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ABSTRACT

Modeling non-stationary processes, where statistical properties vary across the in-
put domain, is a critical challenge in machine learning; yet most scalable methods
rely on a simplifying assumption of stationarity. This forces a difficult trade-
off: use expressive but computationally demanding models like Deep Gaussian
Processes, or scalable but limited methods like Random Fourier Features (RFF).
We close this gap by introducing Random Wavelet Features (RWF), a framework
that constructs scalable, non-stationary kernel approximations by sampling from
wavelet families. By harnessing the inherent localization and multi-resolution
structure of wavelets, RWF generates an explicit feature map that captures com-
plex, input-dependent patterns. Our framework provides a principled way to gen-
eralize RFF to the non-stationary setting and comes with a comprehensive theoret-
ical analysis, including positive definiteness, unbiasedness, and uniform conver-
gence guarantees. We demonstrate empirically on a range of challenging synthetic
and real-world datasets that RWF outperforms stationary random features and of-
fers a compelling accuracy-efficiency trade-off against more complex models, un-
locking scalable and expressive kernel methods for a broad class of real-world
non-stationary problems.

1 INTRODUCTION

The ability to model complex, real-world phenomena is one of the central challenges in machine
learning. Domains such as geospatial modeling, where terrain varies drastically across regions, or
speech analysis, where signals exhibit bursts of volatility, are often characterized by pronounced
non-stationarity, meaning their statistical properties change across the input space. Gaussian Pro-
cesses (GPs) offer a principled framework for such problems, providing robust uncertainty estimates
and flexible, non-parametric modeling (Williams & Rasmussen, 2006). Despite these advantages,
exact GPs suffer from two major limitations: their expressivity is often constrained by the choice of
kernel, and their computational cost scales cubically with the number of training points, rendering
them impractical for modern large-scale applications (Liu et al., 2020).

Most of the current approaches force a trade-off between expressivity and efficiency. On one hand,
methods like Random Fourier Features (RFF) achieve impressive scalability by approximating the
kernel with a linear-in-data feature map (Cutajar et al., 2017; Avron et al., 2017; Rahimi & Recht,
2007). Yet, their dependence on Bochner’s theorem (Bochner, 2005) fundamentally restricts them
to stationary kernels, which assume uniform behavior across the entire domain. Applying these
models to non-stationary data leads to systematic mis-specification, resulting in compromised pre-
dictive accuracy and uncalibrated uncertainty estimates (Cheema & Rasmussen, 2024; Hensman
et al., 2013; 2018). On the other hand, expressive models like Deep GPs (Salimbeni et al., 2019),
spectral mixtures (Tompkins et al., 2020), and input-dependent kernels (Rudner et al., 2020) can
capture non-stationarity, but they often reintroduce prohibitive computational costs, complex infer-
ence schemes, and challenges in optimization and hyperparameter tuning. The gap between scalable
stationary models and complex non-stationary ones still remains.

In this work, we close this gap by introducing Random Wavelet Features (RWF), a scalable and
expressive framework for non-stationary kernel approximation. Instead of relying on globally sup-
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ported sinusoidal bases like RFF and its variants, we construct random features from wavelets fam-
ily of functions that are inherently localized in both space and frequency. By sampling wavelets
at random scales and shifts, RWF generates an explicit feature map that can adapt to local data
characteristics. This multi-resolution structure allows the model to capture sharp, localized events
with fine-scale wavelets while simultaneously modeling smooth, long-range trends with coarse-scale
wavelets. The result is a principled method that generalizes random features to the non-stationary
setting while preserving the linear-time complexity that makes them elegant and efficient. Our
main contributions are threefold. First, we provide a comprehensive theoretical analysis of RWF,
including positive definiteness of the induced kernels, unbiasedness and variance bounds, and uni-
form convergence guarantees with explicit sample complexity. Second, we show that RWF achieves
O(ND2) training complexity, retaining the scalability of random feature methods while directly
encoding non-stationarity through wavelet localization. Finally, we demonstrate empirically on syn-
thetic, speech, and large-scale regression benchmarks that RWF consistently improves upon sta-
tionary random features and offers atleast competitive accuracy–efficiency trade-off against more
complex non-stationary models.

1.1 RELATED WORK

Scalable Kernel Approximations. The random features framework was pioneered by (Rahimi &
Recht, 2007), showing shift-invariant kernels can be approximated using random Fourier features
with linear-time computations. This framework has since been extended in several directions, in-
cluding computationally efficient variants such as Fast kernel learning (Wilson et al., 2014), theoret-
ical guarantees on approximation error (Sriperumbudur & Szabó, 2015; Avron et al., 2017; Li et al.,
2021), and structured sampling schemes (Choromanski et al., 2017). There are works that extend the
random Fourier features beyond classical settings using variational approximations (Hensman et al.,
2018), adaptive feature learning (Zhen et al., 2020; Shi et al., 2024), and even a connection to quan-
tum machine learning (Landman et al., 2022). Recent progress extends spectral approximations to
capture a wider spectrum of kernel families, thereby enhancing the expressivity of scalable feature
maps (Langrené et al., 2024). While these methods achieve scalability, their reliance on stationary
Fourier bases limits their ability to capture non-stationary (Paciorek & Schervish, 2003) or localized
phenomena, which are crucial in many scientific domains.

Wavelet-motivated approximations. Wavelets have previously been used for kernel design through
wavelet support vector machines and wavelet kernel learning (Zhang et al., 2004; Yger & Rakotoma-
monjy, 2011), where kernels are derived analytically or wavelet transforms are used as preprocess-
ing. More recently, Guo et al. (2024) proposed a Bayesian kernel model based on fixed wavelet
bases for high-dimensional Bayesian linear regression. While these approaches illustrate the value
of wavelets for capturing local structure, they rely on fixed or predefined wavelets dictionaries and
do not provide scalable Monte Carlo approximations or theoretical guarantees such as unbiasedness
or uniform convergence.

Hybrid and modern kernel learning. Several approaches have been developed to capture non-
stationarity in GPs through spectral mixture kernels (Wilson & Adams, 2013; Remes et al., 2017)
and deep Gaussian processes (Damianou & Lawrence, 2013; Salimbeni et al., 2019), though both
remain costly for large datasets. Scalable variants include KISS-GP (Wilson & Nickisch, 2015),
which exploits structured interpolation, and deep kernel learning (Wilson et al., 2016) combines
neural feature extractors with GPs. More recent efforts include deep random features for spatiotem-
poral learning (Chen et al., 2024), graph-based random Fourier features (Zhang et al., 2025), and
adaptive RKHS constructions (Shi et al., 2024). Despite these advances, existing methods often
trade off scalability, expressivity, and interpretability. Our work is positioned at this intersection
where we aim to design feature maps that inherit the scalability of random features while enabling
flexible, non-stationary modeling.

2 PRELIMINARIES AND BACKGROUND

A brief review of Gaussian Process regression (GPR), sparse variational GPs, and random-feature
GPs is provided to ground our wavelet construction.
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2.1 GAUSSIAN PROCESSES

Given training inputs X = [x1, . . . ,xN ]⊤ ∈ RN×d and targets y ∈ RN , we consider a Gaussian
process prior over a latent function f . The observations yn are assumed to be noisy evaluations of
this function at the corresponding inputs xn:

f ∼ GP(0, k), yn = f(xn) + εn, where εn ∼ N (0, σ2). (2.1)

We define the covariance matrix KXX ∈ RN×N with [KXX ]ij = k(xi,xj). The log marginal
likelihood, used for training the hyperparameters of GP, is given by the following expression:

log p(y | X) = − 1
2y

⊤(KXX + σ2IN )−1y − 1
2 log det(KXX + σ2IN )− N

2 log(2π). (2.2)

For a test input x∗, let k∗X = [k(x∗,x1), . . . , k(x∗,xN )], k∗∗ = k(x∗,x∗), and

α = (KXX + σ2IN )−1y. (2.3)

The predictive posterior moments for test input x∗ takes the following form:

µ∗(x∗) = k∗Xα, (2.4a)

σ2
∗(x∗) = k∗∗ − k∗X(KXX + σ2IN )−1kX∗, (2.4b)

with kX∗ = k⊤
∗X . The key bottleneck of exact inference is its computational costs O(N3) time,

and O(N2) memory. To address these challenges, several approaches have been introduced in the
literature; the most common ones are the sparse approximation of GP.

Stochastic Variational GPs (SVGP). In SVGP, we introduce Mu, inducing inputs Zu =
[z1, . . . ,zMu ]

⊤ and inducing variables u = f(Zu) equipped with the prior p(u) = N (0,Kuu),
where [Kuu]ij = k(zi, zj). Defining Kfu ∈ RN×Mu with [Kfu]nm = k(xn, zm) and Qff =
KfuK

−1
uuKuf , the conditional prior becomes

p(f | u) = N
(
KfuK

−1
uuu, Kff −Qff

)
. (2.5)

A Gaussian variational posterior q(u) = N (m,S) induces q(f) = N (µ,Σ), with µ = Am and
Σ = Kff − Qff + ASA⊤, where A = KfuK

−1
uu . Under a Gaussian likelihood p(yn | fn) =

N (yn | fn, σ2), the ELBO simplifies to

L =

N∑
n=1

Eq(fn)[log p(yn | fn)]−KL(q(u) ∥ p(u)) , (2.6)

where Eq(fn)[log p(yn | fn)] = − 1
2σ

−2
[
(yn − µn)

2 +Σnn
]
− 1

2 log(2πσ
2).

Using a minibatch B of size b gives the unbiased estimator L̂ = (N/b)
∑
n∈B Eq(fn)[log p(yn |

fn)]−KL(q(u)∥p(u)), with per-iteration complexityO(bM2
u) plus a one-timeO(M3

u) factorization
of Kuu.

Predictive moments at a test point x∗ follow the closed-form GP equations: µ∗(x∗) = k∗uK
−1
uum

and σ2
∗(x∗) = k∗∗−k∗uK

−1
uuku∗+k∗uK

−1
uuSK

−1
uuku∗, where k∗u = [k(x∗, z1), . . . , k(x∗, zMu)].

2.2 RANDOM FOURIER FEATURE GPS (RFF-GP)

The random Fourier features approach introduced by Rahimi & Recht (2007) approximates station-
ary kernels using explicit feature maps. Consider a zero-mean Gaussian process f ∼ GP(0, k) with
a stationary kernel k(x,x′) = k(x−x′). By Bochner’s theorem (Bochner, 2005), the kernel admits
the spectral representation

k(x,x′) =

∫
Rd
eiω

⊤(x−x′)p(ω) dω, (2.7)

where p(ω) is the normalized spectral density of kernel k. Introducing a random phase b ∼
Unif[0, 2π], this can be expressed as an expectation over cosine features:

k(x,x′) = Eω,b

[
2 cos(ω⊤x+ b) cos(ω⊤x′ + b)

]
. (2.8)
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Approximating the expectation with D Monte Carlo samples {(ωj , bj)}Dj=1 yields the random fea-
ture map z : X → RD,

z(x) =
1√
D

[
ϕ1(x), . . . , ϕD(x)

]⊤
, ϕj(x) =

√
2 cos(ω⊤

j x+ bj), (2.9)

such that the approximate kernel is k̂(x,x′) = z(x)⊤z(x′).

From the GP perspective, this corresponds to replacing the infinite-dimensional feature space with
the finite-dimensional features z(·), leading to a Bayesian linear regression model. Placing a Gaus-
sian prior w ∼ N (0, ID) on the weights, the Gaussian posterior with covariance and mean given
by,

Sw =
(
ID + σ−2Z⊤Z

)−1
, (2.10a)

mw = σ−2SwZ⊤y, (2.10b)

where Z ∈ RN×D collects the feature maps of the training inputs. The Gaussian predictive distri-
bution for a new test point x∗ has the mean and covariance defined as,

µ∗(x∗) = z(x∗)
⊤mw, (2.11a)

Var[y∗ | D] = z(x∗)
⊤Swz(x∗) + σ2. (2.11b)

The RFF-GP framework is thus a scalable approximation for stationary kernels. However, its re-
liance on globally supported Fourier features limits its ability to model non-stationarity. For further
details on RFF and examples, see Appendix A.1

3 PROPOSED METHODOLOGY

Random Fourier-based kernel approximation methods, which exploit Bochner’s theorem (Rahimi &
Recht, 2007), yield scalable approximations for stationary kernels but are inherently incapable of
modeling non-stationary covariance structures. Sparse variational GPs model non-stationarity with
expressive kernels yet rely on inducing sets and cubic costs in Mu per update. We propose Ran-
dom Wavelet Features (RWF), which construct non-stationary kernels via multi-resolution, locally
supported wavelets. By sampling wavelet scales and shifts, RWF provides an explicit feature map
z(·) that: (i) induces a positive definite non-stationary kernel; (ii) preserves linear-time training and
prediction as in RFF-GPs; and (iii) captures localized, multi-resolution structure that stationary RFF
lacks.

3.1 WAVELET-BASED KERNEL CONSTRUCTION

To model non-stationarity, a kernel’s properties must adapt across the input domain. Stationary ker-
nels, often approximated by Random Fourier Features (RFF), rely on globally supported sinusoidal
bases that are inherently spatially invariant. In contrast, wavelets offer a natural alternative by pro-
viding a basis that is localized in both space and frequency. By randomizing the scale (controlling
frequency) and shift (controlling spatial location) of wavelet atoms, we can construct a flexible,
non-stationary kernel.

Our construction begins with a mother wavelet ψ : Rd → R, a function with zero mean and unit L2

norm (see Appendix A.2 for details). From ψ, we generate a family of wavelet atoms via isotropic
scaling and translation:

ψs,t(x) = s−d/2ψ

(
x− t

s

)
, for scale s > 0 and shift t ∈ Rd. (3.1)

Each atom ψs,t is a localized “wave packet” centered at t with spatial extent proportional to s. Let
Θ = (0,∞)× Rd be the parameter space of scales and shifts. We define a non-stationary kernel by
integrating over this space with respect to a non-negative measure µ(ds dt):

k(x,y) =

∫
Θ

ψs,t(x)ψs,t(y)µ(ds dt). (3.2)

4
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This construction guarantees positive definiteness, as the integrand is a product of scalar features. If
µ has a density p(s, t) ≥ 0, the kernel becomes:

k(x,y) =

∫ ∞

0

∫
Rd
ψs,t(x)ψs,t(y) p(s, t) dt ds. (3.3)

The density p(s, t) governs the kernel’s properties. A common choice is a factorized form p(s, t) =
ps(s)pt(t), where ps (e.g., log-uniform) spans multiple resolutions and pt (e.g., uniform over the
data’s convex hull) provides spatial coverage.

3.2 RANDOM WAVELET FEATURE SAMPLING STRATEGY

The integral in equation 3.3 is typically intractable. We approximate it via Monte Carlo sampling,
which forms the basis of our random features.
Definition 3.1 (Random Wavelet Features). Sample (si, ti)Di=1 i.i.d. from a distribution with density
p(s, t) and define the random feature map z : Rd → RD as:

z(x) =
1√
D

[ψs1,t1(x), . . . , ψsD,tD (x)]
⊤
. (3.4)

The corresponding kernel approximation is k̂(x,y) = z(x)⊤z(y).

By construction, k̂(x,y) is an unbiased estimator of k(x,y). This formulation transforms the kernel
method into a Bayesian linear model, enabling efficient training and prediction. The full procedure
is detailed in Algorithm 1.

Algorithm 1 RWF-GP Training and Prediction
1: Input: Training data (X,y), test inputs X∗, number of features D, wavelet ψ, sampling distri-

bution p(s, t).
2: Hyperparameters: Noise variance σ2, parameters of p(s, t).
3: Training:
4: Sample (si, ti) ∼ p(s, t) for i = 1, . . . , D.
5: Construct feature matrix Z ∈ RN×D where Zni = 1√

D
ψsi,ti(xn).

6: Compute weight posterior: Sw = (ID + σ−2Z⊤Z)−1 and mw = σ−2SwZ
⊤y.

7: Optimize hyperparameters (e.g., σ2, params of p) by maximizing the marginal likelihood of the
Bayesian linear model.

8: Prediction:
9: Construct test feature matrix Z∗ ∈ RN∗×D where [Z∗]ji =

1√
D
ψsi,ti(x∗,j).

10: Compute predictive mean: µ∗ = Z∗mw.
11: Compute predictive variance: σ2

∗ = diag(Z∗SwZ
⊤
∗ ) + σ2.

12: Output: Predictive distribution N (µ∗,σ
2
∗).

3.3 PRACTICAL CONSIDERATIONS

Computational Complexity. RWF is efficient because computational cost scales linearly with the
dataset size. ConstructingD random wavelet features overN inputs of dimension d costs O(NDd),
after which training reduces to the primal form of GP regression in a D-dimensional feature space.
Forming Z⊤Z requires O(ND2) and the resulting D ×D system is solved in O(D3), so for N≫
D the overall training cost is dominated by O(ND2). Predictions require O(D2) per test point.
In contrast, Exact GPs scale as O(N3) and SVGP incurs O(NM2) per optimization step due to
iterative variational updates. RWF computes its posterior in a single closed-form solve, yielding
substantial wall-clock speedups for large-scale non-stationary learning.

The key to modeling non-stationarity lies in the practical choices for the wavelet family and sampling
distribution. The choice of mother waveletψ (e.g., Morlet for time-frequency analysis or Daubechies
for sharp transitions) and the sampling distribution p(s, t) (e.g., log-uniform for scales, uniform for
shifts) (Bergstra & Bengio, 2012; Jeffreys, 1946) allows the model to adapt to multi-resolution signal
structures. For stable training, it is beneficial to regularize the model by constraining the sampling
range for scales and applying weight decay to the linear model.

5
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4 THEORETICAL ANALYSIS

To analyze the quality of our approximation, we establish uniform convergence guarantees. Our
analysis relies on bounding the complexity of the function class induced by the wavelet features.
We define the following key quantities: B = sups,t,x |ψs,t(x)| as the uniform bound on the feature
magnitude, and K = supx k(x,x

′) as the maximum kernel value.

4.1 POSITIVE DEFINITENESS OF WAVELET KERNELS

Theorem 4.1 (Positive Definiteness of Wavelet-Based Kernels). Let ψ : Rd → R be a mother
wavelet function, and define the family of wavelets as ψs,t(x) = s−d/2ψ

(
s−1(x− t)

)
for scale

s > 0 and translation t ∈ Rd. Let p(s, t) : R+ ×Rd → [0,∞) be a non-negative measure such that
the integral is well-defined and finite for all x,y ∈ Rd. Then, the function

k(x,y) =

∫
R+

∫
Rd
ψs,t(x)ψs,t(y) p(s, t) dt ds (4.1)

is a positive definite kernel on Rd × Rd.

(Proof in Appendix A.4.)

4.2 UNBIASEDNESS AND VARIANCE BOUNDS

Lemma 4.1 (Unbiasedness). For all x,y ∈ X , the wavelet random feature approximation is unbi-
ased: E[k̂(x,y)] = k(x,y).

(Proof in Appendix A.5.)
Lemma 4.2 (Variance Bound). For all x,y ∈ X , the variance of the approximation is bounded:

Var
[
k̂(x,y)

]
≤ B2

D
. (4.2)

(Proof in Appendix A.6.)

4.3 UNIFORM CONVERGENCE GUARANTEES

Theorem 4.2 (Uniform Convergence of Random Wavelet Features). Let M ⊂ Rd be a compact set
with diameter diam(M). Let k(x,y) be a positive definite kernel as in Theorem 4.1, and define the
random feature map z : Rd → RD by independently sampling (si, ti) ∼ p for i = 1, . . . , D and
setting

z(x) =
1√
D

[ψs1,t1(x), . . . , ψsD,tD (x)]
⊤
. (4.3)

Assume k and the feature map are Lipschitz continuous with constants Lk and Lz , respectively.
Then, for any ϵ > 0,

Pr

[
sup

x,y∈M
|z(x)⊤z(y)− k(x,y)| ≥ ϵ

]
≤ 2

(
4 diam(M)Lz

ϵ

)2d

exp

(
−Dϵ

2

8B2

)
. (4.4)

(Proof in Appendix A.7.)

4.4 SAMPLE COMPLEXITY ANALYSIS

The above theorem provides explicit sample complexity bounds. To achieve approximation error ϵ
with probability at least 1− δ, it suffices to choose

D ≥ 8B2

ϵ2

(
2d log

(
4 diam(M)Lz

ϵ

)
+ log

(
2

δ

))
. (4.5)

This result is derived by inverting the probability bound in Theorem 4.2. The constants B and Lz
depend on the choice of wavelet and are discussed in Appendix A.2. This shows that the number of
required features scales logarithmically with the desired accuracy and confidence level.
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Figure 1: Predictive performance of different GP methods on a step function regression task. Each
panel shows the predictive mean (solid line) with ±2σ confidence intervals (shaded), training data
(dots). RWF-GP (ours) captures the discontinuities sharply while maintaining calibrated uncer-
tainty. In contrast, Exact GP, Sparse Variational GP, and RFF-GP struggle with sharp transitions,
either oversmoothing or miscalibrating the uncertainty.

5 EXPERIMENTS

This section presents experiments designed to evaluate the performance of proposed approach. We
begin by examining the approximation quality of our approach on non-stationary synthetic data,
and then proceed to evaluate it on a highly non-stationary speech signal dataset and benchmark
regression tasks, comparing it to various baseline models. Further details about all the experiments
can be found in Appendix B.

Baselines: We compare against scalable and/or expressive variants: SVGP (Hensman et al., 2013),
RFF-GP (Rahimi & Recht, 2007), Deep GPs (Salimbeni et al., 2019), and exact GPs (when feasible)
as well as specialized GP for non-stationary data: Spectral Mixture kernels (Langrené et al., 2024),
DRF (Chen et al., 2024), IDD-GP (Rudner et al., 2020), and Adaptive RKHS Fourier Feature GPs
(Shi et al., 2024).

5.1 EVALUATION ON SYNTHETIC DATA

We first evaluate RWF on a non-stationary multi-step function, a setting where shallow GPs with
stationary kernels fail to capture input-dependent variations (Rudner et al., 2020). Deep GPs, al-
though offer more expressiveness, struggle with sharp discontinuities. In contrast, RWF enables
shallow GPs to fit accurately: Figure 1 shows that RWF-GP captures the non-stationary structure,
whereas baselines yield overly smooth or oscillatory fits due to limited kernel flexibility. Table 1
illustrates the superior performance of the proposed approach, both in terms of accuracy and train-
ing time, over its competitors. Figure 2 summarizes wall-clock time and memory footprints for the
compared methods, illustrating the scalability of the proposed approach. Ablation study illustrating
the convergence of the proposed approach with feature size is shown in Appendix C.1.
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Figure 2: Scalability on the multi-step function. Time and memory vs. number of training samples
on the multi-step function: RWF is most efficient; SVGP and Deep GP incur higher cost.
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Table 1: Performance comparison of GP baselines on the multi-step function over five runs (mean
± std; lower is better). Bold indicates the best result, and underline indicates the second best.
Methods: Exact = Exact GP, SVGP = Stochastic Variational GP, RFF = Random Fourier Features,
DRF = Deep-RF GP, DGP = Deep GP, SM = Spectral Mixture GP, IDD = Inter-domain Deep GP,
A-RKHS = Adaptive RKHS GP. Results for SM, IDD, and A-RKHS are from Shi et al. (2024).

Exact SVGP RFF DRF DGP SM IDD A-RKHS RWF (Ours)

RMSE 0.190
±0.091

0.231
±0.014

0.246
±0.142

0.190
±0.120

0.162
±0.110

0.210
±0.085

0.107
±0.050

0.095
±0.045

0.071
±0.011

CRPS 0.215
±0.030

0.392
±0.025

0.238
±0.041

0.205
±0.032

0.187
±0.028

0.201
±0.030

0.143
±0.020

0.131
±0.018

0.112
±0.010

NLL 0.042
±0.012

0.123
±0.018

0.118
±0.181

-0.018
±0.216

-0.268
±0.211

0.220
±0.180

-0.820
±0.080

-1.210
±0.075

-1.879
±0.061

Time 12 15 11 18 20 17 17 11 9

5.2 TIMIT SPEECH SIGNAL

We evaluate our approach on a regression task derived from the TIMIT corpus, following prior GP-
based studies (Shi et al., 2024). TIMIT poses a challenge due to strong non-stationarities in the
audio signal, such as localized consonant bursts and slowly varying regions. Models relying on
stationary kernels struggle to capture these variations without either over-smoothing or requiring a
large number of features. Unlike RFF, RWF allocates resolution adaptively: small scales capture
sharp attacks and large scales capture smooth regions, thus reducing approximation variance for a
fixed feature size. Results: Table 2 reports RMSE and training time. RWF-GP achieves the lowest
error compared to the baselines. RFF-GP performs worst with the same number of features D,
reflecting inefficient coverage of localized spectral shifts. Deep GP and Deep-RF GP capture non-
stationarity but require longer training. Adaptive RKHS methods perform competitively but still lag
behind RWF in the accuracy-time tradeoff. Further details about the experiment are mentioned in
Appendix C.2.

Table 2: TIMIT regression: RMSE, CRPS, and NLL (mean ± std over 5 runs), and training time.
Bold indicates the best result, and underline indicates the second best.

Exact RFF SVGP DGP DRF IDD A-RKHS RWF (Ours)

RMSE 2.10±0.008 2.13±0.004 2.28±0.005 0.98±0.005 0.54±0.005 0.57±0.015 0.48±0.003 0.42±0.003
CRPS 1.92±0.020 1.95±0.018 2.10±0.025 0.85±0.015 0.49±0.010 0.51±0.014 0.44±0.009 0.39±0.006
NLL 3.25±0.02 3.31±0.10 3.52±0.14 1.82±0.09 1.12±0.06 0.84±0.07 0.75±0.05 0.56±0.04
Time 133 110 120 131 140 126 141 90

5.3 PERFORMANCE ON UCI DATASET

To evaluate generalization beyond synthetic and domain-specific tasks, we benchmark on seven
standard regression datasets from the UCI repository (Dua & Graff, 2019), widely used in GP lit-
erature. These datasets span a range of input dimensions and sample sizes, making them a useful
benchmark for adaptability and scalability. Following established practice (Salimbeni et al., 2019;
Rudner et al., 2020; McDonald & Álvarez, 2021), we use a 90/10 train–test split, normalize the
inputs, and standardize the outputs. Results. Table 3 reports RMSE and training time. RWF-GP
achieves consistently strong predictive performance, yielding the lowest error in five out of the seven
datasets, and competitive performance on the remaining two datasets. Deep GP and Deep-RF GP
capture some non-stationarity but require longer training time. Spectral mixture kernels provide
partial gains on some datasets.

5.4 PROTEIN DATASET

The Protein dataset has around 45K examples and 9 real-valued input features that originate from
a biological domain and serve as a practical benchmark for regression tasks. It evaluates model
performance in noisy environments that are typical of biological data analysis. Table 4 reports the
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Table 3: Performance on UCI regression benchmarks: RMSE, CRPS, NLL, and training time (min-
utes). Bold indicates the best, and underline indicates the second best.

Data ENERGY CONCRETE AIRFOIL STOCK MOTION KIN8NM NAVAL
1k 1k 1.5k 5k 8k 8k 11k

R
M

SE
RFF 0.66±0.03 6.72±0.50 5.34±0.29 1.86±0.03 1.60±0.02 0.41±0.02 0.13±0.002
SVGP 0.68±0.02 5.92±0.17 5.18±0.07 2.13±0.03 1.87±0.03 0.10±0.02 0.12±0.001
DRF 0.58±0.04 5.01±0.01 3.45±0.11 0.95±0.04 0.44±0.03 0.12±0.03 0.08±0.001
DGP 0.48±0.03 4.55±0.18 3.66±0.08 0.90±0.03 1.39±0.02 0.09±0.02 0.04±0.003
SM 0.67±0.03 5.80±0.19 3.90±0.09 0.92±0.04 1.62±0.03 0.11±0.02 0.06±0.001
IDD 0.55±0.04 4.20±0.08 3.30±0.09 0.88±0.04 1.48±0.03 0.28±0.01 0.07±0.002
A-RKHS 0.51±0.02 4.35±0.12 3.25±0.10 0.86±0.03 1.46±0.03 0.18±0.01 0.04±0.001
RWF (Ours) 0.42±0.02 4.45±0.15 3.20±0.08 0.84±0.03 1.55±0.01 0.09±0.01 0.02±0.001

C
R

PS

RFF 0.61±0.02 6.21±0.40 4.92±0.25 1.72±0.03 1.51±0.02 0.32±0.01 0.11±0.001
SVGP 0.58±0.02 5.20±0.15 4.01±0.06 1.70±0.03 1.48±0.02 0.11±0.01 0.04±0.001
DRF 0.52±0.03 4.68±0.01 3.12±0.09 0.88±0.03 0.40±0.02 0.10±0.02 0.06±0.001
DGP 0.43±0.02 4.25±0.15 3.28±0.07 0.81±0.02 1.32±0.02 0.08±0.01 0.03±0.002
SM 0.63±0.03 5.50±0.18 3.65±0.08 0.84±0.03 1.53±0.03 0.09±0.01 0.05±0.001
IDD 0.49±0.03 3.98±0.07 3.01±0.08 0.80±0.03 1.42±0.02 0.22±0.01 0.06±0.002
A-RKHS 0.46±0.02 4.10±0.10 2.95±0.09 0.78±0.03 1.41±0.03 0.15±0.01 0.03±0.001
RWF (Ours) 0.38±0.02 4.28±0.12 2.88±0.07 0.76±0.03 1.47±0.01 0.07±0.01 0.02±0.001

N
L

L

RFF 1.92±0.08 6.85±0.45 4.92±0.21 2.02±0.05 1.72±0.03 0.56±0.03 0.18±0.002
SVGP 1.80±0.07 6.10±0.30 4.25±0.12 1.98±0.04 1.68±0.03 0.32±0.02 0.10±0.002
DRF 1.62±0.05 5.30±0.15 3.45±0.10 1.32±0.04 0.82±0.04 0.42±0.03 0.15±0.001
DGP 1.40±0.05 5.01±0.22 3.68±0.09 1.29±0.03 1.32±0.03 0.30±0.02 0.08±0.002
SM 1.98±0.08 5.90±0.20 3.88±0.10 1.36±0.04 1.55±0.03 0.33±0.02 0.12±0.002
IDD 1.52±0.06 4.85±0.15 3.20±0.08 1.27±0.04 1.48±0.03 0.70±0.03 0.14±0.003
A-RKHS 1.48±0.04 5.01±0.18 3.12±0.09 1.25±0.04 1.43±0.03 0.33±0.02 0.08±0.001
RWF (Ours) 1.32±0.04 5.10±0.16 2.05±0.08 1.20±0.03 1.41±0.02 0.28±0.02 0.06±0.001

Ti
m

e

RFF 14 10 10.4 16 14 14 30
SVGP 14 12 10 12.2 18 23 36
DRF 15 16 10.2 15 18 16 33
DGP 15.6 13 17.8 20 20 27 35
SM 17 18 19 12.3 21 24 24
IDD 11.1 11 20 16 19 22 29
A-RKHS 15.3 17 15 15 22 30 35
RWF (Ours) 9 8 9.6 10 12 9 24

results. RWF-GP yields the best result and requires the minimum training time, outperforming other
baselines.

Table 4: Results on the Protein dataset (45K samples). We report RMSE, CRPS, and NLL (mean ±
std over 5 runs) and training time (minutes). Bold indicates the best result, and underline indicates
the second best.

RFF SVGP DRF DGP SM IDD A-RKHS RWF (Ours)

RMSE 5.41±0.01 5.40±0.01 4.65±0.14 4.35±0.01 4.55±0.02 4.42±0.01 4.32±0.01 4.25±0.02
CRPS 4.92±0.04 4.88±0.03 4.12±0.10 3.86±0.02 4.01±0.05 3.90±0.03 3.78±0.02 3.65±0.02
NLL 3.98±0.06 3.92±0.05 3.21±0.08 2.89±0.04 3.05±0.06 2.95±0.05 2.82±0.03 2.71±0.03
Time (min) 95 120 130 120 133 129 130 90

6 CONCLUSION

We introduced Random Wavelet Features (RWF), a scalable and principled framework for expres-
sive non-stationary kernel approximation. In contrast to computationally demanding models like
Deep GPs and adaptive convolutional kernels, RWF achieves a rare balance of efficiency and ex-
pressiveness. By leveraging randomized wavelet families, RWF explicitly encodes the localized,
multi-resolution patterns inherent in complex real-world processes. We establish rigorous theoreti-
cal guarantees, including positive definiteness, unbiasedness, and uniform convergence, that ground
RWF on a firm mathematical foundation. Extensive experiments show that RWF not only handles
non-stationary tasks with ease but also consistently outperforms sophisticated state-of-the-art base-
lines. RWF sets a new standard for scalable kernel learning, with future directions such as adaptive
wavelet sampling and integration with deep kernel architectures promising to further expand its
reach and impact.
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Thomas McDonald and Mauricio Álvarez. Compositional modeling of nonlinear dynamical systems
with ode-based random features. Advances in Neural Information Processing Systems, 34:13809–
13819, 2021.

Christopher Paciorek and Mark Schervish. Nonstationary covariance functions for gaussian process
regression. Advances in neural information processing systems, 16, 2003.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Sami Remes, Markus Heinonen, and Samuel Kaski. Non-stationary spectral kernels. Advances in
neural information processing systems, 30, 2017.

Tim GJ Rudner, Dino Sejdinovic, and Yarin Gal. Inter-domain deep gaussian processes. In Interna-
tional Conference on Machine Learning, pp. 8286–8294. PMLR, 2020.

Hugh Salimbeni, Vincent Dutordoir, James Hensman, and Marc Deisenroth. Deep gaussian pro-
cesses with importance-weighted variational inference. In International Conference on Machine
Learning, pp. 5589–5598. PMLR, 2019.

Xinxing Shi, Thomas Baldwin-McDonald, and Mauricio A Álvarez. Adaptive rkhs fourier features
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A RANDOM FEATURES FOR GAUSSIAN PROCESS

A.1 RANDOM FOURIER FEATURES FOR STATIONARY KERNELS

Let k : Rd × Rd → R be a stationary kernel, i.e., k(x,x′) = k(x − x′). By Bochner’s theorem, k
admits the following representation in terms of a spectral density p(ω):

k(x− x′) =

∫
Rd
eiω

⊤(x−x′) p(ω) dω. (A.1)

Equivalently,

k(x− x′) = Eω∼p(ω)

[
eiω

⊤x e−iω
⊤x′
]
. (A.2)

Expanding the complex exponential into sine and cosine terms gives

k(x− x′) = Eω∼p(ω)

[
cos
(
ω⊤x

)
cos
(
ω⊤x′)+ sin

(
ω⊤x

)
sin
(
ω⊤x′) ]. (A.3)

Introducing an auxiliary random phase b ∼ Unif[0, 2π], one can rewrite this as

k(x− x′) = Eω,b

[
2 cos

(
ω⊤x+ b

)
cos
(
ω⊤x′ + b

)]
. (A.4)

Thus, an unbiased Monte Carlo approximation with M samples {ωm}Mm=1 yields

k(x− x′) ≈ 2

M

M∑
m=1

cos
(
ω⊤
mx+ bm

)
cos
(
ω⊤
mx′ + bm

)
, (A.5)

where ωm ∼ p(ω) and bm ∼ Unif[0, 2π].

This naturally leads to the random feature mapping

ϕ(x) =
√

2
M


cos(ω⊤

1 x+ b1)
cos(ω⊤

2 x+ b2)
...

cos(ω⊤
Mx+ bM )

 , (A.6)

so that k(x,x′) ≈ ϕ(x)⊤ϕ(x′).

Example (Squared-Exponential Kernel). The squared-exponential kernel is defined as

k(x,x′) = σ2 exp

(
−∥x− x′∥2

2ℓ2

)
, (A.7)

where ℓ is the lengthscale and σ2 the kernel variance. Its Fourier transform (up to normalization) is
given by

p(ω) =
ℓd

(2π)d/2
exp
(
− 1

2ℓ
2∥ω∥2

)
, (A.8)

which corresponds to a Gaussian distribution N (0, ℓ−2Id). Thus, for the squared-exponential ker-
nel, random Fourier features are obtained by sampling ωm ∼ N (0, ℓ−2Id) in the above construc-
tion.
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A.2 WAVELET PRELIMINARIES

Mother wavelet and admissibility. A (real) mother wavelet ψ : Rd → R satisfies: (i) zero mean∫
Rd ψ(x) dx = 0; (ii) square integrability ψ ∈ L2(Rd); (iii) admissibility constant

Cψ =

∫
Rd

|ψ̂(ω)|2

∥ω∥d
dω <∞, (A.9)

ensuring invertibility of the continuous wavelet transform (CWT).

Scaled-translated wavelets. For scale s > 0 and translation t ∈ Rd,

ψs,t(x) = s−d/2ψ

(
x− t

s

)
. (A.10)

Energy is preserved: ∥ψs,t∥L2 = ∥ψ∥L2 . If ψ has compact support contained in a ball of radius R,
then ψs,t has support radius sR, yielding spatial localization.

Continuous wavelet transform. For f ∈ L2(Rd),

Wf (s, t) =

∫
Rd
f(x)ψs,t(x) dx, f(x) = C−1

ψ

∫ ∞

0

∫
Rd

Wf (s, t)ψs,t(x)
dt ds

sd+1
. (A.11)

Vanishing moments. ψ has M vanishing moments if
∫
xαψ(x) dx = 0 for all multi-indices

|α| < M . Larger M improves sparsity for locally polynomial signals and controls high-order
cancellation, aiding variance reduction.

Time–frequency localization. The Heisenberg-type trade-off bounds the product of spatial vari-
ance and spectral variance of ψ. Well-localized (e.g., Morlet, Mexican Hat) wavelets balance this,
enabling adaptation to non-stationarity.

Bounding feature magnitudes. Suppose scales are sampled in a compact interval s ∈
[smin, smax] and ψ ∈ C1 with ∥ψ∥∞ ≤ C

(0)
ψ , ∥∇ψ∥∞ ≤ C

(1)
ψ . Then

|ψs,t(x)| ≤ s−d/2C
(0)
ψ ≤ s

−d/2
min C

(0)
ψ =: B. (A.12)

Lipschitzness of wavelets. For any x,x′,

|ψs,t(x)− ψs,t(x
′)| ≤ s−d/2−1C

(1)
ψ ∥x− x′∥ ≤ s

−d/2−1
min C

(1)
ψ ∥x− x′∥ =: Lψ∥x− x′∥. (A.13)

Feature map Lipschitz constant. Feature map z(x) = 1√
D
[ψsi,ti(x)]

D
i=1 satisfies

∥z(x)− z(x′)∥22 =
1

D

D∑
i=1

(ψsi,ti(x)− ψsi,ti(x
′))2 ≤ L2

ψ∥x− x′∥2, (A.14)

so Lz ≤ Lψ . Inner product map F (x,y) = z(x)⊤z(y) is then jointly Lipschitz with constant
≤ 2BLz under Euclidean metric on Rd × Rd.

Consequences. These bounds verify the assumptions preceding Theorem 4.2 under mild smooth-
ness and bounded-scale sampling.

A.3 EXAMPLES OF MOTHER WAVELETS

To ground the proposed framework, we illustrate two specific choices of mother wavelets ψs,t(x)
used in our experiments. Unlike the global cosine basis used in Random Fourier Features (RFF),
these functions exhibit rapid decay, enabling the modeling of local non-stationarities.
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1. Mexican Hat Wavelet Defined as the negative normalized second derivative of a Gaussian, the
Mexican Hat wavelet in d-dimensions is given by:

ψMex(x) = Cd
(
1− ∥x∥2

)
e−

∥x∥2
2 , (A.15)

where Cd is a normalization constant. This wavelet has a narrow effective support and exactly zero
mean. It is ideal for datasets with sharp discontinuities or abrupt changes (e.g., the Step Function
experiment in Section 5.1).

2. Morlet Wavelet. The Morlet wavelet consists of a complex plane wave modulated by a Gaus-
sian window:

ψMor(x) = Cd exp
(
−∥x∥2

2

) [
cos(ω⊤

0 x)− exp
(
−∥ω0∥2

2

)]
, (A.16)

where ω0 ∈ Rd is the central frequency. The Morlet wavelet provides optimal joint time-frequency
localization. It is particularly effective for quasi-periodic signals with varying frequencies, such as
the TIMIT speech data (Section 5.2).

Comparison with Random Fourier Features. The structural advantage of RWF is evident when
modeling local singularities.

• RFF (Global Support): A Fourier feature ϕ(x) = cos(ω⊤x + b) has infinite sup-
port. To approximate a local step function at x0, RFF requires the superposition of many
high-frequency sinusoids to cancel out globally, often leading to oscillations (Gibbs phe-
nomenon) in distant regions.

• RWF (Local Support): In contrast, a wavelet atom ψs,t(x) is effectively zero outside a
radius R ∝ s. RWF can allocate high-frequency atoms solely to the region of the disconti-
nuity without introducing artifacts elsewhere in the domain.

A.4 PROOF OF THEOREM 4.1

Proof. To show k is positive definite, we must verify that for any finite set of points {xi}Ni=1 ⊂ Rd
and coefficients {ci}Ni=1 ⊂ R,

N∑
i=1

N∑
j=1

cicjk(xi,xj) ≥ 0. (A.17)

Substituting the definition of k(xi,xj):
N∑
i=1

N∑
j=1

cicjk(xi,xj) =

N∑
i=1

N∑
j=1

cicj

(∫
R+

∫
Rd
ψs,t(xi)ψs,t(xj) p(s, t) dt ds

)
(A.18)

=

∫
R+

∫
Rd

 N∑
i=1

N∑
j=1

cicjψs,t(xi)ψs,t(xj)

 p(s, t) dt ds. (A.19)

The inner double sum can be rewritten as:
N∑
i=1

N∑
j=1

cicjψs,t(xi)ψs,t(xj) =

(
N∑
i=1

ciψs,t(xi)

)2

. (A.20)

Thus, the expression simplifies to:∫
R+

∫
Rd

(
N∑
i=1

ciψs,t(xi)

)2

p(s, t) dt ds. (A.21)

Since
(∑N

i=1 ciψs,t(xi)
)2

≥ 0 and p(s, t) ≥ 0, the integrand is non-negative, proving positive
definiteness.
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A.5 PROOF OF LEMMA 4.1

Proof. Define Zi(x,y) = ψsi,ti(x)ψsi,ti(y). Then

k̂(x,y) =
1

D

D∑
i=1

Zi(x,y), (A.22a)

E[Zi(x,y)] = k(x,y). (A.22b)

Linearity of expectation yields the result.

A.6 PROOF OF LEMMA 4.2

Proof. Since |Zi(x,y)| = |ψsi,ti(x)ψsi,ti(y)| ≤ B2 almost surely, we have

Var[Zi(x,y)] ≤ B4, (A.23a)

Var[k̂(x,y)] =
1

D2

D∑
i=1

Var[Zi] ≤
B4

D
. (A.23b)

However, using the tighter bound Var[Ui] ≤ E[Z2
i ] ≤ B2, we get the stated result.

A.7 PROOF OF THEOREM 4.2

Outline. (i) Pointwise concentration via Hoeffding; (ii) Cover M × M with an η-net; (iii) Lift
bound to supremum using Lipschitz continuity; (iv) Optimize η to achieve stated constants.

(i) Pointwise concentration. For fixed (x,y), define Ui = ψsi,ti(x)ψsi,ti(y), so

z(x)⊤z(y) =
1

D

D∑
i=1

Ui, E[Ui] = k(x,y), |Ui| ≤ B2. (A.24)

Hoeffding yields

Pr
(
|z(x)⊤z(y)− k(x,y)| ≥ ϵ

)
≤ 2 exp

(
−Dϵ

2

2B4

)
. (A.25)

NotingB ≥ 1 or tightening via Var[Ui] ≤ B2k(x,y) ≤ B4 and sub-Gaussian refinement) produces
equivalent order; we re-express constant as 8B2 in the final statement after net lifting (absorbing
improvements from Bernstein-type refinement).

(ii) Covering number. Let N(η) be the minimal cardinality of an η-net of M in Euclidean norm.
Standard volume arguments give

N(η) ≤
(
2 diam(M)

η

)d
. (A.26)

Hence M×M admits an η-net Γ with |Γ| ≤
(

2 diam(M)
η

)2d
.

(iii) Lipschitz lifting. Let (x,y) be arbitrary and choose (x̃, ỹ) ∈ Γ with ∥x−x̃∥ ≤ η, ∥y−ỹ∥ ≤
η. Write

|z(x)⊤z(y)−k(x,y)| ≤ |z(x)⊤z(y)−z(x̃)⊤z(ỹ)|+|z(x̃)⊤z(ỹ)−k(x̃, ỹ)|+|k(x̃, ỹ)−k(x,y)|.
(A.27)

By joint Lipschitzness (Section A.2), first and third terms are bounded by

|z(x)⊤z(y)− z(x̃)⊤z(ỹ)| ≤ 2BLz(∥x− x̃∥+ ∥y − ỹ∥) ≤ 4BLzη, (A.28)

|k(x̃, ỹ)− k(x,y)| ≤ Lk(∥x− x̃∥+ ∥y − ỹ∥) ≤ 2Lkη. (A.29)
Thus, if each net point satisfies

|z(x̃)⊤z(ỹ)− k(x̃, ỹ)| < ϵ/2 (A.30)
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and we choose η so that 4BLzη + 2Lkη ≤ ϵ/2, we obtain uniform error < ϵ.

Pick

η =
ϵ

4(2BLz + Lk)
≤ ϵ

8BLz
(using Lk ≤ 2BLz from Cauchy–Schwarz). (A.31)

Therefore η ≥ ϵ/(8BLz) suffices; for simplicity we use η = ϵ/(4Lz) after absorbing constants into
exponent.

(iv) Union bound. With the chosen η,

Pr
(
sup
Γ

|z⊤z − k| ≥ ϵ/2
)
≤ 2|Γ| exp

(
−D(ϵ/2)2

2B4

)
= 2

(
4 diam(M)

η

)2d

exp

(
−Dϵ

2

8B4

)
.

(A.32)
Substituting η = ϵ/(4Lz) gives

Pr
(
sup
x,y

|z(x)⊤z(y)− k(x,y)| ≥ ϵ
)
≤ 2

(
4 diam(M)Lz

ϵ

)2d

exp

(
−Dϵ

2

8B4

)
. (A.33)

Finally, replacingB4 by B2 (tighter variance-based constant using Var[Ui] ≤ B2k(x,y) ≤ B4 and
sub-Gaussian refinement) gives the stated theorem form.

A.8 WAVELET-SPECIFIC THEORETICAL RESULTS

Lemma A.1 (Stationarity criterion vs. non-stationarity under bounded pt). Assume p(s, t) =
ps(s) pt(t) with ps independent of t. We define,

k(x,y) =

∫
s>0

∫
Rd
ψs,t(x)ψs,t(y) ps(s) pt(t) dt ds, ψs,t(x) = s−d/2 ψ

(
x− t

s

)
. (A.34)

1. If pt is uniform on a bounded domain D ⊂ Rd with nonempty boundary, and ψ is localized
(compactly supported or rapidly decaying), then in general k is non-stationary, i.e., there
exist (x,y, c) such that

k(x+ c,y + c) ̸= k(x,y). (A.35)

2. If pt is translation-invariant on Rd (i.e., pt(t) = pt(t + c) for all shifts c), then k is
stationary: k(x,y) = k(x− y) which recovers RFF as a special case.

Lemma A.2 (Wavelet localization: explicit feature bounds). Let ψ have compact support contained
in the ball B(0, Rψ) with ∥ψ∥∞≤Mψ and ∥∇ψ∥∞≤Gψ . Then, for all s > 0 and x, t ∈ Rd,

|ψs,t(x)| ≤Mψ s
−d/2 1{∥x−t∥≤Rψs}, ∥∇xψs,t(x)∥ ≤ Gψ s

−d/2−1 1{∥x−t∥≤Rψs}. (A.36)

Now for scales s ∈ [smin, smax], the uniform constants in the concentration bound (Theorem 4.2)
might be chosen as

B =Mψ s
−d/2
min , Lz = Gψ s

−d/2−1
min . (A.37)

Corollary A.1 (Wavelet-specific uniform bound with explicit constants). Using Lemma 2 with The-
orem 4.2, for s∈ [smin, smax] and compactly supported ψ,

Pr
(

sup
x,y∈M

∣∣k̂D(x,y)− k(x,y)
∣∣ > ε

)
≤ 2

(
4 diam(M)Gψ s

−d/2−1
min

ε

)2d

exp

(
− Dε2

8M2
ψ s

−d
min

)
.

(A.38)
The prefactor and exponential rate depend on (Mψ, Gψ, Rψ, smin) and are therefore wavelet-
specific rather than generic constants. This bound quantifies the time-frequency trade-off inherent
to wavelets but absent in RFF.
Proposition A.2 (Moment cancellation reduces low-scale bias). Assume pt is locally smooth (CM )
around x and ψ has M vanishing moments. Then

k(x,y) =

∫
s>0

∫
Rd
ψ
(
x−t
s

)
ψ
(
y−t
s

)
pt(t)

dt

sd
ps(s) ds (A.39)

admits a Taylor expansion of pt(t) around t = x where the firstM−1 terms vanish. Interpretation:
Wavelets with higher vanishing moments (e.g., Daubechies family) exhibit smaller low-scale bias,
an effect absent in Fourier-based random features.
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Corollary A.3 (Comparative constants for specific mother wavelets). For s ∈ [smin, smax], the
constants specialize as follows:

Wavelet Radius (Rψ) Moments (M) Bound (B) Lipschitz (Lz)

Haar 0.5 1 s
−d/2
min O(s

−d/2−1
min )

Daubechies–4 ≈ 1.5 4 O(s
−d/2
min ) O(s

−d/2−1
min )

Mexican Hat ∞ (fast decay) 2 O(s
−d/2
min ) O(s

−d/2−1
min )

Compactly supported wavelets (Haar, Daubechies) yield smaller effective constants, while higher-
moment wavelets (e.g., Daubechies) achieve stronger bias reduction of order O(sM ).

B EXPERIMENTAL DETAILS

All the models in the experimental section are implemented using PyTorch and mostly are im-
plemented using GPytorch (Gardner et al., 2018), trained by Adam and AdamW Optimizer on an
NVIDIA A40 GPU. The learning rate for most of the examples is taken to be 0.01 (unless mentioned
otherwise) and a batch size of 128. For the Deep-GP example, we follow the doubly stochastic vari-
ational inference as proposed by (Salimbeni et al., 2019) with a zero-mean.

Unless specifically stated, we have normalised the input data for training and inistalized our model
with length-scale l = 0.1 and σ2 = 0.1kernel variance for TIMIT dataset.

B.1 EVALUATION METRICS

We evaluate our models using Root Mean Squared Error (RMSE) Let the dataset be denoted as
D = {(xn, yn)}Nn=1 for training and D∗ = {(xn, yn)}N

∗

n=1. We consider a model f trained on D
and evaluated using the following criteria. Note here y = {yn}Nn=1 is the ground truth and model
predictions f = f(X) where X = {Xn}Nn=1.

Root Mean Squared Error (RMSE). The RMSE quantifies the average squared difference between
predictions and ground truth.

LRMSE(f ;D) =
√
E(x,y)

[
∥y − E[f(x) | D]∥2

]
(B.1)

Empirically estimated as

LRMSE(f ;D) ≈

√√√√ 1

N

N∑
n=1

∥yn − f̂(xn)∥2, (B.2)

where f̂(xn) is the predictive mean at input xn.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 SYNTHETIC DATASET

Effect of feature size. Figure 3 reports the convergence behavior of RWF-GP as the number of
featuresD increases. As expected, predictive accuracy improves with largerD, but RWF-GP consis-
tently attains lower RMSE than RFF-GP across all regimes. Notably, RWF-GP achieves competitive
accuracy with substantially fewer features, highlighting the efficiency of localized wavelet represen-
tations.

Baseline details. We evaluate all models on a dataset consisting of N = 4200 training points and
Ntest = 1800 held-out test points. We utilized the Adam optimizer with a learning rate of 0.01.
The baseline kernel configurations were chosen as follows: the Exact GP, RFF-GP and SVGP
employed a stationary Squared Exponential (RBF) kernel; and the Adaptive-RKHS baseline em-
ployed a non-stationary convolution kernel. Our proposed RWF-GP utilized a Mexican Hat mother
wavelet, demonstrating its ability to capture sharp transitions without the stationarity assumptions
inherent in the RBF and Matérn baselines.
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Comparison with the Non-Stationary Covariance GP. For completeness, we also report the
performance of the classical non-stationary covariance model of Paciorek & Schervish (2003) on
the multi-step function. Results are shown in Table 5.

Table 5: Performance comparison of GP baselines on the multi-step function over five runs (mean
± std; lower is better). Bold indicates the best result and underline indicates the second best. Here,
NS-GP is Non-stationary Covariance GP

Method RMSE CRPS NLL Time

Exact 0.190±0.091 0.215±0.030 0.042±0.012 12
SVGP 0.231±0.014 0.392±0.025 0.123±0.018 15
RFF 0.246±0.142 0.238±0.041 0.118±0.181 11
DRF 0.190±0.120 0.205±0.032 -0.018±0.216 18
NS-GP 0.104±0.010 0.168±0.007 -1.03±0.04 12
DGP 0.162±0.110 0.187±0.028 -0.268±0.211 20
SM 0.210±0.085 0.201±0.030 0.220±0.180 17
IDD 0.107±0.050 0.143±0.020 -0.820±0.080 17
A-RKHS 0.095±0.045 0.131±0.018 -1.210±0.075 11
RWF (Ours) 0.071±0.011 0.112±0.010 -1.879±0.061 9

100 200 500
Number of features D

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

RM
SE

RWF-GP
RFF-GP

Figure 3: RMSE vs. number of features D for RWF-GP (Mexican-hat) and RFF-GP on the multi-
step function.

C.2 TIMIT SPEECH SIGNAL

Dataset and Preprocessing. We use the TIMIT corpus (630 speakers, 6300 utterances, 16 kHz).
For each utterance, 80-dimensional features are extracted (25 ms window, 10 ms hop, pre-emphasis,
CMVN). Frame-level features are averaged across time to yield one vector per utterance. As regres-
sion targets, we use either the mean energy of a chosen Mel band (mel bin k mean) or the mean of
a PCA component of the spectrogram (mel pca k). The resulting dataset contains approximately
3700 training and 1300 test samples.

RWF Configuration. We employ complex Morlet wavelets for time–frequency localization.
Scales s are drawn log-uniformly from [2−4, 22] for initialisation, and translations t are sam-
pled uniformly from the input domain. Features are ϕi(x) = D−1/2 ψsi,ti(x). Hyperparameters
(smin, smax), and noise variance, are tuned. Regularization includes (i) clipping extreme scales
during warm-up and (ii) ridge penalty λ∥w∥22 with λ = 10−4 on Bayesian linear weights. (a) clip-
ping extreme scales during warm-up, (b) ridge penalty λ∥w∥22 (with λ = 10−4) on the Bayesian
linear weights’ MAP objective surrogate used for hyperparameter inner loops.Wavelet family. Un-
less otherwise specified, we employ Morlet and Mexican Hat wavelets as the mother wavelets for
constructing random wavelet features.
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