 27
70% ICE-Pick 89.74% 24

duce the time required by up to 83.9%, 87.6%, and 74.0% for
ResNet-110, ResNet-152, and MobileNetV2 respectively.

For higher pruning ratios, we observe a lower average
reduction in pruning time, since we need to fine-tune more,
due to higher accuracy drops. At a pruning ratio of 60%
(Figures 3(d)-3(f)), we save up to 71.4%, 76.9%, and 32.0%
for ResNet-110, ResNet-152, and MobileNetV2 respectively.

For varying accuracy drop thresholds, we do not include
these results for brevity. However, comparing thresholds

of 0.5%, 1.5%, and 2.5%, as expected, higher thresholds re-
duced the time required while still reasonably maintaining
accuracies. This shows that ICE-Pick can keep the final
accuracy even with bigger accuracy drop thresholds.

4.3. Learning Rate Schedule Validation

To validate ICE-Pick’s learning rate scheduler, we compare
it against a fixed learning rate. Both approaches still use
layer-freezing and the accuracy drop threshold to optimize
fine-tuning. In Table 1 we see that our scheduler triggers
significantly fewer fine-tunings for 2 out of 3 models.

4.4. Discussion

In our experiments, we demonstrate how ICE-Pick works,
showing that we can maintain accuracy while reducing
fine-tuning time significantly, up to 87.5%. ICE-Pick has
tunable hyper-parameters, for which we explored the trade-
offs. For larger models or datasets, these trade-offs may
vary, but we will explore in future work.

5. Conclusion

Iteratively pruning DNN models can be very time-
consuming. In this paper, we propose ICE-Pick, a simple
yet effective threshold-guided method to accelerate the
fine-tuning procedure in iterative pruning. ICE-Pick can
save up to 87.5% of the pruning time while maintaining
similar final accuracies. In future work, we will consider
ICE-Pick in a broader range of models and datasets, as well
as other pruning methods such as unstructured pruning.

ICE-Pick: Iterative Cost-Efficient Pruning for DNNs

References

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J.
What is the State of Neural Network Pruning? In Dhillon,
L, Papailiopoulos, D., and Sze, V. (eds.), Proceedings of
Machine Learning and Systems, volume 2, pp. 129-146,
2020.

Brock, A., Lim, T., Ritchie, J. M., and Weston, N. Freeze-
out: Accelerate training by progressively freezing layers.
arXiv preprint arXiv:1706.04983, 2017.

Deng, L., Li, G., Han, S., Shi, L., and Xie, Y. Model compres-
sion and hardware acceleration for neural networks: A
comprehensive survey. Proceedings of the IEEE, 108(4):
485-532, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning
for image recognition. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowl-
edge in a neural network, 2015.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vi-
sion Applications. arXiv:1704.04861 [cs], April 2017.

Joo, D, Yi, E., Baek, S., and Kim, J. Linearly replaceable
filters for deep network channel pruning. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(9):
8021-8029, May 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lee, J., Tang, R., and Lin, J. What would elsa do? freezing
layers during transformer fine-tuning. arXiv preprint
arXiv:1911.03090, 2019.

Li, H., Kadav, A., Durdanovic, I, Samet, H., and Graf, H. P.
Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

Li, H, Xu, Z., Taylor, G., Studer, C., and Goldstein, T. Vi-
sualizing the loss landscape of neural nets. Advances in
neural information processing systems, 31, 2018.

Li, Y., Wei, C., and Ma, T. Towards explaining the regulariza-
tion effect of initial large learning rate in training neural
networks. Advances in Neural Information Processing
Systems, 32, 2019.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X,, Gao, J., and
Han, J. On the variance of the adaptive learning rate and
beyond. arXiv preprint arXiv:1908.03265, 2019.

Liu, S., Tan, C. M. J., and Motani, M. S-cyc: A learning rate
schedule for iterative pruning of relu-based networks,
2021a.

Liu, Y., Agarwal, S., and Venkataraman, S. Autofreeze:
Automatically freezing model blocks to accelerate fine-
tuning. arXiv preprint arXiv:2102.01386, 2021b.

Luo, J.-H. and Wu, J. An entropy-based pruning method
for cnn compression. ArXiv, abs/1706.05791, 2017.

Luo, J.-H., Wu, J., and Lin, W. Thinet: A filter level pruning
method for deep neural network compression. In Pro-
ceedings of the IEEE international conference on computer
vision, pp. 5058-5066, 2017.

Ruder, S. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747, 2016.

