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Abstract
In spoken dialogue, even if two current turns001
are the same sentence, their responses might002
still differ when they are spoken in different003
styles. The spoken styles, containing paralin-004
guistic and prosodic information, mark the005
most significant difference between text and006
speech modality. When using text-only LLMs007
to model spoken dialogue, text-only LLMs can-008
not give different responses based on the speak-009
ing style of the current turn. In this paper, we010
focus on enabling LLMs to listen to the speak-011
ing styles and respond properly. Our goal is012
to teach the LLM that "even if the sentences013
are identical if they are spoken in different014
styles, their corresponding responses might be015
different". Since there is no suitable dataset016
for achieving this goal, we collect a speech-017
to-speech dataset, StyleTalk, with the follow-018
ing desired characteristics: when two current019
speeches have the same content but are spo-020
ken in different styles, their responses will be021
different. To teach LLMs to understand and022
respond properly to the speaking styles, we023
propose the Spoken-LLM framework that can024
model the linguistic content and the speak-025
ing styles. We train Spoken-LLM using the026
StyleTalk dataset and devise a two-stage train-027
ing pipeline to help the Spoken-LLM better028
learn the speaking styles. Based on extensive029
experiments, we show that Spoken-LLM out-030
performs text-only baselines and prior speech031
LLMs methods. 1032

1 Introduction033

Large Language Models (LLMs) have demon-034

strated remarkable capabilities in dialogue genera-035

tion, natural language understanding, and common-036

sense reasoning (Wei et al., 2022; OpenAI, 2023).037

While LLMs mostly focus on text modality, speech038

represents the most natural form of human commu-039

nication in our daily lives. In this work, we aim to040

1Demo of the StyleTalk dataset and output of
Spoken-LLM are at https://sites.google.com/view/
spoken-llm/home.
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   Dialogue context
A : Can you believe this
amazing weather we're
having? It's like summer
came early!
B : Totally, I've already
planned a beach day for
tomorrow! Gonna soak
up some sun!
A : Oh, that sounds
perfect. Count me in, I
could use a day to just
relax and enjoy the sun.

1<cheerful, fast, normal>
2 <sad, slow, normal>    

Well, let's keep our hopes up that it clears up quick!
Oh no, that's sad news. It might spoil our plans ...

Expressive
Text-to-speechResponse speech

 Current text
B: Looks like it
might rain later
this week though.

Speech-to-Text

: Frozen parameters

c1

c2

r1 r2

<friendly, fast, loud>
  
<neutral, slow, quiet>

Figure 1: The overview framework of Spoken-LLM.
(c1,r1) and (c2,r2) are the current and response speech
sample pairs. c1 and c2 are fed into the model individu-
ally.

inject speech modality for modeling spoken con- 041

versation with Multi-modal LLMs (MM-LLMs). 042

The main goal is to develop a humanizing agent ca- 043

pable of listening, understanding, and engaging in 044

dialogue with humans, ultimately leading to higher 045

user satisfaction. 046

Speech signals contain linguistic aspects (words, 047

phonetics, syntax, and semantics), paralinguistic 048

elements (emotions and speaker characteristics), 049

and prosodic factors (speaking style, emphasis, and 050

attitude). In human conversation, while the dia- 051

logue primarily relies on the lexical aspect, the 052

speaking styles convey rich information beyond 053

text, and can even alter the semantics of the spoken 054

sentences (Castro et al., 2019). Neglecting spoken 055

styles can lead to misinterpretation of communica- 056

tion or unnatural human interaction. For example, 057

as shown in Figure 1, the current speech with the 058
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same current text (Looks like it might rain later this059

week though.) but different speaking styles. The060

friendly speaking style leads to a cheerful response061

while speaking in a slow and neutral tone leans062

toward a sad and negative response.063

Although there are recent studies on MM-LLMs064

for speech/audio and text, most of the existing065

studies focus on content-centric Spoken Language066

Modeling (SLM) (Lakhotia et al., 2021; Kharitonov067

et al., 2022), joint text and speech processing068

tasks (Rubenstein et al., 2023; Chou et al., 2023;069

Maiti et al., 2023; Nachmani et al., 2023; Zhang070

et al., 2023) or general audio perception and hear-071

ing ability (Tang et al., 2023; Gong et al., 2023a;072

Deshmukh et al., 2023). There is less attention073

on spoken dialogue with advanced methods and074

suitable datasets for modeling paralinguistics and075

speaking styles of spoken responses.076

To model spoken dialogue with a generative lan-077

guage model, dGSLM (Nguyen et al., 2023) pro-078

poses a dual-tower SLM on discrete speech units to079

model two-channel spoken dialogue, but the gen-080

erated spoken sentences lack semantic meaning.081

ParalinGPT (Lin et al., 2023b) organizes tasks in082

the sequence of current paralinguistic attribute pre-083

diction, response paralinguistic attribute prediction,084

and response text generation with autoregressive085

conditioning. However, it only uses the speech sen-086

timent as speaking style, which might be primarily087

based on textual information, and how the speak-088

ing styles affect the spoken response is unclear. A089

concurrent work E-chat (Xue et al., 2023) enhances090

LLM to generate responses in different emotional091

contexts, but the training and evaluation data are092

entirely generated by GPT-3.5 without human su-093

pervision, equivalent to distillation and prompting094

of GPT-3.5. It can only generate response text, con-095

straining its capacity to control response style or096

speech-to-speech modeling.097

To overcome the current limitation, we collect098

a novel speech-to-speech conversational dataset099

named StyleTalk. This dataset is the first spoken100

conversation benchmark with the same dialogue101

context and input sentence in different speaking102

styles, accompanied by corresponding expressive103

spoken responses for speech-to-speech modeling.104

The dataset will be released upon the paper’s ac-105

ceptance.106

Based upon the StyleTalk dataset, we pro-107

pose a multi-modal two-stage training method108

named Spoken-LLM for spoken dialogue mod-109

Dataset S2S Expressive Purpose Diff styles&resp
IEMOCAP ✓ ✓ recognition ✗

Switchboard ✓ ✓ recognition ✗

MUStARD ✓ ✓ recognition ✗

SEMAINE ✓ ✓ recognition ✗

MELD ✓ ✓ recognition ✗

MEISD ✓ ✓ recognition ✗

SCQA ✗ ✗ question answering ✗

NMSQA ✓ ✗ question answering ✗

OpenSAQA∗ ✗ ✓ question answering ✗

E-chat200∗ ✗ ✓ dialogue generation ✗

StyleTalk ✓ ✓ dialogue generation ✓

Table 1: The list of spoken conversation datasets. “S2S"
means speech-to-speech, and “Diff styles&resp" stands
for the same sentence in different speaking styles and re-
sponses. In the “Purpose" column, “recognition" refers
to recognizing the speaking style attributes in the speech,
“question answering" means the task is formulated as
the (question, answer) pair, and “dialogue generation" is
the general chatbot agent to response any kinds of input.
The datasets noted with ∗ are purely generated by LLM.

eling. Spoken-LLM is a fusion of the widely-used 110

open-sourced LLM (Llama 2-Chat (Touvron et al., 111

2023)) and a self-supervised speech emotion rep- 112

resentation model (emotion2vec (Ma et al., 2023)). 113

The proposed model can predict response speaking 114

style and text, enabling the subsequent expressive 115

Text-to-Speech (TTS) model to generate natural 116

and diverse speech responses. We validate the per- 117

formance through objective and subjective evalua- 118

tions of spoken responses. With the same backbone 119

model, the proposed method outperforms the text 120

and speech LLM baseline in lexical/semantic sim- 121

ilarity and response style F1 score. The human 122

evaluation also indicates that the proposed method 123

yields more reasonable and proper response speech 124

than the text-only LLM baseline approach. 125

2 Dataset: StyleTalk 126

2.1 Overview 127

StyleTalk is a speech-to-speech conversation 128

dataset. Each sample in the dataset comprises dia- 129

logue context (in text), current turn in speech (anno- 130

tated with speaking style), and the response turn in 131

speech (annotated with speaking style) (illustrated 132

in Figure 1). 133

StyleTalk features the following characteristics: 134

Multiple samples in StyleTalk share the same di- 135

alogue context, the text of the current input turn, 136

but they have different responses speech since the 137

speaking style of the current turn is different. To 138

the best of our knowledge, no existing corpora fo- 139

cus on such a characteristic. 140

By training on this dataset, we hope the LLM 141
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Automatic data generation

Expressive speech
synthesis

Human annotators filtering

Dialogue
topic

Dialogue context

Curr text+curr style 1

Curr text+curr style 2

Curr text+curr style 3

Resp text 1+resp style 1

Resp text 2+resp style 2

Resp text 3+resp style 3

Select the spoken response sounds
most natural corresponding to the
current speech?

None of above
sounds natural

Current
speech

(style 1)

Dialogue context

Prompt

StyleTalk

Figure 2: Data collection pipeline of StyleTalk. The
details of instruction and prompt template are in the
Appendix.

can learn to use the dialogue context and current142

turn, specifically, the speaking style, to predict the143

next turn. Given that speaking styles convey addi-144

tional information beyond text, incorporating style145

modeling helps to disambiguate human intent and146

facilitates dialogue engagement.147

2.2 Data Collection148

In this section, we introduce how the dataset is149

collected. The data collection pipeline includes150

three stages: (1) using LLM for data generation151

text dialogue with style annotation, (2) using an152

expressive TTS model to synthesize speech from153

text dialogue, and (3) recruiting human annotators154

to filter the dataset. We illustrate the data collection155

pipeline in Figure 2.156

2.2.1 LLM for Data Generation157

Crafting a scenario with the same context and158

words but expressed in different speaking styles159

is a non-trivial task. Most dialogue corpora typ-160

ically consist of one style, making it challenging161

to study the impact of various speaking styles on162

spoken responses.163

Recently, LLMs have demonstrated human-level164

knowledge and powerful data generation capabil-165

ities when provided with well-designed prompts166

and instructions. In light of this, we propose lever-167

aging GPT-4 (OpenAI, 2023) to generate spoken168

dialogue set consisting of a dialogue context, the169

same sentence presented in three different speak- 170

ing styles, and three corresponding responses. To 171

let LLM understand the speaking style informa- 172

tion, the speaking style is represented in text by 173

surrounded by special marker, for example, <emo- 174

tion, speed, volume>. To increase the diversity of 175

the dialogue, we prompt the GPT-4 with 17 com- 176

mon daily dialogue topics: School, work, family, 177

health, entertainment, travel, food, sports, finance, 178

technology, music, movies, books, games, beauty, 179

shopping, and weather. Additionally, we use decod- 180

ing with temperature sampling to ensure diversity 181

in the dataset. The prompt template is shown in the 182

appendix 6. 183

2.2.2 Expressive Speech Synthesis 184

To generate high-quality speech with style and 185

prosody control, we utilize an industrial-grade Mi- 186

crosoft Azure Text-to-Speech (TTS) system2. For 187

the speaking style, we employ emotion (neutral, 188

cheerful, sad, friendly, unfriendly), speeds (slow, 189

medium, fast), and volumes (quiet, medium, loud) 190

for prosodic control. There are nine speakers, with 191

four male and five female speakers. 192

2.2.3 Human Annotator Filtering 193

While LLMs can effectively follow instructions 194

and generate reasonably coherent dialogue samples, 195

LLMs are trained on textual data and lack exposure 196

to human-human spoken dialogue. Additionally, 197

the expressive TTS system may not achieve per- 198

fect naturalness and style-following in synthesizing 199

speech under style conditions. The automatically 200

generated data may exhibit unnatural characteris- 201

tics for human speakers. Therefore, additional ex- 202

amination is necessary to check the quality of the 203

speech data and the overall naturalness of spoken 204

dialogue sample pairs. 205

To ensure data quality, we request human listen- 206

ers to participate in a listening test conducted on the 207

Amazon Mechanical Turk platform. An illustration 208

of the listening test is provided in Figure 2. In this 209

evaluation, participants are presented with a dia- 210

logue context text, the current spoken turn and three 211

response spoken turns. They are then instructed to 212

choose the most suitable response among the three 213

options. Alternatively, if they perceive all three 214

responses as unnatural, they can select the option 215

"None of the above is natural." Participants need to 216

be aware of the style of the current turn and differ- 217

2https://azure.microsoft.com/en-us/products/ai-
services/text-to-speech
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entiate between the three response turns to identify218

the most natural one. Through this evaluation, we219

aim to filter out sample pairs that are deemed un-220

natural or indistinguishable. Details are shown in221

Appendix A. We found out that only around 33%222

samples successfully passed the human filtering223

process. This suggests that LLM-generated spoken224

samples are either not natural to human perception225

or the speaking style does not distinctly influence226

spoken responses.227

2.3 Data split228

After manual filtering, we split the filtered data229

into training and evaluation sets with dialogue sets.230

“Sample" means a current and response speech pair.231

The detailed data statistics are shown in Appendix232

Table 7.233

Train set: The training set is carefully curated234

through manual filtering, resulting in 1,878 dia-235

logue sets and 1,986 samples.236

Evaluation set: The evaluation set contains 486 di-237

alogue sets and 981 samples, most of the dialogue238

sets have two to three speaking styles for the cur-239

rent text.240

In addition to the train and evaluation set, a fully241

LLM-generated unfiltered set is introduced for242

data augmentation since the size of the training set243

is limited. The unfiltered set consists of 5,777 dia-244

logue sets and 16,472 samples. It is crucial to note245

that this data is not subject to human supervision,246

and as such, the samples may not align perfectly247

with human standards.248

3 Spoken-LLM framework249

3.1 Overview250

The framework of Spoken-LLM is illustrated in251

Figure 1. The main components include the large252

language models, speaking style encoder, speech-253

to-text conversion, and expressive TTS system. Ds254

and Dt denote the dimension of the speech en-255

coder’s output and LLM’s input space, respectively.256

We formulate the task as follows: given a multi-257

turn spoken dialog with dialogue context H in text258

Th, a current turn C comprising speech Sc and text259

Tc. The prediction response speech R includes260

response style Lr and response text Tr. Note that261

we use the ground truth transcripts Tc of the current262

turn, since addressing speech recognition errors is263

not the focus of this work. The discussion of using264

ASR prediction is in section C.265

3.2 Large Language Model 266

This study adopts the open-sourced Llama 2-Chat 267

7B model, derived from the fine-tuned version of 268

Llama 2 (Touvron et al., 2023), exhibiting opti- 269

mized dialogue generation capabilities. Through- 270

out the training process, the Llama 2-Chat model re- 271

mains frozen, and we introduce the trainable LoRA 272

adapter (Hu et al., 2021) for parameter-efficient 273

fine-tuning. 274

3.3 Speech Style Encoder 275

Among the self-supervised speech models (Yang 276

et al., 2021; Lin et al., 2023a), emotion2vec (Ma 277

et al., 2023) achieves state-of-the-art performance 278

on diverse paralinguistics-related tasks. Precisely, 279

it extends the data2vec 2.0 (Baevski et al., 2023) 280

with both utterance-level and frame-level loss us- 281

ing emotional speech data, and extra chunk token 282

embeddings are used to capture utterance-wise in- 283

formation. 284

We choose emotion2vec as the speech encoder 285

to extract universal paralinguistic and prosody em- 286

beddings. Two approaches are used for feature 287

extraction. (1) Utterance-level averaging embed- 288

ding (utt): which involves a simple averaging of 289

frame-wise representations to create an utterance- 290

level embedding. The embedding is in 1 × Ds 291

dimension. (2) Chunk embedding: emotion2vec 292

learns 10 extra chunk token embeddings to capture 293

both fine-grained and global speech information. 294

Chunk embeddings are in 10×Ds dimension. 295

A lightweight Connector module with layer nor- 296

malization and a linear model is utilized to project 297

the speech embeddings into the dimension of the 298

language model’s input space (from Ds to Dt). 299

Only the parameters of the connector are updated, 300

while the emotion2vec model remains frozen. The 301

number of trainable parameters for utterance and 302

chunk embeddings are the same. 303

3.4 Spoken Dialogue Modeling 304

1st-stage: style alignment: The first-stage training 305

is used to align the speech embedding with LLM 306

input space. To achieve this, the frozen LLM has to 307

predict the current input style. Only the connector 308

ϕ is trained. The training objective is to minimize 309

the cross-entropy loss for classifying Lc: 310

P(Lc|C, I1;ϕ), (1) 311

where C = {Tc, Sc}. I1 is the task instruction 312

shown in Appendix F. Since this training stage 313
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requires a reasonable amount of data to have better314

alignment, we use the current speech from the315

unfiltered set for training.316

317

2nd-stage: spoken response modeling: After the318

LLM can understand the speech embedding, the319

LLM is optimized to predict the response style320

and response text by training the LoRA adapter θ321

and speech connector ϕ. The second-stage training322

objective is the causal language modeling cross-323

entropy loss to predict the response style Lr then324

response text Tr:325

P(R|H,C, I2; θ, ϕ) = P(Lr|H,C, I2; θ, ϕ)326

P(Tr|H,C,Lr, I2; θ, ϕ) (2)327

where H = Th and I2 is the task instruction shown328

in Appendix F. The speaking style label Lr is inte-329

grated into the text through special bracket markers330

with the format <emotion, speed, volume>. Th and331

Tc are fed into LLM subword embedding, and Sc332

is passed through the speech encoder plus the con-333

nector. We concatenate the resulting continuous334

embeddings as the input prompt for LLM.335

Warmup pre-training: Given the limited size of336

the human-annotated training set, we propose lever-337

aging the unfiltered set for model warmup pre-338

training. This allows the model to grasp general339

knowledge and understand the structure of the dia-340

logue modeling task. Subsequently, we fine-tune341

the model on the training set to align with human342

perception, utilizing a smaller learning rate for sta-343

ble training. This warmup training strategy is de-344

signed to mitigate overfitting on the small training345

data while maintaining good performance.346

3.5 Inference347

Once the model has completed training, when pre-348

sented with a dialogue context and current speech349

input, the initial step involves converting the speech350

into text through either ground truth text in the or-351

acle setup or an Automatic Speech Recognition352

(ASR) model in the ASR setup. Then, the Spoken-353

LLM generates response style and response text se-354

quentially. The representation of the response style355

is surrounded by special bracket tokens, designed356

to enable the decoding of both the response style357

and text. Leveraging the capability of an expressive358

TTS model to control the response speaking style,359

we can synthesize the generated response back into360

speech. This synthesis takes into account the iden-361

tified response style, and the generated response362

text, resulting in a synthesized speech output that 363

is not only coherent but also aligns with the desired 364

style and content. 365

4 Experiments 366

4.1 Baseline method 367

All baseline methods are fine-tuned on the same 368

amount of training data and warmup pre-training, 369

with the identical LLM backbone and speech style 370

encoder for ParalinGPT. 371

Text-LLM (text-only): The initial simple baseline 372

is built by simply fine-tuning text-to-text LLM on 373

StyleTalk. This serves as a performance reference 374

to evaluate the model’s capability without know- 375

ing any explicit speaking style information. Since 376

the model cannot predict the response style, A ran- 377

domly selected response style is assigned for this 378

method to synthesize expressive speech. 379

Text-LLM (cascaded): One can represent the style 380

information in text to enable the model to better pre- 381

dict the response style and text. This approach, re- 382

ferred to as the cascaded pipeline method, involves 383

cascading a style recognition model3 with the text 384

LLM. The Text-LLM (upper bound) method is the 385

cascaded text-LLM with ground truth style labels. 386

ParalinGPT (Lin et al., 2023b): The serialized 387

multitasking approach proposed by ParalinGPT 388

is a sequential conditioning mechanism, unify- 389

ing current style prediction, response style predic- 390

tion, and response text generation within an auto- 391

regressive chain. The main difference between 392

ParalinGPT and Spoken-LLM is that Spoken-LLM 393

performs two-stage training (style alignment for 394

current speech then focus on the response speech), 395

but ParalinGPT directly models them in an auto- 396

regressive chain, which might be prone to error 397

propagation if the incorrect current style prediction 398

or focusing too much on the current style. 399

4.2 Evaluation Metrics 400

Objective evaluation: For automatic evaluation 401

of response text, we adopt the widely-used text 402

generation metric, including lexical-level score 403

(BLEU (Papineni et al., 2002), ROUGE (Lin, 404

2004), METEOR (Banerjee and Lavie, 2005)), and 405

semantic-level (BERT Score (Zhang et al., 2019))4. 406

3We use the Spoken-LLM-chunk 1st-stage model as the
style recognition model, which achieves 86.8, 99.2, 64.0 f1
scores on current emotion, speed, volume prediction, respec-
tively.

4Score calculated by Hugging face Evaluate package
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Method Response text Response style
BLEU ROUGEl METEOR BERTf1 F1emotion F1speed F1volume

Text-LLM (text-only) 3.1 16.2 17.4 75.3 17.5 37.1 41.9
Text-LLM (cascaded) 3.2 17.3 19.1 76.0 37.5 52.9 65.6
Text-LLM (upper bound) 4.0 17.9 19.6 76.3 40.2 53.5 65.8
ParalinGPT-utt 3.1 16.8 18.5 75.9 32.3 51.9 64.8
ParalinGPT-chunk 3.1 16.5 18.2 75.8 34.0 54.8 65.8
Spoken-LLM-utt 2.8 16.6 20.2 75.8 47.4 61.5 56.5
Spoken-LLM-chunk 4.0 17.8 19.4 76.3 49.6 62.1 61.1

Table 2: Main results comparing text-LLM, ParalinGPT, and Spoken-LLM. utt and chunk refer to utterance-wise and
chunk-wise speech embedding from emotion2vec. The Text-LLM (upper bound) method is the cascaded text-LLM
with ground truth style labels.

Figure 3: Human evaluation result comparing Spoken-
LLM-chunk with Text-LLM (text-only) and Text-LLM
(cascaded).

For response style evaluation, since the style at-407

tributes are categorical, we calculate the Weighted408

F1 score for speaking emotion, speed, and volume.409

Subjective evaluation: We perform the human410

evaluation on a set of 200 samples using an A/B411

test for model comparison. Three human evaluators412

are assigned to each sample, and they are instructed413

to rate the model based on both the generated text414

and speech. The details of subjection evaluation415

are in Appendix H.416

4.3 Main Results417

Spoken-LLM outperforms speech and text base-418

lines: Table 2 shows the result on objective evalua-419

tion. Firstly, for the text-LLM baseline on response420

text metrics, we observe that adding current speech421

style information yields significantly better perfor-422

mance than the text-only method, indicating that423

recognizing the style information is beneficial to424

predict textual response. Next, we compare the425

Text-LLM and speech ParlinGPT baseline. Par-426

alinGPT consistently outperforms the Text-LLM427

method on the response text metrics. However, on428

the response style, the text-LLM (cascaded) is bet-429

ter than ParalinGPT-utt. In contrast, our proposed 430

Spoken-LLM methods perform slightly better than 431

ParalinGPT on response text, with significantly su- 432

perior performance on response style. Specifically, 433

the Spoken-LLM-chunk achieves 49.6 F1 score on 434

response emotion with 62.1 F1 score on response 435

speaking speed. 436

Chunk vs. utterance-level embedding: We com- 437

pare the granularity of speech embedding on both 438

ParalinGPT and Spoken-LLM methods. Results 439

show that the use of chunk embedding achieves 440

better performance on response style prediction. 441

As for response text, the Spoken-LLM benefits 442

significantly from chunk embedding while Paral- 443

inGPT performs similarly. In general, chunk em- 444

bedding extracts richer style-related information 445

than average-pooling embedding, which is more 446

helpful in modeling response speech. 447

4.4 Subjective evaluation 448

We perform the human listening evaluation to com- 449

pare the generated samples of two methods. Specif- 450

ically, we compare the proposed Spoken-LLM- 451

chunk with Text-LLM (text-only) and Text-LLM 452

(cascaded) baseline. As shown in Figure 3, Spoken- 453

LLM wins over the Text-LLM (text-only) method 454

by a large margin, demonstrating that it is impor- 455

tant to consider the speaking style information to 456

respond properly. On the other hand, human listen- 457

ers slightly prefer more on Text-LLM (cascaded) 458

than Spoken-LLM. This result can be explained 459

in two ways: 1) From the objective evaluation of 460

response text, the performance of Spoken-LLM 461

and Text-LLM (cascade) is similar, so the human 462

listeners might not differentiate the content differ- 463

ence, and 2) for the response style, it is possible to 464

respond with more than one response style but still 465

sounds reasonably natural. Therefore, the current 466

and response speaking style is not a one-to-one but 467
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Training data Response text Response style
BLEU ROUGEl METEOR BERTf1 F1emotion F1speed F1volume

train 2.9 15.7 17.8 75.5 45.5 61.6 61.7
unfiltered 3.4 17.0 18.7 75.7 44.1 61.2 56.5

unfiltered→train 4.0 17.8 19.4 76.3 49.6 62.1 61.1

Table 3: Different training strategy and data usages on Spoken LLM-chunk method. “→" indicates the two-stage
warmup training pipeline.

Method self-BLEU
Ground truth 8.2
Text-LLM (text-only) 100.0
Text-LLM (cascaded) 11.2
ParalinGPT-chunk 11.3
Spoken-LLM-chunk 10.9

Table 4: The dialogue set-level self-BLEU score for
different methods on the evaluation set.

a one-to-many relation. Future efforts should con-468

sider modeling with more than one response style469

for better performance and evaluation.470

5 Analyses471

5.1 Same sentence in different speaking styles472

induce diverse responses473

Since the proposed StyleTalk evaluation set pro-474

vides sets of the same dialogue context and cur-475

rent input content with two or three distinct speak-476

ing styles, we can analyze how diverse are the re-477

sponses for each input speaking style. To mea-478

sure the response text diversity, we adopt the self-479

BLEU (Zhu et al., 2018) score to measure the di-480

versity of each dialogue set. Precisely, we average481

the BLEU score of two response sentences given482

two speaking styles as the dialogue set-level self-483

BLEU score. The lower self-BLEU score indi-484

cates the generated text is more diverse according485

to different speaking styles. The results are shown486

in Table 4. We observe that Spoken-LLM gener-487

ates the most diverse response content compared488

to Text-LLM (cascaded) and ParalinGPT. In con-489

trast, the Text-LLM (text-only) baseline generates490

the same content regardless of different speaking491

styles, yielding 100% self-BLEU score.492

5.2 Warmup pre-training and data quality493

Table 3 discusses different training strategies.494

Firstly, when we only utilize LLM-generated un-495

filtered data for training, despite the data amount496

being abundant compared to the train set, the per-497

formance of the response style is worse than the 498

train set. Meanwhile, we observe that training on 499

the unfiltered set can achieve better performance 500

on response text, probably because the data amount 501

of the train set is too small and prone to overfitting. 502

We reveal that pre-training on the unfiltered set and 503

fine-tuning on the train set (unfiltered→train) can 504

boost the performance significantly, which enables 505

the model to learn the task and the common lan- 506

guage usage first and then align the human standard 507

with the train set. 508

5.3 Qualitative analysis 509

We show the qualitative example in Table 5 with 510

different models’ outputs. This example shows 511

that the Text-LLM (text-only) baseline predicts a 512

more neutral sentiment response text, while the 513

text-LLM (cascaded) and Spoken-LLM model gen- 514

erate text with a more aggressive and engaging 515

tone, and the predicted response speaking styles 516

are similar to the ground truth. 517

6 Related works 518

Speech-text Multimodal LLM: The progress in 519

speech Self-supervised Learning (SSL) (Mohamed 520

et al., 2022; Yang et al., 2021; Tsai et al., 2022; Lin 521

et al., 2023a) and neural audio codec (Zeghidour 522

et al., 2021; Défossez et al., 2022; Wu et al., 2023b; 523

Yang et al., 2023; Kumar et al., 2023) enable ex- 524

tracting discrete speech units, drawing attention 525

to generative spoken language modeling. Specif- 526

ically, the discrete speech units are treated as a 527

special language for unit language modeling (Bor- 528

sos et al., 2023; Lakhotia et al., 2021; Kharitonov 529

et al., 2022; Nguyen et al., 2023; Hassid et al., 530

2023), further enabling multiple speech processing 531

tasks in single multimodal LLM (Rubenstein et al., 532

2023; Zhang et al., 2023; Chou et al., 2023; Maiti 533

et al., 2023; Wang et al., 2023; Wu et al., 2023a; 534

Pan et al., 2023; Nachmani et al., 2023). However, 535

these works mostly leverage content information 536

in speech, due to the speech unit clustering and the 537

use of speech-transcript pairs for modality align- 538
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Dialogue context
A : I’ve finally hit my goal of running five miles every day!
B : That’s amazing, hard work really does pay off, doesn’t it?
A : Absolutely, and I’ve never felt more alive!

Current text B: I really need to get back into exercising too.
Not knowing current style Text-LLM (text-only): Totally understand, let’s start small together, maybe a walk or something?

Current style in
<neutral, normal, quiet>

Text-LLM (cascaded): <friendly, normal, normal>Definitely! Let’s find a day when we can go together; I could use the company.
Spoken-LLM: <cheerful, normal, normal>That’s the spirit! Let me know if you want any tips or company on your runs!
Ground truth: <friendly, normal, normal>Hey, we could be workout buddies if you want, I can help you get started!

Current style in
<unfriendly, fast, loud>

Text-LLM (cascaded): <neutral, normal, normal>Hey, no pressure though, take things at your own pace, you know?
Spoken-LLM: <unfriendly, normal, normal>Whoa, no need to stress out about it, we can start with something small if you want.
Ground truth: <unfriendly, normal, normal>Whoa there, no need to get upset, maybe we can find a way to ease you into a routine?

Table 5: A qualitative example. The model outputs the response of speaker A’s turn.

ment. The multimodal LLM itself does not learn539

to model speaking style, and the models are mostly540

trained with single-turn utterances.541

The other line of work aims for the universal542

speech and audio understanding model to have543

general audio perception and hearing ability, ei-544

ther leveraging off-the-shelf expert models (Huang545

et al., 2023; Shen et al., 2023), or with a single MM-546

LLM (Chu et al., 2023; Tang et al., 2023; Gong547

et al., 2023b,a; Deshmukh et al., 2023). Those548

methods are mainly trained to perform comprehen-549

sive speech and audio understanding tasks and then550

fine-tuned for audio-based instruction-following551

data generated by off-the-shelf LLM like GPT-3.5.552

However, they are limited to only generating text re-553

sponses without considering responding styles, and554

the data quality from LLM is unknown. In contrast,555

we focus on modeling speaking style in speech-to-556

speech conversation with a manual-filtered dataset.557

Modeling Speaking Style in Spoken Dialogue:558

Speaking style is important for speech understand-559

ing and response generation in spoken dialogue.560

The understanding of speaking styles in spoken di-561

alogue is crucial for extracting style attributes such562

as emotion, sentiment, sarcasm, and more. Repre-563

sentative corpora for studying speaking styles in564

spoken conversations include IEMOCAP (Busso565

et al., 2008), SEMAINE (McKeown et al., 2010),566

MUStARD (Castro et al., 2019), Switchboard-567

sentiment (Chen et al., 2020), MELD (Poria et al.,568

2019), and MEISD (Firdaus et al., 2020). These569

datasets are primarily constructed based on label570

annotations from real speech conversations (e.g.,571

TV series) or acted spoken conversations.572

Another research direction involves spoken con-573

versation in the form of spoken question answering.574

Datasets in this category include NMSQA (Lin575

et al., 2022), SCQA (You et al., 2022), Open-576

SAQA (Gong et al., 2023a), and E-chat200 (Xue577

et al., 2023), where the data sample is presented as578

a tuple of (question, answer). Specifically, for style-579

related questions and answers, OpenSAQA em- 580

ploys GPT-3.5 to generate textual questions based 581

on the speech content and metadata style infor- 582

mation, while E-chat considers text with emotion 583

labels as the question for GPT-3.5 to generate the 584

responding answer as gold answers. 585

In all existing datasets, only one style is attached 586

to the speech, and one corresponding response 587

speech exists for each conversational context. Thus, 588

prohibiting researchers from investigating the im- 589

pact of different styles given the same context and 590

the same words. Additionally, the SQA data in 591

OpenSAQA and E-chat are fully generated by GPT- 592

3.5 and not carefully checked by humans, resem- 593

bling distillation and prompting of GPT-3.5, which 594

is concerning whether the sample follows a hu- 595

man standard as spoken conversation. Our work 596

provides the spoken dialogue data with the same 597

context, the same current text with different speak- 598

ing styles, and the corresponding response speech 599

with human annotator filtering. 600

7 Conclusion 601

This paper focuses on enhancing LLM by mod- 602

eling how the same sentence spoken with differ- 603

ent speaking styles causes different responses in 604

speech, in the spoken conversation scenario. Due to 605

the absence of a suitable dataset, we first collect the 606

speech-to-speech StyleTalk dataset that contains 607

the same dialogue context the same sentence spo- 608

ken in different styles, and the corresponding dif- 609

ferent response speech. Next, we propose Spoken- 610

LLM, a two-stage multi-modal training framework 611

to capture different speaking styles and respond 612

properly. The proposed method yields better per- 613

formance than the text and speech baseline on ob- 614

jective metrics and performs better than text-only 615

LLM on subjective evaluation. We encourage the 616

research community to use the released StyleTalk 617

for joint speaking style and language modeling. 618
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Limitation619

Data scale: The current StyleTalk training set con-620

sists of only around 2K samples, which may lead621

to training instability and overfitting. Utilizing a622

larger-scale dataset could alleviate these issues and623

eliminate the need for a pre-training stage on unfil-624

tered LLM-generated data.625

Real speech with diverse and mixed styles: The626

speech data in StyleTalk is synthesized from the627

Azure TTS system with style control. However, in-628

corporating spontaneous speech with even more629

diverse styles is preferable. Moreover, the cur-630

rent one-hot emotion simplified the problem since631

speech emotion may by expressed multi-label dis-632

tribution.633

Direct speech-to-speech modeling: The Spoken-634

LLM generates predefined style attributes for in-635

putting into the expressive TTS system. Future636

work on directly modeling responding speech has637

the potential to eliminate the need for explicit style638

labels.639

Toward human-like spoken dialogue: Real-640

world human communication includes backchan-641

nel, laughter, and turn-taking behaviors, which642

is beyond the turn-based spoken dialogue sys-643

tem (Nguyen et al., 2023; Mitsui et al., 2023). Fu-644

ture endeavors to explore speaking style with those645

behaviors can make the spoken dialogue model646

closer to human conversation.647
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Method Response text Response style
BLEU ROUGEl METEOR BERTf1 F1emotion F1speed F1volume

Text-LLM (cascaded) 3.1 (-0.1) 16.9 (-0.4) 18.5 (-0.6) 75.9 (-0.1) 37.0 (-0.5) 52.5 (-0.4) 63.7 (-2.1)
Spoken-LLM-chunk 3.3 (-0.7) 17.1 (-0.9) 19.0 (-0.4) 75.9 (-0.4) 47.5 (-2.1) 60.3 (-1.8) 57.4 (-3.7)

Table 6: The results of using whisper base ASR model’s prediction as input current text on text-LLM (cascaded)
and Spoken-LLM-chunk.

Appendix945

A Details of human annotators filtering946

We assign three listeners for each test. All listeners947

are based in the United States with HIT approval948

rate higher than 95%, given that the corpus is in949

American English. Only the pairs that receive a950

majority vote and do not have anyone choosing951

"None of the above is natural" are retained in our952

corpus. Each test contains 20 samples for evalu-953

ation. The example of the annotation interface is954

shown in Figure 7. We pay the annotators 3 USD955

for each test. On average, based on the time of956

playing audio (if played twice for each sample) and957

reading the content, it takes 10 minutes on one test,958

so the hourly wage is around 18 USD.959

B Implementation details960

The model is trained using a two-stage approach961

with distinct learning rates. The learning rate is962

1e-3 and 2e-4 during the 1-stage and 2-stage, re-963

spectively. The batch size is 128, and LoRA (r=8)964

is utilized for efficient fine-tuning of the LLM. To965

facilitate stable training, a warmup learning rate966

strategy is with 100 initial steps then linear decay.967

We use 10% of the training samples as the vali-968

dation data to assess model performance during969

training. Model checkpoint is selected based on the970

validation set performance. In the inference stage,971

a temperature of 0.7 was applied to control the ran-972

domness of generated outputs, and top-p sampling973

with a probability threshold of 0.95 was used. The974

number of trainable parameters is 7.8M (0.11% for975

total parameters). All experiments are run with a976

single A40 48G GPU.977

C ASR prediction as input978

In this particular setup, we use the Whisper base979

ASR (Radford et al., 2023) model to transcribe the980

current speech into text, which is then input into981

the trained model for inference. The Word Error982

Rate (WER) on the current turn speech within the983

evaluation set is 3.21%. In this setup, we test with984

the text-LLM (cascaded) and Spoken-LLM-chunk 985

models. In Table 6, compared to using the ground 986

truth transcripts, we observe slight performance 987

degradation in response text and style for both the 988

Spoken-LLM-chunk and text-LLM (cascaded). It’s 989

important to note that addressing ASR error propa- 990

gation on LLM is beyond the scope of this paper. 991

However, several previous efforts have delved into 992

investigating methods to mitigate such issues (He 993

and Garner, 2023; Everson et al., 2024), which may 994

be one of the further directions especially when the 995

more expressive and spontaneous speech as current 996

input speech. 997

D Style transition 998

In this section, we delve into an analysis of the cor- 999

relation between input and output emotions. While 1000

the dataset comprises diverse samples with varying 1001

dialogue contexts and inputs, human responses ex- 1002

hibit discernible patterns associated with specific 1003

styles. Notably, individuals are inclined to respond 1004

with particular styles given a certain current style, 1005

and conversely, they are less likely to adopt certain 1006

styles in their responses. For instance, in cases 1007

where the input style is cheerful, the corresponding 1008

response style is more inclined towards positivity, 1009

such as cheerful and friendly emotions, as opposed 1010

to styles such as unfriendly or sad. 1011

In Figure 4, we present a visual representation 1012

of the output style distribution corresponding to 1013

different input styles. The visualization reveals 1014

that for each input style, certain response styles are 1015

markedly more prevalent than others, underscoring 1016

the nuanced relationship between input and output 1017

emotions. 1018

E Diversity of current and responding 1019

styles 1020

In exploring human responses across varied styles, 1021

individuals may employ more assertive or passive 1022

speaking approaches, resulting in potential differ- 1023

ences in content. In this context, we delve into 1024

an examination of how the interplay between in- 1025
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Figure 4: The output emotion distribution given input
emotion. Each row is the probability distribution for an
input-output pair.

eval train unfiltered

# dialogue set 1 16 1,770 0
# dialogue set 2 445 108 859
# dialogue set 3 25 0 4,918
# sample 981 1,986 16,472

Table 7: Data statistics of StyleTalk. The # dialogue
set 1, 2, and 3 mean the amount of different speaking
styles for the current speech. # sample is the number of
current and response speech pairs.

put and output styles influences response diversity.1026

Specifically, we seek to determine whether the tran-1027

sition between styles in certain scenarios leads to1028

responses characterized by increased diversity or1029

a tendency to adopt simpler, more predictable pat-1030

terns. This investigation sheds light on the intricate1031

dynamics of style transitions and their impact on1032

the richness and complexity of response text.1033

In Figure 5, we present the result of the top-51034

and bottom-5 diverse pairs, organized according1035

to their self-BLEU scores. The self-BLEU score1036

represents the average BLEU score for each style1037

transition pair, with lower scores indicating greater1038

diversity in the responses. Notably, we observe1039

that the top-5 diverse pairs frequently involve re-1040

sponses characterized by positive and excitement1041

styles such as cheerfulness. Conversely, the bottom-1042

5 non-diverse pairs are associated with empathy,1043

particularly when the input style is sad. This anal-1044

ysis provides insights into the response diversity1045

across various style transition scenarios, emphasiz-1046

ing notable patterns in the use of distinct emotional1047

styles.1048

Figure 5: Top-5 and Bottom-5 diverse pairs in the train
and evaluation set. The self-BLEU is normalized for
each style transition pair to make a fair comparison. The
pairs with fewer than 5 pairs are removed. The lower the
self-BLEU score, the more diverse the lexical response
given different dialogue contexts and input.

F Instruction 1049

I1: Instruction: Classify speaking style of speech. 1050

The speaking style is represented in (emotion, 1051

speed, volume). 1052

I2: Instruction: Generate human-like response 1053

given context. speaking style is represented in 1054

(emotion, speed, volume). 1055

G Prompting GPT-4 for Data Generation 1056

We utilize gpt-4-1106-preview and the prompt 1057

template in Figure 6. 1058

H Subjective evaluation 1059

Each test contains 10 samples for evaluation. The 1060

example of subjective evaluation interface is shown 1061

in Figure 8. We pay the annotators 3 USD for each 1062

test. On average, based on the time of listening to 1063

audio (if played three times for each sample) and 1064

reading the content, it takes 10 minutes on one test. 1065

The hourly wage is around 18 USD. 1066

I Dataset license 1067

We plan to release the StyleTalk dataset under the 1068

MIT license. 1069
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system_msg:
You are an human-like dialogue data expert that imitates the real human-to-human spoken dialogue. The

speaking style should be very natural in the dialogue context.

Important: Consider a scenario that after the history turns, there is a current turn with neutral-sentiment text

but with different possible speaking styles, the different current speaking styles would make the response turn

fairly different in terms of semantics.

Just one sentence for each turn. The sentence is spoken and spontaneous not too formal.

[Rules you must follow]:

0. We use speical token <> to representation the class type that you have to generate. Do not have <> in the

output.

1. You can only use these styles for representation speaking style (<tone>, <speaking speed>, <speaking

volume>). Important, do not use other class that is not defined below!!!

1.1 tone: neutral, angry, cheerful, sad, excited, friendly, terrified, shouting, unfriendly, whispering, hopeful.

Don’t use other tones!

1.2 Speaking speed class: slow, normal, fast.

1.3 Speaking volume class: loud, normal, quiet.

1.4 Speaker class: A, B.

2. Use diverse speaking styles in the conversation context.

3. The text of current turn is in neutral sentiment, and the response turn should carefully consider the

current turn, response naturally, not just copying current turn style.

4. There are two speakers (A and B) in the dialogue. The speaker A and B talk with back and forth

interaction.

5. Each turn should follow the format: <speaker> (<tone>, <speaking speed>, <speaking volume>): <text>

6. The order of turns is history turns -> current turn -> upcoming response.

7. The transistion of dialogue turns should be very consistent and the conversation follows the common

sense.

8. The dialouge contains emotional variation.

9. The output valid dictionary format is as below:

{

"history_turns": [ "<speaker> (<tone>, <speed>, <volume>): <text>", ...], # 3 history turns

"current_turn": "<speaker>: <text>", # the word of current turn is exactly the same with neutral sentiment

"current_turn_style_1": "(<tone>, <speed>, <volume>)",

"current_turn_style_2": "(<tone>, <speed>, <volume>)",

"current_turn_style_3": "(<tone>, <speed>, <volume>)",

"response_of_current_style_1": "<speaker> (<tone>, <speed>, <volume>): <text>",

"response_of_current_style_2": "<speaker> (<tone>, <speed>, <volume>): <text>",

"response_of_current_style_3": "<speaker> (<tone>, <speed>, <volume>): <text>",

}

10. Output the valid dictionary example, so that it can be parse as dictionary.

11. For <speaker>, only use A or B.

user_msg:
[dialogue topic]: {TOPIC}. Given the context of {HISTORY_NUM} conversational turns with speaking-related

emotional styles. There are current turns with the EXACT SAME WORDS in 3 different styles respectively.

Predict the upcoming response. The dialogue topic is [topic]. Feel free to imagine the dialogue content but it

should based on common sense. We use (<tone>, <speaking speed>, <speaking volume>) to represent

speaking style."

Figure 6: Prompt template. {TOPIC} and {HISTORY_NUM} are variables. The system message and user message
are sent to GPT-4 (gpt-4-1106-preview) API.
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Figure 7: Human annotators filtering template.
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Figure 8: Subjective evaluation template.
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