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ABSTRACT

Transformer LLMs have been shown to exhibit strong reasoning ability that scales
with inference-time compute, most prominently through token-space “thinking”
(i.e., chains of thought). A growing line of work pushes this extra computation
into the model’s latent space (adjacent to standard decoding) which we term Aux-
iliary Latent-Space Computation (ALSC). Existing ALSC methods largely fall
into three buckets: (i) token-mediated latent or special-token rollouts, (ii) resid-
ual/activation steering, and (iii) memory compression via cache pruning, merging,
or summarization. An underexplored alternative is memory consolidation and
reconsolidation, two processes in the brain that are responsible for stabilising newly
formed memory traces, and, upon recall, transiently rendering established traces
plastic such they can integrate new contextual information before restabilising. In
a Transformer LLM, this can be seen as analogous to performing in-place global
rewrites of incoming KV segments, and rewrites of past segments conditioned
on newly observed tokens. In this work, we give a theoretical justification as to
why memory (re)consolidation via KV cache rewrites is beneficial for improved
reasoning. We do this through the lens of Information Bottleneck (IB) theory,
which posits that model generalisation emerges from an optimal balance between
input information compression and retention of predictive information in latent
representations. We prove using IB theory that Vanilla decoder-only Transformers
are inherently constrained in their ability to form task-optimal sequence repre-
sentations. We then introduce the Bottlenecked Transformer, which augments a
decoder-only backbone LLM with a lightweight Cache Processor, an auxiliary
Transformer that performs periodic, non-causal, in-place KV rewrites at newline-
delimited reasoning step boundaries. The processor consolidates recently written
KV entries and reconsolidates a small, top-k attention-selected set of prior en-
tries, conditioned on recent context. We evaluate our Bottlenecked Transformer
architecture on seven mathematical reasoning benchmarks, with four backbone
LLMs. Our model sees consistent performance gains over vanilla Transformers
and pause-token augmented Transformer baselines, with gains of up to +6.6pp for
selected tasks and backbones.

1 INTRODUCTION

Transformer-based large language models (LLMs) have achieved strong results in retrieval, pattern
recognition, and knowledge extraction (Brown et al., 2020; Chowdhery et al., 2022). With carefully
engineered prompts/post-training, they can also display nontrivial reasoning behaviours (Wei et al.,
2023; Shao et al., 2024; DeepSeek-AI et al., 2025). A critical development that has significantly
advanced Transformer LLMs is the discovery that reasoning performance scales strongly with
inference-time compute. The most widely applied example of this has been seen in ”reasoning”
models, which generate verbal chains of thought before giving a final answer (Wei et al., 2023).
A growing body of work extends this idea to algorithms that allow LLMs to perform additional
compute during generation directly in a latent space rather than the token space. We refer to these as
Auxiliary Latent-Space Computation (ALSC) methods, which facilitate computation over internal
continuous states during inference without emitting intermediate natural-language tokens, doing
so in addition to (or in place of) the standard one-forward-pass-per-token decoding strategy. In
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this work we focus on sequence-level ALSC: operators that intervene between decoding steps to
transform the model’s KV cache and/or final hidden state before the LM head, which constitute
the model’s internal representation of a processed sequence. Auxiliary Latent-Space Computation
is potentially more efficient than strict autoregressive decoding as latent embeddings can encode
semantics more compactly than token sequences. Additionally, such processes align more closesly
with human cognition, in which thought does not occur as an endless verbal monologue, but contains
nonverbal stretches of conceptual processing that proceeds without recruiting the language system
(Alderson-Day & Fernyhough, 2015; Fedorenko & Varley, 2016; Monti et al., 2012).
Prior sequence-level ALSC approaches primarily fall into three categories: token-space latent
stepping, activation-space edits, and cache-operators (most commonly compressive schemes such as
pruning, merging, or summarising KV entries). An underexplored direction is incorporating processes
for memory consolidation and reconsolidation in the neuroscientific sense. Consolidation is a process
in the brain where new memory traces are stabilised upon formation. Reconsolidation refers to
rewrites of recalled memories: when a stored memory is reactivated, it can briefly enters a plastic
state in which it can be modified before restabilising, allowing it to be updated and recontextualised
with new salient information (Lee, 2009; Hupbach et al., 2007).
In this paper, we explore consolidation and reconsolidation in Transformer LLMs from both a
theoretical and architectural standpoint. We adopt a working interpretation in which the KV cache
serves as the model’s memory and (re)consolidation is realised through periodic in place edits to that
memory during generation. We first offer an information-theoretic justification for why periodically
reprocessing the model’s working memory (KV cache) should aid generalisation from the lens of
Information Bottleneck theory; concretely, we show that in autoregressively trained models, the
KV cache is incentivised to preserve information from the sequence history that is unnecessary
for future sequence-level prediction, potentially hindering generalisation. We then introduce the
Bottlenecked Transformer, which augments a pretrained backbone with a Cache Processor, a small
Transformer that periodically rewrites recent memories (consolidation) and selectively recalled KV
entries (reconsolidation) in-place, without dimensional compression. Our architecture is shown
in Figure 1. Note that whilst our aim is to implement a mechanism functionally analogous to
consolidation and reconsolidation in the brain, the underlying biological processes are richer and
more complex than our computational abstraction. Empirically, we yield consistent gains over vanilla
Transformers across seven mathematical reasoning benchmarks and multiple backbones.

2 PRELIMINARIES

In all following sections, we denote random variables by uppercase letters (e.g. X,Y, Z) and realisa-
tions by the lowercase letters (e.g. x, y, z).

2.1 STATE-SPACE FORMULATION OF DECODING

Autoregressive decoding in a Transformer can be viewed as a state-space process, where the model’s
the model’s key–value (KV) cache is its memory state. Formally, let xt be the input token at decoding
step t. For a model with L layers, we let ht denote the KV cache (covering tokens 0 : t, ot ∈ Rd the
final-layer residual stream. We then model the next-token decoding process as:

ht ≡
{
(k

(ℓ)
0:t , v

(ℓ)
0:t )

}L
ℓ=1

(ht, ot) = fLLM(ht−1, xt), p(xt+1 | ht, ot) = softmax
(
fhead(ot)

)
.

This view treats ht as the sequence-level latent state that mediates future predictions, while ot
summarizes the current step’s computation. Under a vanilla LLM, updating ht amounts to per-layer
appends of the key–value vectors produced for the incoming token xt.

2.2 SEQUENCE-LEVEL AUXILIARY LATENT-SPACE COMPUTATION

We call an auxiliary latent-space computation (ALSC) method any inference-time procedure that
performs extra computation over internal continuous states adjacent to the standard forward pass of a
backbone LLM. We focus on sequence-level ALSC that acts on (ht, ot) via

(h′, o′) = T (ht, ot),
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invoked according to a schedule s(t) ⊆ N (e.g., periodic every m steps or event-triggered). After
applying T , decoding resumes from the transformed state:

p(xt+1 | h′, o′) = softmax
(
fhead(o

′)
)
.

3 RELATED WORK

We classify sequence-level ALSC works into three execution pathways: (i) Token-mediated, (ii)
residual-operator, and (iii) cache-operator.

(i) Token-mediated. These methods instantiate T to be an LLM (often the backbone LLM itself),
and operates via an internal micro-sequence of latent tokens, thereby lengthening the cache and
updating (ht, ot) via a standard forward pass. Basic variants inject pause or filler tokens during
decoding (Goyal et al., 2024; Pfau et al., 2024). Cache Deliberation uses an external coprocessor
(often initialized from the backbone) to produce latent embeddings conditioned on ht and append
them to the cache (Liu et al., 2024a). Other approaches recycle the model’s last hidden state as a
continuous latent fed back as the next input embedding, taking multiple latent steps without emitting
text until termination (Hao et al., 2024; Shen et al., 2025; Su et al., 2025).

(ii) Residual-operator. A complementary line defines T to only modify the current hidden represen-
tation ot before the LM head, leaving ht unchanged. Activation steering adds structured directions to
ot (or selected layers) to influence style, stance, or safety (Turner et al., 2024), including Contrastive
Activation Addition (Panickssery et al., 2024) and exemplar-derived “style vectors” (Konen et al.,
2024). Recent work targets sparse features for precision and interpretability, e.g., SAE-targeted
steering (Chalnev et al., 2024), operations directly in SAE latent space (FGAA) (Soo et al., 2025),
and broader SAE-based frameworks (He et al., 2025).

(iii) Cache-operator. In these methods, T operates solely to transform the memory ht. Here, the
cache is transformed directly between decoding steps to control what information remains accessible.
Existing methods are predominantly centred on memory compression for long context tasks. Evic-
tion/pruning methods retain high-utility entries using importance or heavy-hitter policies, preserving
pivotal tokens and stable “sink” anchors (Zhang et al., 2023; Xiao et al., 2024). Merging/aggregation
mechanisms fuse entries into representatives under a memory budget (Zhang et al., 2024; Wang et al.,
2024). Recurrent architectures summarize older activations into compact memories or memory banks
(Transformer-XL, Compressive Transformers, RMT) (Dai et al., 2019; Rae et al., 2019; Bulatov et al.,
2022). Selective recall architectures externalise long histories to memory banks and re-inject salient
slices on demand (Fountas et al., 2024).

Positioning. Memory (re)consolidation as we interpret it belongs to the cache-operator family, but
differs from the predominantly compression-oriented approaches above. In-place memory rewrites
under (re)consolidation do not necessarily entail reduction in memory footprint. Rather, our goal is
to demonstrate how KV rewrites may improve reasoning performance in Transformer LLMs.

4 MOTIVATION AND THEORY

In this section, we give a theoretical analysis as to why a mechanism for (re)consolidation via KV
rewrites is likely to improve on performance on reasoning tasks in Transformer decoder-only LLMs,
from the perspective of Information Bottleneck Theory. All proofs are given in Appendix A.

4.1 THE INFORMATION BOTTLENECK METHOD

The Information Bottleneck (IB) is a framework for optimising some latent variable Z to be maximally
informative of some output variable Y and minimally informative of an input variable X, via the
objective:

L[p(z|x)] = I(X;Z)− β I(Z;Y ) (1)
subject to Y ↔ X ↔ Z. Here β > 0 balances information compression via lowering I(X;Z)
with relevance I(Z;Y ) (Tishby et al., 2000). Controlling I(X;Z) has been proven to bound test
set generalization error as ϵ ≤ O

(√
(I(X;Z) + 1)/n

)
for i.i.d. data (Kawaguchi et al., 2023), with

strong empirical results that suggests this extends to non-i.i.d. time series data (Feng et al., 2024; Liu
et al., 2024b; Ullmann et al., 2023; Choi & Lee, 2024).
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𝑘𝑣 = 𝑓 𝑘𝑣

KV cache RSW

Re-consolidation
Retrieved tokens (k)

Consolidation
Recent tokens

Figure 1: Bottlenecked Transformer architecture, consisting of a backbone LLM process-
ing/generating tokens, and Transformer Cache Processor that rewrites KV entries. The Cache
Processor is invoked each time a newline token is generated (marking the end of a reasoning step).
When invoked, recent tokens (from the recent step window in grey) and k retrieved tokens beyond
the RSW (in blue) are passed in parallel to the Cache Processor, and rewritten in-place.

4.2 INFORMATION BOTTLENECKS AND DEEP LEARNING

In practice, one can approximate true distributions p(z|x) and p(y|x) by parameterized distributions
pϕ(z | x) and pψ(y | z). The joint model pθ(x, y, z) now factorizes as:

pθ(x, y, z) = p(x)pϕ(z|x)pψ(y|z) (2)

and we optimize L with respect to θ = (ϕ, ψ). To ground these ideas, we now introduce three formal
definitions that capture the essential properties and ordering of information bottlenecks in neural
networks.
Definition 4.1 (Neural Information Bottleneck). LetMθ be a neural network parameterised by θ,
with input/output variables (X,Y ), and let Z be a latent variable within the model. Then, Z is an
information bottleneck inMθ if and only if Z satisfies the Markov chain X → Z → Y .
Definition 4.2 (Ordering of Bottlenecks in Neural Networks). Let {Zi}i∈I be a set of distinct
information bottlenecks inMθ. We say that a bottleneck Zj is deeper than another bottleneck Zi,
denoted by Zi ≺ Zj , if and only if X → Zi → Zj → Y .

Definition 4.3 (Terminal Bottleneck). Let ZMθ be the set of all information bottlenecks inMθ.
Then Ẑ = maxZMθ is denoted the terminal bottleneck in ZMθ .

The notion of ordering of bottlenecks allows for the observation that the complexity I(X;Z) of any
arbitrary bottleneck Z is bounded by I(X; Ẑ), the complexity of the terminal bottleneck, formalised
in Lemma 4.1.
Lemma 4.1. LetMθ be a model parameterized by θ, with input/output variables (X,Y ), and let
ZMθ be the set of information bottlenecks inMθ, with Ẑ defining the terminal bottleneck inMθ.
Then I(X;Z) ≥ I(X; Ẑ) for any bottleneck Z ∈ ZMθ .

Implicit Information Compression During SGD Even without an explicit IB loss, noise inherent
to stochastic gradient descent (SGD) has been shown to implicitly minimise I(X;Z) in neural
networks. During training, after an initial “fitting” phase, SGD hase been shown to enter a low-signal-
to-noise “diffusion” regime in which gradient noise dominates, systematically compressing input
information in hidden representations (Shwartz-Ziv & Tishby, 2017; Butakov et al., 2024).

4.3 IB OBJECTIVE FOR GENERALISED LANGUAGE REASONERS

The problem of learning a generalised language-based reasoner can be formulated as one of learning a
generalised sequence to sequence model via the IB objective. Given an input X = S0:n (a reasoning
history of n transitions), and Y = Sn+1 (a subsequent reasoning step), we seek to train a modelMθ

aiming to predict Sn+1 given S0:n. Under the IB method, given a neural information bottleneck Z in
Mθ that sequentially mediates (S0:n, Sn+1), we define the IB objective:

θ∗ = argmin
θ
I(S0:n;Z)− β I(Z;Sn+1) (3)

Under this objective, a realised latent z should act as abstraction of the reasoning history to infer a
generalised state of a partial solution, from which some logical rule of inference can be applied.

4
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4.4 ANALYSIS OF INFORMATION BOTTLENECKS IN DECODER-ONLY TRANSFORMER LLMS

Our first main result is given in Theorems 4.1 and 4.2. We show that in a decoder-only Transformer,
given a input sequence S0:n and output sequence Sn+1, the KV cache and last hidden state computed
from S0:n forms the terminal bottleneck Ẑ mediating these sequences, and autoregressive training
maximises both I(S0:n; Ẑ) and I(Ẑ;Sn+1).

Theorem 4.1 (KV-Cache and Final Hidden State as Seq-to-Seq Terminal Bottleneck). LetMLLM
θ

be a decoder-only Transformer language model parameterized by θ, with input/output sequence
variables (S0:n, Sn+1). We define the information bottleneck C0:n as:

C0:n = (K0:n, V0:n, On)

where K0:n and V0:n are represent keys and values computed from S0:n across all heads/layers, and
On is the final hidden-state vector of the last token of S0:n prior to the model’s final logit projection.
Then C0:n = Ẑ, the terminal bottleneck inMLLM

θ .

Theorem 4.2 (Autoregressive Training Maximises I(S0:n; Ẑ) and I(Ẑ;Sn+1)). Let s0:N be a com-
plete reasoning trace drawn from p(s0:N ). For some n (where 0 ≤ n < N ), we define (s0:n, sn+1)
to be an input/output pair corresponding to an incomplete reasoning history and ground-truth next
reasoning step. LetMLLM

θ be a decoder-only Transformer that maps input s0:n to KV cache/final
hidden state c0:n = (k0:n, v0:n, on) via a determinstic mapping fϕ, where ϕ ⊂ θ:

c0:n = fϕ(s0:n) (4)

Let L(θ) be the expected next step log-likelihood (computed via token-level cross entropy) with respect
to parameters θ:

L(θ) = Ep(s0:N )

[N−1∑
n=0

log pθ
(
sn+1

∣∣ s0:n)] (5)

Then L(θ) is an lower bound on J(θ):

J(θ) =
1

2

[ N∑
n=1

I(S0:n;C0:n) +

N−1∑
n=0

[
I(C0:n;Sn+1)−H(Sn+1)−H(Sn+1|S0:n)

]]
≥ L(θ) (6)

Under Theorem 4.2, since L(θ) acts as a bound on J(θ), maximisation of L(θ) thus acts to maximise
all of the mutual information components in J(θ). Combined with Lemma 4.1 and Theorem 4.1,
this implies that autoregressive training leads to internal sequence representations that are minimally
compressive of their inputs as well as maximally predictive of future outputs. Intuitively, this follows
from teacher-forced autoregressive training: for each input sequence, the model writes a set of
key–value (KV) states that are then fixed. Those static states are optimized to be sufficient, on their
own, for predicting the next token at every position, that is, to reproduce the observed sequence
under a one-token right shift. In other words, the KV cache representing some input sequence
contains sufficient information to reconstruct that same sequence. This reduces the capacity of these
representations to capture abstract rule-based features necessary for generalised reasoning.

4.5 COMPARISONS WITH RNNS AND CACHE COMPRESSION METHODS

Transformers excel at retrieval-style tasks, due to their effectively unbounded memory, while RNNs
and structured state-space models often outperform on problems requiring systematic rule application
or OOD generalisation (Deletang et al., 2023; Liu et al., 2023; Wen et al., 2025). Due to the hard
sequence-level bottleneck imposed by RNNs via their fixed-size hidden state, latent representations
are forced to be reprocessed and compressed at every time step, whereas standard Transformers’
ever-growing cache removes this constraint completely. This leads to mutual information between
given inputs (X) and these compressed latents (Z) that is reduced relatively to the one between latents
Z and predicted outputs (Y ), compared to Transformers. See Fig. 2.B for a conceptual illustration of
this comparison.
Existing cache-operator methods have largely been explored from the perspective of compression via
memory footprint reduction (see Section 3). As illustrated conceptually in Fig. 2 A, these algorithms
tend to reduce not only the information retained about the input (I(X;Z)), but also indiscriminately
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reduce predictive information (I(Z;Y )), thereby moving towards a region of lower generalised
performance on benchmark tasks. Crucially, these methods lack a reprocessing step designed to
selectively compress I(X;Z) while preserving or enhancing I(Z;Y ). Consequently, without a
mechanism to substantially improve predictive efficiency ( I(Z;Y )

I(X;Z) ), as depicted in Fig. 2.B, these
techniques offer limited improvements in generalisability.

4.6 ARCHITECTURAL SOLUTIONS

𝐈 𝑿;𝒁

𝐈 𝒁;𝒀

Low
generalisation

High
generalisation

Pattern
interpolation

Information capacity

𝐈 𝒁;𝒀
𝐈 𝑿;𝒁

A

B

RNNs

Heuris
tic

 K
V 

Compre
ssion

Transformers

Transformers

Bottlenecked 
Transformer

Bottlenecked
Transformer

Heuristic KV Compression

Figure 2: Conceptual illustration.
(A) Bottlenecked Transformers
balance input compression I(X;Z)
with predictive information
I(Z;Y ) for high generalisation.
(B) This achieves superior predic-
tive efficiency I(Z;Y )/I(X;Z)
vs. capacity over other methods.

Our analysis shows that the KV cache (together with the final
hidden state) forms the terminal bottleneck Ẑ and, in prac-
tice, carries extraneous detail from processed sequences. This
motivates an inference-time mechanism that rewrites KV en-
tries in place, producing a new bottleneck Ẑ ′ = T (Ẑ) with
an increase in predictive efficiency I(Ẑ ′;Y )/I(X; Ẑ ′). By the
data-processing inequality, any such transformation results in
I(X; Ẑ) ≥ (X; Ẑ ′). By training T to minimise future pre-
diction error, we preserve or improve I(Ẑ ′;Y ). Conceptually,
we interpret this as analogous to consolidation/reconsolidation:
selectively reprocessing working memory to discard irrelevant
information and maintain salient information. We focus on
rewriting KVs rather than the final hidden state as the cache
is the component principally responsible for retaining the ex-
traneous sequence information. We apply no dimensionality
reduction in rewritten KVs so as to avoid indiscriminate re-
duction in predictive information that plagues compression
methods.

5 BOTTLENECKED TRANSFORMERS

Overview. Here we introduce the Bottlenecked Transformer.
We augment a pretrained decoder-only Transformer MLLM

θ
with an external Cache Processor T proc

ω , a neural module
(smaller than the backbone) that periodically rewrites KV cache
entries in-place during autoregressive generation. A illustration
of our architecture can be seen in Figure 1.

Processor Invocation and Mechanism. During generation,
immediately after some reasoning step sn completes (detected
by emission of a newline token), the Processor is invoked to rewrite cache entries. Decoding then
resumes conditioned on the rewritten cache. We design our rewrite mechanism to be analogous
to memory consolidation/reconsolidation in the brain, and implement a selective mechanism for
rewriting cache entries. When invoked, the Processor rewrites (i) cache entries corresponding to
the most recent segment sn, and (ii) the top k entries from the prior step history s0:n−1 by attention
mass with the recent segment sn. These components realise mechanisms that are respectively
analogous to consolidation and reconsolidation: new memories within a recent step window (RSW)
of variable length R undergo a stabilisation process, and recalled memories are rewritten in light of
new information. Formally, we designate the set of recalled and recent KV entries as (k(s), v(s)). All
other KV entries are left unchanged. A more detailed formulation of our selection mechanism can be
found in Appendix B.

Cache Processor Architecture. For a backboneMLLM
θ with L layers and H heads, the Cache

Processor consists of L small Transformer blocks {T proc,(ℓ)
ω }Lℓ=1, one aligned to each backbone layer.

Block ℓ operates only on the corresponding layer’s selected KV entries (k(ℓ)(s), v
(ℓ)
(s)). We first convert

the selected key–value pairs into “KV-tokens” by concatenating across all heads for that layer, and

6
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Base
LLM

Method Task
GSM8K MATH SVAMP TheoremQA LogiQA Gaokao-

MathQA
GSM-
Hard

Llama
3.2 1B

SFT 29.80 11.76 38 8.84 15.36 3.70 7.13
SFT w/ pause tokens 30.02 11.34 41.6 7.22 13.36 1.71 7.96
Bottlenecked Transformer (ours) 32.97 12.72 44.6 10.84 19.05 3.99 7.96

Llama
3.1 8B

SFT 70.28 31.88 77.7 15.26 20.74 4.84 19.41
SFT w/ pause tokens 69.22 31.52 77.2 15.93 20.12 5.98 18.88
Bottlenecked Transformer (ours) 71.87 31.96 78.4 15.93 23.81 3.99 19.93

Qwen 3
0.6B

SFT 53.75 26.68 60.7 14.32 23.04 5.70 19.56
SFT w/ pause tokens 52.92 26.76 60.3 14.73 21.50 5.13 19.26
Bottlenecked Transformer (ours) 57.01 29.08 65.4 14.73 26.57 5.41 20.55

Llama
3.2 3B

SFT 46.78 18.40 55.5 10.71 22.12 3.13 11.45
SFT w/ pause tokens 48.07 18.00 55.9 12.05 17.67 4.84 11.6
Bottlenecked Transformer (ours) 51.33 20.90 59.4 14.73 20.12 3.99 12.28

Table 1: Accuracy (%) on seven mathematical reasoning benchmarks across four backbones and three
configurations: SFT, SFT+pause (16 pause tokens after the prefix), and Bottlenecked Transformer
(ours; frozen SFT backbone augmented with Cache Processor). Scores are pass@1 under greedy
decoding. Bold indicates the best result within each backbone.

project them via a learnable matrix into the Processor’s hidden state space:

x(ℓ) =
(
k
(ℓ)
(s), v

(ℓ)
(s)

)
∈ R(k+R)×2Hdk , (7)

u(ℓ) = x(ℓ)W
(ℓ)
in , W

(ℓ)
in ∈ R2Hdk×dp . (8)

The sequence u(ℓ) (consisting of recalled and recently cached memories) is then processed in parallel
by a small Transformer block without causal masking, such that selected KV entries may be updated
with globally available information. The block’s output is projected back via learnable matrix to the
KV dimensionality. Finally, we apply a gated, in-place residual rewrite to the selected KV entries.

∆̃(ℓ) = T proc,(ℓ)
ω

(
u(ℓ)

)
(9)(

∆
(ℓ)
k ,∆(ℓ)

v

)
= ∆̃(ℓ)W

(ℓ)
out W

(ℓ)
out ∈ Rdp×2Hdk (10)

k
(ℓ)
(s) ← k

(ℓ)
(s) + σ

(
g(ℓ)

)
∆

(ℓ)
k v

(ℓ)
(s) ← v

(ℓ)
(s) + σ

(
g(ℓ)

)
∆(ℓ)
v (11)

Here g(ℓ) ∈ R is a learnable, layer-wise scalar gate initialized small and σ denotes the logistic
function. The gate mitigates early drift in model capabilities, i.e., large, destabilizing cache changes
before the Processor has learned useful updates.

Training. Learning proceeds in two stages. In the first stage, the backboneMLLM
θ undergoes SFT

on reasoning trajectories with the standard next-token cross-entropy objective. In the second stage,
the backbone is frozen and only the processor parameters ω are updated. Each training sequence
s0:N is split into individual reasoning steps (s0, . . . , sN ). For step sn, the backbone first processes
the tokens in that step to append new KVs to the cache. The Processor is then invoked, selecting
(k

(ℓ)
(s), (k

(ℓ)
(s)) at each layer and applying the in-place rewrite. Cross entropy loss for the next reasoning

step sn+1 is then computed, conditioned on the rewritten cache, and backpropagated through the
Processor. We truncate BPTT across step boundaries, such that the Processor is trained solely to
rewrite the cache in a way that improves prediction of the next reasoning step.
Note that we do not implement an IB-style loss function; our goal is to realise a plausible mechanism
for (re)consolidation in Transformer LLMs, supported by our theoretical findings that periodic
memory rewrites may improve generalisation. The rewritten cache realises a new sequence-level
terminal bottleneck Z̃. Training the Processor to minimise the cross entropy loss of the entire next
reasoning step is equivalent to maximising I(Sn+1; Z̃). In other words, Z̃ is trained solely to improve
prediction of future sequences, with no requirement for the rewritten entries to retain unnecessary
information for reconstructing their input sequence. Moreover, whilst we do not explicitly include a
compression term for minimisation of I(S0:n, Z̃), removal of pressure to maximise this quantity (as
we showed to occur in vanilla Transformers) opens a pathway for implicit minimisation of this term
via noise injection from SGD (as described in Section 4.2).
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Figure 3: Epoch-matched comparison of SFT@N and Bottleneck@N across seven tasks. The
backbone is SFT-trained for 8 epochs with per-epoch checkpoints; Bottleneck@N uses checkpoint
N−1 plus one Processor epoch, and curves plot accuracy versus total epochs N . The red × marks
the highest score for each task across both model variants and all N .

6 EXPERIMENTS

6.1 PERFORMANCE ON MATHEMATICAL REASONING TASKS

We evaluate the Bottlenecked Transformer on a set of mathematical reasoning tasks, choosing this
domain as it offers an easily verifiable testbed for for observing improved reasoning generalisation.
We compare three settings: (i) a vanilla LLM fine-tuned for one epoch on a math dataset (SFT), (ii) a
pause-token baseline trained identically but includes 16 pause tokens appended after each question
prefix (SFT+pause, following prior convention), and (iii) our Bottlenecked Transformer, which
freezes the one-epoch SFT model as a backbone and trains the Cache Processor for one epoch using
the procedure in Section 5. We use SFT as a standard Transformer baseline and SFT+pause as a token-
mediated ALSC baseline. We omit other ALSC variants (residual/cache operators) as these primarily
target style/behavior control or memory footprint reduction rather than generalisation. All models are
trained on 128k examples from OpenMathInstruct-2, a large synthetic mix of GSM8K/MATH-style
questions (Toshniwal et al., 2024). We evaluate on seven benchmarks: GSM8K, MATH, SVAMP,
TheoremQA, LogiQA, Gaokao-Math, and GSM-Hard. Six are mathematical reasoning tasks; LogiQA
is a logical reasoning task included to test transfer beyond mathematics. For all experiments, we
fix Processor hidden size dp = 512, intermediate size 2240, 16 heads per Processor block, selective
reconsolidation uses k = 32. Detailed hyperparameters can be found in Appendix D.1.
Results are given in Table 1. Across backbones and tasks, the Bottlenecked Transformer improves
over both baselines in almost all cases. Gains are strongest on in-distribution math benchmarks
(GSM8K, MATH, SVAMP, GSM-Hard): e.g., Llama-3.2 1B on SVAMP (+6.6 points, 38.0→44.6),
Llama-3.2 3B on GSM8K (+4.6, 46.78→51.33), Qwen-3 0.6B on MATH (+2.4, 26.68→29.08), and
Llama-3.1 8B on LogiQA (+3.1, 20.74→23.81). On the more out-of-distribution QA-style tasks,
improvements generally persist (e.g., TheoremQA matches or exceeds baselines on all backbones),
with one notable exception: LogiQA on Llama-3.2 3B where plain SFT is slightly higher (22.12 vs.
20.12). The main underperformance is Gaokao-MathQA, where baselines often win (e.g., Qwen-
0.6B and Llama-3.1 8B), consistent with a distribution/language shift (Chinese) beyond the Cache
Processor’s training exposure. By contrast, the pause-token baseline shows variable and often lower
performance than plain SFT when used only at fine-tuning (e.g., consistent drops on Llama-3.1 8B
and Qwen-3 0.6B), with only occasional wins such as TheoremQA at 8B or Gaokao-Math on some
backbones. This mirrors findings from the original pause token paper, which showed reliable gains
only when paired with continued pretraining before SFT.

6.2 EPOCH-MATCHED TRAINING BUDGET ABLATION

To compare extra SFT with cache (re)consolidation under the same training budget, we align models
by the total number of training epochs seen. We first train a backbone with SFT for 8 epochs, saving
a checkpoint after each epoch. For every checkpoint, we freeze the backbone and train a Cache
Processor for one additional epoch. We then compare SFT@N (pure SFT for N epochs) against
Bottleneck@N built from checkpoint N−1 plus one Processor epoch (both variants have seen N
epochs). We use a Llama 3.2 1B backbone, with same Cache Processor configuration as in Section 6.1
Across all seven tasks (Fig. 3), Bottleneck@N outperforms SFT@N on most N for GSM8K, GSM-
Hard, SVAMP, and LogiQA, and the best score attained on these tasks over any N is achieved by
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k GSM8K MATH SVAMP TheoremQA LogiQA Gaokao-Math GSM-Hard

16 32.07 13.12 43.20 10.04 19.05 3.70 7.58

32 32.97 12.72 44.60 10.84 19.05 3.99 7.96

64 33.43 12.94 44.20 10.04 19.20 2.28 7.96

128 33.05 13.20 43.30 9.64 19.05 3.13 7.73

256 33.05 13.34 43.30 9.50 17.81 2.28 7.58

Table 2: Top-k ablation of the bottleneck model across tasks (backbone: Llama 3.2 1B). Each column
is color-scaled from red (lowest) through yellow (middle) to green (highest), with softened tones.

a Bottleneck model. Two consistent exceptions are MATH and, to a lesser extent, TheoremQA,
where SFT@N tends to be higher; additionally, Gaokao-MathQA mostly favors SFT@N at a given
N , although the single best score over all N is still achieved by a Bottleneck model. A plausible
reason is that these settings require sustained access to precise symbolic/theorem or language-specific
details, and step-boundary top-k reconsolidation (k=32) may down-weight earlier formula tokens or
non-English cues that remain predictive.

6.3 RECONSOLIDATION BUDGET (k) ABLATION

We ablate the Processor’s attention-guided selection budget by varying the number of prior positions
k that are reconsolidated per layer at each Processor invocation, holding all other settings fixed
(backbone: Llama 3.2 1B; identical training/evaluation protocol as Section 6.1). For each k we train
a separate Processor and report accuracy on the seven benchmarks. Table 6.3 summarizes results.
Across all tasks except MATH, moderate budgets (k ≈ 32 to k ≈ 64 are generally optimal. In
contrast, MATH benefits from larger budgets, with best scores at k ≈ 128 or 256. This likely reflects
that MATH contains harder problems with longer solutions and stronger long-range dependencies. It
also offers a plausible explanation for the Bottleneck model’s weaker MATH performance in the
training budget experiment (Section 6.2), where the reconsolidation window was fixed at k = 32.

7 DISCUSSION AND FUTURE WORK

Our work has explored the gap in cache-operator ALSC systems that pertains to our interpretation of
memory (re)consolidation, giving both a theoretical justification as to why this beneficial in decoder-
only Transformer LLMs and empirical verification via an architecture that improves mathematical
reasoning performance. Here we discuss limitations of our method.
Training the Processor solely through next-step cross-entropy can produce high-variance, poorly
localized credit assignment, providing weak supervision for cache rewrites, making it challenging
for the model to escape its strong local optimum. Training a model from scratch may alleviate this
issue. Additionally, we do not include an explicit information–theoretic objective for compression via
reduction of I(X;Z): any information compression can only arise from the data processing inequality
or SGD noise. Whilst direct MI estimation in a high-dimension cache is challenging, a promising
route is controlled noise injection into selected KV entries followed by iterative denoising/refinement,
which constitutes a mapping that reduces I(X;Z) while preserving predictive structure I(Z;Y ) (by
the data–processing inequality and denoising-as-regularization). Such a mechanism would essentially
constitute iterative latent reasoning in the model’s memory space; past works exploring this idea in
non-LLM-based frameworks have yielded promising results (Du et al., 2024).
Regarding our interpretation/implementation of consolidation and reconsolidation, neuroscientific
literature indicates that these are related but partially distinct processes: consolidation unfolds over
hours to days with systems-level reorganization and sleep-driven replay, whereas reconsolidation is a
brief, retrieval-induced window in which a reactivated trace becomes labile and then re-stabilises
(Dudai et al., 2015; Stickgold & Walker, 2007). In light of this, our single, online Processor
collapses two modes that in biology differ in triggers and timescales; a closer analogue would pair an
offline, replay-style consolidator with an online, retrieval-contingent reconsolidator. Additionally,
reconsolidation appears to depend on prediction error at retrieval, i.e., a mismatch is often required
to open the plastic window, suggesting that surprise/PE gating (rather than a fixed newline trigger)
would be more suitable for determining when reconsolidation should occur (Exton-McGuinness et al.,
2015; Fernández et al., 2016). More closely aligning future (re)consolidation architectures with these
biological mechanisms may yield substantial gains over our current models.
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Korhonen, David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pp. 2978–2988, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1285. URL https:
//aclanthology.org/P19-1285/.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A Ortega. Neural networks and
the chomsky hierarchy. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=WbxHAzkeQcn.

Yilun Du, Jiayuan Mao, and Joshua B. Tenenbaum. Learning iterative reasoning through energy
diffusion, 2024. URL https://arxiv.org/abs/2406.11179.

Yadin Dudai, Avi Karni, and Jan Born. The consolidation and transformation of memory. Neuron, 88
(1):20–32, October 2015. ISSN 0896-6273. doi: 10.1016/j.neuron.2015.09.004.

Marc T. Exton-McGuinness, Jonathan L. C. Lee, and Amy C. Reichelt. Updating memories–the
role of prediction errors in memory reconsolidation. Behavioural Brain Research, 278:375–384,
February 2015. ISSN 0166-4328. doi: 10.1016/j.bbr.2014.10.011. Epub 2014 Oct 22.

Evelina Fedorenko and Rosemary Varley. Language and thought are not the same thing: evidence
from neuroimaging and neurological patients. Annals of the New York Academy of Sciences, 1369
(1):132–153, April 2016. doi: 10.1111/nyas.13046. URL https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC4874898/. Epub 2016 Apr 20.

Ninghui Feng, Songning Lai, Jiayu Yang, Fobao Zhou, Zhenxiao Yin, and Hang Zhao. Timesieve:
Extracting temporal dynamics through information bottlenecks, 2024. URL https://arxiv.
org/abs/2406.05036.

11

https://aclanthology.org/P19-1285/
https://aclanthology.org/P19-1285/
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=WbxHAzkeQcn
https://arxiv.org/abs/2406.11179
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874898/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874898/
https://arxiv.org/abs/2406.05036
https://arxiv.org/abs/2406.05036


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rodrigo S. Fernández, Mariano M. Boccia, and Marı́a E. Pedreira. The fate of memory: Recon-
solidation and the case of prediction error. Neuroscience & Biobehavioral Reviews, 68:423–441,
September 2016. ISSN 0149-7634. doi: 10.1016/j.neubiorev.2016.06.004. Epub 2016 Jun 7.

Zafeirios Fountas, Martin A Benfeghoul, Adnan Oomerjee, Fenia Christopoulou, Gerasimos Lam-
pouras, Haitham Bou-Ammar, and Jun Wang. Human-like episodic memory for infinite context
llms, 2024. URL https://arxiv.org/abs/2407.09450.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. arXiv preprint arXiv:2211.10435, 2022.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens, 2024. URL
https://arxiv.org/abs/2310.02226.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024. URL https:
//arxiv.org/abs/2412.06769.

Zirui He, Haiyan Zhao, Yiran Qiao, Fan Yang, Ali Payani, Jing Ma, and Mengnan Du. Saif: A sparse
autoencoder framework for interpreting and steering instruction following of language models,
2025. URL https://arxiv.org/abs/2502.11356.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Almut Hupbach, Roberto Gomez, Oliver Hardt, and Lynn Nadel. Reconsolidation of episodic
memories: a subtle reminder triggers integration of new information. Learning & Memory, 14
(1-2):47–53, January 2007. doi: 10.1101/lm.365707. Published 2007 Jan 3.

Kenji Kawaguchi, Ziwei Ji, and Leslie Pack Kaelbling. How does information bottleneck help deep
learning? arXiv preprint arXiv:2305.18887, 2023.
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APPENDIX

A PROOFS

A.1 PROOF OF LEMMA 4.1

Proof. Under the non-trivial case where Z ̸= Ẑ, by Definition 4.2, we have that:

X → Z → Ẑ → Y

Under the Data Processing Inequality, we thus have:

I(X; Ẑ) ≤ I(X;Z).

A.2 PROOF OF THEOREM 4.1

Proof. Assume for contradiction that there exists some bottleneck Z ′ strictly deeper than C0:n (i.e.,
C0:n ≺ Z ′). By definition of the partial order, we could discard C0:n when predicting Sn+1, so

pθ
(
Sn+1 | C0:n, Z

′) = pθ
(
Sn+1 | Z ′).

However, under a decoder-only Transformer, under arbitrary input/output sequence variables
(S0:n, Sn+1), decoding of Sn+1 must be conditioned on C0:n, as C0:n is a projection of the in-
put sequence (S0:n and is trained to contain all information necessary to predict Sn+1. Furthermore,
under this architecture, no further processing occurs on C0:n once it has been constructed. Hence,
C0:n in its entirety cannot be discarded and replaced by some variable Z’, contradicting Z ′ ≺ C0:n.
Therefore, C0:n is the maximal element in the set of bottlenecks, and thus it is the terminal bottle-
neck.
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A.3 PROOF OF THEOREM 4.2

Proof. Since c0:n = fϕ(s0:n) is a deterministic mapping under a vanilla decoder-only Transformer,
we can write our loss function as:

L(θ) = Ep(s0:N ,c0:N )

[N−1∑
n=0

log pθ
(
sn+1

∣∣ s0:n)] (12)

= Ep(s0:N ,c0:N )

[N−1∑
n=0

log pθ
(
sn+1

∣∣ c0:n)] (13)

=

N−1∑
n=0

Ep(sn+1,c0:n)

[
log pθ

(
sn+1

∣∣ c0:n)] (14)

For two random variables A, B with samples (a, b) from joint distribution p(A,B) and approximate
distribution q(A,B), we see that:

Ep(a,b) [log q(a|b)]] ≡ Ep(a,b)
[
log p(a|b) + log

q(a|b)
p(a|b)

]
(15)

≡ −H(A|B)− Ep(b) [DKL [ p(a|b) || q(a|b)]] (16)

≡ I(A;B)−H(A)− Ep(b)[DKL [p(a|b) || q(a|b)]] (17)

≤ I(A;B)−H(A) (18)
Which implies that:

L(θ) ≤
N−1∑
n=0

I(C0:n;Sn+1)−H(Sn+1) (19)

We can also write L(θ) as:

L(θ) = Ep(s0:N ,k0:N ,v0:N )

[N−1∑
n=0

log pθ
(
sn+1

∣∣ s0:n, k0:n+1, v0:n+1

)]
(20)

=

N−1∑
n=0

Ep(s0:n,k0:n+1,v0:n+1)

[
log pθ

(
sn+1

∣∣ s0:n, k0:n+1, v0:n+1

)]
(21)

= −
N−1∑
n=0

H(Sn+1|S0:n,K0:n+1, V0:n+1) (22)

=

N−1∑
n=0

I(Sn+1;K0:n+1, V0:n+1|S0:n)−H(Sn+1|S0:n) (23)

≤
N−1∑
n=0

I(Sn+1;C0:n+1|S0:n)−H(Sn+1|S0:n) (24)

≤
N−1∑
n=0

I(S0:n+1;C0:n+1)−H(Sn+1|S0:n) (25)

=

N∑
n=1

I(S0:n;C0:n)−
N−1∑
n=0

H(Sn+1|S0:n) (26)

Thus, combining Equations 19 and 26 we have:

2L(θ) ≤
N∑
n=1

I(S0:n;C0:n) +

N−1∑
n=0

[
I(C0:n;Sn+1)−H(Sn+1)−H(Sn+1|S0:n)

]
L(θ) ≤ 1

2

[ N∑
n=1

I(S0:n;C0:n) +

N−1∑
n=0

[
I(C0:n;Sn+1)−H(Sn+1)−H(Sn+1|S0:n)

]]
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B CONSOLIDATION/RECONSOLIDATION MECHANISM

Let Jn = Idx(sn) denote the token indices of a just-completed step and P<n = Idx(s<n) the indices
of all prior tokens. For each layer ℓ ∈ {1, . . . , L} we construct an index set

I(ℓ)n = Jn ∪ TopK(ℓ)
n (P<n)

where TopK(ℓ)
n (P<n) contains the k prior positions with the largest attention mass with the current

step. Writing A(ℓ,h) ∈ Rt×t for the backbone’s attention matrix at layer ℓ, head h, over the prefix
s≤n, the mass assigned by the tokens of sn to a prior index i ∈ P<n is

α
(ℓ)
i =

1

|Jn|H

H∑
h=1

∑
j∈Jn

A
(ℓ,h)
j,i , TopK(ℓ)

n (P<n) = arg topk
i∈P<n

α
(ℓ)
i ,

whereH denotes the number of attention heads. Only the entries at I(ℓ)n are modified by the Processor;
all other cache positions remain unchanged. This realises (i) consolidation of recently written context,
and (ii) reconsolidation of the few most recalled KVs during the recently written step.

C CACHE PROCESSOR SIZE ABLATION

In this ablation, we explore how varying the Cache Processor size and training duration (number
of epochs) affects model performance. For this experiment, we use a Llama 3.2 1B model (which
has been fine-tuned on OpenMathInstruct-2 for one epoch) as the frozen backbone, and train four
different size variants of the Cache Processor. We vary the size of the Processor by varying the
intermediate size of the feedforward network within each Transformer block of the processor, keeping
all other hyperparameters fixed. We train each model for four epochs, evaluating performance at the
end of each epoch.

C.1 CACHE PROCESSOR SIZE ABLATION

In this experiment, we ablate the Cache Processor size and training duration using a Llama 3.2 1B
backbone, by varying the Processor feedforward intermediate width, holding depth, number of heads,
selection policy (RSW + top-k), and all training hyperparameters fixed (same as in Section 6.1, see
details in Section D. The backbone is trained for one epoch of SFT on OpenMathInstruct-2. We
train four Processors one this backbone (of 59M, 84M, 109M, 134M parameters). Each Processor is
trained for four epochs, and we evaluate at the end of every epoch.
Results are shown in Figure 4. Increasing training duration generally improves performance of
models on all taks, with this effect being most apparent on the MATH, TheoremQA and GSM-Hard
tasks, which typically contains the hardest problems. For other tasks, performance beyond one epoch
of training is more variable across all models, often plateauing early. This suggests that additional
training may not be beneficial in cases where downstream tasks are simpler. Additionally, there is
no clear winner in model size across all tasks. This suggests that training so as to make full use of
the model capacity is challenging. We hypothesise that this is due to poor credit assignment from
next-step supervision, making it challenging to escape the strong local optimum that the backbone
resides in, as discussed in Section 7.

D REPRODUCIBILITY

D.1 MAIN RESULTS

Here we list details for reproducibility of our main experimental run in Section 6.1.

Training details . We train on the first 128k examples from the 1M variant of the OpenMathInstruct-
2 dataset (Toshniwal et al., 2024). For all runs, we use a batch size of 128 with learning rate of 1e− 4.
We use a constant LR with no warmup for all runs except for experiments with Llama 3.1 8B, where
we use a warmup ratio of 0.05 and cosine LR scheduling. We truncate training sequences to a max
length of 512 tokens.
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Figure 4: Size ablation of the Cache Processor on a frozen Llama 3.2 1B backbone, showing per-
epoch performance of each variant on each task.

Evaluation details. For all evaluation runs, we employ greedy decoding, truncating responses to a
maximum length of 2048. We evaluate on seven tasks:

• GSM8K: Grade-school math word problems requiring multi-step arithmetic reasoning and
short numeric answers. (Cobbe et al., 2021)

• MATH: Competition-style mathematics problems (e.g., algebra, geometry, number theory,
counting) with formal, multi-step solutions. Hendrycks et al. (2021)

• SVAMP: Simple arithmetic word problems rewritten with semantic variations to test robust-
ness to superficial cues. (Patel et al., 2021)

• TheoremQA: Question answering that requires recalling, understanding, or applying mathe-
matical theorems and their conditions. (Chen et al., 2023)

• LogiQA: Multiple-choice logical reasoning and argument analysis questions modeled after
civil service exam items. (Liu et al., 2020)

• Gaokao-MathQA: Math question answering drawn from China’s Gaokao (college entrance)
exams, often involving symbolic manipulation and problem solving. (Zhong et al., 2024)

• GSM-Hard: A harder subset of grade-school math problems with much larger numbers,
designed to stress multi-step reasoning beyond standard GSM8K difficulty.(Gao et al., 2022)

Pause token baseline configuration. During training, we instantiate 16 pause tokens in the
embedding table. During training/generation, we append these 16 tokens to the end of the question
prefix. We perform SFT via standard cross entropy loss on response completions.

Bottlenecked Transformer Configuration. For all backbones, we fix the Processor design across
backbones (one block per backbone layer; hidden size dp=512; MLP intermediate size 2240; 16
heads per block, fixing reconsolidation budget k = 32. Table D.1 shows parameter counts for the
Processor for each backbone, these vary because the projection layers to/from KV-space and number
of Processor blocks depend on the backbone’s hidden dimension, number of attention heads, and
number of layers.

D.2 ABLATIONS

For these experiments, where applicable, we use the same training/architectural configuration for
SFT/Bottleneck models as is detailed in Section D.1, using a Llama 3.2 1B Backbone.
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Backbone Processor Params

Llama 3.2 1B 88.69M
Llama 3.2 3B 184.63M
Llama 3.1 8B 211.01M
Qwen 3 0.6B 184.63M

Table 3: Cache-Processor parameter counts per backbone for mathematical reasoning performance
experiment.

D.3 COMPUTATIONAL OVERHEAD

For a Bottlenecked Transformer consisting of a Llama 3.2 1B backbone with an 89M parameter
Cache Processor, setting k = 32, memory footprint during the Cache Processor training stage is
approximately 6x that of performing full parameter SFT, owing to the chunked training process which
prevents parallelism for entire training examples, induces extra padding tokens, as well as the high
computational cost of processing a large number of entries in a high dimensional KV cache. As such,
wall clock time for a one-epoch training run for the Cache Processor is approximately 20x longer
than performing SFT on the backbone. Note that this is partially an engineering issue: our method is
currently incompatible with efficient attention methods such as Flash Attention.
During evaluation, memory footprint of the Bottlenecked Transformer with above configuration is
approximately 25% higher than a vanilla Transformer, with a 45% increase in wall clock time, for an
eval batch size of 16 in both cases. This relative reduction compared to training is due to the fact that
during generation, the Cache Processor is invoked infrequently (once every reasoning step).

STATEMENT ON THE USE OF LLMS

During manuscript preparation, we used large language models for editing, phrasing suggestions,
and to assist in literature search. No analyses, results, proofs, or figures were produced by LLMs; all
technical content, experiments, and conclusions are our own.
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