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Abstract
Detecting anomalies or out-of-distribution001
(OOD) samples is critical for maintaining the002
reliability and trustworthiness of machine learn-003
ing systems. Recently, Large Language Mod-004
els (LLMs) have demonstrated their effective-005
ness not only in natural language processing006
but also in broader applications due to their007
advanced comprehension and generative capa-008
bilities. The integration of LLMs into anomaly009
and OOD detection marks a significant shift010
from the traditional paradigm in the field. This011
survey focuses on the problem of anomaly and012
OOD detection under the context of LLMs. We013
propose a new taxonomy to categorize exist-014
ing approaches into three classes based on the015
role played by LLMs. Following our proposed016
taxonomy, we further discuss the related work017
under each of the categories and finally discuss018
potential challenges and directions for future019
research in this field.020

1 Introduction021

Most machine learning models operate under the022

closed-set assumption (Krizhevsky et al., 2012),023

where the test data is assumed to be drawn i.i.d.024

from the same distribution as the training data.025

However, in real-world applications, this assump-026

tion often cannot hold, as test examples can come027

from distributions not represented in the training028

data. These instances, known as anomalies or out-029

of-distribution (OOD) samples, can severely de-030

grade the performance and reliability of existing031

models (Yang et al., 2024a). To build robust AI sys-032

tems, methods including probabilistic approaches033

(Lee et al., 2018; Leys et al., 2018) and recent deep034

learning techniques (Pang et al., 2021; Yang et al.,035

2024a) have been explored to detect these unknown036

instances across various domains, such as fraud de-037

tection in finance and fault detection in industrial038

systems (Hilal et al., 2022; Liu et al., 2024b).039

Large Language Models (LLMs), such as GPT-4040

(Achiam et al., 2023) and LLaMA (Touvron et al.,041
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Figure 1: A simple illustration of leveraging LLMs for
images anomaly and OOD detection.

2023), have recently demonstrated remarkable ca- 042

pabilities in language comprehension and summa- 043

rization. To further harness the potential of LLMs 044

beyond text data, there is also a growing inter- 045

est in extending them to multi-modal tasks such 046

as vision-language understanding and generation 047

(Wang et al., 2024), evolving them into Multimodal 048

LLMs (MLLMs) (Yin et al., 2023). Given the zero- 049

and few-shot reasoning capabilities of LLMs and 050

MLLMs, researchers try to apply these models to 051

anomaly and out-of-distribution (OOD) detection, 052

as illustrated in Figure 1, yielding promising results. 053

However, the emergence of LLMs has fundamen- 054

tally changed the learning paradigm in this field, 055

highlighting the need for a comprehensive survey 056

to analyze the emerging challenges and systemati- 057

cally review the rapidly expanding works. 058

While prior works have explored various aspects 059

of anomaly and OOD detection, none have specifi- 060

cally focused on the utilization of LLMs on these 061

problems across diverse data modalities. Yang et al. 062

(2024a) and Salehi et al. (2021) present unified 063

frameworks for OOD detection but do not delve 064

into the utilization of LLMs. While Su et al. (2024) 065

review some small-sized language models for fore- 066

casting and anomaly detection, they neither cover 067

the usage of LLMs with emergent abilities nor ad- 068

dress OOD detection. A recent survey by Miyai 069
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et al. (2024a) summarizes works on anomaly and070

OOD detection in vision using vision-language071

models but neglects other data modalities. There-072

fore, we aim to conduct a systematic survey that073

covers both anomaly and OOD detection tasks074

across various data domains, concentrating on how075

LLMs are used in existing works.076

In this survey, we propose a novel taxonomy077

that focuses on how LLMs can profoundly impact078

anomaly and OOD detection in three fundamen-079

tal ways, as illustrated in Figure 2: ❶ LLMs for080

Augmentation (§3): LLMs are not used directly081

for detection, but their emergent abilities, advanced082

semantic understanding, and vast knowledge aug-083

ment the detection process; ❷ LLMs for Detection084

(§4): LLMs are employed as a detector to identify085

anomalies and OOD instances; and ❸ LLMs for086

Explanation (§5): LLMs provide insightful ex-087

planatory analyses of detection results, aiding in088

further planning and problem-solving in real-world089

scenarios. At the end (§6), we also outline the090

challenges and future research directions, in order091

to provide a better understanding of anomaly and092

OOD detection in the era of LLMs and shed light093

on the following research.094

2 Preliminaries095

Large Language Models. Large language mod-096

els (LLMs) generally refer to Transformer-based097

pre-trained language models with hundreds of bil-098

lions of parameters or more. Early LLMs like099

BERT (Devlin et al., 2018) and RoBERTa (Liu100

et al., 2019) utilize an encoder-only architecture,101

excelling in text representation learning (Bengio102

et al., 2013). Recently, the focus has shifted toward103

models aimed at natural language generation, of-104

ten using the “next token prediction” objective as105

their core task. Examples include T5 (Raffel et al.,106

2020) and BART (Lewis et al., 2019), which em-107

ploy an encoder-decoder structure, as well as GPT-108

3 (Brown et al., 2020), PaLM (Chowdhery et al.,109

2023), and LLaMA (Touvron et al., 2023), which110

are based on decoder-only architectures. Advance-111

ments in these architectures and training methods112

have led to superior reasoning and emergent abili-113

ties, such as in-context learning(Brown et al., 2020)114

and chain-of-thought reasoning (Wei et al., 2022).115

Multimodal Large Language Models. The re-116

markable abilities of Large Language Models117

(LLMs) have inspired efforts to integrate language118

with other modalities, with a particular focus119

on combining language and vision.Notable ex- 120

amples of Multimodal Large Language Models 121

include CLIP (Radford et al., 2021), BLIP2 (Li 122

et al., 2023a), and Flamingo (Alayrac et al., 2022), 123

which were pre-trained on large-scale cross-modal 124

datasets comprising images and text. Models like 125

GPT-4(V) (OpenAI, 2023) and Gemini (Team et al., 126

2023) showcase the emergent abilities of Multi- 127

modal LLMs, significantly improving vision un- 128

derstanding. In light of the emergence of these 129

MLLMs, researchers are increasingly using them 130

as backbones to tackle tasks such as anomaly and 131

OOD detection. 132

2.1 Problem Definition 133

With LLMs advancing in zero-shot and few-shot 134

learning, the general pipeline of anomaly and out- 135

of-distribution (OOD) detection methods shifts to 136

adapt pre-trained LLMs for detection without ex- 137

tensive training. This shift challenges traditional 138

definitions of anomaly and OOD detection, as the 139

conventional train-test paradigm may not always 140

apply. Following previous studies (Miyai et al., 141

2024a; Yang et al., 2024a), we propose to redefine 142

anomaly and OOD detection under the context of 143

LLMs and highlight the differences between the 144

two problems as follows: 145

Definition 1 LLM-based Anomaly Detection: 146

Given a test dataset Dtest = {x1, · · · , xn}, where 147

each sample xi is drawn from distribution Pin or 148

Pout. The objective of LLM-based Anomaly Detec- 149

tion is to use a pre-trained LLM as the backbone 150

and develop a detection model fLLM (·) to predict 151

whether each sample x′ ∈ Dtest belongs to Pout, 152

where Pout has covariate shift with Pin 153

Definition 2 LLM-based OOD Detection: Given 154

a test dataset Dtest = {x1, · · · , xn}, where each 155

sample xi is drawn from distribution Pin or Pout, 156

and a known ID class set C = {c1, · · · , ck}. The 157

objective of LLM-based OOD Detection is to use a 158

pre-trained LLM as backbone and develop detec- 159

tion model fLLM (·) to predict whether each sample 160

x′ ∈ Dtest belongs to Pout, where Pout has seman- 161

tic shift with Pin. If not, x′ will be classified into 162

xi ∈C. 163

Discussions. The distinction between anomaly de- 164

tection and OOD detection in the context of LLMs 165

highlights the unique challenges posed by covari- 166

ate and semantic shifts. Anomaly detection aims to 167

identify subtle deviations within the data that may 168

not involve a complete change in the underlying 169
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LLMs for Augmentation

Text Embedding-based LogGPT (Qi et al., 2023), LogFit (Almodovar et al., 2024), (Liu et al., 2024a), (Zhang et al., 2024a)

Psuedo Label-based EOE (Cao et al., 2024), PCC (Huang et al., 2024b), TOE (Park et al., 2023), CoNAL (Xu et al., 2023)

Textual Description-based TagFog (Chen et al., 2024), ALFA (Zhu et al., 2024), (Dai et al., 2023)

LLMs for Detection

Prompting

w/o Tuning SIGLLM (Alnegheimish et al., 2024), LLMAD (Liu et al., 2024c), LogPrompt (Liu et al., 2024d), LAVAD
(Zanella et al., 2024), LLM-Monitor (Elhafsi et al., 2023), GPT-4V-AD (Zhang et al., 2023), (Cao et al., 2023)

w/ Tuning Tabular (Li et al., 2024a), Myriad (Li et al., 2023b), AnomalyGPT (Zhang et al., 2023)

Contrasting

w/o Tuning
(Fort et al., 2021), ZOC (Esmaeilpour et al., 2022), NegLabel (Jiang et al., 2024), CLIPScope (Fu et al., 2024),
WinCLIP (Jeong et al., 2023), AnoCLIP (Deng et al., 2023), CLIP-AD (Chen et al., 2023), MCM
(Ming et al., 2022), (Miyai et al., 2023), SETAR (Li et al., 2024c)

w/ Tuning
LoCoOp (Miyai et al., 2024c) AnomalyCLIP (Zhou et al., 2024), InCTRL (Zhu and Pang, 2024), MVFA
(Huang et al., 2024a), ID-like (Bai et al., 2024), NegPrompt (Li et al., 2024b), CLIPN (Wang et al., 2023),

LSN (Nie et al., 2024), MCM-PEFT (Ming and Li, 2024)

LLMs for Explanation Holmes-VAD (Zhang et al., 2024b), AnomalyRuler (Yang et al., 2024b), VAD-LLaMA (Lv and Sun, 2024), AESOP (Sinha et al., 2024)

Figure 2: Taxonomy of methods utilizing LLMs for anomaly and OOD detection tasks.

class or concept, such as detecting defects or irreg-170

ularities in industrial processes. In contrast, OOD171

detection focuses on identifying instances that do172

not belong to any of the known ID classes at the173

object level, such as recognizing a dog when the174

only provided ID class is cat. This differentiation175

underscores the need for tailored approaches for176

each detection task.177

3 LLMs for Augmentation178

In this section, we review methods that leverage179

LLM as a data augmenter, producing meaningful180

augmented knowledge that enhances the detection181

of anomalies or OOD samples. Such augmented182

information includes text embedding, pseudo la-183

bels, and textual descriptions derived from LLMs.184

Therefore, these approaches can be categorized into185

three types as shown in Figure 3.186

3.1 Text Embedding-based Augmentation187

LLMs are powerful feature extractor which can188

derive meaningful and effective embedding used189

for further detection tasks. For instance, in log data,190

Hadadi et al. (2024) and Qi et al. (2023) fine-tune191

pre-trained GPT models in a supervised manner192

and use the extracted semantic embeddings as an193

important component for future anomaly detection.194

For OOD detection in text data, a standard195

pipeline involves using encoder-only LLMs to gen-196

erate sentence representations, which are then used197

to derive OOD confidence scores. Typically, these198

models are fine-tuned on ID data, and OOD de-199

tectors are applied to the sentence representations200

they produce (Liu et al., 2024a). Recently, there201

has been a shift toward leveraging larger language202

models with decoder architectures, which offer en-203

hanced capabilities in extracting and refining tex-204

tual representations. Liu et al. (2024a) explore the 205

use of decoder-only LLMs, such as LLaMa, in- 206

corporating fine-tuning techniques like LoRA to 207

minimize additional parameter usage. Their find- 208

ings demonstrate that fine-tuned LLMs, when com- 209

bined with customized OOD scoring functions, can 210

significantly improve OOD detection performance. 211

A key advantage of recent LLMs with decoder ar- 212

chitecture is their autoregressive ability, which al- 213

lows for more effective handling of sequential data. 214

Building on this, Zhang et al. (2024a) propose us- 215

ing the likelihood ratio between a pre-trained LLM 216

and its fine-tuned variant as a criterion for OOD de- 217

tection, effectively leveraging the deep, contextual 218

knowledge embedded within LLMs for text data. 219

3.2 Pseudo Label-based Augmentation 220

The emergent abilities of LLMs offer a promis- 221

ing approach for generating high-quality synthetic 222

datasets that, in some cases, can surpass those 223

curated by humans (Ding et al., 2024). A sig- 224

nificant challenge in using LLMs for OOD de- 225

tection is the lack of OOD labels, which often 226

hampers model performance. Traditional meth- 227

ods rely on extensive human effort and auxiliary 228

datasets, but LLMs can overcome this by generat- 229

ing high-quality pseudo-OOD labels through suit- 230

able prompts. These pseudo labels can then be 231

used as text prompts for contrasting-based OOD 232

detection methods, augment existing ID data and 233

enhance the distinction between ID and OOD sam- 234

ples during detection. 235

EOE (Cao et al., 2024) and PCC (Huang et al., 236

2024b) prompt LLMs to generate potential OOD 237

class labels which are visually similar to known 238

ID classes. Then, they define a new score function 239

with penalty on these generated pseudo labels dur- 240
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Figure 3: The illustration of three approaches in (§3):
(a) Text Embedding-based Augmentation; (b) Pseudo
Label-based Augmentation, and (c) Textual Description-
based Augmentation.

ing inference stage, greatly outperforming methods241

with only known ID labels. Following the simi-242

lar idea, TOE (Park et al., 2023) further evaluates243

generating pseudo OOD labels for OOD detection244

at three verbosity levels: word-level, description-245

level, and caption-level, using BERT, GPT-3 and246

BLIP-2 respectively. Results indicate that using247

caption-level pseudo OOD labels outperform other248

two approaches since BLIP-2 can leverage both249

semantic and visual underdtanding. For text data,250

CoNAL (Xu et al., 2023) prompts LLMs to extend251

closed-set labels with novel ones and generates new252

examples based on these labels, forming a compre-253

hensive set of probable OOD samples. By utilizing254

a contrastive confidence loss for training, detec-255

tion model achieves both high accuracy on the ID256

training set and lower relative confidence on the257

generated novel examples.258

3.3 Textual Description-based Augmentation259

In addition to generating pseudo lebels, other meth-260

ods utilize LLMs to generate detailed textual de-261

scriptions about both known ID classes and poten-262

tial unknown OOD samples. For example, Tag-263

Fog (Chen et al., 2024) uses the Jigsaw strategy264

to generate fake OOD samples and prompts Chat-265

GPT to create detailed descriptions for each ID266

class, guiding the training of the image encoder267

of CLIP for OOD detection. When using LLMs268

for anomaly detection, it is crucial to make LLMs269

recognize the close correlation between normal im-270

ages and their respective normal prompts, while271

identifying a more distant association with abnor-272

mal prompts. Therefore, detailed and nuanced273

descriptions of normal and anomalous stages of274

an object are necessary. ALFA (Zhu et al., 2024)275

formulates prompts to query an LLM to describe276

normal and abnormal features for each class and 277

then used these descriptions together as prompts for 278

LLMs to better identify abnormal object. To avoid 279

LLM hallucination issues, Dai et al. (2023) use 280

LLMs to describe visual features for distinguishing 281

categories in images and introduce a consistency- 282

based uncertainty calibration method to estimate 283

the confidence score of each generation. 284

4 LLMs for Detection 285

The primary objective of this section is to explore 286

existing works that utilize LLMs to detect anoma- 287

lies or OOD samples. Under this line of research, 288

approaches can be categorized into two classes as 289

illustrated in Figure 4: ❶ Prompting-based Detec- 290

tion methods, which involve directly prompting 291

LLMs to generate language responses that include 292

detection results; ❷ Contrasting-based Detection 293

methods, which focus on multimodal scenarios, 294

using MLLMs pre-trained with a contrastive objec- 295

tive as detectors. 296

4.1 Prompting-based Detection 297

The general pipeline for prompting-based detection 298

methods consists of two primary stages: (i) con- 299

structing a structured prompt template with instruc- 300

tion prompt P and input data X ; and (ii) feeding the 301

template-based prompt X̂ into LLMs to generate a 302

language response. The function Parse(·) is then 303

applied to extract the detection results. Depending 304

on the scenario, the LLM can either be frozen or 305

fine-tuned, denoted as f♡
LLM or f♣

LLM, respectively. 306

This process can be summarized as follows: 307

Prompt Construction: X̂ = Template(X ,P),

Detection: Ỹ = Parse
(
f
♡/♣
LLM(X̂)

) 308

4.1.1 Detection without LLM Tuning 309

Since some approaches do not require additional 310

tuning, they mainly focus on employing various 311

prompt engineering techniques (Sahoo et al., 2024) 312

to guide LLMs to produce better detection results. 313

To design suitable prompts for anomaly or OOD 314

detection, researchers have employed a combina- 315

tion of various prompt techniques, such as role- 316

play prompting (Wu et al., 2023), in-context learn- 317

ing (Brown et al., 2020), and chain-of-thought 318

(CoT) reasoning (Wei et al., 2022), to create ef- 319

fective prompt templates. Studies such as SIGLLM 320

(Alnegheimish et al., 2024), LLMAD (Liu et al., 321

2024c), and LogPrompt (Liu et al., 2024d) focus on 322
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time series and log data. SIGLLM (Alnegheimish323

et al., 2024) investigates two distinct pipelines for324

using LLMs in time series anomaly detection: one325

directly prompts an LLM with specific role-play in-326

structions to identify anomalous elements in given327

data, and the other uses the LLM’s forecasting abil-328

ity to detect anomalies by comparing original and329

forecasted signals, where discrepancies indicate330

anomalies. LLMAD (Liu et al., 2024c) incorpo-331

rates in-context learning examples retrieved from332

a constructed database and CoT prompts that in-333

ject domain knowledge of time series. LogPrompt334

(Liu et al., 2024d) explores three prompting strate-335

gies for log data: self-prompt, CoT prompt, and336

in-context prompt, demonstrating that the prompt337

with CoT techniques outperforms other prompting338

strategies. The tailored CoT prompt for log data339

includes a specific task instruction, i.e. “classify340

the given log entries into normal and abnormal341

categories”, and step-by-step rules for considering342

given data as anomalies.343

Unlike time series and log data which can be344

directly converted into raw text data, other data345

modalities, such as videos and images, require ad-346

ditional processing to be transformed into a format347

that LLMs can understand. For instance, LAVAD348

(Zanella et al., 2024) first exploits a captioning349

model to generate a textual description for each350

video frame and further uses an LLM to summa-351

rize captions within a temporal window. This sum-352

mary is then used to prompt the LLM to provide353

an anomaly score for each frame. LLM-Monitor354

(Elhafsi et al., 2023) uses an object detector to iden-355

tify objects in video clips and then designs specific356

prompt templates incorporating CoT and in-context357

examples to query LLMs for anomaly detection.358

With the integration of multimodal understand-359

ing into LLMs, these models are now capable of360

comprehending various modalities beyond text, en-361

abling more direct applications for anomaly detec-362

tion across a wide range of data types. Cao et al.363

(2023) conduct comprehensive experiments and364

analyses using GPT-4V(ision) for anomaly detec-365

tion across various modality datasets and tasks. To366

enhance GPT-4V’s performance, they also incor-367

porate different types of additional cues such as368

class information, human expertise, and reference369

images as prompts. Similarly, GPT-4V-AD (Zhang370

et al., 2023) employs GPT-4V as the backbone, de-371

signing a general prompt description for all image372

categories and injecting specific image category373

information, resulting in a specific output format374
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Figure 4: The illustration of two approaches in (§4): (a)
Prompting-based Detection and (b) Contrasting-based
Detection.

for each region with respective anomaly scores. 375

4.1.2 Detection with LLM Tuning 376

Directly prompting frozen LLMs for anomaly or 377

OOD detection results across various data types 378

often yields suboptimal performance due to the in- 379

herent modality gap between text and other data 380

modalities. As a result, additional training and fine- 381

tuning on LLMs for downstream detection tasks 382

has become a prevalent research trend. Unfortu- 383

nately, fine-tuning entire LLMs is often computa- 384

tionally expensive and poses significant challenges. 385

Therefore, parameter-efficient fine-tuning (PEFT) 386

has been extensively employed instead. For exam- 387

ple, Tabular (Li et al., 2024a) designs a prompt 388

template to query the LLM to output anomalies 389

based on given converted tabular data. To better 390

adapt the LLM for anomaly detection at the batch 391

level, they apply Low-Rank Adaptation (LoRA), 392

using a synthetic dataset with ground truth labels 393

in a supervised manner. 394

To enhance LLMs for localization understand- 395

ing and adapting to industrial tasks, AnomalyGPT 396

(Zhang et al., 2023) first derives localization fea- 397

tures from a frozen image encoder and image de- 398

coder and these features are then fed to a tun- 399

able prompt learner. Without fine-tuning the en- 400

tire LLM, they fine-tune the prompt learner with 401

LoRA to significantly reduce computational costs. 402

Myriad (Li et al., 2023b) employs Mini-GPT-4 as 403

the backbone and integrates a trainable encoder, 404

referred to as Vision Expert Tokenizer, to embed 405

the vision expert’s segmentation output into tokens 406

that the LLM can understand. With expert-driven 407
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visual-language extraction, Myriad can generate408

accurate anomaly detection descriptions.409

4.2 Contrasting-based Detection410

In this section, we focus on MLLMs, such as411

CLIP, which are pre-trained with an image-text con-412

trastive objective and learn by pulling the paired413

images and texts close and pushing others far away414

in the embedding space. The zero-shot classifica-415

tion ability of these models further builds the foun-416

dation for contrasting-based anomaly and OOD417

detection methods: (i) given an image xi and a text418

prompt f with a target class set C, CLIP extracts419

image features h ∈ RD using an image encoder420

fimg, and text features ej ∈ RD using a text en-421

coder ftext with a prompt template for each class422

cj ∈ C, and (ii) the similarity between h and each423

ej is usually used as an important component in424

the score function fscore for deciding whether xi is425

an anomaly or OOD sample. This process can be426

summarized as follows:427

Feature Extraction: h = fimg(xi),

and ej = ftext(prompt(cj)),

Detection: Ỹ = fscore (cos(h, ej))

428

We further categorize contrasting-based detection429

methods into two main classes depending on430

whether there exists additional training and fine-431

tuning.432

4.2.1 Detection without LLM Tuning433

Despite the promise, existing CLIP-like models434

perform zero-shot classification in a closed-world435

setting. That is, it will match an input into a fixed436

set of categories, even if it is irrelevant (Ming et al.,437

2022). To address this, one approach involves de-438

signing effective post-hoc score functions tailored439

for OOD detection that solely rely on ID class la-440

bels. Alternatively, some researchers incorporate441

anomaly or OOD class information into the text442

prompts, allowing the model to match OOD or443

abnormal images to paired prompts.444

• Without Anomaly/OOD Prompts. To address445

the challenges of OOD detection using only in-446

distribution (ID) class information while avoid-447

ing the matching of OOD inputs to irrelevant448

ID classes, one notable approach is the Maxi-449

mum Concept Matching (MCM) framework pro-450

posed by (Ming et al., 2022). This method is451

not limited to CLIP and can be generally appli-452

cable to other pre-trained models that promote453

multi-modal feature alignment. They view the 454

textual embeddings of ID classes as a collection 455

of concept prototypes and define the maximum 456

concept matching (MCM) score based on the co- 457

sine similarity between the image feature and the 458

textual feature. Following the idea of MCM, sev- 459

eral subsequent works focus on improving OOD 460

detection results by either adding a local MCM 461

score or modifying weights in the original MCM 462

framework, such as (Miyai et al., 2023) and (Li 463

et al., 2024c). 464

• With Anomaly/OOD Prompts. Fort et al. (2021) 465

first investigate using CLIP for OOD detection 466

and demonstrate encouraging performance. How- 467

ever, in their setup, they include the candidate 468

labels related to the actual OOD classes and 469

utilize this knowledge as a very weak form of 470

outlier exposure, which contradicts the open- 471

world assumption. Therefore, after this work, 472

researchers aim to leverage pseudo-OOD labels 473

in the text prompt instead of using actual OOD 474

labels. The earliest work under this idea is ZOC 475

(Esmaeilpour et al., 2022) which trains a text 476

description generator on top of CLIP’s image en- 477

coder to dynamically generate candidate unseen 478

labels for each test image. The similarity of the 479

test image with seen and generated unseen labels 480

is used as the OOD score. Instead of training an 481

additional text decoder, NegLabel (Jiang et al., 482

2024) and CLIPScope (Fu et al., 2024) rely on 483

auxiliary datasets to gather potential OOD la- 484

bels. CLIPScope gathers nouns from open-world 485

sources as potential OOD labels and uses them in 486

designed prompts to ensure maximal coverage of 487

potential OOD samples. NegLabel employs the 488

NegMining algorithm to select high-quality neg- 489

ative labels with sufficient semantic differences 490

from ID labels. Recent work utilizes the emer- 491

gent abilities of LLMs to generate reliable OOD 492

labels, such as (Cao et al., 2024), (Huang et al., 493

2024b), (Park et al., 2023), and (Xu et al., 2023). 494

For contrasting-based anomaly detection, Win- 495

CLIP (Jeong et al., 2023) initially investigates a 496

one-class design by using only the normal prompt 497

“normal [o]” where [o] represents object-level la- 498

bel, i.e “bottle”, and defining an anomaly score as 499

the similarity between vectors derived from the 500

image encoder and normal prompts. However, 501

this one-class design yields poorer results com- 502

pared to a simple binary zero-shot framework, 503

CLIP-AC (Jeong et al., 2023), which adapts CLIP 504
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with two class prompts: “normal [o]” vs. “anoma-505

lous [o]”. This framework sets the foundational506

pipeline for future work in contrasting-based507

anomaly detection and has inspired subsequent508

research.509

While using the default prompt has demonstrated510

promising performance, similar to the prompt511

engineering discussion around GPT-3 (Brown512

et al., 2020), researchers have observed that per-513

formance can be significantly improved by cus-514

tomizing the prompt text. Models like WinCLIP515

(Jeong et al., 2023) and AnoCLIP (Deng et al.,516

2023) use a Prompt Ensemble technique to gen-517

erate all combinations of pre-defined lists of state518

words per label and text templates. After gen-519

erating all combinations of states and templates,520

they compute the average of text embeddings521

per label to represent the normal and anoma-522

lous classes. In practice, more descriptions in523

prompts do not always yield better performance.524

Therefore, CLIP-AD (Chen et al., 2023) proposes525

Representative Vector Selection (RVS), from a526

distributional perspective for the design of the527

text prompt, broadening research opportunities528

beyond merely crafting adjectives.529

4.2.2 Detection with LLM Tuning530

Following the similar detection pipeline of meth-531

ods without LLM tuning, researchers propose to532

employ prompt tuning or adapter tuning techniques533

to eliminate the need for manually crafting prompts534

and enhance the understanding of local features of535

images. Additionally, by incorporating a few ID or536

normal images during training or inference phases,537

some methods transition into few-shot scenarios.538

• LLM Adapter-Tuning. Adapter-tuning methods539

involve integrating additional components or lay-540

ers into the model architecture to facilitate better541

alignment or localization (Hu et al., 2023). CLIP542

was originally designed for classifying the se-543

mantics of objects in the scene, which does not544

align well with the sensory anomaly detection545

task where both normal and abnormal samples546

are often from the same class of object. To rec-547

oncile this, InCTRL (Zhu and Pang, 2024) in-548

cludes a tunable adapter layer to further adapt549

the image representations for anomaly detection.550

To better adapt to medical image anomaly de-551

tection, MVFA (Huang et al., 2024a) proposes552

a multi-level visual feature adaptation architec-553

ture to align CLIP’s features with the require-554

ments of anomaly detection in medical contexts. 555

This is achieved by integrating multiple resid- 556

ual adapters into the pre-trained visual encoder, 557

guided by multi-level, pixel-wise visual-language 558

feature alignment loss functions. 559

• LLM Prompt-Tuning. Manually crafting suitable 560

prompts always requires extensive human effort. 561

Therefore, researchers employ the idea of prompt 562

tuning, such as CoOp (Zhou et al., 2022), to learn 563

a soft or differentiable context vector to replace 564

the fixed text prompt. For OOD detection, most 565

approaches rely on using auxiliary prompts to 566

represent potential OOD textual information, and 567

one crucial problem is to identify hard OOD data 568

that is similar to ID samples. To solve this, Bai 569

et al. (2024) first constructs outliers highly corre- 570

lated with ID data and introduces a novel prompt 571

learning framework for learning specific prompts 572

for the most challenging OOD samples, which 573

behave like ID classes. Additionally, LSN (Nie 574

et al., 2024), NegPrompt (Li et al., 2024b), and 575

CLIPN (Wang et al., 2023) all work on learn- 576

ing extra negative prompts to fully leverage the 577

capabilities of CLIP for OOD detection. Un- 578

like the other two approaches, CLIPN requires 579

training an additional “no” text encoder using 580

a large external dataset to get negative prompts 581

for all classes. This auxiliary training is compu- 582

tationally expensive, limiting its application to 583

generalized tasks. Also, LSN demonstrates that 584

naive “no” logic prompts cannot fully leverage 585

negative features. Therefore, both LSN and Neg- 586

Prompt focus on training on more detailed neg- 587

ative prompts, while LSN also aims to develop 588

class-specific positive and negative prompts, en- 589

abling more accurate detection. 590

Instead of focusing on leveraging OOD informa- 591

tion, some methods aim to perform prompt tun- 592

ing to optimize word embeddings for ID labels 593

and then use the MCM score as the detection cri- 594

terion. MCM-PEFT (Ming and Li, 2024) demon- 595

strates that simply applying prompt tuning for 596

CLIP on few-shot ID datasets can significantly 597

improve detection accuracy. However, a primary 598

limitation of this approach is its exclusive re- 599

liance on the features of ID classes, leading to in- 600

correct detection when input images share a high 601

visual similarity with the class in the prompt. To 602

address this, LoCoOp (Miyai et al., 2024c) treats 603

such ID-irrelevant nuisances as OOD and learns 604

to push them away from the ID class text embed- 605
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dings, preventing the model from producing high606

ID confidence scores for the OOD features. Ad-607

ditionally, Lafon et al. (2024) enhances detection608

capabilities by learning a diverse set of prompts609

utilizing both global and local visual representa-610

tions. To better adapt to learning local features,611

AnomalyCLIP (Zhou et al., 2024) aims to learn612

object-agnostic text prompts that capture generic613

normality and abnormality in images, allowing614

the model to focus on abnormal regions rather615

than object semantics.616

5 LLMs for Explanation617

Due to their remarkable capabilities in understand-618

ing and generating human-like text, LLMs have619

been explored for providing insightful explanations620

and analyses for anomaly or OOD detection results,621

thereby aiding in further planning and problem-622

solving.623

For applications in safety-critical domains, such624

as autonomous driving, providing explanations to625

stakeholders of AI systems has become an ethi-626

cal and regulatory requirement (Li et al., 2023c).627

Consequently, there is a growing interest in devel-628

oping explainable video anomaly detection frame-629

works. Holmes-VAD (Zhang et al., 2024b), for630

instance, trains a lightweight temporal sampler to631

select frames with high anomaly scores and then632

employs an LLM to generate detailed explanatory633

analyses, offering clear insights into the detected634

anomalies. VAD-LLaMA (Lv and Sun, 2024) gen-635

erates instruction-tuning data to train only the pro-636

jection layer of Video-LLaMA, enabling more com-637

prehensive explanations of anomalies. Anoma-638

lyRuler (Yang et al., 2024b) emphasizes rule-based639

reasoning with efficient few-normal-shot prompt-640

ing, allowing for rapid adaptation to different VAD641

scenarios while providing interpretable, rule-driven642

explanations.643

Moreover, with the powerful capabilities of644

LLMs in understanding instructions and self-645

planning to solve tasks, an emerging research di-646

rection is to build autonomous agents based on647

LLMs to guide decision-making after anomalies or648

OOD are detected. For instance, AESOP (Sinha649

et al., 2024) employs the autoregressive generation650

of an LLM to provide a zero-shot assessment of651

whether interventions are needed for the robotic652

system after an anomaly is detected.653

6 Challenges and Future Directions 654

In this section, we briefly summarize challenges 655

and future directions within the anomaly and OOD 656

detection research field in the era of LLMs. 657

Explainability and Trustworthiness. There is 658

an increasing trend of utilizing LLMs to build ex- 659

plainable anomaly or OOD detection frameworks. 660

Future research should focus on developing meth- 661

ods to enhance the explainability of LLMs for 662

anomaly and OOD detection, increasing the trust- 663

worthiness of LLM-based systems and facilitating 664

their adoption in critical domains such as health- 665

care, finance, and security (Holzinger et al., 2019; 666

Guidotti et al., 2019; Ribeiro et al., 2016). 667

Unsolvable Problem Detection. Miyai et al. 668

(2024b) propose Unsolvable Problem Detection 669

(UPD), which evaluates the LLMs’ ability to rec- 670

ognize and abstain from answering unexpected or 671

unsolvable input questions, aiding in preventing 672

incorrect or misleading outputs in critical appli- 673

cations where the consequences of errors can be 674

significant. Future work should focus on develop- 675

ing effective solutions for this problem. 676

Handling Multimodal Data. The emergence of 677

MLLMs capable of processing and understand- 678

ing multiple data types offers significant potential 679

(Alayrac et al., 2022; Li et al., 2023a). Future 680

research should explore methods to better adapt 681

LLMs to comprehend and integrate various mul- 682

timodal data, thereby enhancing their ability to 683

detect anomalies and OOD instances across diverse 684

datasets. 685

7 Conclusion 686

In this survey, we examined the use of Large 687

Language Models (LLMs) and multimodal LLMs 688

(MLLMs) in anomaly and out-of-distribution 689

(OOD) detection. We introduced a novel taxon- 690

omy categorizing methods into three approaches: 691

augmentation, detection, and explanation. This 692

taxonomy clarifies how LLMs can augment data, 693

detect anomalies or OOD, and build explainable 694

systems. We also discussed limitations and future 695

research directions, aiming to highlight advance- 696

ments and challenges in the field and encourage 697

further progress. 698
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Limitations699

While this survey provides a comprehensive700

overview of the utilization of Large Language Mod-701

els (LLMs) for anomaly and out-of-distribution702

(OOD) detection, several limitations should be ac-703

knowledged:704

• Scope of Coverage: Although we endeavored705

to include the latest research, the rapid pace706

of advancements in the field means that some707

recent developments may not be covered.708

• Depth of Analysis: Given the broad range of709

topics discussed, certain methods may not be710

explored in the depth they deserve.711

• Evaluations and Benchmarks: Due to space712

constraints, we did not include a detailed713

summary of common evaluation metrics and714

benchmark datasets used in this area.715

By acknowledging these limitations, we aim to pro-716

vide a balanced perspective and encourage further717

research to address these gaps and build on the718

foundations laid by this survey.719
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