Under review as a conference paper at ICLR 2026

BOTTLENECKED TRANSFORMERS: PERIODIC KV CACHE
CONSOLIDATION FOR GENERALISED REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer LLMs have been shown to exhibit strong reasoning ability that scales
with inference-time compute, most prominently through token-space “thinking”
chains of thought. A growing line of work pushes extra computation into the
model’s latent space, which we term Auxiliary Latent-Space Computation (ALSC).
Existing ALSC methods largely fall into three buckets: (i) token-mediated latent
rollouts, (ii) residual/activation steering, and (iii) memory (KV) compression. An
underexplored alternative is memory consolidation/reconsolidation, two processes
in the brain that are responsible for stabilising newly formed memory traces, and,
upon recall, transiently rendering established traces plastic such they can integrate
new contextual information before restabilising. In Transformer LLMs, this can
be seen as analogous to performing in-place rewrites of new KV segments, and
rewrites of recalled past segments. In this work, we give a theoretical justifica-
tion as to why memory (re)consolidation via KV cache rewrites is beneficial for
improved reasoning. We do this through the lens of Information Bottleneck (IB)
theory, which posits that model generalisation emerges from an optimal balance
between input information compression and retention of predictive information
in latent representations. We then introduce the Bottlenecked Transformer, which
augments a backbone LLM with a Cache Processor, an auxiliary Transformer that
performs periodic, non-causal, in-place KV rewrites at newline-delimited reason-
ing step boundaries. The Processor consolidates recently written KV entries and
reconsolidates a small, top-k attention-selected set of prior entries. We evaluate
our Bottlenecked Transformer architecture on math reasoning benchmarks. Our
model sees consistent performance gains over vanilla Transformers and pause-token
augmented baselines, with gains of up to +6.6pp for selected tasks/backbones.

1 INTRODUCTION

Transformer-based large language models (LLMs) have achieved strong results in retrieval, pattern
recognition, and knowledge extraction (Brown et al,[2020; |Chowdhery et al.l 2022)). With carefully
engineered prompts/post-training, they can also display nontrivial reasoning behaviours (Wei et al.|
2023; |Shao et al., [2024; DeepSeek-Al et al., 2025). A critical development that has significantly
advanced Transformer LLMs is the discovery that reasoning performance scales strongly with
inference-time compute. The most widely applied example of this has been seen in “reasoning”
models, which generate verbal chains of thought before giving a final answer (Wei et al., 2023)).

A growing body of work extends this idea to algorithms that allow LLMs to perform additional
compute during generation directly in a latent space rather than the token space. We refer to these as
Auxiliary Latent-Space Computation (ALSC) methods, which facilitate computation over internal
continuous states during inference without emitting intermediate natural-language tokens, doing
so in addition to (or in place of) the standard one-forward-pass-per-token decoding strategy. In
this work we focus on sequence-level ALSC: operators that intervene between decoding steps to
transform the model’s KV cache and/or final hidden state before the LM head, which constitute
the model’s internal representation of a processed sequence. Auxiliary Latent-Space Computation
is potentially more efficient than strict autoregressive decoding as latent embeddings can encode
semantics more compactly than token sequences. Additionally, such processes align more closesly
with human cognition, in which thought does not occur as an endless verbal monologue, but contains
nonverbal stretches of conceptual processing that proceeds without recruiting the language system
(Alderson-Day & Fernyhough, [2015; |[Fedorenko & Varleyl 2016; Monti et al., 2012).

Under review as a conference paper at ICLR 2026

Prior sequence-level ALSC approaches primarily fall into three categories: token-space latent
stepping, activation-space edits, and cache-operators (most commonly compressive schemes such as
pruning, merging, or summarising KV entries). An underexplored direction is incorporating processes
for memory consolidation and reconsolidation in the neuroscientific sense. Consolidation is a process
in the brain where new memory traces are stabilised upon formation. Reconsolidation refers to
rewrites of recalled memories: when a stored memory is reactivated, it can briefly enters a plastic
state in which it can be modified before restabilising, allowing it to be updated and recontextualised
with new salient information (Leel 2009; Hupbach et al., 2007).

In this paper, we explore consolidation and reconsolidation in Transformer LL.Ms from both a
theoretical and architectural standpoint. We adopt a working interpretation in which the KV cache
serves as the model’s memory and (re)consolidation is realised through periodic in place edits to that
memory during generation. We first offer an information-theoretic justification for why periodically
reprocessing the model’s working memory (KV cache) should aid generalisation from the lens of
Information Bottleneck theory; concretely, we show that in autoregressively trained models, the
KV cache is incentivised to preserve information from the sequence history that is unnecessary
for future sequence-level prediction, potentially hindering generalisation. We then introduce the
Bottlenecked Transformer, which augments a pretrained backbone with a Cache Processor, a small
Transformer that periodically rewrites recent memories (consolidation) and selectively recalled KV
entries (reconsolidation) in-place, without dimensional compression. Our architecture is shown
in Figure [Note that whilst our aim is to implement a mechanism functionally analogous to
consolidation and reconsolidation in the brain, the underlying biological processes are richer and
more complex than our computational abstraction. Empirically, we yield consistent gains over vanilla
Transformers across seven mathematical reasoning benchmarks and multiple backbones.

2 PRELIMINARIES

In all following sections, we denote random variables by uppercase letters (e.g. X, Y, Z) and realisa-
tions by the lowercase letters (e.g. x, y, 2).
2.1 STATE-SPACE FORMULATION OF DECODING

Autoregressive decoding in a Transformer can be viewed as a state-space process, where the model’s
the model’s key—value (KV) cache is its memory state. Formally, let x; be the input token at decoding
step ¢. For a model with L layers, we let h; denote the KV cache (covering tokens O : ¢, 0; € R< the
final-layer residual stream. We then model the next-token decoding process as:

6 (O L
hy = {(kéj, U(():z)}zzl
(ht, or) = fum(hi—1, 1), P(xe41 | g, 00) = softmax(freaa(0r))-

This view treats h; as the sequence-level latent state that mediates future predictions, while o,
summarizes the current step’s computation. Under a vanilla LLM, updating ~; amounts to per-layer
appends of the key—value vectors produced for the incoming token x;.

2.2 SEQUENCE-LEVEL AUXILIARY LATENT-SPACE COMPUTATION

We call an auxiliary latent-space computation (ALSC) method any inference-time procedure that
performs extra computation over internal continuous states adjacent to the standard forward pass of a
backbone LLM. We focus on sequence-level ALSC that acts on (h¢, 0;) via

(h/, 0/) = T(ht, Ot),

invoked according to a schedule s(t) C N (e.g., periodic every m steps or event-triggered). After
applying 7, decoding resumes from the transformed state:

p(@iq1 | B, 0") = softmax(freaa(0")).
3 RELATED WORK

We classify sequence-level ALSC works into three execution pathways: (i) Token-mediated, (ii)
residual-operator, and (iii) cache-operator.

Under review as a conference paper at ICLR 2026

(J Consolidation () Re-consolidation CoCCoEranananaEE
P Recent tokens Retrieved tokens (k) o = F k)
= 0O0CCo0oococococoooo

0000000 ooooooooooooooooooooooooooooo
:-:__:____ KV cache «—— RSW —>|

Figure 1: Bottlenecked Transformer architecture, consisting of a backbone LLM process-
ing/generating tokens, and Transformer Cache Processor that rewrites KV entries. The Cache
Processor is invoked each time a newline token is generated (marking the end of a reasoning step).
When invoked, recent tokens (from the recent step window in grey) and k retrieved tokens beyond
the RSW (in blue) are passed in parallel to the Cache Processor, and rewritten in-place.

(i) Token-mediated. These methods instantiate 7 to be an LLM (often the backbone LLM itself),
and operates via an internal micro-sequence of latent tokens, thereby lengthening the cache and
updating (hy, 0;) via a standard forward pass. Basic variants inject pause or filler tokens during
decoding (Goyal et al.| 2024} |Pfau et al.| [2024)). Cache Deliberation uses an external coprocessor
(often initialized from the backbone) to produce latent embeddings conditioned on h; and append
them to the cache (Liu et al.l [2024a). Other approaches recycle the model’s last hidden state as a
continuous latent fed back as the next input embedding, taking multiple latent steps without emitting
text until termination (Hao et al.| 2024} [Shen et al., 2025} Su et al., [2025)).

(ii) Residual-operator. A complementary line defines 7 to only modify the current hidden represen-
tation o; before the LM head, leaving h; unchanged. Activation steering adds structured directions to
o; (or selected layers) to influence style, stance, or safety (Turner et al., 2024)), including Contrastive
Activation Addition (Panickssery et al.,|2024) and exemplar-derived “style vectors” (Konen et al.,
2024). Recent work targets sparse features for precision and interpretability, e.g., SAE-targeted
steering (Chalnev et al.| [2024)), operations directly in SAE latent space (FGAA) (Soo et al.,|2025)),
and broader SAE-based frameworks (He et al., [2025)).

(iii) Cache-operator. In these methods, 7 operates solely to transform the memory h;. Here, the
cache is transformed directly between decoding steps to control what information remains accessible.
Existing methods are predominantly centred on memory compression for long context tasks. Evic-
tion/pruning methods retain high-utility entries using importance or heavy-hitter policies, preserving
pivotal tokens and stable “sink” anchors (Zhang et al., 2023} |Xiao et al., 2024). Merging/aggregation
mechanisms fuse entries into representatives under a memory budget (Zhang et al.l|2024;|Wang et al.|
2024)). Recurrent architectures summarize older activations into compact memories or memory banks
(Transformer-XL, Compressive Transformers, RMT) (Dai et al.|[2019; Rae et al.,2019; Bulatov et al.|
2022). Selective recall architectures externalise long histories to memory banks and re-inject salient
slices on demand (Fountas et al., 2024]).

Positioning. Memory (re)consolidation as we interpret it belongs to the cache-operator family, but
differs from the predominantly compression-oriented approaches above. In-place memory rewrites
under (re)consolidation do not necessarily entail reduction in memory footprint. Rather, our goal is
to demonstrate how KV rewrites may improve reasoning performance in Transformer LLMs.

4 MOTIVATION AND THEORY

In this section, we give a theoretical analysis as to why a mechanism for (re)consolidation via KV
rewrites is likely to improve on performance on reasoning tasks in Transformer decoder-only LLMs,
from the perspective of Information Bottleneck Theory. All proofs are given in Appendix [A]

4.1 THE INFORMATION BOTTLENECK METHOD

The Information Bottleneck (IB) is a framework for optimising some latent variable Z to be maximally
informative of some output variable Y and minimally informative of an input variable X, via the

Under review as a conference paper at ICLR 2026

objective:
Lip(z|l2)] = 1(X;Z) — BI(Z;Y) ¢))
subject to Y «» X < Z. Here 8 > 0 balances information compression via lowering I(X; Z)

with relevance I(Z;Y') (Tishby et al., 2000). Controlling I(X; Z) has been proven to bound test

set generalization error as € < O(+/(1(X; Z) 4+ 1)/n) for i.i.d. data (Kawaguchi et al.l 2023), with
strong empirical results that suggests this extends to non-i.i.d. time series data (Feng et al., [2024; Liu
et al.l [2024b; [Ullmann et al., 2023; |Choi & Lee), [2024)).

4.2 INFORMATION BOTTLENECKS AND DEEP LEARNING

In practice, one can approximate true distributions p(z|z) and p(y|x) by parameterized distributions
pe(z |) and py(y | z). The joint model pg(x, y, z) now factorizes as:

po(z,y,2) = p(x)ps(z]x)py (yl2) @
and we optimize £ with respect to § = (¢, v). To ground these ideas, we now introduce three formal
definitions that capture the essential properties and ordering of information bottlenecks in neural
networks.
Definition 4.1 (Neural Information Bottleneck). Let My be a neural network parameterised by 0,
with input/output variables (X,Y), and let Z be a latent variable within the model. Then, Z is an
information bottleneck in My if and only if Z satisfies the Markov chain X — Z — Y.
Definition 4.2 (Ordering of Bottlenecks in Neural Networks). Ler {Z;}icr be a set of distinct
information bottlenecks in My. We say that a bottleneck Z; is deeper than another bottleneck Z;,
denoted by Z; < Z;, ifand only if X — Z; — Z; = Y.
Definition 4.3 (Terminal Bottleneck). Let Z™¢ be the set of all information bottlenecks in M.
Then Z = max ZM¢ is denoted the terminal bottleneck in Z°.

The notion of ordering of bottlenecks allows for the observation that the complexity I(X; Z) of any
arbitrary bottleneck Z is bounded by I(X; Z), the complexity of the terminal bottleneck, formalised
in Lemma[4.1]

Lemma 4.1. Let My be a model parameterized by 6, with input/output variables (X,Y), and let
ZMo be the set of information bottlenecks in Mg, with A defining the terminal bottleneck in M.
Then I(X; Z) > I(X; Z) for any bottleneck Z € ZMo.

Implicit Information Compression During SGD Even without an explicit IB loss, noise inherent
to stochastic gradient descent (SGD) has been shown to implicitly minimise I(X; Z) in neural
networks. During training, after an initial “fitting” phase, SGD hase been shown to enter a low-signal-
to-noise “diffusion” regime in which gradient noise dominates, systematically compressing input
information in hidden representations (Shwartz-Ziv & Tishbyl, 2017; Butakov et al., 2024).

4.3 1B OBJECTIVE FOR GENERALISED LANGUAGE REASONERS

The problem of learning a generalised language-based reasoner can be formulated as one of learning a
generalised sequence to sequence model via the IB objective. Given an input X = Sj.,, (a reasoning
history of n transitions), and Y = S, 11 (a subsequent reasoning step), we seek to train a model My
aiming to predict S, 41 given Sp.,. Under the IB method, given a neural information bottleneck Z in
M that sequentially mediates (So.,,, Sn+1), we define the IB objective:

0" :argnleinI(SO:n;Z) = BI(Z; Sn+1) 3)

Under this objective, a realised latent z should act as abstraction of the reasoning history to infer a
generalised state of a partial solution, from which some logical rule of inference can be applied.

4.4 ANALYSIS OF INFORMATION BOTTLENECKS IN DECODER-ONLY TRANSFORMER LLMSs

Our first main result is given in Theorems[d.Tand[4.2] We show that in a decoder-only Transformer,
given a input sequence Sy.,, and output sequence 5,11, the KV cache and last hidden state computed

from Sj.,, forms the terminal bottleneck Z mediating these sequences, and autoregressive training
maximises both I(So.,; Z) and I(Z; Sp41)-

Under review as a conference paper at ICLR 2026

Theorem 4.1 (KV-Cache and Final Hidden State as Seq-to-Seq Terminal Bottleneck). Let MELM
be a decoder-only Transformer language model parameterized by 0, with input/output sequence
variables (So.n, Sn+1). We define the information bottleneck Cy.,, as:

C'Ocn = (KO:na ‘/O:na On)
where K., and Vyy.,, are represent keys and values computed from Sy.,, across all heads/layers, and
O,, is the final hidden-state vector of the last token of Sy.,, prior to the model’s final logit projection.
Then Cy.,, = 7, the terminal bottleneck in MGLLM.

Theorem 4.2 (Autoregressive Training Encourages high (.So.,; VA)and I (Z ;Sn+1)). Let so.n be
a complete reasoning trace drawn from p(so.n). For some n (where 0 < n < N), we define
(S0:n Sn+1) to be an input/output pair corresponding to an incomplete reasoning history and ground-
truth next reasoning step. Let MﬁL M be a decoder-only Transformer that maps input s¢.,, to KV
cache/final hidden state cq.p, = (ko:n, Vo:n, On) via a determinstic mapping f4, where ¢ C 0:

Co:n = qu(SO:n) 4)
Let L(0) be the expected next step log-likelihood to maximise (computed via negative cross entropy)
with respect to parameters 0:

N-1
L(G) = EP(SQ;N) |:Z 10gp9 (5n+1 ’ SO:n)] (5)
n=0
Then we can show two bounds on L(0):
N N-1
L(0) < I(Som; Com) — > H(Sny11S0:n) (6)
n=1 n=0
N-1
L(0) < > I(Couni Snt1) — H(Sn11) (7)
n=0

Under Theorem since L(6) acts as a bound on each term (where the entropy terms are fixed under
a particular dataset), maximisation of L(6) thus acts to encourage raising both mutual information
components I(Co.n,; Spy1) and I(So.n; Co.r,). When we consider the tokenwise view, with Co.;
representing tokens a timsteps O to ¢, we can see that Cj.; contains, as sub-states, each earlier cache
Cy.; for i < t, and so contains sufficient information to recover the full collection of next-token
predictors {pg(S;+1 | Co.i)}i<: realised along the sequence. Consequently, the final cache encodes
a high-fidelity, step-by-step predictive trace of the right-shifted tokens (51, ..., S;), rather than a
single compressed summary of the past.

Combined with Lemma4.T]and Theorem this implies that autoregressive training encourages
internal sequence representations that are minimally compressive of their inputs as well as maximally
predictive of future outputs.

4.5 COMPARISONS WITH RNNS AND CACHE COMPRESSION METHODS

Transformers excel at retrieval-style tasks, due to their effectively unbounded memory, while RNNs
and structured state-space models often outperform on problems requiring systematic rule application
or OOD generalisation (Deletang et al., 2023} |Liu et al., 2023} |Wen et al., [2025). Due to the hard
sequence-level bottleneck imposed by RNNs via their fixed-size hidden state, latent representations
are forced to be reprocessed and compressed at every time step, whereas standard Transformers’
ever-growing cache removes this constraint completely. This leads to mutual information between
given inputs (X) and these compressed latents () that is reduced relatively to the one between latents
Z and predicted outputs (Y'), compared to Transformers. See Fig. 2B for a conceptual illustration of
this comparison.

Existing cache-operator methods have largely been explored from the perspective of compression via
memory footprint reduction (see Section[3). As illustrated conceptually in Fig. 2] A, these algorithms
tend to reduce not only the information retained about the input (I (X; Z)), but also indiscriminately
reduce predictive information (I(Z;Y")), thereby moving towards a region of lower generalised
performance on benchmark tasks. Crucially, these methods lack a reprocessing step designed to
selectively compress I(X; Z) while preserving or enhancing I(Z;Y’). Consequently, without a

mechanism to substantially improve predictive efficiency (%), as depicted in Fig. B, these
techniques offer limited improvements in generalisability.

Under review as a conference paper at ICLR 2026

4.6 ARCHITECTURAL SOLUTIONS

Our analysis shows that the KV cache (together with the A High Pattern
final hidden state) forms the terminal bottleneck Z and, in generalisation interpolation
practice, carries extraneous detail from processed sequences.

This motivates an inference-time mechanism that rewrites

KV entries in place, producing a new bottleneck 2’ = T (Z)

with an increase in predictive efficiency I(Z";Y)/I(X; Z'). &)
By the data-processing inequality, any such transformation

results in 1(X; Z) > (X; Z'). By training 7' to minimise

future prediction error, we preserve or improve (Z LY. Low
Conceptually, we interpret this as analogous to consolida- generalisation
tion/reconsolidation: selectively reprocessing working mem-
ory to discard irrelevant information and maintain salient
information. We focus on rewriting KVs rather than the final
hidden state as the cache is the component principally re-
sponsible for retaining the extraneous sequence information.
We apply no dimensionality reduction in rewritten KVs so as
to avoid indiscriminate reduction in predictive information 1Z:Y)
that plagues compression methods. 1(X; 2)

1(X; 2)

5 BOTTLENECKED TRANSFORMERS

Overview. Here we introduce the Bottlenecked Trans-
former. We augment a pretrained decoder-only Transformer
MEM with an external Cache Processor TP™°, a neu-
ral module (smaller than the backbone) that periodically
rewrites KV cache entries in-place during autoregressive
generation. A illustration of our architecture can be seen in

Figure[]

Processor Invocation and Mechanism. During genera-
tion, immediately after some reasoning step s,, completes
(detected by emission of a newline token), the Processor is
invoked to rewrite cache entries. Decoding then resumes
conditioned on the rewritten cache. We design our rewrite mechanism to be analogous to memory
consolidation/reconsolidation in the brain, and implement a selective mechanism for rewriting cache
entries. When invoked, the Processor rewrites (i) cache entries corresponding to the most recent seg-
ment s,,, and (ii) the top & entries from the prior step history s¢.,—1 by attention mass with the recent
segment s,,. These components realise mechanisms that are respectively analogous to consolidation
and reconsolidation: new memories within a recent step window (RSW) of variable length R undergo
a stabilisation process, and recalled memories are rewritten in light of new information. Formally,
we designate the set of recalled and recent KV entries as (k(,), v(s)). All other KV entries are left
unchanged. A more detailed formulation of our selection mechanism can be found in Appendix [B]

Information capacity

Figure 2: Conceptual illustration.
(A) Bottlenecked Transformers bal-
ance input compression I(X;Z)
with predictive information I(Z;Y)
for high generalisation. (B) This
achieves superior predictive efficiency
I(Z;Y)/I(X; Z) vs. capacity over
other methods.

Cache Processor Architecture. For a backbone MM with L layers and H heads, the Cache
Processor consists of L small Transformer blocks {’Ef’roc’(e) }L_ |, one aligned to each backbone layer.
Block ¢ operates only on the corresponding layer’s selected KV entries (kgg, vg;) We first convert

the selected key—value pairs into “KV-tokens” by concatenating across all heads for that layer, and
project them via a learnable matrix into the Processor’s hidden state space:

20 — (k(é) U(ﬁ)) GR(kJrR)xQHdk, (8)

()" 7(s)
u® = 2O Wi(f)a Wi(nf) € R2Hdkxdp)
The sequence u() (consisting of recalled and recently cached memories) is then processed in parallel

by a small Transformer block without causal masking, such that selected KV entries may be updated
with globally available information. The block’s output is projected back via learnable matrix to the

Under review as a conference paper at ICLR 2026

Base Method Task
LLM GSMSK MATH SVAMP TheoremQA LogiQA Gaokao- GSM-
MathQA Hard
SFT 29.80 11.76 38 8.84 15.36 3.70 7.13
Llama SFT w/ pause tokens 30.02 11.34 41.6 7.22 13.36 1.71 7.96
32 1B SFT w/ latent rollout 24.41 9.66 32.8 8.97 15.36 1.13 5.31
Bottlenecked Transformer (ours) 32.97 12.72 44.6 10.84 19.05 3.99 7.96
SFT 70.28 31.88 71.7 15.26 20.74 4.84 19.41
Llama SFT w/ pause tokens 69.22 31.52 77.2 15.93 20.12 5.98 18.88
3.18B SFT w/ latent rollout 4.02 2.80 7.80 5.89 0.00 0.00 0.61
Bottlenecked Transformer (ours) 71.87 31.96 78.4 15.93 23.81 3.99 19.93
SFT 53.75 26.68 60.7 14.32 23.04 5.70 19.56
Qwen 3 SFT w/ pause tokens 52.92 26.76 60.3 14.73 21.50 5.13 19.26
0.6B SFT w/ latent rollout 47.23 20.28 57.70 12.32 24.27 3.42 17.66
Bottlenecked Transformer (ours) 57.01 29.08 65.4 14.73 26.57 541 20.55
SFT 46.78 18.40 55.5 10.71 22.12 3.13 11.45
Llama SFT w/ pause tokens 48.07 18.00 55.9 12.05 17.67 4.84 11.6
3.23B SFT w/ latent rollout 42.46 15.28 52.0 11.65 12.90 2.56 10.61
Bottlenecked Transformer (ours) 51.33 20.90 59.4 14.73 20.12 3.99 12.28

Table 1: Accuracy (%) on seven mathematical reasoning benchmarks across four backbones and three
configurations: SFT, SFT+pause (16 pause tokens after the prefix), SFT+latent rollout (16 rollout
tokens after the prefix), and Bottlenecked Transformer (ours; frozen SFT backbone augmented with
Cache Processor). Scores are pass@ 1 under greedy decoding. Bold indicates the best result within
each backbone.

KV dimensionality. Finally, we apply a gated, in-place residual rewrite to the selected KV entries.

AB — 7‘5r007(5)<u(4)) (10)

(A A0) = AOWEL W e R an
KO — kO +o(g) A ol ol +o(g9) AP (12)

Here g) € R is a learnable, layer-wise scalar gate initialized small and ¢ denotes the logistic
function. The gate mitigates early drift in model capabilities, i.e., large, destabilizing cache changes
before the Processor has learned useful updates.

Training. Learning proceeds in two stages. In the first stage, the backbone MlgLM undergoes SFT
on reasoning trajectories with the standard next-token cross-entropy objective. In the second stage,
the backbone is frozen and only the processor parameters w are updated. Each training sequence
S0.n 1s split into individual reasoning steps (so, - . . , Sy). For step s, the backbone first processes
the tokens in that step to append new KVs to the cache. The Processor is then invoked, selecting
(kgg, (kgg) at each layer and applying the in-place rewrite. Cross entropy loss for the next reasoning
step s,+1 is then computed, conditioned on the rewritten cache, and backpropagated through the
Processor. We truncate BPTT across step boundaries, such that the Processor is trained solely to

rewrite the cache in a way that improves prediction of the next reasoning step.

Note that we do not implement an IB-style loss function; our goal is to realise a plausible mechanism
for (re)consolidation in Transformer LLMs, supported by our theoretical findings that periodic
memory rewrites may improve generalisation. The rewritten cache realises a new sequence-level
terminal bottleneck Z. Training the Processor to minimise the cross entropy loss of the entire next
reasoning step is equivalent to maximising I (.Sy,+1; Z). In other words, Z is trained solely to improve
prediction of future sequences, with no requirement for the rewritten entries to retain unnecessary
information for reconstructing their input sequence. Moreover, whilst we do not explicitly include a
compression term for minimisation of I(Sy.,, Z), removal of pressure to maximise this quantity (as
we showed to occur in vanilla Transformers) opens a pathway for implicit minimisation of this term
via noise injection from SGD (as described in Section [4.2)).

6 EXPERIMENTS

6.1 PERFORMANCE ON MATHEMATICAL REASONING TASKS

We evaluate the Bottlenecked Transformer on a set of mathematical reasoning tasks, choosing this
domain as it offers an easily verifiable testbed for for observing improved reasoning generalisation.

Under review as a conference paper at ICLR 2026

GSM8K MATH SVAMP TheoremQA LogiQA Gaokao-MathQA GSM-Hard
X

37 18
X j\ X 15 o X X 8.4
46 -
* v \ 19 ° 8.2
. 14 s -
16 44 8.0

7.8

13
2 15 / r/(4
o
333 42 12 17 \ 7.6
14 3
32 1 74
16
40
31 13 10{ [—@— SFT 2 7.2

30 12 38 9 Bottleneck 1 7.0

Figure 3: Epoch-matched comparison of SFT@N and Bottleneck@ N across seven tasks. The
backbone is SFT-trained for 8 epochs with per-epoch checkpoints; Bottleneck@ N uses checkpoint
N —1 plus one Processor epoch, and curves plot accuracy versus total epochs N. The red x marks
the highest score for each task across both model variants and all V.

We compare four settings: (i) a vanilla LLM fine-tuned for one epoch on a math dataset (SFT), (ii) a
pause-token baseline trained identically but includes 16 pause tokens appended after each question
prefix (SFT+pause, following prior convention), (iii) a latent rollout model (inspired by Coconut
(Hao et al., 2024)) which performs an n-step latent rollout directly in the token space by feeding
the final hidden state back into the model without decoding to tokens, and (iv) our Bottlenecked
Transformer, which freezes the one-epoch SFT model as a backbone and trains the Cache Processor
for one epoch using the procedure in Section[5] We use SFT as a standard Transformer baseline
and SFT with pause and SFT with latent rollout as token-mediated ALSC baselines. We omit
other ALSC variants (residual/cache operators) as these primarily target style/behavior control or
memory footprint reduction rather than generalisation. All models are trained on 128k examples from
OpenMathlInstruct-2, a large synthetic mix of GSM8K/MATH-style questions (Toshniwal et al.| 2024)).
We evaluate on seven benchmarks: GSM8K, MATH, SVAMP, TheoremQA, LogiQA, Gaokao-Math,
and GSM-Hard. Six are mathematical reasoning tasks; LogiQA is a logical reasoning task included
to test transfer beyond mathematics. For all experiments, we fix Processor hidden size d, = 512,
intermediate size 2240, 16 heads per Processor block, selective reconsolidation uses k = 32. Detailed
hyperparameters can be found in Appendix

Results are given in Table Across backbones and tasks, the Bottlenecked Transformer improves
over both baselines in almost all cases. Gains are strongest on in-distribution math benchmarks
(GSM8K, MATH, SVAMP, GSM-Hard): e.g., Llama-3.2 1B on SVAMP (+6.6 points, 38.0—44.6),
Llama-3.2 3B on GSMS8K (+4.6, 46.78—51.33), Qwen-3 0.6B on MATH (+2.4, 26.68—29.08), and
Llama-3.1 8B on LogiQA (+3.1, 20.74—23.81). On the more out-of-distribution QA-style tasks,
improvements generally persist (e.g., TheoremQA matches or exceeds baselines on all backbones),
with one notable exception: LogiQA on Llama-3.2 3B where plain SFT is slightly higher (22.12 vs.
20.12). The main underperformance is Gaokao-MathQA, where baselines often win (e.g., Qwen-
0.6B and Llama-3.1 8B), consistent with a distribution/language shift (Chinese) beyond the Cache
Processor’s training exposure. By contrast, the pause-token baseline shows variable and often lower
performance than plain SFT when used only at fine-tuning (e.g., consistent drops on Llama-3.1 8B
and Qwen-3 0.6B), with only occasional wins such as TheoremQA at 8B or Gaokao-Math on some
backbones. This mirrors findings from the original pause token paper, which showed reliable gains
only when paired with continued pretraining before SFT. Additionally, the latent rollout baseline
typically underperforms even the pause token baseline, which is consistent with results seen in the
original Coconut paper, wherein the model performed slightly worse than a Vanilla model but saw
improved efficiency (fewer tokens needed per answer). Performance degradation is especially bad for
the Llama 3.1 8B model, which sees severe model destabilisation under continuous latent rollouts.

6.2 EPOCH-MATCHED TRAINING BUDGET ABLATION

To compare extra SFT with cache (re)consolidation under the same training budget, we align models
by the total number of training epochs seen. We first train a backbone with SFT for 8 epochs,
saving a checkpoint after each epoch. For every checkpoint, we freeze the backbone and train a
Cache Processor for one additional epoch. We then compare SFT@N (pure SFT for N epochs)
against Bottleneck@ NV built from checkpoint N —1 plus one Processor epoch (both variants have
seen N epochs). We use a Llama 3.2 1B backbone, with same Cache Processor configuration as
in Section Across all seven tasks (Fig. , Bottleneck@N outperforms SFT@N on most N
for GSM8K, GSM-Hard, SVAMP, and LogiQA, and the best score attained on these tasks over

Under review as a conference paper at ICLR 2026

k GSM8K MATH SVAMP TheoremQA LogiQA Gaokao-Math GSM-Hard

16 13.12
32

64 10.04
128 33.05
256 33.05

Table 2: Top-k ablation of the bottleneck model across tasks (backbone: Llama 3.2 1B). Each column
is color-scaled from red (lowest) through yellow (middle) to green (highest), with softened tones.

R GSM8K MATH SVAMP TheoremQA LogiQA Gaokao-Math GSM-Hard

16 18.89 4.27 7.88
32 10.98 7.81
48 11.38
64 32.07
96 32.22

Table 3: Ablation over recent-step window size R for the Bottlenecked Transformer (backbone:
Llama 3.2 1B). The Cache Processor is invoked once at the end of the prompt and then every R
tokens, so R controls the length of the local segment consolidated at each update. Performance is
broadly stable across R, with slight gains for moderate windows.

any N is achieved by a Bottleneck model. Two consistent exceptions are MATH and, to a lesser
extent, TheoremQA, where SFT@N tends to be higher; additionally, Gaokao-MathQA mostly favors
SFT@N at a given N, although the single best score over all [V is still achieved by a Bottleneck
model. A plausible reason is that these settings require sustained access to precise symbolic/theorem
or language-specific details, and step-boundary top-k reconsolidation (k=32) may down-weight
earlier formula tokens or non-English cues that remain predictive.

6.3 RECONSOLIDATION BUDGET (k) ABLATION

We ablate the Processor’s attention-guided selection budget by varying the number of prior positions
k that are reconsolidated per layer at each Processor invocation, holding all other settings fixed
(backbone: Llama 3.2 1B; identical training/evaluation protocol as Section[6.1). For each k we train
a separate Processor and report accuracy on the seven benchmarks. Table [6.2] summarizes results.
Across all tasks except MATH, moderate budgets (k ~ 32 to k ~ 64 are generally optimal. In
contrast, MATH benefits from larger budgets, with best scores at k ~ 128 or 256. This likely reflects
that MATH contains harder problems with longer solutions and stronger long-range dependencies. It
also offers a plausible explanation for the Bottleneck model’s weaker MATH performance in the
training budget experiment (Section [6.2)), where the reconsolidation window was fixed at k = 32.

6.4 RECENT STEP WINDOW (R) ABLATION

We also ablate the size of the recent-step window R by invoking the Cache Processor once at the
end of the prompt and then at every fixed R tokens during generation, so that R directly controls
how many of the most recent tokens are consolidated at each call (Table[6.2). Across benchmarks,
performance remains relatively stable over a broad range of R, with mild gains for moderate to larger
windows (e.g., R ~ 64-96) and small drops when consolidation is restricted to very short windows.
This suggests that the Processor benefits from access to a reasonably sized local context, but does
not require fine-grained, per-token updates to yield gains. Together with the top-% reconsolidation
ablation, these results indicate that our memory (re)consolidation mechanism is robust to the precise
update schedule, so long as it can periodically reshape a medium-horizon segment of the working
memory rather than attempting to track every token verbatim.

6.5 PROCESSOR REWRITE MAGNITUDES

We measure how strongly the Cache Processor modifies the KV cache by tracking cosine distances
between entries before and after each rewrite. On GSMS8K with the Llama 3.2 1B Bottlenecked
Transformer, we compute mean cosine distance at every processor invocation for (i) the top-k recalled
tokens, (ii) the recent-step window (RSW), and (iii) all rewritten entries. Results are shown in
Figure] Across all three groups, value vectors undergo nontrivial updates, while key vectors

Under review as a conference paper at ICLR 2026

remain almost unchanged, indicating that the Processor mainly edits the contents of memory rather
than its addressing. Rewrite magnitudes are largest at early processing steps and then settle into a
stable, nonzero plateau after roughly ten invocations, showing that the Processor does not collapse to
the identity map but applies consistent moderate adjustments throughout generation. Layer—head
heatmaps of value-vector distances show that edits are concentrated in the earliest layers, with only
small changes in middle and later layers. This suggests that the Processor learns to reshape low-level
representations that then propagate forward through the backbone, rather than rewriting deep layers
directly.

Estimating (X ; Z) for a high-dimensional, variable-length
KV cache is intractable in our setting, so we use rewrite mag-
nitudes as a qualitative proxy for how the Processor reshapes
the working memory state. Our observation of systematic
shifts in value vectors away from their teacher-forced encod-
ings indicates that the model is restructuring the content of
selected memories. Because the Processor is trained solely
through next-step prediction loss, these local, persistent ed-
its suggest that past information is being reorganised while
maintaining what is useful for future tokens. From the Infor-
mation Bottleneck perspective, such prediction-preserving,
non-identity updates are naturally associated with reducing
redundant input detail and making more efficient use of the
bottleneck; here we treat rewrite magnitudes as an indirect,
qualitative signal of this process rather than a direct estimate
of information-theoretic quantities.

Figure 4: Cache Processor rewrite
7 DISCUSSION AND FUTURE WORK magnitudes on GSMSK. Left: per-
invocation mean distances for top-k,
recent-step window, and all rewritten
tokens. Right: layer—-head heatmaps
of mean cosine distance between pre-
and post-Processor value vectors.

Our work has explored the gap in cache-operator ALSC
systems that pertains to our interpretation of memory
(re)consolidation, giving both a theoretical justification as
to why this beneficial in decoder-only Transformer LLMs
and empirical verification via an architecture that improves
mathematical reasoning performance. Here we discuss limitations of our method.

Training the Processor solely through next-step cross-entropy can produce high-variance, poorly
localized credit assignment, providing weak supervision for cache rewrites, making it challenging
for the model to escape its strong local optimum. Training a model from scratch may alleviate this
issue. Additionally, we do not include an explicit information—theoretic objective for compression via
reduction of I(X; Z): any information compression can only arise from the data processing inequality
or SGD noise. Whilst direct MI estimation in a high-dimension cache is challenging, a promising
route is controlled noise injection into selected KV entries followed by iterative denoising/refinement,
which constitutes a mapping that reduces (X ; Z) while preserving predictive structure I(Z;Y") (by
the data—processing inequality and denoising-as-regularization). Such a mechanism would essentially
constitute iterative latent reasoning in the model’s memory space; past works exploring this idea in
non-LLM-based frameworks have yielded promising results (Du et al.| 2024)).

Regarding our interpretation/implementation of consolidation and reconsolidation, neuroscientific
literature indicates that these are related but partially distinct processes: consolidation unfolds over
hours to days with systems-level reorganization and sleep-driven replay, whereas reconsolidation is a
brief, retrieval-induced window in which a reactivated trace becomes labile and then re-stabilises
(Dudai et al., 2015} |Stickgold & Walker, [2007). In light of this, our single, online Processor
collapses two modes that in biology differ in triggers and timescales; a closer analogue would pair an
offline, replay-style consolidator with an online, retrieval-contingent reconsolidator. Additionally,
reconsolidation appears to depend on prediction error at retrieval, i.e., a mismatch is often required
to open the plastic window, suggesting that surprise/PE gating (rather than a fixed newline trigger)
would be more suitable for determining when reconsolidation should occur (Exton-McGuinness et al.}
2015; Fernandez et al.,|2016)). More closely aligning future (re)consolidation architectures with these
biological mechanisms may yield substantial gains over our current models.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. Our study uses publicly available, licensed datasets and
synthetic math corpora; no human subjects or private data were involved.

REPRODUCIBILITY STATEMENT

We detail all training and evaluation settings (datasets, preprocessing, hyperparameters, model sizes,
and decoding) in Appendix [D] and provide proofs for theoretical claims in Appendix [A]

REFERENCES

Ben Alderson-Day and Charles Fernyhough. Inner speech: Development, cognitive functions,
phenomenology, and neurobiology. Psychological Bulletin, 141(5):931-965, September 2015.
doi: 10.1037/bul0000021. URL https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4538954/.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev. Recurrent memory transformer, 2022. URL
https://arxiv.org/abs/2207.06881.

Ivan Butakov, Alexander Tolmachev, Sofia Malanchuk, Anna Neopryatnaya, Alexey Frolov, and
Kirill Andreev. Information bottleneck analysis of deep neural networks via lossy compression,
2024. URL https://arxiv.org/abs/2305.08013!

Sviatoslav Chalnev, Matthew Siu, and Arthur Conmy. Improving steering vectors by targeting sparse
autoencoder features, 2024. URL https://arxiv.org/abs/2411.02193|.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang,
and Tony Xia. Theoremqa: A theorem-driven question answering dataset, 2023. URL https:
//arxiv.orqg/abs/2305.12524.

MinGyu Choi and Changhee Lee. Conditional information bottleneck approach for time series
imputation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=KlmcPiDdOJ.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022. URL
https://arxiv.org/abs/2204.02311l

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

11

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538954/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538954/
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2207.06881
https://arxiv.org/abs/2305.08013
https://arxiv.org/abs/2411.02193
https://arxiv.org/abs/2305.12524
https://arxiv.org/abs/2305.12524
https://openreview.net/forum?id=K1mcPiDdOJ
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2110.14168

Under review as a conference paper at ICLR 2026

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdi-
nov. Transformer-XL: Attentive language models beyond a fixed-length context. In Anna
Korhonen, David Traum, and Lluis Marquez (eds.), Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pp. 2978-2988, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1285. URL https:
//aclanthology.org/P19-1285/.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URLhttps://arxiv.org/abs/2501.12948.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A Ortega. Neural networks and
the chomsky hierarchy. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=WbxHAzkeQcn.

Yilun Du, Jiayuan Mao, and Joshua B. Tenenbaum. Learning iterative reasoning through energy
diffusion, 2024. URL https://arxiv.org/abs/2406.111709.

Yadin Dudai, Avi Karni, and Jan Born. The consolidation and transformation of memory. Neuron, 88
(1):20-32, October 2015. ISSN 0896-6273. doi: 10.1016/j.neuron.2015.09.004.

Marc T. Exton-McGuinness, Jonathan L. C. Lee, and Amy C. Reichelt. Updating memories—the
role of prediction errors in memory reconsolidation. Behavioural Brain Research, 278:375-384,
February 2015. ISSN 0166-4328. doi: 10.1016/j.bbr.2014.10.011. Epub 2014 Oct 22.

Evelina Fedorenko and Rosemary Varley. Language and thought are not the same thing: evidence
from neuroimaging and neurological patients. Annals of the New York Academy of Sciences, 1369
(1):132-153, April 2016. doi: 10.1111/nyas.13046. URL https://www.ncbi.nlm.nih,
gov/pmc/articles/PMC4874898/. Epub 2016 Apr 20.

Ninghui Feng, Songning Lai, Jiayu Yang, Fobao Zhou, Zhenxiao Yin, and Hang Zhao. Timesieve:

Extracting temporal dynamics through information bottlenecks, 2024. URL https://arxiv,
org/abs/2406.05036.

12

https://aclanthology.org/P19-1285/
https://aclanthology.org/P19-1285/
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=WbxHAzkeQcn
https://arxiv.org/abs/2406.11179
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874898/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874898/
https://arxiv.org/abs/2406.05036
https://arxiv.org/abs/2406.05036

Under review as a conference paper at ICLR 2026

Rodrigo S. Fernandez, Mariano M. Boccia, and Maria E. Pedreira. The fate of memory: Recon-
solidation and the case of prediction error. Neuroscience & Biobehavioral Reviews, 68:423—441,
September 2016. ISSN 0149-7634. doi: 10.1016/j.neubiorev.2016.06.004. Epub 2016 Jun 7.

Zafeirios Fountas, Martin A Benfeghoul, Adnan Oomerjee, Fenia Christopoulou, Gerasimos Lam-
pouras, Haitham Bou-Ammar, and Jun Wang. Human-like episodic memory for infinite context
llms, 2024. URL https://arxiv.org/abs/2407.09450.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. arXiv preprint arXiv:2211.10435, 2022.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens, 2024. URL
https://arxiv.org/abs/2310.02226.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024. URL |https:
//arxiv.org/abs/2412.06769.

Zirui He, Haiyan Zhao, Yiran Qiao, Fan Yang, Ali Payani, Jing Ma, and Mengnan Du. Saif: A sparse
autoencoder framework for interpreting and steering instruction following of language models,
2025. URL https://arxiv.org/abs/2502.11356l

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Almut Hupbach, Roberto Gomez, Oliver Hardt, and Lynn Nadel. Reconsolidation of episodic
memories: a subtle reminder triggers integration of new information. Learning & Memory, 14
(1-2):47-53, January 2007. doi: 10.1101/Im.365707. Published 2007 Jan 3.

Kenji Kawaguchi, Ziwei Ji, and Leslie Pack Kaelbling. How does information bottleneck help deep
learning? arXiv preprint arXiv:2305.18887, 2023.

Kai Konen, Sophie Jentzsch, Diaoulé Diallo, Peer Schiitt, Oliver Bensch, Roxanne El Baff, Dominik
Opitz, and Tobias Hecking. Style vectors for steering generative large language model, 2024. URL
https://arxiv.org/abs/2402.01618\.

Jonathan L. C. Lee. Reconsolidation: maintaining memory relevance. Trends in Neurosciences, 32
(8):413-420, August 2009. doi: 10.1016/j.tins.2009.05.002. Epub 2009 Jul 27.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=DedFYqgjFueZ.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, and Arthur Szlam. Deliberation in latent space via
differentiable cache augmentation, 2024a. URL https://arxiv.org/abs/2412.17747.

Zichuan Liu, Tianchun Wang, Jimeng Shi, Xu Zheng, Zhuomin Chen, Lei Song, Wengian Dong,
Jayantha Obeysekera, Farhad Shirani, and Dongsheng Luo. Timex++: Learning time-series
explanations with information bottleneck, 2024b. URL https://arxiv.org/abs/2405,
09308,

Martin M. Monti, Lawrence M. Parsons, and Daniel N. Osherson. Thought beyond language: neural
dissociation of algebra and natural language. Psychological Science, 23(8):914-922, August
2012. doi: 10.1177/0956797612437427. URL https://pubmed.ncbi.nlm.nih.gov/
22760883/ Epub 2012 Jul 3.

13

https://arxiv.org/abs/2407.09450
https://arxiv.org/abs/2310.02226
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2502.11356
https://arxiv.org/abs/2402.01618
https://openreview.net/forum?id=De4FYqjFueZ
https://arxiv.org/abs/2412.17747
https://arxiv.org/abs/2405.09308
https://arxiv.org/abs/2405.09308
https://pubmed.ncbi.nlm.nih.gov/22760883/
https://pubmed.ncbi.nlm.nih.gov/22760883/

Under review as a conference paper at ICLR 2026

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. Steering llama 2 via contrastive activation addition, 2024. URL https://arxiv.org/
abs/2312.06681.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple math
word problems? CoRR, abs/2103.07191, 2021. URL |https://arxiv.org/abs/2103|
07191.

Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hidden computation in
transformer language models, 2024. URL https://arxiv.org/abs/2404.15758,

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, and Timothy P. Lillicrap. Compressive
transformers for long-range sequence modelling, 2019. URL https://arxiv.org/abs/
1911.05507k

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
chain-of-thought into continuous space via self-distillation, 2025. URL https://arxiv.org/
abs/2502.21074.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
CoRR, abs/1703.00810, 2017. URL |http://arxiv.orqg/abs/1703.00810.

Samuel Soo, Chen Guang, Wesley Teng, Chandrasekaran Balaganesh, Tan Guoxian, and Yan Ming.
Interpretable steering of large language models with feature guided activation additions, 2025.
URLhttps://arxiv.org/abs/2501.099209.

Robert Stickgold and Matthew P. Walker. Sleep-dependent memory consolidation and reconsolidation.
Sleep Medicine, 8(4):331-343, June 2007. ISSN 1389-9457. doi: 10.1016/j.sleep.2007.03.011.
Epub 2007 Apr 30.

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning, 2025. URL
https://arxiv.org/abs/2502.03275.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. In
Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing,
2000.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction data.
arXiv preprint arXiv:2410.01560, 2024.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse Mini,
and Monte MacDiarmid. Steering language models with activation engineering, 2024. URL
https://arxiv.org/abs/2308.102438.

Denis Ullmann, Olga Taran, and Slava Voloshynovskiy. Multivariate time series information bot-
tleneck. Entropy, 25(5), 2023. ISSN 1099-4300. doi: 10.3390/e25050831. URL https:
//www.mdpi.com/1099-4300/25/5/831l

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adaptive
kv cache merging for llms on long-context tasks, 2024. URL https://arxiv.org/abs/
2407.08454.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,

and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

14

https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2404.15758
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2502.21074
https://arxiv.org/abs/2502.21074
http://arxiv.org/abs/1703.00810
https://arxiv.org/abs/2501.09929
https://arxiv.org/abs/2502.03275
https://arxiv.org/abs/2308.10248
https://www.mdpi.com/1099-4300/25/5/831
https://www.mdpi.com/1099-4300/25/5/831
https://arxiv.org/abs/2407.08454
https://arxiv.org/abs/2407.08454
https://arxiv.org/abs/2201.11903

Under review as a conference paper at ICLR 2026

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. RNNs are not transformers (yet): The key bottleneck
on in-context retrieval. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=h3wbI8Uk1Z.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024. URL |https://arxiv.org/abs/2309.17453|

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong
Ji. CaM: Cache merging for memory-efficient LLMs inference. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 58840-58850. PMLR, 21-27 Jul 2024. URL
https://proceedings.mlr.press/v235/zhang24n.html.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. Hy0: Heavy-
hitter oracle for efficient generative inference of large language models, 2023. URL https:
//arxiv.org/abs/2306.14048.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. AGIEval: A human-centric benchmark for evaluating foundation
models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Findings of the Association
for Computational Linguistics: NAACL 2024, pp. 2299-2314, Mexico City, Mexico, June 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.149. URL
https://aclanthology.org/2024.findings—naacl.149/.

APPENDIX

A PROOFS

A.l1 PROOF OF LEMMA [4.1]

Proof. Under the non-trivial case where Z # Z, by Definition we have that:

X727 ->Y

Under the Data Processing Inequality, we thus have:

I(X;2) < I(X;2).

A.2 PROOF OF THEOREM [4.1]

Proof. Assume for contradiction that there exists some bottleneck Z’ strictly deeper than Cy.,, (i.e.,
Co.n, < Z'). By definition of the partial order, we could discard Cy.,, when predicting S, 11, S0

Do (Sn+1 | CO:TLv Z/) = Do (S77.+1 | Z,)

However, under a decoder-only Transformer, under arbitrary input/output sequence variables
(S0:n, Sn+1), decoding of S,,+1 must be conditioned on Cy.,,, as Cy., is a projection of the in-
put sequence (Sp.,, and is trained to contain all information necessary to predict Sy, ;1. Furthermore,
under this architecture, no further processing occurs on Cj.,, once it has been constructed. Hence,
Cl.n, in its entirety cannot be discarded and replaced by some variable Z’, contradicting Z" < Cq.,,.
Therefore, Cy.,, is the maximal element in the set of bottlenecks, and thus it is the terminal bottle-
neck. O

15

https://openreview.net/forum?id=h3wbI8Uk1Z
https://arxiv.org/abs/2309.17453
https://proceedings.mlr.press/v235/zhang24n.html
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2306.14048
https://aclanthology.org/2024.findings-naacl.149/

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM [4.2]

Proof. Since co., = f4(S0:n) is a deterministic mapping under a vanilla decoder-only Transformer,
we can write our objective function as:
N-1

L(0) = Eptaoscon) | 2 10820 (541 | s0)] (13)
n=0
N—-1
= EP(SO:N,CO;N) [Z logp9 (8”+1 ‘ cO:")} (14)
n=0
N-1
= Z Ep(5n+1550:n) |:10gp9 (Sn+1 ’ CO:n):| (15)
n=0

For two random variables A, B with samples (a, b) from joint distribution p(A, B) and approximate
distribution ¢(A, B), we see that:

q(alb
By 0901 = By loz(al) + 10 2253 (16)
= —H(A|B) — Ey) [Drr [p(alb) || g(alb)]] (17)
=I(A; B) — H(A) — Ep)[Dxr [p(alb) || g(alb)]] (18)
< I(A; B) — H(A) (19)
Which implies that:
N—-1
L(0) <Y I(Con; Snt1) — H(Sns1) (20)
n=0
We can also write L(#) as
N-—-1
L(Q) = Ep(so:N,kOZN,vg:N) [Z Inge (sn+1 ’ S0:n» kO:n+17 vO:n+1):| (21)
n=0
N—-1
= Z]Ep(SO;n,k}o;n+1,’Uo:n+1) |:10gp9 (sn+1 | 80:?7,) kO:n+17 v02n+1)i| (22)
n=0
N-1
= - Z H(Sn+1|SO:naK0:n+1;VO:n+1) (23)
=0
N-1
= I(Sn+1; KO:n+la VO:n+1 |SO:n) - H(Sn+1 ‘SO:n) (24)
n=0
N-1
S I(Sn+1;00:n+1|SO:n) - H(Sn+1|SO:n) (25)
n=0
N-1
S I(SO:n-l-l; C(O:n-i-l) - H(Sn+1 |SO:n) (26)
n=0
N N-—-1
= Z I(SO:n; CO:n) - Z H(Sn+1 ‘SO:n) (27)
n=1 n=0
Thus, combining Equations [20]and 27| we have:
N
2L(9) g ZI SO n7COn + Z CVO n; n+1 H(Sn+1) _H(Sn+1|SO:n)}
n=1
1 N N-1
L) < 5 [2_:1 (S Com) + 3 1 (Com Sr0) = H(Su) = H (S 11S00) |
[

16

Under review as a conference paper at ICLR 2026

GSM8K MATH SVAMP TheoremQA
14.0 455 120
345 138 45.0
15
445
34.0 136
o o @ 44.0 o 110
3] g —~e| g
& & 3 &
335 134 435
105
132 43.0
33.0 100
425
13.0
325
LogiQA Gaokao-MathQA GSM-Hard
23 68
4.5
22
86
21 4.0
84 e Model size
20 o —e— 59M
£35 o
5 5 582 8aM
g g g
19 $| 7 @ —o— 109M
—e— 134M
18 30 80
17 78
25
16 7.6

Figure 5: Size ablation of the Cache Processor on a frozen Llama 3.2 1B backbone, showing per-
epoch performance of each variant on each task.

B CONSOLIDATION/RECONSOLIDATION MECHANISM

Let J,, = Idx(s,,) denote the token indices of a just-completed step and P,, = Idx(s<,,) the indices
of all prior tokens. For each layer £ € {1, ..., L} we construct an index set

70 = J, U TopKY(P.,)

where Tongf) (P<y,) contains the k prior positions with the largest attention mass with the current
step. Writing A(©") € R*** for the backbone’s attention matrix at layer £, head h, over the prefix
5<p, the mass assigned by the tokens of s, to a prior index i € P,, is

H
o _ 1 (¢,h) 0 B o
W G e = gkl

where H denotes the number of attention heads. Only the entries at I,(f) are modified by the Processor;
all other cache positions remain unchanged. This realises (i) consolidation of recently written context,
and (ii) reconsolidation of the few most recalled KVs during the recently written step.

C CACHE PROCESSOR SIZE ABLATION

In this experiment, we ablate the Cache Processor size and training duration using a Llama 3.2 1B
backbone, by varying the Processor feedforward intermediate width, holding depth, number of heads,
selection policy (RSW + top-k), and all training hyperparameters fixed (same as in Section [6.1} see
details in Section [D} The backbone is trained for one epoch of SFT on OpenMathInstruct-2. We
train four Processors one this backbone (of 59M, 84M, 109M, 134M parameters). Each Processor is
trained for four epochs, and we evaluate at the end of every epoch.

Results are shown in Figure 5] Increasing training duration generally improves performance of
models on all taks, with this effect being most apparent on the MATH, TheoremQA and GSM-Hard
tasks, which typically contains the hardest problems. For other tasks, performance beyond one epoch
of training is more variable across all models, often plateauing early. This suggests that additional
training may not be beneficial in cases where downstream tasks are simpler. Additionally, there is
no clear winner in model size across all tasks. This suggests that training so as to make full use of
the model capacity is challenging. We hypothesise that this is due to poor credit assignment from
next-step supervision, making it challenging to escape the strong local optimum that the backbone
resides in, as discussed in Section

17

Under review as a conference paper at ICLR 2026

D REPRODUCIBILITY

D.1 MAIN RESULTS

Here we list details for reproducibility of our main experimental run in Section[6.1}

Training details . We train on the first 128k examples from the 1M variant of the OpenMathInstruct-
2 dataset (Toshniwal et al.,|2024). For all runs, we use a batch size of 128 with learning rate of 1e — 4.
We use a constant LR with no warmup for all runs except for experiments with Llama 3.1 8B, where
we use a warmup ratio of 0.05 and cosine LR scheduling. We truncate training sequences to a max
length of 512 tokens.

Evaluation details. For all evaluation runs, we employ greedy decoding, truncating responses to a
maximum length of 2048. We evaluate on seven tasks:

* GSMBS8K: Grade-school math word problems requiring multi-step arithmetic reasoning and
short numeric answers. (Cobbe et al.| [2021)

e MATH: Competition-style mathematics problems (e.g., algebra, geometry, number theory,
counting) with formal, multi-step solutions. |Hendrycks et al.| (2021)

* SVAMP: Simple arithmetic word problems rewritten with semantic variations to test robust-
ness to superficial cues. (Patel et al.,[2021)

* TheoremQA: Question answering that requires recalling, understanding, or applying mathe-
matical theorems and their conditions. (Chen et al., [2023)

* LogiQA: Multiple-choice logical reasoning and argument analysis questions modeled after
civil service exam items. (Liu et al.| [2020)

* Gaokao-MathQA: Math question answering drawn from China’s Gaokao (college entrance)
exams, often involving symbolic manipulation and problem solving. (Zhong et al., [2024)

* GSM-Hard: A harder subset of grade-school math problems with much larger numbers,
designed to stress multi-step reasoning beyond standard GSM8K difficulty.(Gao et al., [2022)

Pause token baseline configuration. During training, we instantiate 16 pause tokens in the
embedding table. During training/generation, we append these 16 tokens to the end of the question
prefix. We perform SFT via standard cross entropy loss on response completions.

Bottlenecked Transformer Configuration. For all backbones, we fix the Processor design across
backbones (one block per backbone layer; hidden size d,=512; MLP intermediate size 2240; 16
heads per block, fixing reconsolidation budget k = 32. Table D.I|shows parameter counts for the
Processor for each backbone, these vary because the projection layers to/from KV-space and number
of Processor blocks depend on the backbone’s hidden dimension, number of attention heads, and
number of layers.

Backbone Processor Params
Llama 3.2 1B 88.6OM
Llama 3.2 3B 184.63M
Llama 3.1 8B 211.01M
Qwen 3 0.6B 184.63M

Table 4: Cache-Processor parameter counts per backbone for mathematical reasoning performance
experiment.

D.2 ABLATIONS

For these experiments, where applicable, we use the same training/architectural configuration for
SFT/Bottleneck models as is detailed in Section [D.1] using a Llama 3.2 1B Backbone.

18

Under review as a conference paper at ICLR 2026

D.3 COMPUTATIONAL OVERHEAD

For a Bottlenecked Transformer consisting of a Llama 3.2 1B backbone with an 89M parameter
Cache Processor, setting k& = 32, memory footprint during the Cache Processor training stage is
approximately 6x that of performing full parameter SFT, owing to the chunked training process which
prevents parallelism for entire training examples, induces extra padding tokens, as well as the high
computational cost of processing a large number of entries in a high dimensional KV cache. As such,
wall clock time for a one-epoch training run for the Cache Processor is approximately 20x longer
than performing SFT on the backbone. Note that this is partially an engineering issue: our method is
currently incompatible with efficient attention methods such as Flash Attention.

During evaluation, memory footprint of the Bottlenecked Transformer with above configuration is
approximately 25% higher than a vanilla Transformer, with a 45% increase in wall clock time, for an
eval batch size of 16 in both cases. This relative reduction compared to training is due to the fact that
during generation, the Cache Processor is invoked infrequently (once every reasoning step).

STATEMENT ON THE USE OF LLMS
During manuscript preparation, we used large language models for editing, phrasing suggestions,

and to assist in literature search. No analyses, results, proofs, or figures were produced by LLMs; all
technical content, experiments, and conclusions are our own.

19

	Introduction
	Preliminaries
	State-Space formulation of decoding
	Sequence-level auxiliary latent-space computation

	Related Work
	Motivation and Theory
	The Information Bottleneck Method
	Information Bottlenecks and Deep Learning
	IB Objective for Generalised Language Reasoners
	Analysis of Information Bottlenecks in Decoder-Only Transformer LLMs
	Comparisons with RNNs and Cache Compression Methods
	Architectural Solutions

	Bottlenecked Transformers
	Experiments
	Performance on Mathematical Reasoning Tasks
	Epoch-Matched Training Budget Ablation
	Reconsolidation Budget (k) Ablation
	Recent step window (R) ablation
	Processor Rewrite Magnitudes

	Discussion and Future Work
	Proofs
	Proof of Lemma 4.1
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Consolidation/Reconsolidation Mechanism
	Cache Processor Size Ablation
	Reproducibility
	Main Results
	Ablations
	Computational Overhead

