
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Graph Self-Supervised Learning with Learnable Structural and
Positional Encodings

Anonymous Author(s)
∗

Abstract
We propose a novel framework that addresses a critical limitation in

Graph Self-Supervised Learning (GSSL) for graph classification: the

underestimation of topological information. Traditional GSSL, de-

spite its success in various benchmarks, often fails to fully leverage

the expressive power of Graph Neural Networks (GNNs), partic-

ularly in capturing complex structural properties. This limitation

stems from two main factors: (1) the inadequacy of conventional

GNNs in representing sophisticated topological features, and (2)

the focus of self-supervised learning solely on final graph represen-

tations. To address these issues, we introduce GenHopNet, a GNN
framework that integrates a k-hop message-passing scheme, en-

hancing its ability to capture local structural information without

explicit substructure extraction. We theoretically demonstrate that

GenHopNet surpasses the expressiveness of the classical Weisfeiler-

Lehman (WL) test for graph isomorphism. Furthermore, we propose

a structural- and positional-aware GSSL framework that incorpo-

rates topological information throughout the learning process. This

approach enables the learning of representations that are both

sensitive to graph topology and invariant to specific structural

and feature augmentations. Comprehensive experiments on graph

classification datasets, including those designed to test structural

sensitivity, show that our methods consistently outperform most

of the existing approaches in accuracy while maintaining computa-

tional efficiency. Our work significantly advances GSSL’s capability

in distinguishing graphs with similar local structures but different

global topologies.

CCS Concepts
• Computing methodologies → Machine learning; • Machine
learning approaches→ Neural networks.

Keywords
Graph Self-Supervised Learning, Graph Neural network, Expressive

Power of GNNs, Graph Classification, Graph Regression

ACM Reference Format:
Anonymous Author(s). 2025. Graph Self-Supervised Learning with Learn-

able Structural and Positional Encodings. In Proceedings of International
World Wide Web Conference (WWW ’25). ACM, TBD, TBD, TBD, 12 pages.

https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’25, TBD, 2025, TBD
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
In recent years, Graph Neural Networks (GNNs) have emerged as a

powerful framework for analyzing graph-structured data, advanc-

ing capabilities in various tasks [26, 29, 52, 58, 62, 68, 73]. While

most GNNs focus on semi-supervised learning, growing in popu-

larity is Self-Supervised Learning (SSL) that learns graph represen-

tations without human annotations.

Graph Self-Supervised Learning (GSSL) has demonstrated compa-

rable performance to supervised methods in various representation

learning tasks, applicable to both node-level and graph-level down-

stream tasks [61, 76]. In this paper, we focus on graph classification,

a crucial graph-level task with significant applications in areas

such as molecular property prediction, social network analysis,

and protein function classification [17, 20, 62]. Graph classification

presents unique challenges compared to node-level tasks. It requires

capturing and differentiating global structural information across

different graphs, not just local neighborhoods. Graphs can vary

significantly in size and structure, demanding more flexible and ex-

pressive models. To generate effective graph-level representations,

models must aggregate information from all nodes and edges while

preserving discriminative structural features.

Despite GSSL’s success, they often fall to fully leverage the ex-

pressive power of GNNs, by not utilizing both topological and

positional information for graph classification. Topological infor-

mation captures the local structural relationships within the graph

through the k-hop neighborhood substructure patterns (e.g., trian-
gles, cycles), while positional information, derived from Laplacian

eigenvectors or random-walk diffusion, reflects the nodes’ relative

positions within the graph’s global structure. The lack of topological

and positional focus prevents GSSL distinguishing between graphs

with similar local structures but different global topologies. Specif-

ically, in graphs where nodes may have identical local structures

(e.g., isomorphic or symmetrical nodes), relying only on neighbor-

ing features is inadequate for differentiation. Positional information

is critical for enabling GNNs to distinguish such nodes, even when

their connectivity patterns are similar. Isomorphic nodes, which

cannot be differentiated based solely on their structural information,

present a particular challenge. By incorporating positional encod-

ings, GNNs can leverage this additional context to break symmetry,

facilitating better differentiation among nodes. This enhancement

improves the model’s ability to recognize unique identities, leading

to more accurate predictions in graph-related tasks.

The limitations of current GSSLmethods can be attributed to two

main factors: GNN Architecture Limitations and Self-Supervised

Learning Constraints. Conventional GNNs typically aggregate in-

formation from immediate neighborhoods, often missing crucial

structural differences that exist beyond local structures. For in-

stance, GIN [62] has shown that certain GNN-based methods [29,

52] are less effective at distinguishing graph structures compared

to Weisfeiler-Lehman (WL) based methods. Furthermore, current

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, TBD, 2025, TBD Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

GSSL methods [21, 48, 53, 67] often fail to fully leverage the com-

plementary nature of structural and positional information, which

hinders their ability to differentiate non-isomorphic graphs with

similar local attributes but different global topologies.

Building on these insights, we develop a framework that funda-

mentally reimagines graph representation learning by innovating

both GNN architecture and the self-supervised learning process.

Our goal is to significantly enhance the expressiveness and rep-

resentational capacity of GSSL in distinguishing non-isomorphic

graphs with similar local structures but different global topologies.

To this end, we focus on two main components:

GenHopNet GNN: A novel GNN architecture designed to capture

complex structural information beyond immediate neighborhoods.

It implements a k-hop message-passing scheme that expands the

receptive field of each node, allowing the model to capture long-

range dependencies and global structural information.

Structural and Positional Aware Self-Supervised Learning: A

new self-supervised learning framework that preserves and uses

crucial topological information by incorporating both structural

and positional information into learning. It overcomes limitations

of methods that focus solely on final graph representations.

Contributions. Below we summarize our main contributions:

i. We introduce GenHopNet, a GNN framework that implements

a k-hop message-passing aggregation scheme and surpasses

the expressiveness of the WL test.

ii. We propose a structural- and positional-aware GSSL frame-

work, namely StructPosGSSL, for GNN pre-training, enabling

the learning of representations invariant to specific structural

and feature augmentations while preserving topological and

positional information.

iii. With extensive experiments on both real-world and synthetic

datasets we demonstrate that our StructPosGSSL achieves su-

perior performance on most graph classification benchmarks.

2 Related Work
GNNs are a class of neural networks designed to effectively process

and represent graph-structured data. Since the development of the

previous GNN models, various adaptations have emerged, includ-

ing GCN [29], GAT [52], GraphSAGE [19], and GIN [62], among

others. These models aim to learn distinguishing representations

of graphs based on their data labels. However, annotating graph

data, such as identifying categories of biochemical molecules, of-

ten requires specialized expertise, making it challenging to obtain

large-scale labeled graph datasets [67]. This challenge highlights a

key limitation of supervised graph representation learning.

Contrastive Learning (CL) stands out as a highly effective self-

supervised technique embedding unlabeled data [31]. By bring-

ing similar examples closer together and pushing dissimilar ones

apart, CL methods—including SimCLR [10], MoCo [22], BYOL [18],

MetAug [32], and Barlow Twins [69]—have demonstrated remark-

able success in the realm of computer vision [44, 59].

Graph Self-Supervised Learning (GSSL) is a promising tech-

nique for learning representations of graph-structured data without

requiring labeled examples, making it especially effective for graph

classification tasks. To date, many GSSLs with unique strategies

have been proposed to enhance graph classification. These methods

build on the strengths of GNNs and CL techniques [21, 49, 53].

A key focus of GSSL is the development of effective graph aug-

mentation strategies. For instance, GraphCL [67] introduces per-

turbation invariance and proposes various graph augmentations,

such as node dropping, edge perturbation, attribute masking, and

subgraph extraction. Recognizing the limitations of using complete

graphs, Subg-Con [25] advocates for subgraph sampling as a more

effective method for capturing structural information. To improve

the semantic depth of sampled subgraphs, MICRO-Graph [72] pro-

poses generating informative subgraphs by learning graph motifs.

Furthermore, the process of selecting suitable graph augmentations

can be time-consuming and labor-intensive; JOAO [66] addresses

this by introducing a bi-level optimization framework that auto-

mates the selection of data augmentations tailored to specific graph

data. RGCL [33] argues that random destruction of graph prop-

erties during augmentation can lead to a loss of critical semantic

information and proposes a rationale-aware approach for graph

augmentation. Additionally, SPAN [34] introduces a spectral per-

spective for guiding topology augmentation, noting that previous

work has largely concentrated on spatial domain augmentation.

To address the neglect of hierarchical structures in existing GSSL

methods, HGCL [27] proposes Hierarchical GSSL, which integrates

node-level CL, graph-level CL, and mutual CL components. An-

other important aspect of GSSL is the process of negative sampling;

BGRL [50] simplifies this process by eliminating the need for con-

structing negative samples, allowing it to scale efficiently to large

graphs. To mitigate sampling bias, PGCL [35] introduces a nega-

tive sampling strategy based on semantic clustering. In contrast

to existing GSSL methods, our approach enhances both global and

local structural understanding. It ensures that global graph repre-

sentations effectively capture complex topological similarities and

differences, while local node embeddings are refined to preserve

detailed structural and positional nuances. By incorporating struc-

tural and positional awareness through invariance, variance, and

covariance across node features, our method improves the ability to

distinguish between isomorphic and non-isomorphic graphs. This

ensures that both global graph structure and local node character-

istics are robustly represented and aligned.

Enhancing GNN Expressiveness. A substantial amount of effort

has been devoted to enhancing the expressive power of GNNs be-

yond the 1-WL
1
. This pursuit arises from the need to capture more

intricate graph structures and relationships to address complex

real-world problems effectively. Broadly, there are four primary

directions which GNNs can extend beyond the 1-WL level: (1) A

number of studies have introduced higher-order variants of GNNs,

demonstrating comparable expressiveness to k-WL with 𝑘 ≥ 3

[2]. As an example, k-order graph networks, introduced by [40],

offer expressiveness that is similar to a set-based variation of k-WL.

[37] introduced a 2-order graph network that maintains expressive

power similar to 3-WL. Furthermore, [39] introduced a localized

variant of k-WL, focusing solely on a subset of vertices within a

neighborhood. Nevertheless, using these expressive GNNs presents

challenges due to their intrinsic computational demands and in-

tricate architecture. In addition, some studies aimed to integrate

1
WL stands for the Weisfeiler Leman graph isomorphism test.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Graph Self-Supervised Learning with Learnable Structural and Positional Encodings WWW ’25, TBD, 2025, TBD

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(a) (b)

G

Gi′ = (Ãi′ , X̃i′)

Aug 1

Aug2

G j′ = (Ãj′ , X̃j′)

SE
PE

 MLPϕ

 MLPϕ

⊕

h̃SE

h̃PE

⊕

h̃′ SE

h̃′ PE

LV(hi′ , hj′)
Pooling

 MLPθ

 MLPθ

⊕
z̃ SE

z̃PE

⊕

z̃′ SE

z̃′ PE

LN(zi′ , zj′)

C

C

C

C

C

C

C

C

C

C

Decalin(C10H18)

C

C

C

C

C

C

C

C

C

C

Bicyclopentyl(C10H18)

Figure 1: (a) A high-level overview of the GSSL model architecture of StructPosGSSL (𝐺 is an input graph and 𝐺𝑖
′
,𝐺 𝑗 ′ are

two augmented views). Our design comprises three main components: (i) a structural encoder (SE) that generates structural
embeddings (ℎ𝑆𝐸 and ℎ′

𝑆𝐸
) for nodes based on their local structural properties; (ii) a positional encoder (PE) that generates

positional embeddings (ℎ𝑃𝐸 and ℎ′
𝑃𝐸

) for nodes; and (iii) a pooling layer that aggregates the node representations to generate
the final graph representation. Moreover,𝑀𝐿𝑃𝜙 and𝑀𝐿𝑃𝜃 are two shared projection heads for node representations and graph
representations, respectively. (b) The real-world graph structures of two molecules, Decalin and Bicyclopentyl. While standard
Graph SSL frameworks cannot distinguish between these molecular structures, our model successfully differentiates them.

inductive biases on isomorphism counting w.r.t predefined topo-

logical attributes such as triangles, cliques, and cycles [7, 36, 38].

These efforts similar to the traditional graph kernels, as outlined by

[63]. However, the task of predefining topological characteristics

needs specialised knowledge in the respective domain, a resource

that is frequently not easily accessible. (3) In a different vein, there

has been a recent surge in studies exploring into the notion of

enhancing GNNs through the augmenting of node identifiers or

stochastic features. For example, [54] introduced an approach that

preserves a node’s local context through the manipulation of node

identifiers in a permutation-equivariant fashion. [65] developed

ID-GNNs, incorporating vertex identity information in their design.

[11] and [41] assigned one-hot identifiers to nodes, drawing inspira-

tion from the principles of relational pooling. In a similar vein, [46]

enriched the representational capability of GNNs by incorporating

a random feature for each node. There are some other approaches

modify the MPNN framework or incorporate additional heuristics

to enhance their expressiveness [6, 8, 57]. (4) Some works inject

positional encoding (PE) as initial node features because nodes

in a graph lack inherent positional information. Canonical index

PE can be assigned to the nodes in a graph. However, the model

must be trained on all possible index permutations, or sampling

must be employed [41]. Another direction for PE in graphs is using

Laplacian Eigenvectors [14, 15], as they establish a meaningful local

coordinate system while maintaining the global structure of the

graph. [16] proposed a PE scheme (RWPE) based on random-walk

diffusion to initialize the positional representations of nodes. These

positional encoding methods such as Laplacian positional encoding

[14] or RWPE [16] have a significant limitation in that they usually

fail to quantify the structural similarity between nodes and their

surrounding neighborhoods. Nonetheless, while these techniques

have demonstrated their expressivity to go beyond 1-WL. However,

it remains uncertain what further attributes they can encompass

beyond the scope of 1-WL.

Despite these limitations, our method offers notable advantages.

GenHopNet enjoys greater expressive power than the 1-WL test,

providing improved node and graph-level distinction by account-

ing for both local and global graph structures through closed walk

counts and positional information. Additionally, by incorporating

edge centrality measures to enrich message-passing, StructPosGSSL
enhances the model’s ability to differentiate various types of con-

nections, making it strictly more expressive than Subgraph MPNNs

[12, 65, 71] in distinguishing certain non-isomorphic graphs.

3 An Expressive and Generalizable k-hop
Message Passing Framework

In this section, we introduce the Expressive and Generalizable

Message-Passing (EGMP) framework, designed to incorporate learn-

able local structural information through an aggregation method

that leverages the k-hop neighborhood without the need for explicit

extraction of local substructure patterns. We provide a theoretical

analysis demonstrating how k-hop GNNs within this framework

can achieve greater expressiveness than 1-WL.

Let 𝐺 = (𝑉 , 𝐸,A) be an undirected graph with a set of nodes

𝑉 and a set of edge 𝐸, where |𝑉 | = 𝑚, |𝐸 | = 𝑒 , and A ∈ R𝑚×𝑚

is the adjacency matrix. Nodes are associated with a feature ma-

trix X ∈ R𝑚×𝑧
with 𝑧 features for each node. Let L = D − A

be a Laplacian matrix, where a diagonal matrix D ∈ R𝑚×𝑚
, and

D𝑖𝑖 =
∑
𝑗 A𝑖 𝑗 . L be a real symmetric matrix and diagonalizable as

L = UΛU𝐻 . Here, U = {𝑢𝑖 }𝑚𝑖=1 ∈ R𝑚 are orthogonal eigenvectors,

Λ = 𝑑𝑖𝑎𝑔 ([𝜆1, . . . , 𝜆𝑚]) ∈ R𝑚×𝑚
are real eigenvalues, and U𝐻 is a

hermitian transpose of U.
Let {{·}} represent a multiset. Let Ã𝑘 =

(
Ã𝑘𝑣𝑢

)
𝑣,𝑢∈𝑉 where Ã𝑘𝑣𝑢 =

A𝑘
𝑣𝑢∑

𝑢∈𝑁 (𝑣)\𝑣 A𝑘
𝑣𝑢

refers to a normalized value ofA𝑘𝑣𝑢 , andX ∈ R𝑚×𝑧
be

thematrix of input feature vectors with each x𝑣 ∈ R𝑧 corresponding
to each vertex 𝑣 ∈ 𝑉 . We indicate the feature vector of vertex 𝑣 at

the t
th
layer as h(𝑡)𝑣 and set h(0)𝑣 = x𝑣 . Then, the definition of the

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, TBD, 2025, TBD Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(t+1)
th
layer in an aggregation scheme is given as:

M(𝑡)
𝑒 = Agg

𝐸
({{

(A𝑣𝑢 , h(𝑡)𝑢 , 𝑒𝑏𝑢𝑣, 𝑒
𝑐
𝑢𝑣) |𝑢 ∈ N (𝑣)

}})
, (1)

M(𝑡)
𝑢 = Agg

𝑁𝑘
({{

(Ã𝑘𝑣𝑢 , h
(𝑡)
𝑢) |𝑢 ∈ N𝑘 (𝑣)

}})
;𝑘 ≥ 2, (2)

M(𝑡)
𝑣 = Agg

𝐼
({{

A𝑘𝑣𝑣, h
(𝑡)
𝑣

}
}
)
;𝑘 ≥ 2, (3)

h(𝑡+1)𝑣 = Combine

(
h(𝑡)𝑣 ,M(𝑡)

𝑒 ,M(𝑡)
𝑢 ,M(𝑡)

𝑣

)
. (4)

The above equations define a process for aggregating messages

in our GNN, where:

i. Agg
𝐸 (·) in Eq. 1 computes the edge-level aggregated message

𝑀
(𝑡)
𝑒 for vertex 𝑣 based on the node features and edge attributes

of its neighbors 𝑢 ∈ N (𝑣) within the 1-hop neighborhood;

ii. Agg
𝑁𝑘 (·) in Eq. 2 aggregates a normalized message𝑀

(𝑡)
𝑢 from

the 𝑘-hop neighbors (𝑘 ≥ 2) of vertex 𝑣 weighing their contri-

butions by the normalized adjacency matrix Ã𝑘𝑣𝑢 ;
iii. Agg

𝐼
in Eq. 3 calculates the self-message M(𝑡)

𝑣 for vertex 𝑣

using its own adjacency information and features, focusing on

capturing closed-walks of length up to 𝑘 (𝑘 ≥ 2) that return to

node 𝑣 itself;

iv. Eq. 4 combines the current feature vector h(𝑡)𝑣 of vertex 𝑣 with

the aggregated messages M(𝑡)
𝑒 , M(𝑡)

𝑢 , and M(𝑡)
𝑣 to update final

node representation of 𝑣 for the next layer.

We use the above set of equations to compute the graph’s topo-

logical information. For the positional information, we only use Eq.

1 by replacing node features h(𝑡)𝑢 with positional features h(𝑡)𝑢,𝑝𝑜𝑠 .

In more detail, M(𝑡)
𝑢 is a message aggregated from neighbors of

node 𝑣 , using their normalized coefficients Ã𝑘𝑣𝑢 , whileM
(𝑡)
𝑣 is the

adjusted message from node 𝑣 to itself, considering walk lengths

up to k-hop. The diagonal elements of A𝑘 , namely A𝑘𝑣𝑣 , count the
number of closed walks of length 𝑘 that start and end at the same

node 𝑣 . Such a mechanism highlights the importance of node 𝑣

within its local topology and its role in the connectivity of the graph

over multiple hops. This should exhibit the following properties:

1. ClosedWalks and Connectivity: The powerA𝑘 enumerates

all possible walks of length 𝑘 in the graph. By examining A𝑘𝑣𝑣 ,
one can infer how connected or central a node is with respect

to walks of length 𝑘 . Tr(A𝑘) counts the total number of closed

walks of length 𝑘 starting and ending at the same vertex. This

measure gives a quantitative sense of the graph’s connectivity:

• Local Connectivity: High numbers of shorter closed

walks (smaller 𝑘) indicate strong local connectivity. This is

useful for understanding how tightly knit individual neigh-

borhoods are within the graph.

• Global Connectivity: As 𝑘 increases, the nature of the

closed walks provides insights into the global connectivity

and the presence of cycles within the graph. Any cycle in a

graph is a closed walk; however, not all closed walks are cy-

cles as cycles have the additional constraint of not repeating

vertices or edges except the starting/ending vertex.

2. Isomorphic Invariant: This simple trick facilitates the cre-

ation of unique node representations by ensuring that each

1

2
3 4

5

6

1

2
3 4

5

6

k = 2(a) k = 3(b) k = 4(c)G

Figure 2: A high-level overview of different closed-walks
𝑘 = 2, . . . , 4, where the blue node represents the source node.
For 𝑘 = 2, the walk can traverse between nodes multiple
times, forming a non-cyclic path. For 𝑘 = 3 and 𝑘 = 4, the
walks can capture closed cycles of length 3 and 4, respectively,
effectively identifying cyclic structures in the graph.

node possesses a distinct k-hop topological neighborhood, pro-

vided that k is sufficiently large. The sum

∑
𝑘 A𝑘𝑣𝑣 across differ-

ent powers 𝑘 reflects the number of closed walks of varying

lengths starting and ending at node 𝑣 . For instance, the equal-

ity

∑
𝑘 A𝑘𝑣𝑣 =

∑
𝑘 A𝑘𝑣′𝑣′ , holds if nodes 𝑣 and 𝑣

′
are k-hop iso-

morphic, implying that they share identical local connectivity

patterns up to k-hops. This characteristic serves as a powerful

tool for identifying and distinguishing nodes based on their

structural roles within the network.

Understanding cycle and closed-walk isomorphisms is essential

for elucidating the structural roles of nodes within a graph, reveal-

ing both local and global connectivity patterns. Cycle isomorphism

highlights nodes that engage in similar closed-loop interactions,

while closed-walk isomorphism provides insights into broader con-

nectivity by capturing indirect relationships that contribute to the

overall network topology. The definitions of cycle and closed-walk

isomorphisms formalize these concepts, emphasizing their signifi-

cance in analyzing graph structures.

Definition 1. Cycle Isomorphism (≃𝐶𝑦𝑐𝑙𝑒): Two nodes 𝑣 and
𝑣 ′ are cycle isomorphic if the sum of the powers of A over 𝑘 (i.e.,∑
𝑘 A𝑘𝑣𝑣 and

∑
𝑘 A𝑘𝑣′𝑣′) considers only closed walks that are also cy-

cles (i.e., walks that do not repeat any vertices or edges except the
starting/ending vertex).

Definition 2. Closed Walk Isomorphism (≃𝐶𝑙𝑜𝑠𝑒𝑑𝑊𝑎𝑙𝑘): Two
nodes 𝑣 and 𝑣 ′ are closed walk isomorphic if the sum of the powers
of A over 𝑘 (i.e.,

∑
𝑘 A𝑘𝑣𝑣 and

∑
𝑘 A𝑘𝑣′𝑣′) considers all possible closed

walks (i.e., walks that start and end at the same vertex, but may repeat
vertices and edges).

Theorem 1. The following statement is true: (a) If
∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑦𝑐𝑙𝑒∑

𝑘 A𝑘𝑣′𝑣′ , then
∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑙𝑜𝑠𝑒𝑑𝑊𝑎𝑙𝑘

∑
𝑘 A𝑘𝑣′𝑣′ ; but not vice versa.

Going back ot Eq. 1, M(𝑡)
𝑒 is a message aggregation function

that considers the 1-hop neighborhood, including their edge con-

nections and edge attributes. We enrich the 1-hop neighborhood

aggregation by injecting three different centrality based edge at-

tributes e𝑐𝑢𝑣 , between given pair of nodes: (1) Edge Betweenness

(EB), (2) Edge Closeness (EC), and (3) Edge Clustering Coefficients

(ECC) as additional features [56]. These attributes are designed to

augment the distinguishing capabilities of the model, enabling it

to better differentiate between various types of connections and

facilitating nuanced understanding and processing of edge-related

information in graphs. This should exhibit the following properties:

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Graph Self-Supervised Learning with Learnable Structural and Positional Encodings WWW ’25, TBD, 2025, TBD

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

1. Local Connectivity: Both EC and ECC provide insights into

the local structure around an edge, highlighting how embedded

an edge is within its immediate neighborhood and how it

contributes to local connectivity and cohesiveness.

2. Global Connectivity: EB extends to more global properties,

reflecting the strategic importance of an edge across the entire

network. It helps in understanding the potential vulnerabilities

of the network, identifying crucial links whose removal or

failure might significantly disrupt network connectivity.

3. Isomorphic Invariant: All three measures (EB, EC, and ECC)

are isomorphic invariant. This is because they are fundamen-

tally based on the relationships and distances between nodes,

which are preserved under graph isomorphism.

Finally, the feature vector for the next layer h(𝑡+1)𝑣 , is derived by

combining h(𝑡)𝑣 ,M(𝑡)
𝑒 ,M(𝑡)

𝑢 , andM(𝑡)
𝑣 using the Combine function.

4 Generalizable k-Hop Network
Below, we present the GNNmodel design based on the EGMP frame-

work that we proposed in the previous section. There are numerous

ways to designing 𝜙 functions, which result in GNNs with varying

levels of expressiveness. To illustrate this, we introduce a new GNN

model called GenHopNet (Generalizable k-Hop Network), which

utilizes an aggregation scheme based on our generalized message-

passing framework. We demonstrate that the expressive power of

GenHopNet exceeds those of the 1-WL. For each vertex 𝑣 ∈ 𝑉 , the

feature vector for the (𝑡 + 1)-th layer is produced by:

h(𝑡+1)𝑣 = Mlp𝜃

[
(1 + 𝜖)h(𝑡)𝑣 +

∑︁
𝑢∈𝑁 (𝑣)

A𝑣𝑢
(
h(𝑡)𝑢 + e𝑏𝑣𝑢 + e𝑐𝑣𝑢

)
+

𝐾∑︁
𝑘=2

(
A𝑘𝑣𝑣h

(𝑡)
𝑣 +

∑︁
𝑢∈𝑁𝑘 (𝑣)

Ã𝑘𝑣𝑢h
(𝑡)
𝑢

)]
.

(5)

The 𝜖 is a learnable scalar param. M(𝑡)
𝑣 =

∑𝐾
𝑘=2

A𝑘𝑣𝑣h
(𝑡)
𝑣 , M(𝑡)

𝑢 =∑𝐾
𝑘=2

∑
𝑢∈𝑁𝑘 (𝑣) Ã

𝑘
𝑣𝑢h

(𝑡)
𝑢 , andM(𝑡)

𝑒 =
∑
𝑢∈𝑁 (𝑣) A𝑣𝑢 (h

(𝑡)
𝑢 +e𝑏𝑣𝑢+e𝑐𝑣𝑢).

Expressiveness analysis. We first generalise the result of univer-

sal functions over multisets [62] to universal functions over pairs
of multisets since Eq. 5 involves not only node features but also

edge features e𝑏
𝑖 𝑗
, centrality based edge features e𝑐

𝑖 𝑗
, normalized

k-hop neighboring coefficients Ã𝑘
𝑖 𝑗

and k-hop closed-walk coef-

ficients A𝑘
𝑗 𝑗
. Let H , A, A𝑘

,
˜A𝑘
, W1, W2, and W3 be countable

sets whereH is a node feature space, A is a 1-hop neighborhood

coefficient space, A𝑘
is a k-hop closed-walk coefficient space,

˜A𝑘

is a normalized k-hop neighborhood coefficient space. Moreover,

W1= {A𝑖 𝑗 (h𝑖+e𝑏𝑖 𝑗+𝑒
𝑐
𝑖 𝑗
) |A𝑖 𝑗 ∈A, h𝑖 ∈ H , e𝑏

𝑖 𝑗
∈ E𝑏 , e𝑐

𝑖 𝑗
∈ E𝑐 },W2=

{Ã𝑘
𝑖 𝑗
h𝑖 |Ã𝑘𝑖 𝑗 ∈ ˜A𝑘 , h𝑖 ∈ H}, andW3= {A𝑘𝑗 𝑗h𝑗 |A

𝑘
𝑗 𝑗
∈A𝑘 , h𝑗 ∈ H}.

The following theorem asserts that a GNN can surpass the ex-

pressiveness of 1-WL provided that our framework is sufficiently

robust to differentiate structures beyond neighborhood subtrees,

and the neighborhood aggregation function, 𝜙 is injective, given a

sufficient number of hops where 𝑘 > 1.

Theorem 2. Let 𝑆 represent a GNN with an aggregation scheme
Φ delineated by Eq. 1-Eq. 4. 𝑆 exceeds the expressiveness of 1-WL in

6

5

7

0

4

1

3

2

3

4

5

6

7

0

1

2

G1 G2

0.07 0.07

0.07

0.0
7

0.070.07

0.07

0.0
7

0.11

0.11 0.11

0.1
1

0.11

0.11

0.11

0.1
1

0.09 0.09
0.09

0.0
9

0.090.09
0.09

0.0
9

0.09

0.09

0.0
9

0.0
9

0.09

0.09

0.09

0.09

4.12e-01, -8.13e-08
3.67e-01, -4.63e-08
6.39e-01, -3.71e-01
-1.31e-01, -3.45e-02
-2.34e-01, -3.31e-01
-3.88e-01, -3.71e-01
-1.65e-01, 5.57e-01
1.86e-01, 5.50e-01

posG1 = posG2 =

-0.0205, 0.0000
-0.0379, -0.0684
0.7770, 0.1015
-0.0343, 0.1119
-0.5171, -0.4510
-0.0337, 0.1065
-0.3527, 0.8704
-0.0182, 0.0158

Figure 3: A pair of non-isomorphic graphs where positional
encoding (with a dimension of 2) and EB attributes outper-
form the 1-WL test in distinguishing between graphs 𝐺1 and
𝐺2, allowing for the detection of structural differences that
the 1-WL test fails to capture.
identifying non-isomorphic graphs, provided that 𝑆 operates over a
sufficient number of hops, 𝑘 > 1, and also meets the following criteria:

(1) Φ
(
h(𝑡)𝑣 , {

{
(A𝑣𝑢 , h(𝑡)𝑢 , e𝑏𝑢𝑣, e𝑐𝑢𝑣) |𝑢 ∈ N (𝑣)

}
}, {
{
(�̃�𝑘𝑣𝑢 , h

(𝑡)
𝑢) |𝑢 ∈

N𝑘 (𝑣)
}}
, {
{
(A𝑘𝑣𝑣, h

(𝑡)
𝑣

)
}}
)
is injective;

(2) The graph-level readout function of 𝑆 is injective.

Lemma 1. Given two distinct pairs of multisets H1,H
′
1

∈ H ,
W1,W

′
1
∈ W1, W2,W

′
2
∈ W2, W3,W

′
3
∈ W3, there exists a func-

tion 𝑓 such that the aggregation function 𝜋 (h𝑣,H1,W1,W2,W3) and
𝜋 (h′

𝑣,H
′
1
,W

′
1
,W

′
2
,W

′
3
) defined as 𝜋 (h𝑣,H1,W1,W2,W3) =∑

h∈H1,w1∈W1
𝑓 (h,w1) +

∑
𝑘

(
𝑓 (h𝑣,w3) +

∑
h∈H1,w2∈W2

𝑓 (h,w2)
)

and𝜋 (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
) = ∑

ℎ∈H′
1
,w1∈W

′
1

𝑓 (h,w1)+
∑
𝑘

(
𝑓 (h′

𝑣,w3)+∑
h∈H′

1
,w2∈W

′
2

𝑓 (h,w2)
)
are unique, respectively.

Lemma 2. Expanding upon Lemma 1, we introduce an extended
aggregation function 𝜋 ′ (h𝑣,H,W1,W2,W3), which incorporates the
feature vector of the central node h𝑣 and the multisets H ∈ H , W1 ∈
W1,W2 ∈ W2, andW3 ∈ W3. There exists a function 𝑓 such that
𝜋 ′ (h𝑣,H,W1,W2,W3) = (1 + 𝜖) 𝑓 (h𝑣) +

∑
h∈H,w1∈W1

𝑓 (h,w1) +∑
𝑘

(
𝑓 (h𝑣,w3) +

∑
h∈H,w2∈W2

𝑓 (h,w2)
)
is unique for any distinct

quintuples (h𝑣,H,W1,W2,W3), where h𝑣 ∈ H , w3 ∈ W3, and 𝜖 is
an arbitrary real number.

Corollary 1. GenHopNet exhibits greater expressiveness com-
pared to 1-WL when evaluating non-isomorphic graphs.

Our proposed graph neural network model, which operates on

up to k-hop local information for feature aggregation, denoted

as 𝑆 , surpasses the expressiveness of 1-WL in distinguishing non-

isomorphic graphs. This is achieved by ensuring the uniqueness of

feature representations through the extended aggregation function

𝜋 ′ (h𝑣,H,W1,W2,W3), as established by Lemma 2. Thus, 𝑆 can

capture and differentiate structural nuances beyond what 1-WL can

achieve, making it a powerful tool for graph classification tasks.

Complexity Analysis: Similar to GIN [23], GenHopNet is compu-

tationally efficient, with its time and memory complexities scaling

linearly in relation to the number of edges in the graph. The time

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, TBD, 2025, TBD Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

and space complexities of GenHopNet are 𝑂 (𝑡𝑒𝑧𝑑) and 𝑂 (𝑒), re-
spectively, where 𝑒 denotes the number of edges in the graph, 𝑡

represents the number of layers, and 𝑧 and 𝑑 correspond to the

dimensions of the input and output feature vectors.

5 Graph Self-Supervised Learning Framework
In this section, we introduce Structural and Positional GSSL (Struct-
PosGSSL), a new class of graph self-supervised learning framework

based on structural and positional information within graphs.

5.1 Data Augmentation for Graph
The goal of data augmentation is to produce consistent, identity-

preserving positive samples of a specific graph. In this work, we

use two main types of augmentation strategies: structural augmen-

tation and feature augmentation [67]. In structural augmentation,

three distinct strategies are considered: (1) Subgraph Induction by

Random Walks (RWS), (2) Node Dropping (ND), and (3) Edge Drop-

ping (ED). For feature augmentation, we employ three different

approaches: (1) Feature Dropout (FD), (2) Feature Masking (FM),

and (3) Edge Attribute Masking (EAM). In our work, we gener-

ate different augmented graphs from a single input graph (A,X),
resulting in two correlated views, namely (Ã𝑖′ , X̃𝑖′) and (Ã𝑗 ′ , X̃𝑗 ′).
5.2 Expressive/Genralizable Graph Encoders
For each augmented view, we process it through two distinct GNN

encoders. One encoder is dedicated to structural encoding via the

proposed GenHopNet. Alongside structural features in the Gen-
HopNet, we employ another encoder for capturing positional in-

formation. We initiate the positional feature vectors using Lapla-

cian eigenvectors, as outlined in [14]. This second encoder, also

a GNN, applies Eq.1 with the Combine function, i.e., h(𝑡+1)𝑣,𝑝𝑜𝑠 =

Combine

(
h(𝑡)𝑣,𝑝𝑜𝑠 ,M

(𝑡)
𝑒

)
, and leverages the spectral properties of

the graph Laplacian. This approach targets the smallest non-trivial

eigenvalues to derive meaningful positional encodings that accu-

rately reflect the structural roles of nodes within the graph. By

focusing on the spectral characteristics of the Laplacian, this en-

coding strategy effectively captures both the local connectivity

of nodes and the broader topology of the graph, significantly en-

hancing the model’s capability to understand and manage complex

graph structures. Each encoder outputs node representations and

a final graph representation for augmented views. We then pass

them through another shared projection head (an MLP) to obtain

the final structural and positional representations for both nodes

and graphs. Next, we concatenate the structural features with posi-

tional features for node representations and graph representations

separately, ensuring a comprehensive integration of both structural

and positional data. To facilitate the end-to-end training of encoders

and generate comprehensive node and graph representations that

are independent of specific downstream tasks, we implement a loss

function that merges NT-Xent [10] and refined VICReg [3].

5.3 Training Pipeline
In the pursuit of effective self-supervised learning frameworks, the

quality of learned representations hinges critically on the choice of

loss functions. To enable end-to-end training of the encoders and

to develop robust graph and node representations that are indepen-

dent of downstream tasks, we employ the NT-Xent [10] loss to learn

Method CSL SR25

GCN 10.0 ± 0.0 6.6 ± 0.0

GIN 10.0 ± 0.0 6.6 ± 0.0

3WLGNN 97.8 ± 10.9 -

3-GCN 95.7 ± 14.8 6.6 ± 0.0

GCN-RNI 16.0 ± 0.0 6.6 ± 0.0

StructPosGSSL-SA 98.6 ± 2.8 100.0 ± 0.0
StructPosGSSL-FA 98.3 ± 2.5 100.0 ± 0.0

Table 1: Classification accuracy (%) on the test set for CSL
and SR25 datasets.

the graph representations and use the refined VICReg [3] loss as a

regularization term to learn the node representations. The NT-Xent

loss, which maximizes discriminative power between positive and

negative samples of graph representations, while VICReg’s regu-

larization terms that ensure a balanced and non-redundant spread

of node features across dimensions to reduce the representational

collapse. This integration stabilizes training in self-supervised setup

and enriches graph representations for downstream tasks.

The NT-Xent loss, is defined by the formula:

𝐿𝑁 (z𝑖
′
, z𝑗

′
) = −𝑙𝑜𝑔 𝑒𝑥𝑝 (𝑠𝑖𝑚(z𝑖′ , z𝑗 ′)/𝜏)∑

2𝑛
𝑘=1

1[𝑘≠𝑖′]𝑒𝑥𝑝 (𝑠𝑖𝑚(z𝑖′ , z𝑘)/𝜏)
, (6)

where z𝑖
′
, z𝑗

′ ∈ R
˜𝑑
are graph representations for two augmented

views, with
˜𝑑 denoting the embedding size of each graph augmented

view in the dataset. The parameter 𝜏 is the temperature scaling

parameter, and 1[𝑘≠𝑖] is an indicator function that is 1 if 𝑘 ≠ 𝑖 and

0 otherwise. Here 𝑠𝑖𝑚(z𝑖′ , z𝑗 ′) is a similarity function, typically the

cosine similarity, between two vectors z𝑖
′
and z𝑗

′
.

We combine the refined VICReg loss with the contrastive NT-

Xent loss to create a unified loss function that maximizes mutual

information between graph embeddings while preserving struc-

tural and positional node alignment. This unified approach not

only aligns embeddings for isomorphic node pairs but also main-

tains diversity and enhances the model’s topological discriminative

power. By enabling the model to differentiate between nodes with

subtle structural or positional differences, this method is crucial for

accurately identifying both isomorphic and non-isomorphic node

pairs. In this work, the refined VICReg loss is specifically adapted

for correspondence node alignment to improve isomorphic graph

representation learning in a self-supervised setting.

The refined VICReg loss is given by:

𝐿𝑉 (h𝑖
′
, h𝑗

′
) = 𝜆𝑖𝑛𝑣 · 𝐿𝑖𝑛𝑣 (h𝑖

′
, h𝑗

′
) + 𝜆𝑣𝑎𝑟 · 𝐿𝑣𝑎𝑟 (h𝑖

′
, h𝑗

′
)+

𝜆𝑐𝑜𝑣 · 𝐿𝑐𝑜𝑣 (h𝑖
′
, h𝑗

′
)

(7)

where 𝜆𝑖𝑛𝑣, 𝜆𝑣𝑎𝑟 and 𝜆𝑐𝑜𝑣 are weighting factors for the invariance,

variance, and covariance components, respectively. The Invariance

Loss 𝐿𝑖𝑛𝑣 (h𝑖
′
, h𝑗

′) = 1

𝑚

∑
𝑖 | |h𝑖

′
𝑖
− h𝑗

′

𝑖
| |2
2
, where h𝑖

′
, h𝑗

′ ∈ R𝑚×𝑑

represent the node representations of the two augmented views.

The Variance Loss 𝐿𝑣𝑎𝑟 (h𝑖
′
, h𝑗

′) = 1

𝑑

∑𝑑
𝑗=1

��𝑚𝑎𝑥 (0, 𝛾 −𝑠𝑡𝑑 (h𝑖′
𝑗
, 𝜖)) −

𝑚𝑎𝑥 (0, 𝛾 − 𝑠𝑡𝑑 (h𝑗
′

𝑗
, 𝜖))

��
. The Covariance Loss 𝐿𝑐𝑜𝑣 (h𝑖

′
, h𝑗

′) =
1

𝑑

∑
𝑖≠𝑗

��[C(h𝑖′)]2
𝑖, 𝑗

− [C(h𝑗 ′)]2
𝑖, 𝑗

��
, where C(h𝑖′) =

1

𝑚−1
∑𝑚
𝑖=1 (h𝑖

′
𝑖
− ˜h𝑖

′) (h𝑖′
𝑖
− ˜h𝑖

′)𝑇 , with ˜h𝑖
′
= 1

𝑚

∑𝑚
𝑖=1 h

𝑖′
𝑖
denoting

the mean over feature vectors. The Invariance Loss captures the

inherent structure of the graph, maintaining node representations’

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Graph Self-Supervised Learning with Learnable Structural and Positional Encodings WWW ’25, TBD, 2025, TBD

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

structural and positional properties despite augmentation. The Vari-

ance Loss helps distinguish non-isomorphic nodes, enhancing the

model’s ability to capture structural differences. Lastly, the Covari-

ance Loss ensures that node embeddings reflect diverse structural

and positional aspects, improving the expressiveness and discrimi-

native power of the representations.

The total combined loss for integrating NT-Xent and refined

VICReg is simply the sum of these two losses:

𝐿𝑇 (z𝑖
′
, z𝑗

′
, h𝑖

′
, h𝑗

′
) = 𝐿𝑁 (z𝑖

′
, z𝑗

′
) + 𝜇 · 𝐿𝑉 (h𝑖

′
, h𝑗

′
), (8)

where 𝜇 is the weighting factor for VICReg loss. This unified loss

function effectively integrates isomorphism preservation with rep-

resentation expressiveness and diversity.

Theorem 3. StructPosGSSL
2 is more expressive than subgraph

MPNNs in distinguishing certain non-isomorphic graphs.

6 Numerical Experiments
In this section, we evaluate our self-supervised learning frame-

work on graph classification benchmark tasks. The results from

our models are statistically significant with a 95% confidence level.

We evaluate StructPosGSSL on graph classification benchmark tasks

and compare their performance with leading baselines to address

the following questions:

Q1. How effective are StructPosGSSL in small graph classifica-

tion tasks based on empirical performance?

Q2. How effective are StructPosGSSL in large graph classifica-

tion tasks based on empirical performance?

Q3. How effective is StructPosGSSL for isomorphism testing in

synthetic graph classification tasks?

Q4. How do structural and positional encodings impact overall

performance?

In this following sections, we analyze the experimental results to

address the four previously mentioned questions.

6.1 Experiments on Small Graphs
Weuse eight datasets from two categories: (1) bioinformatics datasets:

MUTAG, PTC-MR, NCI1, and PROTEINS [13, 30, 47, 55]; (2) social

network datasets: IMDB-B, IMDB-M, COLLAB and RDT-M5K [63].

We compare our method against fourteen baseline approaches:

(1) Graph kernel methods: WL subtree kernel (WL) [47], WL-OA

[30], RetGK [74], P-WL [45], andWL-PM [43]; (2) GNN-based meth-

ods: PATCHY-SAN [42], DGCNN [70], CAPSGNN [60], and GIN

[62]; (3) Unsupervised methods: InfoGraph [48], GraphCL [67],

MVGRL [21], AutoGCL [64], and JOAO [66].

Specifically, the GenHopNet encoder models are initially trained

in an unsupervised manner, and the resulting embeddings are then

input into a linear classifier to accommodate the labeled data. Then,

for fair comparison, we execute our method using ten random splits

[75] and utilize the 10-fold cross-validation method and present

the best mean accuracy (%) along with the standard deviation. The

results are presented in table 2 and 3. We have two settings: (1)

StructPosGSSL-SA, which considers structure augmentation, and

(2) StructPosGSSL-FA, which considers feature augmentation. In

both settings, we employ the Adam optimizer [28], with hidden

2
The code is available at: https://anonymous.4open.science/r/StructPosGSSL-73D0

dimension of 128, weight decay is 0.0003, a 2-layer MLP with batch

normalization, 100 epochs, positional encoding dimension of 6, a

dropout rate of 0.5, and a temperature scaling parameter 𝜏 of 0.10.

We choose a batch size from {32, 64, 128, 256} and a number of hops

𝑘 ∈ {2, 3, 4, 5, 6}. We use 𝜆𝑖𝑛𝑣 = 1, 𝜆𝑣𝑎𝑟 = 3, 𝜆𝑐𝑜𝑣 = 2, and 𝜇 = 0.5

for MUTAG and 𝜆𝑖𝑛𝑣 = 1, 𝜆𝑣𝑎𝑟 = 23, 𝜆𝑐𝑜𝑣 = 23, and 𝜇 = 0.0003

for PTC-MR, and 𝜆𝑖𝑛𝑣 = 1, 𝜆𝑣𝑎𝑟 = 24, 𝜆𝑐𝑜𝑣 = 24, and 𝜇 = 0.005 for

the remaining datasets. The readout function, as described in [62],

is utilized, which involves concatenating representations from all

layers to derive a final graph representation.

To address Q1, in Tables 2 & 3, StructPosGSSL outperforms

the best baseline by 0.4% (PATCHY-SAN), 1.1% (CapsGNN), 1.1%

(WL-OA, MVGRL), 0.5% (WL-PM), and 0.2% (GIN) on the datasets

MUTAG, PTC-MR, IMDB-B, IMDB-M, and RDTM5K, respectvely.

These gains are a reflection of the inherent characteristics of

the datasets. Graphs with smaller diameters, i.e., IMDB-B, IMDB-

M, PTC-MR, and MUTAG, feature nodes that are closer together,

promoting localized interactions that enable GNNs to capture both

local and global information effectively, even with few message-

passing steps. In such cases, structural encodingwith closedwalks is

particularly beneficial, as it differentiates local structures by captur-

ing repeated node interactions and identifying cycles. Conversely,

datasets such as NCI1 and COLLAB, with larger diameters, present

increased structural complexity, making it challenging to capture

patterns using closed walks alone due to the difficulty of accounting

for distant node interactions with limited local information.

6.2 Experiments on Large Graphs
We utilize five large graph datasets from the Open Graph Bench-

mark (OGB) [24], comprising one molecular graph dataset (ogbg-

moltoxcast, ogbg-moltox21, ogbg-molhiv, ogbg-molpcba) and one

protein-protein association network (ogbg-ppa). We compare our

approach with the following methods that have reported results on

the aforementioned OGB datasets: GIN and GIN+VN [24], GSN [9],

ID-GNNs [65], Deep LRP [11], GraphSNN [57], DS-GNN (EGO+),

DSS-GNN (EGO+) [5], and POLICY-LEARN [4].

For large graph datasets, we adopt the same experimental frame-

work as outlined in [24]. Our evaluation process is divided into

two distinct learning phases. In the initial phase, the models are

trained in a self-supervised fashion using only node features and

graph structure without any label data. Subsequently, in the second

phase, the representations generated by the GNN encoders during

the first phase are fixed in place and employed to train, validate,

and test the models using a straightforward linear classifier.

We utilize the Adam optimizer with a learning rate of 0.001, a

batch size of 32, dropout of 0.5, positional encoding dimension of 6,

and run training for 100 epochs across all datasets. We use a 2-layer

MLP with a hidden dimension of 200 and a temperature scaling

parameter 𝜏 of 0.10 for both settings. We choose 𝜆𝑖𝑛𝑣 = 1, 𝜆𝑣𝑎𝑟 =

24, 𝜆𝑐𝑜𝑣 = 24, and 𝜇 = 0.005 for all datasets. The classification

accuracy results are presented in Table 4.

To address Q2, in Table 4, StructPosGSSL consistently outper-

forms all the baseline methods across all OGB graphs listed. Struct-

PosGSSL surpasses best results of existing GNNs by 0.50% (POLICY-

LEARN), 0.55% (DSS-GNN (EGO+)), 0.32% (GIN+VN), 0.24% (Graph-

SNN), and 0.42% (GIN+VN) on the datasets ogbg-moltoxcast, ogbg-

moltox21, ogbg-molhiv, ogbg-ppa, and ogbg-molpcba, respectively.

7

https://anonymous.4open.science/r/StructPosGSSL-73D0

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, TBD, 2025, TBD Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Method MUTAG PTC-MR NCI1 PROTEINS

Graph kernel methods

WL 90.4 ± 5.7 59.9 ± 4.3 86.0 ± 1.8 73.8 ± 3.9

WL-OA 84.5 ± 1.7 63.6 ± 1.5 86.1 ± 0.2 74.2 ± 0.4

RetGK 90.3 ± 1.1 62.5 ± 1.6 84.5 ± 0.2 72.3 ± 0.6

P-WL 90.5 ± 1.3 64.0 ± 0.8 85.4 ± 0.1 70.4 ± 0.1

WL-PM 87.7 ± 0.8 61.4 ± 0.8 86.4 ± 0.2 73.6 ± 0.2

GNN-based methods

PATCHY-SAN 92.6 ± 4.2 60.0 ± 4.8 78.6 ± 1.9 73.1 ± 2.4

DGCNN 85.8 ± 0.0 58.6 ± 0.0 74.4 ± 0.0 70.0 ± 0.9

CapsGNN 86.6 ± 1.5 66.0 ± 1.8 78.3 ± 1.3 73.1 ± 4.8

GIN* 89.4 ± 5.6 64.6 ± 7.0 82.7 ± 1.7 75.1 ± 5.1

Unsupervised methods

InfoGraph 89.0 ± 1.1 61.7 ± 1.4 76.2 ± 1.4 74.4 ± 0.3

GraphCL 86.8 ± 1.3 61.3 ± 2.1 77.9 ± 0.4 74.4 ± 0.4

MVGRL 89.7 ± 1.1 62.5 ± 1.7 77.0 ± 0.8 -

AutoGCL 88.6 ± 1.0 - 82.0 ± 0.3 75.8 ± 0.4

JOAO 87.3 ± 1.0 - 78.0 ± 0.4 74.5 ± 0.4

Our work

StructPosGSSL-SA 93.0 ± 5.3 67.1 ± 4.9 82.9 ± 3.8 75.8 ± 2.6
StructPosGSSL-FA 91.5 ± 2.5 66.5 ± 3.7 82.5 ± 3.5 75.3 ± 2.9

Table 2: Classification accuracy (%) on bioinformatics datasets
averaged over 10 runs.

Method IMDB-B IMDB-M COLLAB RDTM5K

Graph kernel methods

WL 73.8 ± 3.9 50.9 ± 3.8 78.9 ± 1.9 52.5 ± 2.1

WL-OA 74.2 ± 0.4 51.3 ± 0.2 80.7 ± 0.1 -

RetGK 72.3 ± 0.6 48.7 ± 0.6 81.0 ± 0.3 56.1 ± 0.5

P-WL 70.4 ± 0.1 50.9 ± 0.3 - -

WL-PM 73.6 ± 0.2 52.3 ± 0.2 81.5 ± 0.5 -

GNN-based methods

PATCHY-SAN 73.1 ± 2.4 - 72.6 ± 2.2 49.1 ± 0.7

DGCNN 70.0 ± 0.9 50.0 ± 1.9 73.7 ± 0.0 -

CapsGNN 73.1 ± 4.8 51.1 ± 3.1 79.6 ± 2.9 52.8 ± 1.4

GIN* 75.1 ± 5.1 52.3 ± 2.8 80.2 ± 1.9 57.0 ± 1.7

Unsupervised methods

InfoGraph 73.0 ± 0.9 49.7 ± 0.5 70.7 ± 1.1 53.4 ± 1.0

GraphCL 71.1 ± 0.4 49.2 ± 0.6 71.4 ± 1.2 55.9 ± 0.2

MVGRL 74.2 ± 0.7 51.2 ± 0.5 76.0 ± 1.2 -

AutoGCL 73.3 ± 0.4 - 70.1 ± 0.7 56.7 ± 0.2

JOAO 70.2 ± 3.0 - 69.5 ± 0.3 55.7 ± 0.6

Our work

StructPosGSSL-SA 75.5 ± 3.3 52.8 ± 3.5 76.5 ± 3.6 57.2 ± 3.3
StructPosGSSL-FA 75.1 ± 3.1 52.3 ± 3.6 76.1 ± 3.3 56.8 ± 3.4

Table 3: Classification accuracy (%) on social network datasets
averaged over 10 runs.

Method ogbg-molhiv ogbg-moltox21 ogbg-moltoxcast ogbg-ppa ogbg-molpcba

GIN [62] 75.58 ± 1.40 74.91 ± 0.51 63.41 ± 0.74 68.92 ± 1.00 22.66 ± 0.28

GIN+VN [24] 75.20 ± 1.30 76.21 ± 0.82 66.18 ± 0.68 70.37 ± 1.07 27.03 ± 0.23

GSN [7] 77.99 ± 1.00 - - - -

ID-GNN [65] 78.30 ± 2.00 - - - -

Deep LRP [11] 77.19 ± 1.40 - - - -

GraphSNN [57] 78.51 ± 1.70 75.45 ± 1.10 65.40 ± 0.71 70.66 ± 1.65 24.96 ± 1.50

DS-GNN (EGO+) [5] 77.40 ± 2.19 76.39 ± 1.18 - - -

DSS-GNN (EGO+) [5] 76.78 ± 1.66 77.95 ± 0.40 - - -

POLICY-LEARN [4] 78.49 ± 1.01 77.36 ± 0.60 - - -

StructPosGSSL-SA 78.80 ± 2.27 78.50 ± 2.30 66.50 ± 2.60 70.81 ± 1.45 27.10 ± 1.65
StructPosGSSL-FA 79.00 ± 2.43 77.60 ± 2.25 67.00 ± 2.20 70.90 ± 1.86 27.45 ± 1.95

Table 4: Class. acc. (%) on OGB datasets averaged over 10 runs.

6.3 Experiments on Synthetic Graphs
We use 2 publicly accessible datasets : (1) the Circular Skip Link

(CSL) dataset [41]; and (2) SR25 [1]. Both benchmarks involve clas-

sifying graphs into isomorphism classes. CSL dataset, initially pre-

sented by [41] and frequently utilized to assess graph expressiveness

[15], comprises 10 isomorphism classes of 41-node 4-regular graphs,

almost all of which can be distinguished by the 3-WL test. SR25

dataset [1] comprises 15 strongly regular graphs, each consisting

of 25 nodes, which cannot be distinguished by the 3-WL test.

We compare our approach against the five baselines: GCN [29],

GIN [23], 3WLGNN [37], 3-GCN [40], and GCN-RNI [1]. We use

the Adam optimizer with a learning rate of 0.001, a batch size of 32,

dropout of 0.7, positional encoding dimension of 6, a temperature

scaling parameter 𝜏 of 0.10, and run training for 500 epochs across

both datasets. We use a 3-layer MLP with a hidden dimension of

Method CSL SR25

StructPosGSSL-SA [POS] 54.7 ± 3.7 65.3 ± 3.5

StructPosGSSL-FA [POS] 82.7 ± 2.5 88.3 ± 2.8

StructPosGSSL-SA [CW] 92.0 ± 2.8 93.5 ± 3.7
StructPosGSSL-FA [CW] 91.3 ± 3.2 92.5 ± 2.8

Table 5: Ablation study classification accuracy (%) for CSL
and SR25 test sets.

200 and a number of hops 𝑘 = 3 for both settings. We choose

𝜆𝑖𝑛𝑣 = 1, 𝜆𝑣𝑎𝑟 = 25, 𝜆𝑐𝑜𝑣 = 25, and 𝜇 = 0.0009 for the CSL dataset

and 𝜆𝑖𝑛𝑣 = 1, 𝜆𝑣𝑎𝑟 = 24, 𝜆𝑐𝑜𝑣 = 24, and 𝜇 = 0.005 for the SR25

dataset. In Table 1, we present the average and standard deviation

obtained from 10-fold cross-validation.

Note that none of the baselines achieved the best performance

on both synthetic datasets we evaluated, compared to the other

baselines. To address Q3, as shown in Table 1, StructPosGSSL con-

sistently achieves the best performance on both synthetic datasets.

Specifically, StructPosGSSL improves upon the best results of the

baselines by a margin of 0.8% (3WLGNN) and 93.4% (GCN, GIN,

3-GCN, and GCN-RNI) on the datasets CSL and SR25, respectively.

6.4 Ablation Analysis of Structural and
Positional Encoding

To showcase the effectiveness of structural and positional informa-

tion, we perform an ablation study on the following variants:

• POS: This variant excludes only Positional (POS) encoding.

• CW: This variant keeps only Closed-Walk (CW) information.

We performed an ablation study on the StructPosGSSL variants.

The results presented in Table 5 demonstrate that the closed-walk

structural information plays a key role in performance. Notably,

this structural information has the most significant influence, while

positional information has the least impact on the CSL and SR25

datasets, as shown in Table 5.

To address the Q4, performance on the CSL dataset decreases by

43.9% on StructPosGSSL-SA [POS], by 15.6% on StructPosGSSL-FA

[POS], 6.6% on StructPosGSSL-SA [CW], and 7% on StructPosGSSL-

FA [CW], compared to the original performance shown in Table 1.

Similarly, performance on the SR25 dataset decreases by 34.7% on

StructPosGSSL-SA [POS], by 11.7% on StructPosGSSL-FA [POS],

6.5% on StructPosGSSL-SA [CW], and 7.5% on StructPosGSSL-FA

[CW], compared to the original performance shown in Table 1.

7 Conclusions
In conclusion, our proposed StructPosGSSL framework effectively

addresses a key limitation in Graph Self-Supervised Learning by

improving the capture of topological information. Leveraging the

k-hop message-passing mechanism of GenHopNet and the integra-

tion of structural and positional awareness, StructPosGSSL exceeds

the expressiveness of traditional GNNs and the Weisfeiler-Lehman

test. Our experimental results show that the framework delivers

superior performance on graph classification tasks, enhancing accu-

racy while maintaining computational efficiency. This advancement

significantly strengthens GSSL’s capability to distinguish between

graphs with similar local structures but distinct global topologies.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Graph Self-Supervised Learning with Learnable Structural and Positional Encodings WWW ’25, TBD, 2025, TBD

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] R. Abboud, I. I. Ceylan, M. Grohe, and T. Lukasiewicz. The surprising power of

graph neural networks with random node initialization. In Proceedings of the
30th International Joint Conference on Artificial Intelligence, 2021.

[2] W. Azizian and M. Lelarge. Expressive power of invariant and equivariant graph

neural networks. In International Conference on Learning Representations (ICLR),
2020.

[3] A. Bardes, J. Ponce, and Y. Lecun. Vicreg: Variance-invariance-covariance regu-

larization for self-supervised learning. In ICLR 2022-International Conference on
Learning Representations, 2022.

[4] B. Bevilacqua, M. Eliasof, E. Meirom, B. Ribeiro, and H. Maron. Efficient sub-

graph gnns by learning effective selection policies. In The Twelfth International
Conference on Learning Representations, 2024.

[5] B. Bevilacqua, F. Frasca, D. Lim, B. Srinivasan, C. Cai, G. Balamurugan, M. M.

Bronstein, and H. Maron. Equivariant subgraph aggregation networks. In

International Conference on Learning Representations, 2022.
[6] C. Bodnar, F. Frasca, Y. Wang, N. Otter, G. F. Montufar, P. Lio, and M. Bronstein.

Weisfeiler and lehman go topological: Message passing simplicial networks. In

International Conference on Machine Learning, pages 1026–1037. PMLR, 2021.

[7] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein. Improving graph

neural network expressivity via subgraph isomorphism counting. arXiv preprint
arXiv:2006.09252, 2020.

[8] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein. Improving graph neural

network expressivity via subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

[9] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein. Improving graph neural

network expressivity via subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(1):657–668, 2022.

[10] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for

contrastive learning of visual representations. In International conference on
machine learning, pages 1597–1607. PMLR, 2020.

[11] Z. Chen, L. Chen, S. Villar, and J. Bruna. Can graph neural networks count

substructures? Advances in neural information processing systems (NeurIPS),
2020.

[12] L. Cotta, C. Morris, and B. Ribeiro. Reconstruction for powerful graph repre-

sentations. Advances in Neural Information Processing Systems, 34:1713–1726,
2021.

[13] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and

C. Hansch. Structure-activity relationship of mutagenic aromatic and heteroaro-

matic nitro compounds. correlation with molecular orbital energies and hy-

drophobicity. Journal of medicinal chemistry, 34(2):786–797, 1991.
[14] V. P. Dwivedi and X. Bresson. A generalization of transformer networks to graphs.

In AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.
[15] V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson.

Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023.

[16] V. P. Dwivedi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson. Graph neural net-

works with learnable structural and positional representations. In International
Conference on Learning Representations, 2021.

[17] J. Feng, Y. Chen, F. Li, A. Sarkar, and M. Zhang. How powerful are k-hop message

passing graph neural networks. Advances in Neural Information Processing
Systems, 35:4776–4790, 2022.

[18] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch,

B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al. Bootstrap your own latent-a new

approach to self-supervised learning. Advances in neural information processing
systems, 33:21271–21284, 2020.

[19] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on

large graphs. Advances in neural information processing systems, 30, 2017.
[20] W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs:

Methods and applications. IEEE Data Engineering Bulletin, 2017.
[21] K. Hassani and A. H. Khasahmadi. Contrastive multi-view representation learn-

ing on graphs. In International conference on machine learning, pages 4116–4126.
PMLR, 2020.

[22] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsuper-

vised visual representation learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 9729–9738, 2020.

[23] Y. Hou, J. Zhang, J. Cheng, K. Ma, R. T. Ma, H. Chen, and M.-C. Yang. Measuring

and improving the use of graph information in graph neural networks. In

International Conference on Learning Representations, 2019.
[24] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec.

Open graph benchmark: Datasets for machine learning on graphs. Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[25] Y. Jiao, Y. Xiong, J. Zhang, Y. Zhang, T. Zhang, and Y. Zhu. Sub-graph contrast for

scalable self-supervised graph representation learning. In 2020 IEEE international
conference on data mining (ICDM), pages 222–231. IEEE, 2020.

[26] W. Ju, Z. Fang, Y. Gu, Z. Liu, Q. Long, Z. Qiao, Y. Qin, J. Shen, F. Sun, Z. Xiao,

et al. A comprehensive survey on deep graph representation learning. Neural

Networks, page 106207, 2024.
[27] W. Ju, Y. Gu, X. Luo, Y. Wang, H. Yuan, H. Zhong, and M. Zhang. Unsupervised

graph-level representation learning with hierarchical contrasts. Neural Networks,
158:359–368, 2023.

[28] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), 2015.

[29] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-

tional networks. In International Conference on Learning Representations, 2016.
[30] N. M. Kriege, P.-L. Giscard, and R. Wilson. On valid optimal assignment kernels

and applications to graph classification. In Advances in Neural Information
Processing Systems (NeurIPS), pages 1623–1631, 2016.

[31] J. Li, W. Qiang, Y. Zhang, W. Mo, C. Zheng, B. Su, and H. Xiong. Metamask:

Revisiting dimensional confounder for self-supervised learning. Advances in
Neural Information Processing Systems, 35:38501–38515, 2022.

[32] J. Li, W. Qiang, C. Zheng, B. Su, and H. Xiong. Metaug: Contrastive learning via

meta feature augmentation. In International Conference on Machine Learning,
pages 12964–12978. PMLR, 2022.

[33] S. Li, X. Wang, A. Zhang, Y. Wu, X. He, and T.-S. Chua. Let invariant rationale

discovery inspire graph contrastive learning. In International conference on
machine learning, pages 13052–13065. PMLR, 2022.

[34] L. Lin, J. Chen, and H. Wang. Spectral augmentation for self-supervised learning

on graphs. In The Eleventh International Conference on Learning Representations,
2023.

[35] S. Lin, C. Liu, P. Zhou, Z.-Y. Hu, S. Wang, R. Zhao, Y. Zheng, L. Lin, E. Xing, and

X. Liang. Prototypical graph contrastive learning. IEEE transactions on neural
networks and learning systems, 35(2):2747–2758, 2022.

[36] X. Liu, H. Pan, M. He, Y. Song, X. Jiang, and L. Shang. Neural subgraph iso-

morphism counting. In ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (SIGKDD), pages 1959–1969, 2020.

[37] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful graph

networks. Advances in Neural Information Processing Systems (NeurIPS), 2019.
[38] F. Monti, K. Otness, and M. M. Bronstein. Motifnet: a motif-based graph convo-

lutional network for directed graphs. In 2018 IEEE Data Science Workshop (DSW),
pages 225–228, 2018.

[39] C. Morris, G. Rattan, and P. Mutzel. Weisfeiler and leman go sparse: Towards scal-

able higher-order graph embeddings. Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[40] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and

M. Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.

In AAAI Conference on Artificial Intelligence (AAAI), pages 4602–4609, 2019.
[41] R. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro. Relational pooling for graph

representations. In International Conference on Machine Learning (ICML), pages
4663–4673, 2019.

[42] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks

for graphs. In International conference on machine learning, pages 2014–2023.
PMLR, 2016.

[43] G. Nikolentzos, P. Meladianos, and M. Vazirgiannis. Matching node embeddings

for graph similarity. In Proceedings of the AAAI conference on Artificial Intelligence,
volume 31, 2017.

[44] W. Qiang, J. Li, C. Zheng, B. Su, and H. Xiong. Interventional contrastive learning

with meta semantic regularizer. In International Conference on Machine Learning,
pages 18018–18030. PMLR, 2022.

[45] B. Rieck, C. Bock, and K. Borgwardt. A persistent weisfeiler-lehman procedure

for graph classification. In International Conference on Machine Learning, pages
5448–5458. PMLR, 2019.

[46] R. Sato, M. Yamada, and H. Kashima. Random features strengthen graph neural

networks. In Proceedings of the 2021 SIAM International Conference on Data
Mining (SDM), pages 333–341, 2021.

[47] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M.

Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning
Research, 12(9), 2011.

[48] F.-Y. Sun, J. Hoffman, V. Verma, and J. Tang. Infograph: Unsupervised and

semi-supervised graph-level representation learning via mutual information

maximization. In International Conference on Learning Representations, 2019.
[49] F.-Y. Sun, J. Hoffman, V. Verma, and J. Tang. Infograph: Unsupervised and

semi-supervised graph-level representation learning via mutual information

maximization. In International Conference on Learning Representations, 2020.
[50] S. Thakoor, C. Tallec, M. G. Azar, M. Azabou, E. L. Dyer, R. Munos, P. Veličković,

and M. Valko. Large-scale representation learning on graphs via bootstrapping.

In International Conference on Learning Representations, 2022.
[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[52] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph

attention networks. In International Conference on Learning Representations,
2018.

[53] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm. Deep

graph infomax. International Conference on Learning Representations (ICLR), 2019.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, TBD, 2025, TBD Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[54] C. Vignac, A. Loukas, and P. Frossard. Building powerful and equivariant graph

neural networks with structural message-passing. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2020.

[55] N. Wale, I. A. Watson, and G. Karypis. Comparison of descriptor spaces for

chemical compound retrieval and classification. Knowledge and Information
Systems, 14(3):347–375, 2008.

[56] J. Wang, M. Li, H. Wang, and Y. Pan. Identification of essential proteins based

on edge clustering coefficient. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 9(4):1070–1080, 2011.

[57] A. Wijesinghe and Q. Wang. A new perspective on" how graph neural net-

works go beyond weisfeiler-lehman?". In International Conference on Learning
Representations, 2021.

[58] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive

survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[59] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. Unsupervised feature learning via non-

parametric instance discrimination. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3733–3742, 2018.

[60] Z. Xinyi and L. Chen. Capsule graph neural network. In International conference
on learning representations, 2018.

[61] D. Xu, W. Cheng, D. Luo, H. Chen, and X. Zhang. Infogcl: Information-aware

graph contrastive learning. Advances in Neural Information Processing Systems,
34:30414–30425, 2021.

[62] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural

networks? In International Conference on Learning Representations, 2018.
[63] P. Yanardag and S. Vishwanathan. Deep graph kernels. In Proceedings of the 21th

ACM SIGKDD international conference on knowledge discovery and data mining,
pages 1365–1374, 2015.

[64] Y. Yin, Q. Wang, S. Huang, H. Xiong, and X. Zhang. Autogcl: Automated graph

contrastive learning via learnable view generators. In Proceedings of the AAAI
conference on artificial intelligence, volume 36, pages 8892–8900, 2022.

[65] J. You, J. Gomes-Selman, R. Ying, and J. Leskovec. Identity-aware graph neural

networks. In AAAI Conference on Artificial Intelligence (AAAI), 2021.
[66] Y. You, T. Chen, Y. Shen, and Z. Wang. Graph contrastive learning automated. In

International Conference on Machine Learning, pages 12121–12132. PMLR, 2021.

[67] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph contrastive

learning with augmentations. Advances in neural information processing systems,
33:5812–5823, 2020.

[68] Y. You, T. Chen, Z. Wang, and Y. Shen. L2-gcn: Layer-wise and learned effi-

cient training of graph convolutional networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 2127–2135, 2020.

[69] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. Barlow twins: Self-supervised

learning via redundancy reduction. In International conference on machine learn-
ing, pages 12310–12320. PMLR, 2021.

[70] M. Zhang, Z. Cui, M. Neumann, and Y. Chen. An end-to-end deep learning

architecture for graph classification. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

[71] M. Zhang and P. Li. Nested graph neural networks. Advances in Neural Informa-
tion Processing Systems, 34:15734–15747, 2021.

[72] S. Zhang, Z. Hu, A. Subramonian, and Y. Sun. Motif-driven contrastive learning

of graph representations. arXiv preprint arXiv:2012.12533, 2020.
[73] Z. Zhang, P. Cui, and W. Zhu. Deep learning on graphs: A survey. IEEE Transac-

tions on Knowledge and Data Engineering, 34(1):249–270, 2020.
[74] Z. Zhang, M. Wang, Y. Xiang, Y. Huang, and A. Nehorai. Retgk: Graph kernels

based on return probabilities of random walks. Advances in Neural Information
Processing Systems, 31, 2018.

[75] Y. Zhu, Y. Xu, Q. Liu, and S. Wu. An empirical study of graph contrastive learning.

In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

[76] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang. Graph contrastive learning

with adaptive augmentation. In Proceedings of the web conference 2021, pages
2069–2080, 2021.

A Appendix
A.1 Laplacian Eigenvectors for Positional

Encoding
Positional features should ideally differentiate nodes that are far

apart in the graph while ensuring that nearby nodes have similar

features. We use graph Laplacian eigenvectors as node positional

features because they have fewer ambiguities and more accurately

represent distances between nodes [15, 51]. Laplacian eigenvectors

can embed graphs into Euclidean space, providing a meaningful

local coordinate system while preserving the global graph structure.

They are mathematically defined by the factorization of the graph

Laplacian matrix as L = UΛU𝐻 , where U = {u𝑖 }𝑚𝑖=1 ∈ R𝑚 are

orthogonal eigenvectors, Λ = 𝑑𝑖𝑎𝑔 ([𝜆1, . . . , 𝜆𝑚]) ∈ R𝑚×𝑚
are real

eigenvalues, and U𝐻 is a hermitian transpose of𝑈 . After normal-

izing to unit length, eigenvectors are defined up to a factor of ±1,
leading to random sign flips during training. In our experiments,

we employ the 𝑝 smallest non-trivial eigenvectors, with 𝑝 speci-

fied for each experiment. The initial positional encoding vector for

each node is computed beforehand and assigned as node attributes

during dataset creation.

A.2 Proofs of Lemmas and Theorems
Theorem 1 The following statement is true: (a) If

∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑦𝑐𝑙𝑒∑

𝑘 A𝑘𝑣′𝑣′ , then
∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑙𝑜𝑠𝑒𝑑𝑊𝑎𝑙𝑘

∑
𝑘 A𝑘𝑣′𝑣′ ; but not vice versa.

Proof. The implication

∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑦𝑐𝑙𝑒

∑
𝑘 A𝑘𝑣′𝑣′ ⇒∑

𝑘 A𝑘𝑣𝑣 ≃𝐶𝑙𝑜𝑠𝑒𝑑𝑊𝑎𝑙𝑘

∑
𝑘 A𝑘𝑣′𝑣′ is true because every cycle is a

closed walk, but not every closed walk is a cycle. Thus, if two

nodes are isomorphic with respect to cycles, they must also be

isomorphic with respect to closed walks. The reverse implication∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑙𝑜𝑠𝑒𝑑𝑊𝑎𝑙𝑘

∑
𝑘 A𝑘𝑣′𝑣′ ⇒

∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑦𝑐𝑙𝑒

∑
𝑘 A𝑘𝑣′𝑣′ is not

true because closed walks can include walks that repeat vertices or

edges, which do not qualify as cycles. □

Theorem 2 Let 𝑆 represent a GNN with an aggregation scheme
Φ delineated by Eq. 1-Eq. 4. 𝑆 exceeds the expressiveness of 1-WL in
identifying non-isomorphic graphs, provided that 𝑆 operates over a
sufficient number of hops, where 𝑘 > 1, and also meets the following
criteria:

(1) Φ
(
h(𝑡)𝑣 , {

{
(A𝑣𝑢 , h(𝑡)𝑢 , e𝑏𝑢𝑣, e𝑐𝑢𝑣) |𝑢 ∈ N (𝑣)

}
}, {
{
(Ã𝑘𝑣𝑢 , h

(𝑡)
𝑢) |𝑢 ∈

N𝑘 (𝑣)
}}
, {
{
(A𝑘𝑣𝑣, h

(𝑡)
𝑣

)}
}
)
is injective;

(2) The graph-level readout function of 𝑆 is injective.

Proof. For the proof, we proceed in two steps. First, we assume

the existence of two graphs 𝐺1 and 𝐺2 that are distinguishable by

1-WL but indistinguishable by 𝑆 , and we demonstrate a contradic-

tion. We consider the iterations of 1-WL from 1 to 𝑘 , where 𝑘 is

the number of hops. If 1-WL distinguishes 𝐺1 and 𝐺2 using the

information up to the 𝑘-th iteration but 𝑆 cannot, it implies the

existence of k-hop local neighborhood subgraphs G𝑖 and G𝑗 with
different multisets of H ∈ H , W1 ∈ W1, W2 ∈ W2, W3 ∈ W3.

However, by the injectiveness property ofΦ, 𝑆 should yield different
tuple (H,W1,W2,W3) for G𝑖 and G𝑗 , contradicting the assumption.

In the second step, we prove the existence of at least two graphs

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Graph Self-Supervised Learning with Learnable Structural and Positional Encodings WWW ’25, TBD, 2025, TBD

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Variants MUTAG PTC-MR NCI1 PROTEINS IMDB-B IMDB-M

NT-Xent+NoVICReg 88.5 ± 3.5 63.1 ± 3.0 78.3 ± 3.1 70.7 ± 3.9 72.0 ± 3.6 49.0 ± 3.6

NT-Xent+Inv 90.0 ± 3.4 64.3 ± 4.1 79.3 ± 3.2 71.7 ± 4.1 73.1 ± 4.1 49.8 ± 3.3

NT-Xent+Var 90.5 ± 3.6 64.8 ± 4.2 79.9 ± 3.6 72.8 ± 4.6 73.8 ± 4.3 50.3 ± 4.3

NT-Xent+Cov 92.0 ± 3.4 66.0 ± 3.2 81.0 ± 3.4 73.9 ± 4.3 74.2 ± 3.4 51.6 ± 4.1

Table 6: Classification accuracy (%) averaged over 10 runs.

distinguishable by 𝑆 but indistinguishable by 1-WL. This step in-

volves providing specific examples of such graphs, illustrating 𝑆’s

enhanced expressiveness compared to 1-WL. By completing these

steps, we establish the validity of Theorem A.2, confirming that un-

der the specified conditions, 𝑆 indeed surpasses the expressiveness

of 1-WL in identifying non-isomorphic graphs. □

Lemma 1 Given two distinct pairs of multisets H1,H
′
1

∈ H ,
W1,W

′
1
∈ W1, W2,W

′
2
∈ W2, W3,W

′
3
∈ W3, there exists a func-

tion 𝑓 such that the aggregation function 𝜋 (h𝑣,H1,W1,W2,W3) and
𝜋 (h′

𝑣,H
′
1
,W

′
1
,W

′
2
,W

′
3
) defined as 𝜋 (h𝑣,H1,W1,W2,W3) =∑

h∈H1,w1∈W1
𝑓 (h,w1) +

∑
𝑘

(
𝑓 (h𝑣,w3) +

∑
h∈H1,w2∈W2

𝑓 (h,w2)
)

and𝜋 (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
) = ∑

ℎ∈H′
1
,w1∈W

′
1

𝑓 (h,w1)+
∑
𝑘

(
𝑓 (h′

𝑣,w3)+∑
h∈H′

1
,w2∈W

′
2

𝑓 (h,w2)
)
are unique, respectively.

Proof. Since H , W1, W2, and W3 are countable, there must

exist four functions𝜓1 : H → N𝑜𝑑𝑑 mapping h ∈ H to odd natural

numbers and𝜓2,𝜓3, and𝜓4 mapping elements fromW1,W2, and

W3 to even natural numbers, respectively. For any pair of multisets

(h𝑣,H1,W1,W2,W3), given that the cardinalities of H1,W1,W2,

and W3 are bounded, there must be a natural number 𝑁 such that

|H1 | < 𝑁 , |W1 | < 𝑁 , |W2 | < 𝑁 , and |W3 | < 𝑁 . Consider a prime

number 𝑃 > 4𝑁 . Define the function 𝑓 such that 𝑓 (h,w1,w2,w3) =
𝑃−𝜓1 (h) + 𝑃−𝜓2 (w1) + 𝑃−𝜓3 (w2) + 𝑃−𝜓4 (w3)

. Then, the aggregation

functions 𝜋 (h𝑣,H1,W1,W2,W3) and 𝜋 (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
) are

unique for each distinct pair of multisets because the sum of these

functions will be unique for distinct pairs of multisets by the prop-

erties of prime numbers and the unique mappings 𝜓1,𝜓2,𝜓3, and

𝜓4. □

Lemma 2 Expanding upon Lemma 1, we introduce an extended
aggregation function 𝜋 (h𝑣,H,W1,W2,W3), which incorporates the
feature vector of the central node ℎ𝑣 and the multisets H ∈ H , W1 ∈
W1,W2 ∈ W2, andW3 ∈ W3. There exists a function 𝑓 such that
𝜋 (h𝑣,H,W1,W2,W3) = (1 + 𝜖) 𝑓 (h𝑣) +

∑
h∈H,w1∈W1

𝑓 (h,w1) +∑
𝑘

(
𝑓 (h𝑣,w3) +

∑
h∈H,w2∈W2

𝑓 (h,w2)
)
is unique for any distinct

quintuples (h𝑣,H,W1,W2,W3), where h𝑣 ∈ H , w3 ∈ W3, and 𝜖 is
an arbitrary real number.

Proof. Let (h𝑣,H1,W1,W2,W3) and (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
) be

two different tuples. Then, there are two cases:

(1) When h𝑣 = h
′
𝑣 but (h𝑣,H1,W1,W2,W3) ≠ (h′

𝑣,H
′
1
,W

′
1
,W

′
2
,W

′
3
),

by Lemma A.2, we know that

∑
h∈H1,w1∈W1

𝑓 (h,w1) +∑
𝑘

(
𝑓 (h𝑣,w3) +

∑
h∈H1,w2∈W2

𝑓 (h,w2)
)
≠

∑
h∈H′

1
,w1∈W

′
1

𝑓 (h,w1)+
∑
𝑘

(
𝑓 (h′

𝑣,w3)+
∑
h∈H′

1
,w2∈W

′
2

𝑓 (h,w2)
)
.

Thus, 𝜋 (h𝑣,H1,W1,W2,W3) ≠ 𝜋 (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
).

(2) When h𝑣 ≠ h
′
𝑣 , we prove 𝜋 (h𝑣,H1,W1,W2,W3) ≠

𝜋 (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
) by contradiction. Assume that

𝜋 (h𝑣,H1,W1,W2,W3) = 𝜋 (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
). Then,

we have:

(1 + 𝜖) 𝑓 (h𝑣) +
∑︁

h∈H,w1∈W1

𝑓 (h,w1)+∑︁
𝑘

(
𝑓 (h𝑣,w3) +

∑︁
h∈H,w2∈W2

𝑓 (h,w2)
)
=

(1 + 𝜖) 𝑓 (h
′
𝑣) +

∑︁
h∈H′

1
,w1∈W

′
1

𝑓 (h,w1)+∑︁
𝑘

(
𝑓 (h

′
𝑣,w3) +

∑︁
h∈H′

1
,w2∈W

′
2

𝑓 (h,w2)
)
.

This gives us the following equation:

(1 + 𝜖)
(
𝑓 (h𝑣) − 𝑓 (h

′
𝑣)
)
=

∑︁
h∈H,w1∈W1

𝑓 (h,w1) −
∑︁

h∈H′
1
,w1∈W

′
1

𝑓 (h,w1)

+
(∑︁
𝑘

(
𝑓 (h𝑣,w3) +

∑︁
h∈H,w2∈W2

𝑓 (h,w2)
)

−
(∑︁
𝑘

(
𝑓 (h

′
𝑣,w3) +

∑︁
h∈H′

1
,w2∈W

′
2

𝑓 (h,w2)
)
.

If 𝜖 is an irrational number, the left-hand side of the equa-

tion is irrational, while the right-hand side is rational, lead-

ing to a contradiction. Therefore, 𝜋 (h𝑣,H1,W1,W2,W3) ≠
𝜋 (h′

𝑣,H
′
1
,W

′
1
,W

′
2
,W

′
3
).

□

Corollary 1 GenHopNet exhibits greater expressiveness compared
to 1-WL when evaluating non-isomorphic graphs.

Proof. We demonstrate this theorem by proving that GenHop-
Net is a GNN that meets the conditions specified in Theorem 2. For

the first condition, consider the two graphs depicted in Figure 1(b).

GenHopNet can differentiate these graphs as {
{
(𝐴𝑣𝑢 , ℎ (𝑡)𝑢 , 𝑒𝑏𝑢𝑣, 𝑒

𝑐
𝑢𝑣) |𝑢 ∈

N (𝑣)
}
} ≠ {

{
(𝐴𝑣′𝑢′ , ℎ (𝑡)𝑢′ , 𝑒

𝑏
𝑢′𝑣′ , 𝑒

𝑐
𝑢′𝑣′) |𝑢

′ ∈ N (𝑣 ′)
}
}, {
{
(�̃�𝑘𝑣𝑢 , ℎ

(𝑡)
𝑢) |𝑢 ∈

N𝑘 (𝑣)
}}

≠ {
{
(�̃�𝑘
𝑣′𝑢′ , ℎ

(𝑡)
𝑢′) |𝑢

′ ∈ N𝑘 (𝑣 ′)
}}
, and {

{
(A𝑘𝑣𝑣, h

(𝑡)
𝑣

)}
} ≠

{
{
(A𝑘
𝑣′𝑣′ , h

(𝑡)
𝑣′

)}
}. For the second condition, leveraging Lemmas 1

and 2, along with the fact that an MLP can serve as a universal

approximator [62] to model and learn the functions 𝑓 and 𝑔, we

establish that GenHopNet also satisfies this condition. □
11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’25, TBD, 2025, TBD Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Theorem 3 StructPosGSSL is more expressive than subgraph
MPNNs in distinguishing certain non-isomorphic graphs.

Proof. To prove Theorem 3, we consider the two non-isomorphic

graphs 𝐺1 and 𝐺2 shown in Figure 4. Let 𝑣 ∈ 𝐺1 and 𝑣 ′ ∈ 𝐺2 be

the middle nodes in each graph. In the case of Subgraph MPNNs

(e.g., [12, 65, 71]), the aggregation function over the neighborhoods

of 𝑣 and 𝑣 ′ fails to differentiate between the two nodes. This is be-

cause Subgraph MPNNs rely on local subgraphs, and the structural

features and neighborhood-based information are symmetric for 𝑣

and 𝑣 ′.
Let us first consider the structural encoder (i.e., GenHopNet) with

only closed-walk information up to 𝑘 = 3, without EB attributes

𝑒𝑐𝑢𝑣 . In this case, the node representations for 𝑣 and 𝑣 ′ generated
by the structural encoder using closed-walks are identical, since

{
{
(𝐴𝑣𝑢 , ℎ (𝑡)𝑢 , 𝑒𝑏𝑢𝑣) |𝑢 ∈ N (𝑣)

}
} = {

{
(𝐴𝑣′𝑢′ , ℎ (𝑡)𝑢′ , 𝑒

𝑏
𝑢′𝑣′) |𝑢

′ ∈ N (𝑣 ′)
}
},

{
{
(�̃�𝑘𝑣𝑢 , ℎ

(𝑡)
𝑢) |𝑢 ∈ N𝑘 (𝑣)

}}
= {

{
(�̃�𝑘
𝑣′𝑢′ , ℎ

(𝑡)
𝑢′) |𝑢

′ ∈ N𝑘 (𝑣 ′)
}}
, and

{
{
(A𝑘𝑣𝑣, h

(𝑡)
𝑣

)}
} = {

{
(A𝑘
𝑣′𝑣′ , h

(𝑡)
𝑣′

)}
}. This indicates that the closed-

walk information alone is insufficient to distinguish these non-

isomorphic graphs. Now, we show how StructPosGSSL, when en-

hancedwith positional encodings and 𝑒𝑐𝑢𝑣 , can differentiate between

the non-isomorphic graphs 𝐺1 and 𝐺2. Let ℎ
(𝑡)
𝑢,𝑝𝑜𝑠 be the positional

encoding of node 𝑢. When positional encodings are combined with

𝑒𝑐𝑢𝑣 , the aggregation function can distinguish these non-isomorphic

graph pairs. Using Lemmas 1 and 2, we know that the aggrega-

tion function is still injective when positional encodings and 𝑒𝑐𝑢𝑣
are included. Thus, for the middle nodes of each graph, we have

{
{
(𝐴𝑣𝑢 , ℎ (𝑡)𝑢,𝑝𝑜𝑠 , 𝑒

𝑏
𝑢𝑣, 𝑒

𝑐
𝑢𝑣) |𝑢 ∈ N (𝑣)

}
} ≠ {

{
(𝐴𝑣′𝑢′ , ℎ (𝑡)𝑢′,𝑝𝑜𝑠 , 𝑒

𝑏
𝑢′𝑣′ , 𝑒

𝑐
𝑢′𝑣′) |𝑢

′ ∈
N (𝑣 ′)

}
}. Therefore, the StructPosGSSL with positional encodings

and EB attributes yields different representations for 𝑣 and 𝑣 ′, even
though they were previously indistinguishable. □

A.3 Ablation Analysis of Loss Function
To showcase the effectiveness of each element in the loss function,

we perform an ablation study on the following variants:

• NoVICReg: This variant excludes the VICReg regularization

term from the overall loss.

• Inv: This variant keeps only the Invariance term in the

VICReg regularization term.

• Var: This variant keeps only the Variance term in the VI-

CReg regularization term.

• Cov: This variant keeps only the Covariance term in the

VICReg regularization term.

We conducted the ablation study on the StructPosGSSL-SA vari-

ant. The results shown in Table 6 indicate that the Invariance, Vari-

ance, and Covariance terms are crucial to the performance. Specifi-

cally, the covariance term has the greatest impact on performance,

whereas the invariance term has the least effect across all datasets,

as detailed in Table 6. Specifically, as shown in Table 6, performance

on graphs decreases by 3.5% to 5.1% with the NT-Xent+NoVICReg

loss function, by 2.4% to 4.1% with NT-Xent+Inv, by 1.7% to 3.0%

with NT-Xent+Var, and by 1.0% to 1.9% with NT-Xent+Cov, com-

pared to the combined NT-Xent+VICReg loss function.

k = 2(a) k = 3(b) k = 4(c)G4

6

5

0

1

2

3

0.05

0.050.05

0.19

0.1
9

0.1
9

0.1
9

0.1
9

0.19

0.050.05

0.05

4

5

6

1

3

2

0

0.1

0.1

0.1 0.1

0.14

0.1

0.1
0.14

0.14

0.14

0.14

0.14

0.0000, 1.62e-08
6.02e-03, 6.52e-03
2.42e-01, -6.15e-01
8.17e-01, 5.27e-01
-1.01e-02,-1.09e-02
1.76e-01, -3.95e-01
-4.91e-01, 4.31e-01

posG1 =
0.0027, -0.0145
0.0375, -0.1541
-0.4842,-0.1729
-0.7965,-0.2419
-0.2755, 0.8026
0.1449, 0.2148
0.1814, -0.4442

posG2 =

G1 G2

Figure 4: A pair of non-isomorphic graphs where the colored
square box on each node represents the feature representa-
tions derived from closed-walk information. The two middle
nodes (colored gray) in graphs 𝐺1 and 𝐺2 cannot be distin-
guished using only closed-walk information (up to 𝑘 = 3),
as they receive the same representation (colored blue). How-
ever, by incorporating positional information along with EB
attributes, we can successfully distinguish these nodes.

Figure 5: Accuracy (%) of StructPosGSSL-SA under different
𝜇 values.

A.4 Comparison under Different 𝜇
To evaluate the impact of the regularization term 𝜇 on the perfor-

mance of our StructPosGSSL framework, we conduct experiments

by evaluating StructPosGSSL-SA across six datasets (MUTAG, PTC-

MR, PROTEINS, IMDB-B, IMDB-M, and RDT5K), using varying

values for the regularization term 𝜇 = [0.1, 0.2, . . . , 0.9]. For this
experimental setup, we use the same hyperparameter configuration

for each dataset as described in Section 6.1. Figure 5 represents the

experimental results. In our experiments, we observed that setting

𝜇 either too low or too high leads to suboptimal performance. To

achieve better results, it is essential to select an intermediate value

for 𝜇, as this provides a balance that optimizes the StructPosGSSL’s
performance.

12

