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Abstract

Although pre-trained language models encode generic knowl-
edge that is beneficial for planning and control, they may fail
to generate appropriate control policies for domain-specific
tasks. Existing fine-tuning methods use human feedback to
address this limitation. However, sourcing human feedback
is labor-intensive and costly. We present a fully automated
approach to fine-tune pre-trained language models for domain-
specific applications, bridging the gap between generic knowl-
edge and domain-specific requirements while reducing cost.
The method synthesizes automaton-based controllers from
pre-trained models guided by natural language task descrip-
tions. These controllers are verifiable against independently
provided specifications within a world model, which can be
abstract or obtained from a high-fidelity simulator. Controllers
with high compliance with the desired specifications receive
higher ranks, guiding the iterative fine-tuning process. We
provide quantitative evidence, primarily in autonomous driv-
ing, to demonstrate the method’s effectiveness across multiple
tasks. The results indicate an improvement in the percentage
of specifications satisfied by the controller from 60% to 90%.

Introduction
Pre-trained language models encode rich world knowledge
that is useful for planning and control. Recent works use pre-
trained models to synthesize control policies for tasks such
as autonomous driving (Seff et al. 2023), surgical robotics
(Janssen, Kazemier, and Besselink 2023), and aircraft oper-
ation (Tikayat Ray et al. 2023). The control policies yield
high-level actions that an agent should take in order to satisfy
objectives specified via natural language prompts.

However, in specific domains, pre-trained models may
fail to generate appropriate control policies. For instance, an
autonomous driving system may require knowledge about
traffic rules and conventions specific to a given country. Such
specific rules and conventions may be beyond the knowledge
encoded in the pre-trained model.

To address this shortcoming, several works use human
feedback for fine-tuning pre-trained models and to incor-
porate required domain knowledge (Stiennon et al. 2020;
Christiano et al. 2017; Rafailov et al. 2023). Human feedback
evaluates the extent to which the output of a pre-trained model
aligns with the desired objectives. For example, the provision
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of a binary ranking of like or dislike for each model output
can act as a feedback source. This feedback from human
expertise enables fine-tuning of the pre-trained model and
allows implicit incorporation of domain-specific knowledge.
However, obtaining feedback from humans is labor-intensive
and costly.

We investigate how similar feedback can be automatically
obtained using artifacts from formal methods. Suppose we
have a world model, which is either abstract or obtained from
a high-fidelity simulator, and a set of specifications. We can
verify, either formally or empirically, if a controller generated
by the language model meets the specifications (Yang et al.
2022). The measure of compliance can act as a source of
feedback for fine-tuning, similar to human feedback. Since
this procedure is automated, such feedback is less labor-
intensive and cheaper.

We develop a method to fine-tune pre-trained models based
on automated feedback using artifacts from formal methods.
The proposed method synthesizes an automaton-based con-
troller from the pre-trained model given a natural language
task description (Yang et al. 2022). Such an automaton-based
controller is formally verifiable against independently pro-
vided specifications (e.g., a driving rule book (Censi et al.
2019)) when implemented in a specific world model. We can
obtain the number of specifications satisfied by each con-
troller and use it for ranking. We then iteratively fine-tune the
pre-trained model using this ranking as a feedback source.

If the world model is obtained from a high-fidelity simula-
tor rather than an abstract model, we collect trajectories from
the simulator. The trajectories are sequences of state-action
pairs which can be checked against the provided specifica-
tions. A controller satisfying a larger number of specifications
when executed in the simulator is assigned a higher rank. We
use the obtained ranks for fine-tuning.

To demonstrate the performance of the proposed method,
we provide experimental results covering multiple tasks in
an autonomous driving system, although applicability is not
limited to this domain. The quantitative results indicate a sig-
nificant improvement in the percentage of specifications sat-
isfied, from 60% to above 90%, confirming that the proposed
method can effectively fine-tune the pre-trained model.



Related Work
Fine-tuning from Human Feedback. Reinforcement
learning from human feedback (RLHF) is a preference align-
ment strategy that learns a reward model from human pref-
erences and then fine-tunes the pre-trained language model
using reinforcement learning (Stiennon et al. 2020). In some
works, before fine-tuning begins, humans compare the ac-
curacy of multiple responses to a single input and indicate
which is preferred, generating a data set of preferences that is
used to train a reward function (Stiennon et al. 2020; Ouyang
et al. 2022). Other methods optimize the reward function and
fine-tune the language model simultaneously. As the model
generates outputs, a human indicates which output is pre-
ferred, sending new feedback for the reward function to learn,
thus impacting the model’s accuracy (Christiano et al. 2017).

Direct preference optimization (DPO) is a preference align-
ment strategy that implicitly optimizes the same objective as
RLHF without explicitly learning a reward model or using
reinforcement learning. DPO optimizes model outputs di-
rectly from human feedback data using a modified maximum
likelihood objective, reducing the number of training stages
and improving stability (Rafailov et al. 2023).

However, all of the above works rely on humans to provide
feedback on which outputs are preferred. Obtaining an exces-
sive amount of human feedback is labor intensive. In contrast,
the method we propose automatically ranks the outputs from
language models. Hence we can obtain an unlimited number
of data points to fine-tune the language model.

Fine-tuning from Generated Outputs Some methods fine-
tune a language model using the outputs of another model.
For example, a language model can learn how to generate
common sense phrases (Zhou, Bras, and Choi 2023) or output
chain-of-thought reasoning (Li et al. 2023) using responses
from a model that already exhibits the desired behavior. Other
methods train a language model using the model’s own out-
puts by identifying high-quality statements and feeding them
back into the model as examples of correct responses (Bhaga-
vatula et al. 2023; Jung et al. 2023). One approach combines
both methods, first fine-tuning using the outputs of a sepa-
rate pre-trained model, and then fine-tuning again using the
model’s own filtered outputs (Jung et al. 2023). Another strat-
egy is to modify the backpropagation process so that only
certain parameters are updated (Chen et al. 2020).

These methods are not capable of fine-tuning domain-
specific language models since all the generated outputs from
itself or other models lack domain-specific knowledge as
well. In contrast, the method we proposed can fine-tune the
language model to satisfy domain-specific requirements.

Formal Methods and Verification on Language Models.
Existing works convert natural language to formal language,
which can be used for verification (Baral et al. 2011; Sadoun
et al. 2013; Ghosh et al. 2016). Recent works show that lan-
guage models can be trained to convert natural language to
formal language, with applications in representing mathemat-
ics, generating proofs, and creating assurance cases (Hahn
et al. 2022; Wu et al. 2022; First et al. 2023; Chen, Deng,
and Du 2023). One method is to design input prompts that
include task-specific information (e.g., definitions, response
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Figure 1: Examples of an automaton-based model (top) and
a controller (bottom).

templates, and detailed examples) that enable a language
model to divide a goal into individual steps and develop for-
mal constraints on the system (Chen, Deng, and Du 2023).
Other methods iteratively refine the input prompt to the lan-
guage model based on counter-examples until the outputs
pass formal verification (Jha et al. 2023; Yang et al. 2022).
Although these works utilize formal methods, there are still
humans in the loop, while our proposed method aims to be
fully automated without any human intervention.

Preliminaries
Automaton-Based Model for System or Environment. A
model is an abstract representation that encodes the static and
dynamic information of a system or an environment. We use
a transition system to build the model.

A transition system M := ⟨ΓM, QM, δM, λM⟩ consists
of a set of output symbols ΓM, a set of states QM, a non-
deterministic transition function QM ×QM → {0, 1}, and
a labeling function λM : QM → ΓM.

We introduce a set of atomic proposition P such that
ΓM := 2P , i.e., a symbol σ ∈ ΓM is the set of atomic propo-
sitions in P that evaluate to True. Each symbol σ captures
the system or environment behavior. We present an example
in Figure 1. We will leverage the fact that automaton-based
structures are formally verifiable in the proposed method.

Automaton-Based Controller. A controller is a system
component responsible for making decisions and taking ac-
tions based on the system’s state. A controller can be mathe-
matically represented as a mapping from the system’s current
state to an action, which is executable in the task environment.
We use a finite state automaton (FSA) to build a controller
for a sequential decision-making task.

A FSA is a tuple A = ⟨Σ, A,Q, q0, δ⟩ where Σ and A are
the sets of input and output symbols, q0 ∈ Q is the initial
state, and δ : Q×Σ×A×Q→ {0, 1} is a non-deterministic
transition function. The transition function is a membership
function—a transition exists when it evaluates to 1.

Each input symbol σ ∈ Σ is composed of the atomic
propositions from P , which is the set of atomic propositions
we introduced for the model. We introduce another set of
atomic propositions PA for the output alphabets A := 2PA .
We also allow for a “no operation/empty” symbol ϵ ∈ A.
Note that the input symbols comprise all possible dynamics
of the environment or system in which the controller operates,
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Figure 2: The overall pipeline of fine-tuning a language
model via automated feedback. We mark the inputs to the
pipeline in purple and the output in blue.

and the output symbols comprise all the actions allowed by
the controller. See Figure 1 for an example.

Fine-Tuning Pre-trained Language Models for
Autonomous Systems

We develop a method for fine-tuning pre-trained language
models for specific control tasks, named direct preference op-
timization via automated feedback (DPO-AF). The method
first obtains human-provided information regarding the au-
tonomous system. It then constructs a model that encodes the
information about the system. Next, we query the pre-trained
language model on a particular system control task and get
multiple responses from the language model via sampling.
We construct automata from the responses and apply verifica-
tion methods to check how many user-provided specifications
each automaton satisfies. We rank the responses by the num-
ber of satisfied specifications. Last, we send the prompt and
ranked responses to the DPO algorithm to fine-tune the lan-
guage model.

DPO-AF does not require repeated feedback from humans.
Therefore, we can obtain an unlimited number of prompt-
response pairs until the language model converges.

Automaton-Based Representation for Natural
Language and Autonomous Systems
Modeling the Autonomous System. DPO-AF starts by
constructing an automaton-based model encoding the infor-
mation about the autonomous system. Such information is
obtained from external sources such as human experts or
system operation manuals. The information includes but is
not limited to a set of propositions that describe the system’s
behaviors and a set of control signals (actions) that can affect
the system’s states. We encode the set of behaviors in an
atomic proposition set P and the set of actions in an atomic
proposition set PA.

Recall that a model consists of a set of states, a set of
symbols, a transition function, and a label function. As we

User

A Set of Specifications 

{Φ1, . . . , Φn}

F turn_right

G  stop

go U stop

……

¬

Autonomous System Model ℳ Controller 𝒞2

Response 1 Response 2

ℳ ⊗ 𝒞 ⊧ Φ
Model Checker

Controller 𝒞1

Compare the # of 

Satisfied Specifications

Autonomous System

(             >            )Response 1 Response 2

Φ1, Φ2, Φ3 Φ1, Φ2, Φ3

Figure 3: This diagram depicts the method of ranking re-
sponses by formal verification of the induced automata. We
present the sample automata in Figures 5 and 7.

defined P and PA, we build 2|P | states whose label is σ ∈ 2P

respectively. |P | is the number of propositions in P . Next,
for every two states pi and pj , we check whether the system
supports the transition between the label of pi and the label
of pj . If the system supports such a transition, we add it into
the transition function.

Finally, we remove the states with no incoming and outgo-
ing transitions. However, from a conservative perspective, we
can build transitions for every pair of states and not remove
any states. The conservative approach can avoid potential
missing transitions but will significantly increase the compu-
tation cost for formal verification.

To illustrate the procedure, suppose there is a traffic
light system operating in the order of red-green-yellow-red.
We have the proposition set P = {green, yellow, red}
and transitions (green to red), (red to yellow), and (yel-
low to green). Hence, we only keep three states with labels
green, yellow, red respectively and remove all the states
with other labels (e.g., green ∧ yellow).

Task Prompt Engineering. Prior to fine-tuning the lan-
guage model, we collect a prompt dataset. The prompt dataset
consists of the queries on the control tasks that operate in the
autonomous system.

Then, we define a prompt engineering procedure to extract
relative task knowledge from the language model. For each
prompt in the prompt dataset, we first use the following
format to obtain the responses from the language model:

1 Define the steps for task description
2 1. step one description
3 2. step two description
4 ...

Blue texts and red texts indicate the input prompt and the lan-
guage model’s responses, respectively. This format forces the
outputs to be a list of step descriptions for the task described
in the input prompt.

Once we get the responses, we query the language model
again to map the step descriptions into the set of defined



atomic propositions P :

1 Align the following steps to align the set
of Boolean propositions {prop 1,...,
prop n} and actions {act 1, ..., act m}:

2 1. step one description
3 2. step two description
4 ...
5

6 1. aligned step one description
7 ...

We rephrase the step description so that the propositions and
actions are consistent with the model. Therefore, we avoid
failing the verification process due to language ambiguity,
i.e., different phrases with the same meaning.

Note that DPO-AF also aims to fine-tune the language
model to output steps that can be easily aligned to the propo-
sitions and actions. Therefore, the expected responses from
the fine-tuned language model should have the following
properties: 1. The language model can easily and correctly
align the textual step descriptions to the given propositions
and actions. 2. The aligned step descriptions satisfy the user-
provided specifications.

To check the second property, we need to construct an
automaton-based controller from the textual step descriptions.
Then, we implement the controller in the model and verify it
against the specifications.

Controller Construction. We follow the method
GLM2FSA (Yang et al. 2022) to construct an FSA-based
controller to encode the textual step descriptions. Specifically,
we start from the aligned textual step descriptions and apply
semantic parsing to break the steps into a list of verb phrases.
Recall that a controller consists of a set of states Q, an initial
state q0, input symbols Σ, output symbols A, and a transition
function δ. We use the verb phrases to define the input and
output symbols according to the grammar from GLM2FSA.
Then, we build one state corresponding to each step, with the
state corresponding to the first step as the initial state. Last,
we follow the GLM2FSA algorithm to build the transition
rules. We present a step-by-step illustrative example in
Section .

Automated Feedback
Given a set of specifications, we provide two ways of check-
ing whether the controllers constructed from the language
model’s outputs satisfy each specification. For each output,
the method generates feedback consisting of the number or
percentage of specifications being satisfied.

Formal Verification. Formal verification requires an
automaton-based model, an automaton-based controller, and
a set of logical specifications. So far, we have constructed
the model and the controller. The specifications include the
expectation of task achievement or safety requirements, rep-
resented in temporal logic (e.g., linear temporal logic (Pnueli
1977)). The temporal logic specifications are logic formulas
over propositions P ∪ PA. We describe it in detail in the
Appendix. These specifications are either provided by the
task designer or extracted from existing rule books.

In the verification procedure, we first implement the con-
troller in the model. Mathematically, we define a product
automaton P = M ⊗ C describing the interactions of the
controller C with the model M, i.e., how the controller’s
actions change the model’s states and how the model’s states
affect the controller’s decision-making on its next action.
Note that the verification procedure implicitly assumes that
all the actions can be successfully operated and hence lead to
the corresponding states of the controller and the model.

We run a model checker (e.g., NuSMV (Cimatti et al.
2002)) to verify if the product automaton satisfies each speci-
fication,

M⊗C |= Φ. (1)

We verify the product automaton against each specification
for all the possible initial states. If the verification fails,
the model checker returns a counter-example. The counter-
example is a trace—a sequence of states—violates the speci-
fications. The NuSMV model checker returns the sequence of
states from the product automaton along with the output sym-
bols. Mathematically, the traces are in a format of (p1, q1, c2∪
a1), (p2, q2, c2 ∪ a2), ... where pi ∈ QM, qi ∈ Q, ci =
λM(pi), ai ∈ A such that δ(qi, λM(pi), ai, qi+1) = 1.

We present the definitions of temporal logic and product
automaton in the Appendix.

Empirical Evaluation. In some scenarios, obtaining mod-
els for autonomous systems may be hard. We propose us-
ing empirical evaluation to account for the scenarios where
models are not present. Empirical evaluation requires an au-
tonomous system S, a constructed controller C, an atomic
proposition set P , a set of actions PA, and a grounding
method G. Specifically, G : C×S → (2P ×2PA)N operates
the controller directly in the system and returns a sequence
of propositions and actions describing the operation. N is
the max length of the sequence. The sequence is evaluated as
follows:

G(C,S) = (2P × 2PA)N |= Φ. (2)

After evaluating every sequence against the specifications,
we get the percentage of sequences, PΦ, which satisfy each
specification:

PΦ = number of sequences satisfying Φ
total number of sequences .

Fine-Tuning via Automated Feedback
Collection of the Language Model’s Outputs. Once we
select the autonomous system and obtain the model for the
system, we can query the model for instructions on tasks that
are operable in the system, following the format described in
the previous section. Different responses for the same input
task can be sampled from the language model. Then, we can
rank these responses and fine-tune the language model to
output the best response according to the system model.

Ranking the Outputs and Fine-Tuning the Language
Model. We apply the automated feedback method for ev-
ery two responses from the language model associated with
the same task prompt to rank the preferences of the two re-
sponses. As a result, we obtain a data point (x, yw, yl), where
x is the input prompt, yw is the preferred response and yl is



Figure 4: Illustration of two sample scenarios from the au-
tonomous driving system. The left figure is an intersection
with the traffic light. We encode this scenario in a model
in Figure 5. The right figure is an intersection with a wide
median. We encode it in a model in Figure 6.

the unpreferred response. For a given set of specifications,
we construct a controller from each response and verify it
against each of the specifications. The response satisfying
more specifications (or having a higher percentage PΦ of
sequences satisfying the specifications) is preferred. If we
have collected N tasks and m responses per task. Then, we
will have a maximum number of N × C2(m) data points,
where Ci(j) means j choose i.

Then, we feed the pairs of responses, along with their
prompt, to the DPO algorithm. The DPO algorithm fine-tunes
the parameters of the language model accordingly. During
fine-tuning, we use low-rank approximation to reduce com-
putational complexity (Hu et al. 2021).

Experimental Results
To validate the proposed method, we apply DPO-AF on
Llama2-7B for controlling an autonomous driving system.
We first provide a demonstration of how we obtain the verifi-
cation feedback. Then, we present quantitative results to show
the effectiveness of DPO-AF at the mathematical level. Next,
we use an autonomous driving simulator, Carla (Dosovitskiy
et al. 2017), to show Llama’s performance enhancement at
the operation level. Lastly, we provide evidence that the gen-
erated controller can be transferred to real-life, indicating the
applicability of our approach.

Example Demonstration
Examples of System Modeling. To obtain formal verifi-
cation feedback for the language model’s outputs, we first
construct automaton-based models that encode the informa-
tion of the autonomous driving system. Such information
includes the objects from the environment and potential envi-
ronment dynamics that can be perceived by the autonomous
vehicle. Note that the models are externally provided, either
from human expertise or system manuals.

Figure 5 and 6 show the automaton-based models encod-
ing the information on a regular traffic light intersection and
a wide median (which we present in Figure 4). We construct
one model for each scenario in the autonomous driving sys-
tem. We integrate these models together to form a universal
model representing the entire system. In this way, we can
later implement the constructed controllers into the model for
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formal verification. We present models for other scenarios in
the autonomous driving system in the Appendix.

Examples of Externally Provided Specifications. For ver-
ification purposes, we generate a set of traffic rules in the
form of temporal logic. We denote the traffic rules as specifi-
cations. Some examples from the set of specifications in the
temporal logic formula are presented below:

Φ1 = □(pedestrian → (♢ stop)),
Φ2 = □(¬turn left ∨ (¬opposite car ∨

green left-turn light),
Φ3 = □(¬green traffic light → ¬go straight),
Φ4 = □(stop sign → ♢ stop),
Φ5 = □¬turn right ∨ ¬(car from left ∨

pedestrian at right),
We present the full set of specifications in the Appendix.
From the provided models and specifications, we can ex-

tract a set of atomic propositions and a set of actions. We
add the English vocabulary from the model’s input symbols
to the set of atomic propositions. We add any vocabularies
from the temporal logic formulas that are not already in the
proposition set to the action set. Now, we have obtained a set
of atomic propositions and allowable actions from the model
and specifications. The propositions include { green traffic
light, green left-turn light, flashing left-turn light, opposite



car, car from left, car from right, pedestrian at left, pedestrian
at right, pedestrian in front, stop sign }, and the actions are {
stop, turn left, turn right, go straight }.

Once we have the models representing the autonomous
system and a set of specifications, we can construct con-
trollers for various tasks that can operate in the system and
verify whether the controllers satisfy the specifications when
operating in the system.

Example on Controller Construction: Right Turn. In
this example, we use a simple task “turn right at the traffic
light” to demonstrate the controller construction and verifi-
cation. Then, we compare the controllers constructed using
the language model prior to and after the fine-tuning stage.
Hence we can give a straightforward demonstration of how
DPO-AF improves the language model.

We start by constructing a controller using the language
model before fine-tuning it. First, we query the language
model on the steps of turning right at the traffic light in the
following format:

1 Steps for "turn right at traffic light"
2 1. Look straight ahead and watch for traffic

light.
3 2. If the traffic light turns green, start

moving forward.
4 3. As you approach the intersection, look to

your left for oncoming traffic.
5 4. If there is no traffic coming from your

left, check pedestrians on your right.
6 5. If it is safe, turn your vehicle right.

Next, we again query the language model to align the step
instructions to the defined propositions and actions:

1 Rephrase the following steps to align the
defined Boolean Propositions {green
traffic light, car from left, ......}
and Actions {stop, turn left, turn right
, go straight}:

2 1. Look straight ahead and watch for traffic
light.

3 ......
4 5. If it is safe, turn your vehicle right.
5

6 1. Observe the state of the green traffic
light.

7 2. If the green traffic light is on, execute
the action go straight.

8 3. As you approach the intersection, observe
the state of the car from left.

9 4. If the car from left is not present,
check the state of the pedestrian at
right.

10 5. If the pedestrian at right is not present
, execute the action turn right.

By doing so, we have aligned the vocabularies from the initial
responses to the defined propositions and actions. Note that
such alignment may also introduce mistakes that violate more
specifications, but reducing the probability of an alignment
mistake is also a goal for DPO-AF.

Then, we apply semantic parsing to break the sentence

into verb phrases and keywords (e.g., if) and then shorten the
phrases for presentation purposes:

1 1. <observe traffic light>.
2 2. <if> <green traffic light>, <go straight>

.
3 3. <observe car from left>.
4 4. <if> <no car from left>, <check

pedestrian at right>.
5 5. <if> <no pedestrian at right>, <turn

right>.

Last, we follow the algorithm GLM2FSA (Yang et al. 2022)
to construct an FSA representing the steps of this task, as
presented in the left of Figure 7.

1 Steps for "turn right at traffic light"
2 1. Observe the traffic light in front of you

.
3 2. Check for the left approaching car and

right side pedestrian.
4 3. If no car from the left is approaching

and no pedestrian on the right, proceed
to turn right.

Example on Formal Verification We first implement both
controllers in the automaton-based model presented in Figure
5, i.e., construct a product automaton for each controller and
the model.

Second, we verify both product automata against the set
of provided specifications. During the verification step, the
model checker finds that the controller obtained before fine-
tuning fails the specification Φ5. The model checker returns
a counter-example on states (p0, q3), (p4, q4), (p1, q5).

This counter-example captures an edge case: The traffic
light turns back to red and a car is coming from the left imme-
diately after the agent is checking or waiting for pedestrians.
In this scenario, the agent does not check for the traffic light
and cars from left again and directly turns right, which can
lead to an accident. We argue that this edge case can hardly
be caught by human inspection but can be found by the model
checker. Hence we highlight this counter-example to indicate
the necessity of formal verification.

In contrast, the controller obtained after fine-tuning satis-
fies all the specifications. Through this right-turn example,
we observe the language model’s enhancement through DPO-
AF. We present more controller construction and verification
examples in the Appendix.

Quantitative Evaluation
Fine-tuning via DPO. DPO fine-tunes a language model
to output responses that match desired specifications. DPO
requires a data set where each data point has the form
(x, yw, yl), where x is a user input (i.e., “Steps for turn right
at the traffic light”), yw and yl are the language model’s text
responses such that the user prefers yw over yl. In our experi-
ments, the preferred response is the one whose FSA-based
representation satisfies more of the specifications than the
other response. We collect approximately 3000 data points to
fine-tune the language model. After fine-tuning, the language
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Figure 7: Automaton-based controllers for the task “turn right at the traffic light.” The left controller is obtained before fine-tuning
the language model, and the right controller is obtained after the fine-tuning. TL represents “traffic light.”
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model shows a preference for the responses as indicated in
the training dataset.

We measure the DPO training performance via three met-
rics: DPO loss, accuracy, and marginal preference. Loss refers
to the modified maximum likelihood loss function from the
DPO algorithm, which is minimized via gradient descent.
Accuracy measures how often the model prefers the correct
response over the incorrect response. Accuracy is the mean
over the dataset of I(P (yw|x, θ) > P (yl|x, θ)), where I is
the indicator function returning one if the input is true and
zero otherwise, and θ is the current values of the model param-
eters. Marginal preference measures how strongly the model
prefers the correct output compared to the original reference
model. Marginal preference is calculated as the mean over
the dataset of (log(P (yw|x, θ)) − log(P (yw|x, θref ))) −
(log(P (yl|x, θ))− log(P (yl|x, θref ))). Zero indicates indif-
ference, positive values indicate stronger preferences for the
favored answer, and negative values indicate preference for
the less preferred response.

We show the fine-tuning performance on the Llama2-7B
model over the three metrics in Figure 8. Note that the vari-
ance between random seeds is relatively small because the
model starts with the same parameters, and only the order of
the data changes between seeds.

Evaluation via Formal Verification. We provide an addi-
tional metric to evaluate the proposed DPO-AF. During the
fine-tuning procedure, we save a checkpoint language model
for every 20 epochs. For each checkpoint language model,

we query it for various autonomous driving tasks and obtain
the task controllers. Then, we verify the controllers against
15 provided specifications (presented in the Appendix) fol-
lowing the formal verification method in Section . Thus, we
obtain the number of specifications being satisfied for each
controller.

Figure 9 shows the relationship between the number of
satisfied specifications and the number of epochs of DPO
training. Simultaneously, we divide the results into two
categories—training and validation—depending on whether
the task is included in the training dataset. Hence, we have
shown the relationships between the numbers of satisfied
specifications and epochs for both training data and valida-
tion data.

For both training and validation data, we observe an in-
crease in the number of specifications satisfied as we fine-
tune for more epochs. This result indicates that our approach
can improve the language model’s ability to satisfy critical
requirements. Therefore, our approach can act as a starting
point to guide the design process for real-world implementa-
tions of autonomous driving systems.

Justification for Overfitting. We design the method DPO-
AF to fine-tune language models for solving domain-specific
tasks rather than enhancing the language model in general.
Therefore, we do expect some degree of overfitting on the
language model to the domain-specific knowledge and vocab-
ulary. In our experiments, we fine-tune the language model
specifically for tasks operated in autonomous driving systems.
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mal verification vs. the epoch of DPO training.

Figure 10: Visual demonstration of obtaining system informa-
tion while operating the controllers. We use Carla to simulate
the autonomous driving system.

A certain degree of overfitting provides stronger guarantees
that the generated outcomes satisfy critical specifications.

Empirical Evaluation in a Simulated System. We have
presented another approach to obtain feedback via empirical
evaluation in Section . We will show consistency between
feedback from empirical evaluation and formal verification.

As we obtain the controllers through the proposed method,
we operate the controllers in the Carla simulator to collect
operation data. Carla is a simulator for the autonomous driv-
ing system. During each operation of each controller, we
obtain a sequence of propositions and actions—in the form
of (2P × 2PA)N . The propositions come from the informa-
tion returned by the autonomous system, and the actions
come from the controller. The Carla simulator allows for the
extraction of system information. We present visual demon-
strations of extracting the propositions from the system in
Figure 10. Then, we verify the sequence against the provided
specifications, as we described in Section under Empirical
Evaluation. We operate the controllers multiple times in the
system and verify the sequences against the specifications.
For each specification, we get a percentage of the number of
sequences satisfying this specification.

Figure 11 compares these percentages obtained before
fine-tuning and after fine-tuning. Note that we run multiple
controllers and collect multiple sequences for each controller.
We show the results for the first five specifications as pre-
sented in Section .
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Figure 11: Percentage PΦ of each specification Φ being satis-
fied during actual operations in the system.

We observe that the percentages after fine-tuning are con-
sistently higher than before fine-tuning among all five spec-
ifications, which means all the specifications have a higher
probability of being satisfied for a given execution after fine-
tuning. In Figure 9, we show that outputs from the fine-tuned
model (at epoch 200) satisfy more specifications compared to
the pre-trained model (at epoch 0). Hence, we obtain consis-
tent feedback from the formal verification and empirical eval-
uation. Therefore, if we are unable to obtain automaton-based
models for the system, empirical evaluation is a substitute for
formal verification and is able to provide feedback consistent
with formal verification.

From another perspective, this result provides additional
evidence to show the effectiveness of the method DPO-AF,
as it improves the probability of all the specifications being
satisfied during operation.

Conclusions
We develop a method of fine-tuning pre-trained language
models via automated feedback for domain-specific tasks,
such as control tasks in autonomous systems. The method
converts the outputs from the pre-trained language model to
automaton-based controllers. Then, it verifies how many of
the externally provided specifications are satisfied by each
controller. We rank the pre-trained language model’s out-
puts by the number of satisfied specifications and feed these
ranked outputs to the DPO algorithm for fine-tuning. We
substitute human feedback with automated feedback using
formal methods, which significantly decreases labor intensity.
We provide empirical evidence on a simulated autonomous
driving system to demonstrate the effectiveness of the pro-
posed method: The fine-tuned language model satisfies more
specifications compared with the model before fine-tuning.
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Additional Background and Definitions
Temporal Logic. Temporal logic is a formalism that describes properties of sequences over time, specifically in systems’
behaviors. It employs logical operators that capture temporal aspects such as ”always,” ”eventually,” and ”until” to specify
constraints and requirements on system executions. Formally, temporal logic formulas are defined inductively as: φ := p ∈
PM | ¬φ | φ ∨ φ | ◦φ | φUφ Intuitively, a temporal logic formula consists of a set of atomic propositions, a set of temporal
operators, and a set of logical connectives.

The common-used temporal operators are ♢ (“eventually”), U (“until”), ◦ (“next”), and □ (“always”). And the logical
connectives includes ∧ (“and”), ∨ (“or”), ¬ (“not”), etc.

Product Automaton. Let a controller be C := ⟨Σ, A,Q, q0, δ⟩ with input alphabet Σ := 2P , output alphabet A := 2PA , and
non-deterministic transition function δ : Q× Σ×A×Q→ {0, 1}.

Let a model be a tuple M := ⟨ΓM, QM, δM, λM⟩ with output symbols ΓM = 2P∪{goal}, a non-deterministic transition
function δM : QM ×QM → {0, 1}, and a label function λM : QM → ΓM.

We define the product automaton as a transition system P = M⊗C := ⟨QP, δP, q
P
init, λP⟩ as follows:

QP := QM ×Q

δP((p, q)) := {(p′, q′) ∈ QP|δ(q, λM(p) ∩ Σ, a, q′) = 1 and δM(p, p′) = 1, for some a ∈ A}
qPinit := {(p, q0)|p ∈ QM}

λP((p, q), (p′, q′)) := {λM(p) ∪ a|a ∈ A and δ(q, λM(p) ∩ PM, a, q′) = 1 and δM(p, p′) = 1}

δP : QP → 2QP is a non-deterministic transition function, and λP : QP ×QP → 2P∪PA is a label function.
The product automaton generates infinite-length trajectories in the form of (p0, q0), (p1, q1), . . . by beginning in an initial

state qPinit and following the nondeterministic transition function δP thereafter. Labeled trajectories are then generated by
applying the labeling function λP to these trajectories within the product automaton, i.e. ψ0ψ1, . . . ∈ (2P∪PA)∗ where
ψi ∈ λP((pi, qi), (pi+1, qi+1)). When using the product automaton to solve the model-checking problem, we check that all
possible labeled trajectories generated by the product automaton belong to the language defined by the LTL specification.

Additional Explanations to the Method
Formal Verification vs. Empirical Evaluation. Formal verification provides a mathematical guarantee on whether a specifica-
tion is satisfied, while empirical evaluation examines the controller’s behavior in practical operations.

Definition 1. Let M be the automaton-based model for the system S . If M captures all the transitions {(σ,¬σ)|σ ∈ P ∪ PA}
allowed by S, then we say M captures complete information from S.

From the properties of formal verification, we can derive Theorem 1.

Theorem 1. If M captures complete information from S, then

M⊗C |= Φ =⇒ G(C,S) |= Φ. (3)

Proof. Suppose G(C,S) ̸|= Φ, then we can find at least one sequence (σi, ai)
N ∈ (2P × 2PA)N that violates Φ, i.e., (σi, ai)N

is a counter-example. Hence, we get M⊗C ̸|= Φ. By contra-positive, Theorem 1 holds.

Therefore, the formal verification results provide stronger guarantees than empirical results.
However, if the model M does not capture complete information from the system, then the guarantees provided by formal

verification are no longer valid. Hence, we can use empirical evaluation in place of formal guarantees. From another perspective,
empirical evaluation can be used to check whether the model M has captured complete information.

Additional Experiment
Demonstration
Additional System Modeling We present more examples of the automaton-based models encoding other scenarios in the
autonomous system. The scenarios include a traffic light with an explicit left-turn signal, a two-way stop sign, and a roundabout.

The Complete Set of LTL Specifications. We verify the LLM’s outputs through the following 15 LTL specifications:
Φ1 = □(pedestrian → (♢ stop)),
Φ2 = □(opposite car ∧ ¬green left-turn light → ¬turn left),
Φ3 = □(¬green traffic light → ¬go straight),
Φ4 = □(stop sign → ♢ stop),
Φ5 = □(car from left ∨ pedestrian at right → ¬turn right),
Φ6 = □(stop ∨ go straight ∨ turn left ∨ turn right),



Figure 12: Illustration of different scenarios from the autonomous driving system. The figures from left to right show the
scenarios for an intersection with a traffic light, a two-way stop sign, a roundabout, and an intersection with a wide median,
respectively.
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Figure 13: An automaton-based model represents a vehicle’s environment dynamics at an intersection’s left turn traffic signal. LL
represents “Left-Turn Light,” ped represents “pedestrian.”

Φ7 = ♢(green traffic light ∨ green left-turn light) → ♢¬stop),
Φ8 = □(¬green traffic light → ♢ stop),
Φ9 = □(car from left → ¬(turn left ∨ turn right)),
Φ10 = □(green traffic light → ♢¬stop),
Φ11 = □((turn right ∧ ¬green traffic light) → ¬car from left),
Φ12 = □((turn left ∧ ¬green left-turn light) → (¬car from right ∧ ¬car from left ∧ ¬opposite car)),
Φ13 = □((stop sign ∧ ¬car from left ∧ ¬car from right) → (♢¬stop)),
Φ14 = □((go straight → ¬pedestrian in front),
Φ15 = □((turn right ∧ stop sign) → ¬car from left).

Example on Controller Construction and Verification: Left-Turn. We provide an example of the controllers for the task
”turn left at the traffic light” and a model representing the traffic light environment. When implemented in the model, we can
verify whether the controllers satisfy the provided specifications.

The responses from the language model before fine-tuning:

1 Steps for "turn left at traffic light"
2 1. Approach the traffic light with a left-turn light.
3 2. Wait for the left-turn light to turn green.
4 3. When the left-turn light turns green, wait for oncoming traffic to clear before turning

left.
5 4. Turn left and proceed through the intersection.

The responses from the language model after fine-tuning:

1 Steps for "turn left at traffic light"
2 1. Approach the traffic light and observe the left turn light.
3 2. If the left turn light is not green, then stop.
4 3. If the left turn light is green, then turn left.

We present constructed controllers in Figure 16.
We implement both controllers in the model presented in Figure 13, i.e., get the product automaton of the controller and the

model. Then, we can verify both controllers against the 15 specifications.
The controller obtained before fine-tuning fails specification Φ12, while the one after fine-tuning passes all the specifications.
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Figure 14: An automaton-based model represents a vehicle’s environment dynamics at a two-way stop sign.
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Figure 15: An automaton-based model representing the environment dynamics of a vehicle at a roundabout. The proposition
“car” represents “car from left” and the proposition “ped” represents “pedestrian at left ∧ pedestrian at right.”

Verification using NuSMV
1

2 MODULE turn_left_before_finetune
3

4 VAR
5 green_traffic_light : boolean;
6 green_left_turn_light : boolean;
7 opposite_car : boolean;
8 car_from_left : boolean;
9 car_from_right : boolean;

10 pedestrian_at_left : boolean;
11 pedestrian_at_right : boolean;
12 side_car : boolean;
13 stop_sign : boolean;
14 action : {stop, turn_left, turn_right, go_straight};
15

16 ASSIGN
17 init(action) := stop;
18

19 TRANS
20 case
21 !green_left_turn_light : next(action) = stop;
22 green_left_turn_light & !opposite_car & !car_from_left & !car_from_right & !

pedestrian_at_left & !pedestrian_at_right : next(action) = turn_left;
23 opposite_car | car_from_left | car_from_right | pedestrian_at_left | pedestrian_at_right

: next(action) = stop;
24 action = turn_left : next(action) = go_straight;
25 TRUE : next(action) = stop;
26 esac;
27

28 MODULE turn_left_after_finetune
29

30 VAR
31 green_traffic_light : boolean;
32 green_left_turn_light : boolean;
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Figure 16: Automaton-based controllers for the task “turn left at the traffic light with the left-turn signal.” The left and right
controllers are constructed from the language model before and after fine-tuning, respectively. TL and LL represent “traffic light”
and “left-turn light.”

33 opposite_car : boolean;
34 car_from_left : boolean;
35 car_from_right : boolean;
36 pedestrian_at_left : boolean;
37 pedestrian_at_right : boolean;
38 side_car : boolean;
39 stop_sign : boolean;
40 action : {stop, turn_left, turn_right, go_straight};
41

42 ASSIGN
43 init(action) := stop;
44

45 TRANS
46 case
47 !green_left_turn_light : next(action) = stop;
48 green_left_turn_light : next(action) = turn_left;
49 esac;
50

51 LTLSPEC NAME sample_phi_1 :=
52 G( action=turn_left -> (left_turn_light in {flashing, green}) );
53

54 LTLSPEC NAME sample_phi_2 :=
55 G( F action=turn_left );

1 MODULE turn_right_before_finetune
2

3 VAR
4 green_traffic_light : boolean;
5 green_left_turn_light : boolean;
6 opposite_car : boolean;
7 car_from_left : boolean;
8 car_from_right : boolean;
9 pedestrian_at_left : boolean;

10 pedestrian_at_right : boolean;
11 side_car : boolean;
12 stop_sign : boolean;
13 action : {stop, turn_left, turn_right, go_straight};
14

15 ASSIGN
16 init(action) := stop;
17 next(action) :=
18 case
19 green_traffic_light & !car_from_right : {go_straight, turn_right};
20 green_traffic_light & car_from_right : go_straight;
21 !green_traffic_light : stop;
22 esac;
23

24 MODULE turn_right_after_finetune
25 VAR
26 green_traffic_light : boolean;



27 green_left_turn_light : boolean;
28 opposite_car : boolean;
29 car_from_left : boolean;
30 car_from_right : boolean;
31 pedestrian_at_left : boolean;
32 pedestrian_at_right : boolean;
33 side_car : boolean;
34 stop_sign : boolean;
35 action : {stop, turn_left, turn_right, go_straight};
36 ASSIGN
37 init(action) := stop;
38 TRANS
39 case
40 !car_from_left & !pedestrian_at_right : next(action) = turn_right;
41 car_from_left | pedestrian_at_right : next(action) = stop;
42 esac
43

44 LTLSPEC NAME sample_phi_1 :=
45 G( pedestrian_at_right -> ! action=turn_right );
46

47 LTLSPEC NAME sample_phi_2 :=
48 G( car_from_left -> ! action=turn_right );

1 #!NuSMV -source
2 read_model -i right_turn.smv # file name
3 go
4

5 check_ltlspec -P "phi_1" -o result1.txt
6

7 check_ltlspec -P "phi_2" -o result2.txt
8

9 quit

Fine-tuning Llama-2: Implementation Details
Llama-2 Prompts LLama-2 has particular implementation requirements for the prompt. Certain tokens are required which
delineate system and user messages. System messages describe what role the language model should act as, while user messages
describe the task at hand. We use the following prompt for Llama-2, where italicized symbols represent special input tokens, and
the last sentence is a given task:
< s > [INST ] << SY S >>

You are a helpful assistant. Always answer as helpfully as possible, while being safe. Your answers should be detailed.
<< /SY S >>

Steps for “turn right at traffic light”: [/INST ]

Fine-tuning Efficiency Due to hardware limitations, fine-tuning all model parameters is impractical. Instead, it is possible to
fine-tune a low-rank approximation of a given matrix within the model (Hu et al. 2021). For example, instead of updating a
matrix W ∈ Rd×d, it is more memory efficient to update two matrices A ∈ Rd×k, B ∈ Rk×d with k << d, by holding W
constant and defining W̃ =W +AB. Then, A and B can be updated using gradient descent with a smaller memory profile than
updating W itself, since the combined number of parameters in A and B is much less than W .


