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Abstract

A song is a combination of singing voice001
and accompaniment. However, existing works002
focus on singing voice synthesis and mu-003
sic generation independently. Little attention004
was paid to explore song synthesis. In this005
work, we propose a novel task called text-006
to-song synthesis which incorporating both007
vocals and accompaniments generation. We008
develop Melodist, a two-stage text-to-song009
method that consists of singing voice synthesis010
(SVS) and vocal-to-accompaniment (V2A) syn-011
thesis. Melodist leverages tri-tower contrastive012
pretraining to learn more effective text repre-013
sentation for controllable V2A synthesis. A014
Chinese song dataset mined from a music web-015
site is built up to alleviate data scarcity for our016
research. The evaluation results on our dataset017
demonstrate that Melodist can synthesize songs018
with comparable quality and style consistency.019
Audio samples can be found in https://020
text2songMelodist.github.io/Sample/.021

1 Introduction022

Songs, as intricate musical compositions, have al-023

ways enjoyed the greatest popularity among music024

enthusiasts. It inspires the pursuit of song synthe-025

sis by leveraging machine learning and artificial026

intelligence algorithms. It makes sense to generate027

a song conditioned on text modality (music score,028

natural language prompt, etc.). However, there is029

little exploratory research on text-to-song synthesis030

to our knowledge.031

There are two related tasks. The first is singing032

voice synthesis, which converts the music score033

(lyrics, notes, and duration) to the singing voice.034

Existing SVS models have achieved remarkable035

achievement regarding quality(Huang et al., 2021;036

Liu et al., 2022; Hong et al., 2023; Zhang et al.,037

2022a) and zero-shot ability(Qian et al., 2019;038

Casanova et al., 2022) but they can only generate039

vocals. Another similar task is accompaniment040

Figure 1: The comparison of three tasks: singing voice
synthesis, accompaniment generation and text-to-song.
In this work, We investigate on the relationship between
vocal and accompaniment for text-to-song synthesis.

generation(Ren et al., 2020; Dong et al., 2018; 041

Ding and Cui, 2023), which usually aims at gener- 042

ating multi-track sequences for melody or a given 043

lyrics(Madhumani et al., 2020; Yu et al., 2021) 044

in the symbolic domain. As presented in Figure 045

1, there are similarities among these three tasks, 046

while notable distinctions exist. The accompani- 047

ments are often removed in data preprocessing to 048

train a SVS model. And existing music genera- 049

tion models do not take vocals into account as the 050

condition. Further exploration of text-to-song is 051

inhibited. 052

Neither serves as the suitable prior. To address 053

this limitation, we propose a novel generative task, 054

Text to Song, which converts the music score (lyrics, 055

notes, and duration) to the song, that is, singing 056

voice with accompaniment. However, a text-to- 057

song model is facing several challenges: 058

1) Process of Synthesis. It is hard to achieve 059

end-to-end generation since the song contains 060

much more information (pitch variation, timbre, 061
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emotion, instruments, etc.) than the music score,062

which imposes a large burden on the model.063

2) Attribute Controllability. This is far from064

enough to model the diverse output while only feed-065

ing the music score to the text-to0song synthesis066

model. Some natural language prompts should be067

included as the condition to guide and control the068

accompaniment generation.069

3) Data Scarcity. To the best of our knowledge,070

there is no dataset with pairs of vocal and accom-071

paniment audios along with finely annotated music072

score (which should at least have lyrics transcrip-073

tion). It is the most intractable factor hindering074

research in this area.075

In this paper, we propose Melodist, the first076

text-to-song model to generate music incorporat-077

ing vocals and accompaniments from music score.078

To overcome the challenges mentioned above, we079

adopt several techniques: 1) Based on the in-080

sight(Défossez et al., 2019) that the song signal081

can be naively regarded as the mixture of accom-082

paniment signal and vocal signal, we introduce083

a two-stage text-to-song synthesis. Specifically,084

Melodist generates singing voice from the music085

score in Stage 1, then generates accompaniment086

given vocals in Stage 2. Finally, we mix the out-087

puts of two stages to obtain the song. It releases088

the burden of our model to a large extent; 2) We089

utilize the attribute tags (mood, instruments, style,090

etc.) of each song segment and construct natural091

language prompts to control the synthesis of the ac-092

companiment. We further apply the Tri-Tower Con-093

trastive Learning framework to extract better text094

representations; 3) We crawled some songs and the095

corresponding lyrics and tags related to attributes096

from music websites. We evaluate our model under097

different settings and the results demonstrate that098

Melodist can synthesize songs with comparable099

quality and attribute controllability.100

The main contributions of our work can be sum-101

marized as follows:102

• We introduce a new task of text-to-song synthe-103

sis, which aims to convert the music score to104

the song incorporating vocal and accompaniment105

synthesis. We further propose Melodist, the first106

text-to-song model following two-stage song syn-107

thesis;108

• We adopt natural language prompts to generate109

various types of accompaniment for the purpose110

of attribute controllability;111

• We design a tri-tower contrastive learning frame-112

work to connect the text context with its corre- 113

sponding vocal and accompaniment pattern; 114

• We construct a dataset that provides not only 115

pairs of vocals and accompaniment but also tran- 116

scriptions in text format including lyrics and at- 117

tribute tags. 118

• We conduct extensive experiments to verify the 119

effectiveness of Melodist. Experiment results 120

show that Melodist exhibits high quality and 121

great adherence. 122

2 Related Work 123

2.1 Singing Voice Synthesis 124

Substantial progress has been made in Singing 125

Voice Synthesis (SVS). Several works(Huang et al., 126

2022b; Kong et al., 2020) have adopted gener- 127

ative adversarial networks (GANs)(Goodfellow 128

et al., 2020), while there appear many end-to- 129

end SVS models(Zhang et al., 2022b; Hong et al., 130

2023) based on variational autoencoder (VAE). 131

DiffSinger(Liu et al., 2022) is built on diffusion 132

probabilistic models which can generate more high- 133

fidelity outputs. In the realm of the Large Lan- 134

guage Model recently, there are many emerging 135

methods(Yang et al., 2023; Huang et al., 2023) 136

modeling voice with an auto-regressive transformer 137

in a compact and discrete space. However, these 138

works discarded the accompaniments in data pre- 139

processing, while we take accompaniment gener- 140

ation into account and investigate the relationship 141

between vocals and accompaniments. 142

2.2 Accompaniment Generation 143

Researchers on accompaniment usually work on 144

musical symbolic tokens in a seq2seq setting. 145

MuseGAN(Dong et al., 2018) is the first model 146

that generate multi-track polyphonic music with 147

harmonic and rhythmic. There exist several works 148

(Copet et al., 2023; Agostinelli et al., 2023)trying to 149

generate melody conditions on chord information 150

for better music structure. Yang et al.(Yang et al., 151

2017) designed MidiNet to generate melodies one 152

bar after another. PopMAG (Ren et al., 2020)was 153

proposed to simultaneously generate five instru- 154

mental tracks in a single sequence. However, 155

these methods rely highly on symbolic music rep- 156

resentation. Recently, Donahue et al. presented 157

SingSong(Donahue et al., 2023), a system that gen- 158

erates instrumental music to accompany input vo- 159

cals. But the limitation remains in the lack of con- 160

trollability related to mood, instruments, style, etc. 161
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Figure 2: The overview of Melodist, the proposed two-stage text-to-song synthesis model. We present the two-stage
pipeline in subfigure (a). In subfigure (b), we present the multi-scale Transformer architecture, in which e and zkt
denote <EOS> token and the k-th audio token at t-th frame, respectively.

In this work, we focus on developing a controllable162

text-to-song synthesis model that accepts more user163

controls for guiding the generation results.164

2.3 Cross-modal Contrastive Learning165

Contrastive learning, which is first applied in com-166

puter vision domain(Radford et al., 2021; Oord167

et al., 2018), achieves high performance in many168

downstream tasks such as zero-shot recognition,169

image-text retrieval, etc. Along the same line in170

the audio domain, Wav2clip(Wu et al., 2022) and171

Audioclip(Guzhov et al., 2022) are both derived172

from CLIP. To achieve more flexibility and general-173

ization, CLAP(Elizalde et al., 2023) is proposed to174

learn audio concepts from natural language supervi-175

sion instead of class labels. Recently, an increasing176

number of works(Chen et al., 2022; Manco et al.,177

2022) exploring contrastive pre-training in the mu-178

sic domain. MuLan(Huang et al., 2022a) is the first179

model learning a joint embedding space for music180

and natural language trained with an unprecedented181

scale of weakly paired text and audio. In this work,182

we also leverage a contrastive learning framework183

to extract better text representations.184

3 Two-stage Text-to-song Synthesis185

In this section, we first present a formal Definition186

of text-to-song synthesis task. Then we will give an187

overview of the proposed model Melodist. Finally,188

we will elaborate on the approaches we adopt for189

controllable two-stage text-to-song synthesis. 190

3.1 Task Definition 191

In this work, we present a novel task text-to-song 192

and extend it to controllable synthesis. Given the 193

training set D consists of n data points (si, pi, ci), 194

i = 1, ..., n, where each element denotes a song, 195

the description of its accompaniment and music 196

score of its vocal, we convert the music score to 197

song conditioned on the natural language prompt, 198

which can be formulated as a conditional probabil- 199

ity distribution modeling problem: 200

p(S|C,P ) =

T∏
t=0

p(st|s<t, C, P ; θ) (1) 201

Given that S = Sv + Sa, where Sa, Sv, Sa de- 202

note song waveforms, vocal waveforms and accom- 203

paniment waveforms respectively, we can redefine 204

text-to-song task as the approximation of joint con- 205

ditional probability optimization p(Sv, Sa|C,P ), 206

where Sv and Sa denote vocals and accompani- 207

ment, respectively. 208

3.2 Overview 209

In this work, we propose Melodist, the first con- 210

trollable text-to-song model. As illustrated in Fig- 211

ure 2, it is organized in two stages: 1) In the first 212

stage we follow the common SVS process that gen- 213

erates a singing voice conditioned on the music 214
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score, and in the second stage we generate musical215

accompaniments from singing given natural lan-216

guage prompt. Instead of directly modeling distri-217

butions over vocal and accompaniment waveforms,218

we adopt acoustic tokens as the prediction targets.219

Finally, we reconstruct waveforms from predicted220

vocal acoustic tokens and accompaniment acoustic221

tokens and then mix them as the output.222

Two-stage generation enjoys the following ad-223

vantages: 1) It reflects the conditional indepen-224

dence assumption that the attribute control applied225

on accompaniment is independent of the vocals and226

music score; 2) It is consistent with the dependency227

that the semantic and acoustic features of singing228

voice depend on music score while the harmony229

and controllability of accompaniment are decided230

on vocals and prompts, respectively.231

3.3 Predicted Target232

Acoustic tokens, as the predicted target,233

are extracted the acoustic tokens by Sound-234

Stream(Zeghidour et al., 2021), a neural codec235

with an encoder-decoder architecture and a residual236

vector quantizer (RVQ) cascaded nq layers of237

vector quantizer (VQ). Assuming y denotes an238

audio sample, the extracted acoustic tokens se-239

quence can be represented as ZTnq = encoder(y)240

where T refers to the number of frames. These241

compressed representations can be used to recon-242

struct waveforms by the decoder subsequently that243

ŷ = decoder(Z).244

3.4 Backbone Model245

We adopt the multi-scale transformer proposed246

in(Yu et al., 2023; Yang et al., 2023) as our back-247

bone in both two stages. It introduces a hierar-248

chical design consisting of a global transformer249

and a local transformer, both of which are decoder-250

only transformers. Specifically, the flattened acous-251

tic token sequence is first chunk into patches252

{x0, x1, . . . , xT } of T frames, each containing nq253

tokens of one frame. The chunked sequence is254

passed to the global transformer G to predict the255

target in a frame-by-frame manner:256

Hg_out
1:T = G(Hg_in

0:T−1), (2)257

In contrast, the local model L operates on a sin-258

gle patch of size nq, each of which is the sum of259

the output of the global model and the embedding260

of the previous tokens.261

H l_out
t,1:nq

= L(WHg_out
t−1,0:nq−1 +H l_in

t,0:nq−1) (3)262

Where W denotes the projection matrix to map 263

the hidden size of the local transformer. 264

During training, the model is optimized using 265

token prediction and cross-entropy loss. In the in- 266

ference stage, the model autonomously predicts 267

acoustic tokens in an auto-regressive manner condi- 268

tioning on prefixed input sequences. Such a design 269

facilitates the reduction of computational and en- 270

hances in-context learning for long sequences to a 271

large extent. 272

3.5 Two-stage Synthesis 273

Stage 1: Singing Voice Synthesis. In the SVS 274

stage, the model synthesizes acoustic tokens condi- 275

tioned on lyric phonemes, phoneme durations, and 276

phonemes pitch. Specifically, we transform the con- 277

dition input into discrete tokens and repeat each for 278

nq times to fill each patch. The expanded inputs 279

and target acoustic tokens are concatenated and 280

embedded into a unified sequence, subsequently 281

processed by the multi-scale transformer. 282

Stage 2: Vocal-to-accompaniment Synthesis. 283

In the vocal-to-accompaniment synthesis stage, the 284

model synthesizes acoustic tokens of accompani- 285

ment conditioned on vocal acoustic tokens and nat- 286

ural language prompts. We leverage a pre-trained 287

text encoder providing text representation with con- 288

sistent global characteristics with the vocal and 289

accompaniment, which we will illustrate in section 290

4 in detail. It can be incorporated with our back- 291

bone model to enhance attribute controllability. We 292

freeze the parameters of the text encoder, utilize 293

it to extract the non-pooled text representation of 294

the prompt, and pass it through a linear layer to fit 295

the dimension of the backbone model. Once we 296

have obtained "continuous text embeddings", we 297

also repeated each token for nq times. The inputs 298

are organized and processed in the same way as in 299

the previous stage. 300

3.6 Waveform Reconstruction 301

Instead of the decoder of Soundstream, we adopt a 302

unit-based vocoder utilizing GAN-based architec- 303

ture for waveform generation from acoustic units. 304

It is derived from BigvGAN and comprises a gener- 305

ator and two discriminators. Specifically, the gen- 306

erator is built from a set of look-up tables (LUT) 307

that embed the discrete units. It is followed by a 308

series of blocks composed of transposed convolu- 309

tion for the purpose of upsampling and a residual 310

block with dilated layers to expand the receptive 311
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Figure 3: The architecture of the tri-tower contrastive framework. ZP , ZV , ZA refer to the representation extracted
by the text encoder, the vocal encoder and the accompaniment encoder, respectively. We use different shapes to
represent different triples, while color is used to distinguish the kinds of inputs. Embeddings of the same triplet are
pulled closer, while those of different objects are pushed away in the joint embedding space.

field. The multi-period discriminator (MPD) and312

the multi-resolution discriminator (MRD) proposed313

in BigvGAN are added to distinguish between the314

generated audio and ground truth. Note that we315

train two neural codecs (the vocoders and encoders316

used to extract acoustic tokens) sharing the same ar-317

chitecture but not the same parameters respectively318

for vocals and accompaniments. We found that gra-319

dient collapse occurs when training only one neural320

codec on all audios. It is mainly attributed to the321

distribution discrepancy between the vocals and322

accompaniments. Once we obtain the waveforms323

of the vocal and its accompaniments, we mix them324

in the waveform domain to get the final output.325

4 Tri-Tower Contrastive Pre-training326

We introduce a tri-tower training scheme with con-327

trastive loss that jointly embeds text, vocals, and328

accompaniments into a feature-aligned space. As329

presented in Figure 3, it consists of three separate330

encoders: text encoder fP (·), vocal encoder fV (·),331

and accompaniment encoderfA(·), each followed332

by a pooling and linear layer. Parallel text prompt,333

vocal, and accompaniment make up each triplet334

of a mini-batch (xp, xv, xa) and they are passed335

through the respective encoder. The text encoder336

fP (·): An −→ RdP converts a tokenized text se-337

quence of length n over vocabulary A to the text338

embedding of dimension d. The Vocal encoder and339

the accompaniment encoder fV (·), fA(·): RF×T340

−→ RdV encode log mel spectrograms of the vocal341

and accompaniment respectively, which F refers342

to the number of mel channels and T refers to the343

number of frames. A linear layer is appended in 344

each branch to project the representations into a 345

l2-normalized embedding space. 346

When considering two-tower contrastive learn- 347

ing, two encoders of different modalities are jointly 348

trained to maximize the similarity between N pos- 349

itive pairs while minimizing the similarity for N 350

×(N−1) negative pairs. We adopt the multi-modal 351

version of InfoNCE loss(Oord et al., 2018). Taking 352

pair (text, vocal) as an example, the loss can be 353

formulated as follows: 354

Lp→v = − log
exp(zpi · zvi/τ)∑N
j=1 exp(zpi · zvj/τ)

(4) 355

356

Lp↔v = (Lp→v + Lv→p)/2 (5) 357

Where τ is a temperature parameter. To extend it 358

into tri-tower contrastive loss, we simply calculate 359

the contrastive loss over pairs of the representations 360

in a triplet (text, vocal, accompaniment) that: 361

L = Lp↔v + Lp↔a + Lv↔a (6) 362

To verify the effectiveness of the tri-tower con- 363

trastive pre-training framework, we also compare 364

it with CLAP on two related cross-modal retrieval 365

tasks: text-vocal retrieval and text-accompaniment 366

retrieval. We report the experimental results in 367

section 5.4.3, which indicates that including both 368

vocal and accompaniment helps the model learn to 369

ground more attribute-related song concepts. 370
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5 Experiments371

5.1 Dataset372

To our knowledge, there are no public datasets373

available for controllable text-to-song. We crawl374

five thousand Mandarin songs covering around fifty375

singers, their lyrics, and some attribute tags (mood,376

instruments, style, etc.) from a well-known music377

website. There are 180 hours of audio data in total.378

In order to get the desired input, we perform some379

filtering and processing operations on the data. We380

present the details of data analysis and processing381

in Appendix B.2.382

To alleviate data scarcity, we also leverage383

some open-source Mandarin singing voice datasets,384

which are listed in Appendix B.1.385

5.2 Training and Evaluation386

Model Configurations. For the tri-tower con-387

trastive learning framework, we adopt the base388

version of BERT(Devlin et al., 2018) as the text389

encoder and the modified version of Audio Spec-390

trogram Transformer(Gong et al., 2021) as the ar-391

chitecture of vocal encoder and accompaniment en-392

coder. The [CLS] token from the final layer is pro-393

jected into the joint embedding space of size 128.394

SoundStream(Zeghidour et al., 2021) has 12 quanti-395

zation levels, each with a codebook of 1024 entries.396

The first three quantization levels are employed as397

acoustic tokens. The unit-based vocoder is built398

from the modified V1 version of BigVGAN(Lee399

et al., 2022). A comprehensive illustration of model400

hyperparameters is available in Appendix A.1.401

Experimental Setup. We apply Spectrogram402

augmentation and text augmentation strategies for403

better performance. It takes 30 epochs for tri-tower404

pre-training using 8 NVIDIA V100 GPUs with a405

batch size of 128. For the training of text-to-song406

synthesis, we train the SVS model for 80K steps407

and the vocal-to-accompaniment model for 60K408

steps, both using 6 NVIDIA V100 GPUs with a409

batch size of 5000 tokens for each GPU. Each unit-410

based vocoder is trained using 4 NVIDIA V100411

GPUs for 150K steps until convergence. The de-412

tailed setup is presented in Appendix A.2.413

Evaluation. We conduct both subjective and ob-414

jective evaluations on generated samples.415

For the subjective evaluation, we conduct a416

crowd-sourced human evaluation via Amazon Me-417

chanical Turk. We adopt the metrics of Mean Opin-418

ion Score (MOS) and Similarity Mean Opinion419

Model MOS (↑) SMOS (↑) FFE (↓)

GT 4.02± 0.05 / /

FFT-Singer 3.71± 0.08 3.79±0.07 0.20
DiffSinger 3.80± 0.06 3.85±0.08 0.18
VISinger 3.82± 0.05 3.86±0.05 0.15
Make-A-Voice 3.86± 0.04 3.89±0.08 0.11
Melodist 3.90±0.06 3.87±0.07 0.09

Table 1: Ojective and subjective evaluation for Melodist
and SVS baselines.

Score (SMOS) both with 95 % confidence intervals 420

to evaluate the generated singing voice, which mea- 421

sures sample quality and speaker similarity respec- 422

tively. Regarding the evaluation of accompaniment 423

synthesis, we asked the rates to evaluate the audio 424

samples in terms of overall quality (OVL), rele- 425

vance to the prompt (REL), and alignment with the 426

melody (MEL.) of the singing voice. For the objec- 427

tive evaluation of generated audios, we calculate 428

the F0 Frame Error (FFE), Fréchet Audio Distance 429

(FAD), Kullback–Leibler Divergence (KLD), and 430

the CLAP score (CLAP). 431

5.3 Singing Voice Synthesis 432

We compare our SVS model with four recent SVS 433

baselines: 1) FFT-Singer, which generates mel- 434

spectrograms through stacked feed-forward trans- 435

former blocks; 2) DiffSinger(Liu et al., 2022), 436

which was built on diffusion probabilistic models 437

to generate mel-spectrograms; 3) VISinger(Zhang 438

et al., 2022b), an end-to-end singing synthesis 439

model 4) Make-A-Voice(Huang et al., 2023), a 440

multimodal spoken large language model for syn- 441

thesizing and manipulating voice signals. Note that 442

we also train a BigvGAN vocoder on 16k audios 443

for FFT-Singer and DiffSinger to reconstruct wave- 444

form from Mel-spectrograms. 445

As shown in Table 1, our SVS model outper- 446

forms other baseline models with the highest MOS 447

score of 3.89, indicating that it enjoys great supe- 448

riority in sample quality. The SMOS score lags 449

behind that of Make-A-Voice by a narrow mar- 450

gin but is better than other baseline models. The 451

highest FFE score demonstrates the proficiency of 452

Melodist in emulating the pitch prompt. 453

5.4 Vocal-to-accompaniment Synthesis 454

We report the comparison with text-to-music base- 455

lines. We include comparisons of different pre- 456

trained text encoders. Moreover, cross-modal re- 457

6



Model FAD (↓) KLD (↓) CLAP (↑) OVL. (↑) REL. (↑) MEL (↑)

MUSICGEN (T5) 4.28 1.48 0.27 81.12±1.34 83.06±1.70 67.72±1.23
MUSICGEN (CLAP) 4.97 1.61 0.33 78.64±1.02 85.01±1.43 61.29±0.83

Melodist (T5) 3.69 1.36 0.29 83.87±1.23 83.58±1.61 78.05±0.75
Melodist (CLAP) 4.10 1.59 0.34 78.75±1.54 85.19±1.23 70.33±0.92
Melodist (Tri-Tower) 3.80 1.34 0.39 83.15±1.46 86.63±1.27 79.40±0.96

Table 2: Objective and Subjective evaluation of accompaniment samples generated by Melodist and MUSICGEN.

trieval result is presented to verify the effectiveness458

of the tri-tower contrastive pre-training framework.459

5.4.1 Comparison to baselines460

To our knowledge, SingSong(Donahue et al., 2023)461

is the only model with the same experimental setup462

as ours. However, its code and dataset are not avail-463

able. So we only compare our model with MUSIC-464

GEN(Copet et al., 2023), the state-of-the-art single-465

stage controllable music generation model that can466

be conditioned on text and melody. Specifically,467

we adopt the vocal track extracted by Demucs as468

the melody condition of MUSICGEN. Following469

(Copet et al., 2023), we also investigate the impact470

of the text encoder for a fair comparison. We report471

a comparison with three text encoders in Table 2:472

1) T5(Raffel et al., 2020), which is a Transformer473

architecture using a text-to-text approach; and 2)474

CLAP(Elizalde et al., 2023), a model for learning475

audio concepts from natural language supervision.476

In general, Melodist surpasses MUSICGEN in477

objective and subjective metrics when applying478

the same text encoder, indicating the superiority479

of flattening prediction compared to the codebook480

interleaving strategies proposed in MUSICGEN.481

It reaches a trade-off between performance and482

computational efficiency.483

Melodist presents the highest perceptual qual-484

ity with outperformed FAD and OVL evaluation.485

When equipped with the text encoder of the tri-486

tower framework, the FAD and OVL scores drop487

slightly but still present better performance com-488

pared to MUSICGEN.489

The adherence to the prefix condition can be490

witnessed in the evaluation result. Regarding to491

text prompts, Melodist outperforms MUSICGEN492

with the highest CLAP and REL scores and the493

lowest KLD score. Regarding to melody evalua-494

tion, the experimental results suggest that Melodist495

scores the best alignment with the melody of input,496

indicating that it can successfully generate accom-497

paniments in harmony with the singing voice in498

melody. 499

5.4.2 Comparison of Different Text Encoder 500

As presented in Table 2, there is a subtle gap be- 501

tween the FAD and OVL scores of T5 and the text 502

encoder of Tri-tower framework. We argue that 503

this may be attributed to the pre-training data and 504

scheme. In terms of adherence to text prompts, 505

the Tri-tower framework outperforms other text 506

encoders with the highest CLAP and REL score 507

and the lowest KLD score. The superiority of the 508

Tri-tower framework can be witnessed. It indicates 509

that Melodist is capable of generating accompani- 510

ments that share similar semantic concepts with 511

the text prompts while ensuring favorable audio 512

quality. It is interesting to see that the text en- 513

coders trained in the contrastive learning paradigm 514

show a better alignment between generated audios 515

and text prompts, which demonstrates that the con- 516

trastive pre-training scheme significantly enhances 517

text-guided music generation. 518

5.4.3 Cross-modal Retrieval Result 519

To further verify the effectiveness of the tri-tower 520

contrastive framework, We conduct experiments 521

of text-vocal retrieval and text-accompaniment re- 522

trieval. Specifically, we use 1K recordings as 523

the pool of candidates and the paired vocal or 524

accompaniment as the ground truth. We com- 525

pare our tri-tower contrastive framework with three 526

baselines: 1) MusCALL(Manco et al., 2022), a 527

contrastive audio-language framework for Music; 528

2) MULAN(Huang et al., 2022a), a music audio 529

and natural language joint embedding model; 3) 530

CLAP(Elizalde et al., 2023), a model for learning 531

audio concepts from natural language supervision. 532

The sentence-level retrieval performance is eval- 533

uated by: 1) measuring mean average precision 534

(mAP) for accuracy evaluation; and 2) Recall at the 535

top k ranks (Recall@k). We set k to 1, 5, and 10. 536

As presented in Table 4, a significant superior- 537

ity can be observed from these recall rates and the 538
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Model of Stage 2 FAD (↓) KLD (↓) CLAP (↑) OVL. (↑) REL. (↑) MEL (↑)

MUSICGEN 3.97 1.39 0.27 82.33±1.05 82.92±1.45 65.08±0.74
Melodist 3.81 1.34 0.39 84.28±1.70 85.72±1.29 75.86±1.06

Table 3: Objective and Subjective evaluation of song samples generated by Melodist and MUSICGEN.

mean average precision, indicating that including539

both vocal and accompaniment helps the model540

learn to ground more attribute-related song con-541

cepts. Jointly learning from vocals and accompani-542

ments facilitates the text encoder extracting more543

accurate text representations of global characteris-544

tics, which greatly assists in subsequent vocal-to-545

accompaniment modeling. In addition, it is inter-546

esting that better retrieval performance is presented547

in text-to-accompaniment retrieval. This is mainly548

due to the reason that the text descriptions are more549

relevant to the accompaniment.550

5.5 Text-to-song Synthesis551

After a stage-by-stage evaluation, we compare the552

songs generated by Melodist and MUSICGEN in553

general terms. We fix the singing voice synthesis554

stage and generate the accompaniments with MU-555

SICGEN and Melodist respectively. The only dif-556

ference lies in the vocal-to-accompaniment model557

used for vocal-to-accompaniment synthesis. As we558

can see in Table 3, Melodist presents the highest559

perceptual quality and the best adherence to text560

prompt. It is identical to the observation of the pre-561

vious section that Melodist outperforms MUSIC-562

GEN with outperformed scores, which is identical563

to the observation of the previous section.564

Model Recall (↑) mAP (↑)
@1 @5 @10

Text-to-vocal Retrieval

MusCALL 6.5 20.6 31.3 12.2
MULAN 8.2 22.7 34.5 13.0
CLAP 5.4 17.9 29.6 9.8
Melodist 9.8 25.1 40.4 16.3

Text-to-accompaniment Retrieval

MusCALL 7.4 23.1 36.0 13.9
MULAN 8.0 22.3 38.2 15.3
CLAP 6.8 21.5 36.9 13.0
Melodist 11.2 28.0 43.9 19.4

Table 4: The experimental results of text-vocal retrieval
and text-accompaniment retrieval.

5.6 Ablation 565

In this section, we investigate the impact of differ- 566

ent data combinations and different augmentation 567

strategies. Details and experimental results of the 568

ablation can be found in the Appendix D. 569

Data Combination. We consider four combina- 570

tions of crawled data and open-source data. We 571

found that the absence of open-source SVS data 572

leads to worse SVS performance, while a notice- 573

able performance degradation in terms of audio 574

quality and adherence can be witnessed when ex- 575

cluding open-resource song data. 576

Data Augmentation Strategies. We explore the 577

effectiveness of text augmentation and spectrogram 578

augmentation. When analyzing the experimental 579

results, we can see a decline in both recall and mAP 580

scores. A noticeable gain can be witnessed when 581

applying data augmentation strategies. 582

6 Conclusion 583

In this paper, we introduce a new task called text- 584

to-song, which incorporates singing voice and ac- 585

companiment synthesis from music score. We pro- 586

pose Melodist, the first text-to-song model with 587

a two-stage generation scheme. Natural language 588

prompts serve as the condition to control accompa- 589

niment generation. Melodist leverage a tri-tower 590

contrastive pre-training framework to align the at- 591

tribute prompt with its vocal and accompaniment in 592

terms of the global pattern. We build up a Mandarin 593

song dataset from the music website and leverage 594

some open-source song and singing datasets to alle- 595

viate the data scarcity. We have conducted a series 596

of comprehensive evaluations and the results indi- 597

cate that Melodist outperforms baselines with com- 598

parable audio quality, temporal correspondence, 599

and consistency with text concept. We provide 600

extensive experiments to demonstrate the effective- 601

ness of the tri-tower contrastive learning framework 602

as well as the impact of different data combination 603

and data augment strategies. In the future, we will 604

focus on improving the audio quality and vocal 605

accompaniment harmonization. 606

8



Limitations607

Though Melodist have shown comparable achieve-608

ments in text-to-song synthesis, its limitations can-609

not be ignored. The reliance on source separation610

imposes a great challenge to improving audio qual-611

ity. While the current source separation methods612

remain suboptimal, it is urgent to improve the qual-613

ity of source separation. There are some alterna-614

tives such as constructing a high-quality dataset615

or designing a fully end-to-end text-to-song syn-616

thesis model. Additionally, Melodist treats accom-617

paniment as a single track, disregarding the intri-618

cate composition of individual elements such as619

drums, bass, and other instrument-related tracks. A620

promising avenue for future exploration involves621

both intra-track and inter-track modeling, thereby622

facilitating a more comprehensive approach to text-623

to-song synthesis.624
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A The Details of Experiment821

A.1 Model Configuration822

The model hyper-parameters of Melodist are listed823

in Table 5.824

A.2 Experimental Setup825

In Tri-tower contrastive pretraining, each audio is826

converted to a log-scaled mel spectrogram with827

the FFT size of 1024, hop size of 256, and win-828

dow size of 1024. We then chunk the augmented829

spectrogram into 16× 16 patches. We limit the830

max text sequence length to 77 chars for computa-831

tional efficiency. Inspired by (Copet et al., 2023),832

text augmentation is applied by concatenating tag833

lists to the text description. We limit the max text834

sequence length to 77 chars for computational effi-835

ciency. A [CLS] token is prepended to the sequence836

as a summary of the contextual patch embeddings837

in three encoders. We set the temperature τ to 0.2.838

For two-stage text-to-song synthesis, the learning839

rate is set to 5e-5. Adam optimizer is used with840

β1 = 0.9, β2 = 0.98, and ϵ = 10−9.841

The unit-based vocoder is trained on 16k audio842

data with a segment size of 32000. The learning843

rate is set to 5e-5. Adam optimizer is used with844

β1 = 0.8, β2 = 0.99, and ϵ = 10−6.845

B Dataset Analysis846

In this section, we describe the details of the dataset847

for training.848

B.1 Open-Source Datasets849

We present the open-source datasets adopted for850

training in Table 6.851

B.2 The Crawled Song Data852

B.2.1 Data processing pipeline853

In order to get the desired input, we perform the854

following filtering and processing operations on855

the data:856

Data Filtering. We exclude audios that 1) are857

live songs; 2) of silent accompaniment or no vocals;858

3) are performed by multiple singers. Additionally,859

some content (composer, performer, etc.) irrelevant860

to text transcriptions is removed from the lyrics.861

Source Separation. We split each song into 10-862

second clips from each song and passed each clip863

to the Demucs(Défossez et al., 2019) to separate864

vocals from the rest of the accompaniments and865

yield aligned pairs of waveforms. Finally, we re- 866

sample vocal and instrumental clips from 44.1kHz 867

to 16kHz and average all audio files to mono. 868

Lyrics-to-Singing Alignment. We first reorga- 869

nize the clips of the separated vocals and restore 870

them to the original songs. Then we use Montreal 871

forced alignment(McAuliffe et al., 2017) tool to 872

extract the phoneme duration. After filtering the 873

misaligned segments, we segment each song in 6- 874

10s according to the separation marks in raw lyrics. 875

Prompt Generation. We copy the tags of a song 876

to its segments and then make minor modifications 877

according to the auditory impression. A tag-to- 878

pseudo caption generation approach with large lan- 879

guage models(Doh et al., 2023) is leveraged to 880

generate natural language prompts. 881

B.2.2 Examples of Prompt 882

We provide some examples of attribute tag lists and 883

the captions generated by (Doh et al., 2023). 884

There are examples of crawled attribute tag lists: 885

• pop, bass, guitar, acoustic, beat. 886

• rock, passionate, vocal, shimmering, bass, guitar, 887

acoustic, guitar, guitar, emotional, passionate. 888

• instrumental, melodic, saxophone, acoustic, gui- 889

tar, soft, mellow, ambient, dreamy. 890

• cool, vocal, bass, percussion, retro, dance. 891

• guitar, synth, bass, guitar, electronic, beat, senti- 892

mental, dance, club 893

There are examples of generated text descrip- 894

tions: 895

• This is a pop music piece. There is a male vocal- 896

ist singing melodically in the lead. The melody 897

is being played by the keyboard while the bass 898

guitar is playing in the background. The rhythm 899

consists of a slow tempo electronic drum beat. 900

The atmosphere is easygoing. This piece could 901

be used in the soundtrack of a romantic com- 902

edy movie, especially during the scenes where a 903

character is hesitating to open up to their crush. 904

• The low quality recording features a rock song 905

that consists of a passionatele vocal singing over 906

punchy kick and snare hits, shimmering hi hats, 907

soft kick and groovy bass guitar. It sounds addic- 908

tive, energetic and passionate. 909

• This music is a Jazz instrumental. The tempo is 910

slow with a melodic saxophone harmony, key- 911

board accompaniment and rhythmic acoustic gui- 912

tar accompaniment. The music is soft, mellow, 913

pleasant, ambient, dreamy and pleasant. 914
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Hyperparameter Melodist Number of parameters

Global
Transformer

Hidden Size 192

320.07MLayers 20
Hidden Dim 1152

Attention Heads 16
FFN Dim 4608

Local
Transformer

Hidden Size 192

100.14MLayers 6
Hidden Dim 1152

Attention Heads 8
FFN Dim 4608

Unit-based
Vocoder

Upsample Rates [5, 4, 2, 2, 2, 2]
121.60MHop Size 320

Upsample Kernel Sizes [9, 8, 4, 4, 4, 4]

Vocal Encoder

Layers 6

42.10MHidden Dim 768
Attention Heads 8

FFN Dim 3072

Table 5: Hyperparameters of Melodist.

Dataset Type Annotation Volume (hrs)

Stage 1: Singing Voice Synthesis

Opencpop (Wang et al., 2022) singing text, duration, MIDI 5.2
M4Singer (Zhang et al., 2022a) singing text, duration, MIDI 29.8
OpenSinger (Huang et al., 2021) singing text, duration, MIDI 86.5
PopCS (Liu et al., 2022) singing text, duration 5.9
AISHEELL-3 (Shi et al., 2020) speech text 85

Stage 2: Vocal-to-accompaniment Synthesis

LP-MusicCaps-MSD (Doh et al., 2023) music text description 7k

Table 6: Statistics of training datasets.

• A female singer sings this cool melody with915

backup singers in vocal harmony. The song is916

medium tempo with a steady drumming rhythm,917

keyboard accompaniment, percussive bass line918

and various percussion hits. The track is a retro919

hip hop dance tune.920

• This is an amateur recording of a R&B music921

piece. There is a male vocalist singing melod-922

ically in the lead. The melody is being played923

by the electric guitar and the synth bass guitar924

while the rhythmic background consists of a slow925

tempo electronic drum beat. The atmosphere is926

sentimental. This piece could be playing in the927

background at a nightclub or a dance club.928

C Evaluation 929

C.1 Subjective Evaluation 930

We randomly selected 30 audio samples generated 931

from each stage and each sample was evaluated by 932

20 raters via Amazon Mechanical Turk. We paid 933

$8 an hour for participant compensation. 934

For quality evaluation of generated singing voice, 935

we conduct the MOS (mean opinion score) tests 936

and explicitly instruct the raters to “(focus on ex- 937

amining the audio quality and naturalness, and 938

ignore the differences of style (timbre, emotion, 939

and prosody).)”. The testers present and rate the 940

samples, and each tester is asked to evaluate the 941

subjective naturalness on a 1-5 Likert scale. 942

For speaker similarity evaluation, we ask the 943

raters to focus on the similarity of the speaker 944

identity (timbre) to the reference and ignore the 945

12



ID SVS Data Song Data Stage 1 Stage 2
MOS (↑) FFE (↓) FAD (↓) KLD (↓) OVL (↑) REL (↑)

1 ✓ ✗ 3.89±0.08 0.09 3.88 1.46 79.56±1.42 83.02±1.39
2 ✗ ✓ 3.84±0.05 0.13 3.79 1.39 83.10±1.31 86.56±1.80
3 ✗ ✗ 3.84±0.05 0.13 3.88 1.46 79.56±1.42 83.02±1.39
4 ✓ ✓ 3.89±0.08 0.09 3.79 1.39 83.10±1.31 86.56±1.80

Table 7: Ablation study on different data combination.

differences in content, grammar, or audio quality.946

We paired each synthesized utterance with a refer-947

ence utterance to evaluate how well the synthesized948

speech matched that of the target speaker.949

For the evaluation of generated accompaniments,950

we follow (Copet et al., 2023) to evaluate over-951

all quality (OVL), and relevance to the text in-952

put (REL). In terms of alignment with the melody953

(MEL.), we ask the rates to focus more on temporal954

correspondence between accompaniment and refer-955

ence singing voice instead of melody resemblance.956

The Screenshot of subjective evaluation is pre-957

sented in Figure 4, 5. A small subset of samples958

used in the test is available at https://research.959

github.io/text-to-song/.960

D Ablation Study961

Data Combinations. We consider four combi-962

nations of crawled data and open-source data.963

when training Melodist, including 1) Exclude open-964

source SVS data in Stage 1; 2) Exclude song data965

in Stage 2; 3) Exclude open-source SVS and song966

Model Recall (↑) mAP (↑)
@1 @5 @10

Text-to-vocal Retrieval

w/o TA 6.7 18.2 34.2 13.7
w/o SA 8.0 20.6 33.9 12.2
w/o TA&SA 6.3 15.8 32.3 10.3
TA&SA 9.8 23.7 40.2 15.7

Text-to-accompaniment Retrieval

w/o TA 7.4 21.1 37.0 14.5
w/o SA 8.5 22.3 39.1 15.9
w/o TA&SA 6.2 18.5 35.9 13.1
TA&SA 11.3 27.6 41.1 19.4

Table 8: Ablation study on the impact of data augmen-
tation strategies. We report the experimental results of
text-vocal retrieval and text-accompaniment retrieval.
SA denotes spectrogram augmentation and TA denotes
text augmentation.

data; 4) Include open-source SVS and song data as 967

the original setting. 968

Data Augmentation. We explore the effective- 969

ness of text augmentation and spectrogram aug- 970

mentation. 971

We report the evaluation results in Table 7 972

and Table 8. It suggests that leveraging open- 973

source datasets and augmentation strategies en- 974

hance the capability of Melodist to generate more 975

high-fidelity and consistent output. 976
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Figure 4: Screenshot of MOS testing.

Figure 5: Screenshot of SMOS testing.
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