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Abstract

A deep learning model usually has to sacrifice some utilities when it acquires some other
abilities or characteristics. Privacy preservation has such trade-off relationships with utili-
ties. The loss disparity between various defense approaches implies the potential to decouple
generalizability and privacy risks to maximize privacy gain. In this paper, we identify that
the model’s generalization and privacy risks exist in different regions in deep neural network
architectures. Based on the observations that we investigate, we propose Privacy-Preserving
Training Principle (PPTP) to protect model components from privacy risks while minimiz-
ing the loss in generalizability. Through extensive evaluations, our approach shows signifi-
cantly better maintenance in model generalizability while enhancing privacy preservation.

1 Introduction

A machine learning model acquires accurate recognition abilities by learning how to fit the training data
points. However, even if a model shows a good performance for an objective of a given task, it may suffer
from the risk of data privacy leakage, especially in privacy-sensitive applications or systems. The concern
about this issue is also raised by several existing studies: Arpit et al. (2017); Chatterjee (2018) showed
neural networks’ potential privacy risks via fitting on random data. Shokri et al. (2017) showed that privacy
risks are widely posed in neural networks by showing the possibility of black-box membership inference
attacks (MIAs). Further studies Choquette-Choo et al. (2021); Del Grosso et al. (2022) showed that a model
has significant behavioral differences between the training and testing data in various aspects, especially in
robustness. Also, Stephenson et al. (2021) found that the model’s memory of training data points becomes
solid as training progresses. All of these prior observations and knowledge indicate that machine learning
models have a strong memory for data, which enables the model to achieve near-perfect performance on the
training dataset.

Since a well-trained model will retain a lot of data traces, deploying a model in a privacy-sensitive system
requires particular caution. This risk occurs not only in classification models Shokri et al. (2017); Song &
Mittal (2021); Choquette-Choo et al. (2021) but also in some other machine learning domains, such as gener-
ative models Chen et al. (2020) or transfer learning Zou et al. (2020); Wu et al. (2024), etc. Besides, models
could leak privacy in various ways, e.g., membership inference attacks Shokri et al. (2017), model inversion
attacks Fredrikson et al. (2015), and model extraction attacks Tramèr et al. (2016). This universality makes
the output of any model pose the potential risk of privacy leakage. Therefore, understanding the sources of
privacy risks and how to rectify them is the key to strengthening the model to be trustworthy.

In this paper, we study where and how layer-level privacy leakage occurs in neural network architectures.
We empirically identify that the model’s generalizability and privacy risk are separable. Then, we propose
Privacy-Preserving Training Principle (PPTP) to minimize negative impacts on the model utility during
training with privacy defense approaches. Here is a brief overview of our novel observations and contributions:

• We structurally and precisely investigate where and how the machine learning model produces
privacy risks, and identify that privacy risks and generalizability occur in different regions
in a model.
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• We propose a new cost-effective training paradigm for utility-privacy trade-offs. It decouples utility
and privacy into two separate parts, enabling the model to outperform existing privacy defense
approaches.

• Our approach bridges the gap between generalizability and privacy training, empowering the model
to choose its proper training approaches (for both utility and privacy) based on its application
contexts and helping the model overcome the limitations of the existing privacy defense approaches.

2 Related Work

There have been various studies to prevent the ML model from privacy risks. DP-SGD Abadi et al. (2016)
tried to train the model with a less fitting degree via additional noises in the optimizer. Nasr et al. (2018)
developed an adversarial mechanism to help the model obtain aligned predictions. However, both require
significantly increasing training costs due to their limitations in parallel computations. Jia et al. (2019);
Yang et al. (2023) proposed decorators to reproduce better-aligned predictions without retraining the model.
Shejwalkar & Houmansadr (2021) tried to mitigate the privacy risk via knowledge distillation. Tang et al.
(2022) further improved the utilization rate of training data via ensemble-based knowledge distillation. Li
et al. (2021) attempted the alignment between training and non-training accuracy during training. Chen
et al. (2022) proposed an efficient training paradigm with effective privacy-preserving ability. Fang & Kim
(2024a;b) discussed the privacy issues in the bottleneck layer. Liu et al. (2024) observed the convexity of loss
functions is a factor of privacy leakage and tried to mitigate it with a concave term. Although the conclusions
are not entirely consistent, Wang et al. (2021); Yuan & Zhang (2022) explored the impact of network pruning
on privacy risks. Kaya & Dumitras (2021); Yu et al. (2021) explored which data augmentation techniques are
beneficial to privacy. Tan et al. (2023) pointed out that higher model dimensions are possibly more privacy-
risky. Li et al. (2024) tried to focus on the most privacy-risky data points. Carlini et al. (2022b) found that
a model always experiences varying degrees for different data points in traditional training settings. Zhang
et al. (2024) found some components lead to machine learning models at severe privacy risks.

Despite considerable progress, it still remains a work in progress. Like obtaining other characteristics (e.g.,
Robustness Goodfellow et al. (2015), Fairness Mehrabi et al. (2021), and Data Unlearning Bourtoule et al.
(2021)), models always inevitably have to pay the price of utility for privacy with current approaches.
Sometimes, this expense is even too high for the model to maintain reasonable performance due to the
inherent characteristics of the dataset Carlini et al. (2022a). We question the preconceived view kept by
current privacy-preserving approaches that the model is a privacy-risky entity and explore where the model
produces the privacy risks in the next section.

3 Does Prediction Disparity Exist Everywhere?

3.1 Why the Question Matters

Recent non-decorator defense approaches Abadi et al. (2016); Nasr et al. (2018); Shejwalkar & Houmansadr
(2021); Chen et al. (2022); Tang et al. (2022) usually train a model from scratch while decorator approaches
Jia et al. (2019); Yang et al. (2023) usually add extra filters to the model externally rather than training
the model itself. A direct advantage of training from scratch is that it is implementation-friendly. However,
training the whole model could lead to an unnecessary utility loss as we see a discrepancy between adversarial
training on the whole model Shafahi et al. (2019) and training the last layer only Kirichenko et al. (2023).
Then, it gives us a question: Does prediction disparity exist everywhere? In this section, we discuss
the correlation between privacy-risk and other attributes of machine learning models, such as feature map
size, channel size, and depth.

It is known that the model’s generalizability is affected by the depth Baldock et al. (2021). That is, a
model gradually obtains generalizability layer by layer while learning samples with various difficulty levels.
If privacy risk accompanies the learning of different difficulty-level samples, the privacy risk should exist in
each layer and “gradually” show more and more prediction disparity. Meanwhile, Kirichenko et al. (2023)
showed that spurious correlations can be mitigated by retraining only the last layer, hinting that different

2



Under review as submission to TMLR

(a) Stage 1 (b) Stage 2 (c) Stage 3 (d) Stage 4, Block 1 (e) Stage 4, Block 2 (f) Stage 4, Blcok 3

Figure 1: The sample-level feature map differences (norm. distance on x-axis). No disparity is observed
in Stage 1–3, whereas gradually increasing disparity is observed within Stage 4 (ResNet152, TinyImageNet,
data augmented)

layers may not exhibit the same characteristics with regard to generalizability. Such recent insights challenge
us to locate where a disparity between generalizability and privacy risks starts occurring.

3.2 Sample-Level Measurement Design

Unlike the logits produced by the classification layer, there is no direct way to know what a confident feature
map should look like. Therefore, we develop a method to examine distribution disparity. Let Dall denote
the entire training set. We split Dall into two halves: Dh1 and Dh2. Then, we train two models, Mall and
Mh1, with the same architecture and configurations with training sets Dall and Dh1, respectively. Therefore,
every data point x1 ∈ Dh1 is seen data for both two models, while x2 ∈ Dh2 is seen data for only Mall but
unseen data for Mh1.

Then, we compute the feature map differences using Euclidean distance Dist(p, q) =
√∑d

i=1(pi − qi)2/d,
where d is the number of dimensions of the feature maps and 1/

√
d is an extra normalized item, while p

and q denote the feature maps produced by Mall and Mh1 on the same input, respectively. If a layer does
not produce prediction disparity, then the feature map distance distributions on Dh1 and Dh2 should be
equivalent, and vice versa.

3.3 Empirical Verification
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Figure 2: Overview of the three architec-
tures’ backbone modules.

First of all, we need to check if the disparity happens in all
layers or not. Fig. 1 plots sample-level feature map differences
of seen and unseen data (norm. distance on x-axis) where we
find that the disparity abruptly starts in stage 4. In other
words, there is only a small portion (the 4th stage contains
only 3 blocks while the entire model contains 33 blocks) of
ResNet152 that leaks privacy, identifying that the model is not
globally privacy-risky, but regionally. However, what condi-
tions cause disparity is not clear yet. Hence, we explore dif-
ferent factors’ impacts on disparity in the rest of this section.
We explore these factors using three different architectures as
shown in Fig. 2: VGG Simonyan & Zisserman (2015b), ResNet
He et al. (2016), and Active Token Mixer (ATM) (which is a
transformer-type architecture) Wei et al. (2023). In the three architectures, ResNet and ATM have residual
connections, while VGG does not. ATM has self-attention-type computation modules, which differentiates
it from VGG and ResNet.

Data Augmentation Kaya & Dumitras (2021); Yu et al. (2021) found some data augmentation techniques
are beneficial to the model’s privacy. Figure 3 shows that data augmentation does help mitigate disparity
when it occurs (please compare (d) and (h)). However, whether with or without data augmentation, disparity
happens in stage 4, which exhibits that data augmentation has no impact on “where” disparity happens.
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Figure 3: Comparison of models trained with and without data augmentation. (ResNet18, TinyImageNet)
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Figure 4: Comparison of ResNet18 with different feature
map sizes in the 4th stage. (TinyImageNet, data aug-
mented)
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Figure 5: Comparison of ATM-XT in various
channel sizes at the 3rd & 4th stage. (TinyIm-
ageNet, data augmented).
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Figure 6: Comparison of ResNet18 in various channel sizes at the 4th stage. (TinyImageNet, data augmented)

Feature Map Size One significant change along with stages is the feature map size. After each down-
sampling layer at the head of each stage in the ResNet (similar to many widely used architectures such
as CNN, ViT, Mixer, etc.), the feature map’s width and height are halved. To study how generalizability

4



Under review as submission to TMLR

Table 1: The performance
comparison among different
feature map sizes at the 4th
stage. (ResNet18, TinyIma-
geNet, data augmented)

Feature map size
Accuracy (%) 2 × 2 4 × 4 8 × 8

Train 99.98 99.98 99.98
Test 52.32 54.58 61.53

Table 2: The performance comparison
among different feature map sizes at
the 4th stage. (ATM-XT, TinyIma-
geNet, Data Augmentation)

Accuracy (%) 1× Feature Map Size 4× Feature Map Size
Train 99.97 99.98
Test 36.28 47.29

Table 3: The testing accuracy (%)
comparison among different training
data and different channel sizes at the
4th stage. (ResNet18, TinyImageNet,
data augmented)

Channel size
Accuracy (%) 256 512 1024 2048

Test 52.52 54.58 53.99 55.03

and disparity change along with feature map size, the feature map size at the 4th stage of ResNet18 is
enlarged and reduced (originally 4 × 4). By considering both Figure 4 and Table 1 together, we find that,
while enlarging the feature map also has no impact on where the disparity happens, it enhances the model’s
generalizability while not significantly exacerbating the disparity. The same trends are also observed in
ATMs (refer to Figure 5 and Table 2)

Channel Size One common design trend in deep learning in the recent decade is increasing channel size.
As shown in Fig. 6 and Table 3, the disparity becomes more and more significant as channel size increases
while changes in testing accuracy are not as significant as the changes by enlarged feature map size (refer to
Table 1) at 4th stage. That is, too many channel sizes make the model prone to produce disparity, leading
to more severe privacy risks. Therefore, it is not worth designing too many channels from the point of view
of utility-privacy trade-offs.
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Figure 7: Testing accuracy changes along with stages using SVM.
(TinyImageNet)

Depth As observed above, since
feature map size and channel size do
not impact where privacy risk oc-
curs, now we investigate the depth
of the model. First, we use a sup-
port vector machine (SVM) Cortes
& Vapnik (1995) to classify the fea-
tures extracted in each stage (see
Figure 7). We notice that some
stages have limited (or even no)
benefits to the model’s generaliz-
ability. The testing accuracy in all
models keeps consistently increas-
ing in the early stages (stages 1, 2, and 3 in Figure 7). However, this growth rate starts to level off
after stage 3 to various degrees - some of them slow down (ResNet), and others stagnate or even deteriorate
(ATM and VGG). Please note that this stagnation of growth perfectly matches where the privacy risk oc-
curs (e.g., Figure 8 & Figure 7(b)). It explains that when the model cannot learn sufficient features to be
generalized enough as much as its capacity, it instead learns many ineffective features. These features cannot
help generalizability but can help the model fit better on the train set. Therefore, these features must be
privacy-risky since they are only valid on the train set.

Besides, another notable point is that VGG shows different trends (privacy risks occur at different layers
in VGG11&19, see Figure 8) from ATM’s case (privacy risks always start at the 3rd stage, see Figure 10)
and ResNet’s case (privacy risks always start at the 4th stage, see Figure 9). That is because VGG11 can
maintain the growing speed of generalizability between stages 3 and 4 while VGG19 cannot. In contrast,
ResNet never shows privacy risks before the 4th stage even if most additional layers from ResNet18 to
ResNet152 belong to the 3rd stage. This phenomenon further explains the relationship between generalized
features and privacy.
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Figure 8: The sample-level feature map differences measurement. The disparity is observed earlier in VGG19.
(VGG11&19, TinyImageNet, data augmented)
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Figure 9: Comparison of feature map differences among different ResNet depths.

Does Prediction Disparity Exist Everywhere? The answer is no! In short, privacy risks only exist
in certain components without significant contributions to the model’s generalizability. Summarizing the
observations above, we can draw the following insights of privacy and generalizability of an architecture:

• Privacy risk and generalizability are separable: in standard training procedures, privacy-
risky features are learned together with generalized features due to imperfect or inadequate designs
in various aspects, such as loss function, label, and model architecture). Fortunately, they exist in
different regions of neural networks, identifying the feasibility of decoupling them.

• Non- or less-generalized features lead to privacy risks: Less-generalized features are usually
learned in later layers. Although the increase in model computation capacity (i.e., increase in depth,
channel size, and feature map size) brings the model effective improvements in generalizability, the
surplus non- or less-generalized features put the model at higher privacy risks.

• Privacy risk occurs in later stages: The less-generalized features mainly exist in later stages,
which is also consistent with the observation of Baldock et al. (2021). The more challenging to learn
the feature is, the more possibly under-generalized the feature is. That is, privacy risk mostly exists
in the later stage of the neural network.

These insights identify an issue in the current privacy defense approaches: they treat the model as a whole
during training without distinguishing the privacy risks of various components. With no doubt, disturbing
generalized privacy-safe features will lead to the unnecessary deterioration of the model’s generalizability.
Hence, it is necessary to develop a more considerate training paradigm with regard to privacy.
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Figure 10: Comparison of models in various depths. XT, T, and B denote ATM-XT, -T, and -B, respectively.
(ATM, TinyImageNet)

4 Privacy-Preserving Training Principle

Algorithm 1 Privacy-Preserving Training Principle
(PPTP)
Input: Training Dataset D = {(xi, yi)}N

i=1, Ordinar-
ily Pre-Trained and Privacy-Risky Model Mpr and its
Parameters θ, Privacy-Preserving Training Approach
f , Training Epochs E, and Other Retraining Configu-
rations C;
Output: Privacy-Safe Model Mps;

1: Split the model with parameters θ into Privacy-
Safe and -Risk Layers, denoting their parameters
as θps and θpr, respectively.

2: Freeze Privacy-Safe Parameters θps

3: Rewind Privacy-Risky Parameters θpr

4: for epoch in {1, 2, · · · , E} do
5: Retrain the model with privacy-preserving

training approach f(D, Mpr, C)
6: end for
7: Return privacy-safe model Mps

With the observations above in mind, we obtain the
insight that a model does not need to update all
weights to achieve better privacy-utility trade-offs.
Instead, only privacy-risky layers can be retrained
in a privacy-safe way. To achieve this, we propose
a retraining approach, Privacy-Preserving Training
Principle (PPTP), to enable a model to minimize
utility loss while obtaining privacy. The approach is
demonstrated in Alg. 1. In the algorithm, we first
determine the privacy-risk and -safe layers. Then,
the weights of privacy-safe layers are frozen since
they have learned generalized and privacy-safe fea-
tures. After that, the weights of the privacy-risky
layers are rewound for retraining. Because general
training approaches do not take into account pri-
vacy criteria, these layers need to be trained with
a privacy-defending approach to be privacy-safe.
With our approach, PPTP, the model can maintain
highly generalized features while reducing privacy-
risky features. We empirically show its effectiveness
by comparing differences between training with and without our approach in the next section.
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Table 4: Hyper-parameters searching space.

Hyper-Parameter Adv-Reg SELENA RelaxLoss
α [1.0, 5.0] N/A [1.0, 3.0]
k 3 25 N/A
l N/A [3, 10] N/A

Table 5: The information about computation environment.

OS CPU RAM GPU CUDA Pytroch
Information Ubuntu 22.04 96 cores 460 GB V100 12.1 2.1

5 Experiments

5.1 Experimental Settings

We evaluate our approach and others on CIFAR-100 Krizhevsky et al. (2009) and TinyImageNet Le & Yang
(2015). We evaluate our approaches on these two datasets to show the effectiveness on small and large
datasets since extensive studies Chen et al. (2018); Yun et al. (2020) have demonstrated that methods that
work well on small datasets may have insignificant improvement on larger datasets. Besides, the layers
to be frozen in a model may vary over different datasets, especially with different input dimensions or
information domains. In other words, the model may produce privacy risks earlier or later depending on
the dataset. Data augmentation techniques, including random flipping & cropping Simonyan & Zisserman
(2015a), are applied when training the model with a privacy-defending technique. As for privacy attacks,
we evaluate our approach and others on correctness-based MIAs Yeom et al. (2020), confidence-based MIAs
Yeom et al. (2018); Song et al. (2019); Song & Mittal (2021), entropy-based MIAs Shokri et al. (2017); Song
& Mittal (2021), modified-entropy-based MIAs Song & Mittal (2021), and neural network based MIAs Shokri
et al. (2017); Nasr et al. (2018). We include privacy training techniques such as adversarial regularization
(Adv-Reg) Nasr et al. (2018), SELENA Tang et al. (2022), and relaxed loss (RelaxLoss) Chen et al. (2022).
For each result, we execute three independent runs to ensure its stability. The hyper-parameters searching
space of cited privacy defense approaches are shown in Table 4. Also, the main information of experimental
software and hardware environment is presented in Table 7.

5.2 Results and Discussions

5.2.1 Ablation Study
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Figure 11: Comparison of retraining the model with different designs
(TinyImageNet, ResNet18).

To change the characteristics of a
trained model, we can consider the
two options, weight rewinding and
fine-tuning. As seen in Algorithm 1,
we choose rewinding and retraining
to achieve more advanced utility-
privacy trade-offs. Most privacy de-
fense approaches, such as Nasr et al.
(2018); Shejwalkar & Houmansadr
(2021); Chen et al. (2022), are de-
signed for training from scratch.
Thus rewinding is more adequate
for them. Besides, it is necessary
to check if retraining privacy-risky
layers can help the model achieve better utility-privacy trade-offs. To examine it, we show the performance
comparison between training from scratch, retraining privacy-risky layers, and retraining the classification
layers using RelaxLoss. As seen in Figure 11, retraining with the last layer only, regardless of whether
through fine-tuning or weights rewinding, cannot effectively mitigate the model’s privacy risks, while re-
training multiple privacy-risky layers helps the model mitigate the privacy risks successfully.

8



Under review as submission to TMLR

50 60 70 80
Test Accuracy (%)

50

60

70

80

M
IA

s 
A

cc
u
ra

cy
 (

%
)

Correctness

50 60 70 80
Test Accuracy (%)

50

60

70

80
Confidence

50 60 70 80
Test Accuracy (%)

50

60

70

80
Entropy

50 60 70 80
Test Accuracy (%)

50

60

70

80
M-Entropy

50 60 70 80
Test Accuracy (%)

50

60

70

80
NN

Ideal Defense No Defense Adv-Reg RelaxLoss PPTP&Adv-Reg PPTP&RelaxLoss

Figure 12: Comparisons with existing privacy-preserving techniques (CIFAR100, ResNet18).
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Figure 13: Comparisons with existing privacy-preserving techniques (TinyImageNet, ResNet18).

5.2.2 Comparisons with Other Approaches

In CIFAR-100, we evaluate our approach with Adv-Reg and RelaxLoss. As shown in Figure 12, both
RelaxLoss and Adv-Reg show improvement when they are used to retrain the model with PPTP. However,
the performance of correctness-based MIAs does not show significant improvement. PPTP retains the
partially generalized features learned by CE to help the model maintain its utility, whereas it does not
benefit the correctness alignment on train and test sets. Fortunately, however, this does not mean that
PPTP cannot work with MIAs based on robustness or fairness. For instance, robustness issues of neural
networks mainly exist in the final layer Kirichenko et al. (2023), meaning that the adversarial disparity can be
also mitigated in the later layers to defend the robustness-based MIAs such as Del Grosso et al. (2022). We
do not report the results of SELENA on this dataset since gradient explosions frequently occur on SELENA
in the distillation stage (this phenomenon also occurs on TinyImageNet, although less frequently.)

10 5 10 3 10 1

False Positive Rate

10 5

10 3

10 1

Tr
ue

 P
os

iti
ve

 R
at

e

Confidence

10 5 10 3 10 1

False Positive Rate

10 5

10 3

10 1

Entropy

10 5 10 3 10 1

False Positive Rate

10 5

10 3

10 1

M-Entropy
Cross-Entropy (Acc:54.63%) Adv-Reg (Acc:34.12%) RelaxLoss (Acc:46.23%)

PPTP&Adv-Reg (Acc:37.58%) PPTP&RelaxLoss (Acc:49.59%)

Figure 14: AUC-ROC curve comparison of defense approaches with and
without PPTP under various MIAs.

In TinyImageNet, we evaluate
our approach with Adv-Reg,
SELENA, and RelaxLoss.
Compared with results on
CIFAR-100, the trends on
TinyImageNet (Fig. 13) vary
a lot. The Adv-Reg and
RelaxLoss show more sig-
nificant improvement once
PPTP is applied. The results
identify that our approach
is effective in maintaining
good performance on larger
datasets. An important factor
is that we freeze much more weights in TinyImageNet than in CIFAR-100 because the disparity occurs
in different layers (see Table 6). This also shows the potential of the model compression methods Zhang
et al. (2019; 2022), which can help the model achieve better utility performance at earlier stages, to be
applied for privacy preservation. In contrast, the improvement in SELENA is very slight. We factor in
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Table 6: Weight-freezing stopping layers

Model CIFAR-100 TinyImageNet
ResNet18 conv4_x (stage 3) conv5_x (stage 4)

Table 7: The performance comparison of different train-
ing data and training techniques. (ResNet18, TinyIma-
geNet, data augmented)

Accuracy (%) CE & Full Data CE & Half Data RxL & Full Data
Train 99.98 99.99 79.68
Test 54.58 44.07 47.57

CE Full 
v.s. 

CE Half

CE Full 
v.s. 

RelaxLoss
Full

Stage 1 Stage 2 Stage 3 Stage 4

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 16: The distribution differences between training full data with CE, half data with CE, and full data
with RelaxLoss.

that data augmentation is disabled in the distillation phase - if data augmentation was applied in this
phase, the training time cost could have been over ten times greater than the current one. Additionally, it
exhibits that our approach decouples the utility and privacy training. To demonstrate this characteristic,
we apply class-wise self-knowledge distillation (CSKD) Yun et al. (2020) to pre-train the model. Compared
with privacy training from scratch, pre-training with CSKD also shows improvements in utility at the same
privacy level. Finally, to further exhibit privacy improvement using our approach, we evaluate Adv-Reg and
RelaxLoss with and without PPTP and plot the AUC-ROC curve Carlini et al. (2022a) for TinyImageNet.
As shown in Figure 14, compared with original Adv-Reg and RelaxLoss, our approach achieves comparable
or better privacy with higher testing accuracy, further identifying our approach’s effectiveness.

5.2.3 Training Cost
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Figure 15: Our proposed Privacy-Preserving Training
Principle (PPTP) clearly decreases training costs in
memory and time. (CIFAR100, ResNet18).

The privacy training cost can be optimized via
PPTP since PPTP freezes a large portion of the
weights. We evaluate the GPU memory and time
cost to show the efficiency benefit that PPTP en-
ables through privacy training approaches. As
shown in Figure 15, the CUDA memory and time
costs, evaluated on NVIDIA Tesla V100, clearly de-
crease after PPTP is applied. In particular, the ac-
tual training time cost is much less than the origi-
nal training approaches (w/o PPTP) since retrain-
ing partial weights requires fewer epochs (less than
half epochs) to converge.
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5.2.4 Feature Map Differences

A significant factor that makes the model less generalized with a privacy-defending approach is that the
feature representations in each model layer are quite different. As shown in Figure 16, the differences in
feature maps between training with RelaxLoss and CE are more significant than training with different data
(full vs. half). However, closer feature maps do not mean better generalizability (please refer to Table 7).
These identify that our approach can preserve the generalized features learned by CE at privacy-safe layers
and help the privacy-risky layers become more privacy-safe to mitigate privacy leakage.

6 Conclusion

In this paper, we observed that privacy vulnerability occurs at a portion of layers rather than the entire net-
work. We underscore that the generalizability and privacy risks are decomposable since the well-generalized
features and privacy-risky features exist in the different regions of the model. With this insight, we pro-
posed Privacy-Preserving Training Principle (PPTP) to preserve generalizability along with privacy training.
Through extensive empirical results, we showed that our approach enhances privacy with the proposed effi-
cient training while not losing generalizability.
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