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Graph Self-Supervised Learning with Learnable Structural and
Positional Encodings
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Abstract
We propose a novel framework that addresses a critical limitation in

Graph Self-Supervised Learning (GSSL) for graph classification: the

underestimation of topological information. Traditional GSSL, de-

spite its success in various benchmarks, often fails to fully leverage

the expressive power of Graph Neural Networks (GNNs), partic-

ularly in capturing complex structural properties. This limitation

stems from two main factors: (1) the inadequacy of conventional

GNNs in representing sophisticated topological features, and (2)

the focus of self-supervised learning solely on final graph represen-

tations. To address these issues, we introduce GenHopNet, a GNN
framework that integrates a k-hop message-passing scheme, en-

hancing its ability to capture local structural information without

explicit substructure extraction. We theoretically demonstrate that

GenHopNet surpasses the expressiveness of the classical Weisfeiler-

Lehman (WL) test for graph isomorphism. Furthermore, we propose

a structural- and positional-aware GSSL framework that incorpo-

rates topological information throughout the learning process. This

approach enables the learning of representations that are both

sensitive to graph topology and invariant to specific structural

and feature augmentations. Comprehensive experiments on graph

classification datasets, including those designed to test structural

sensitivity, show that our methods consistently outperform most

of the existing approaches in accuracy while maintaining computa-

tional efficiency. Our work significantly advances GSSL’s capability

in distinguishing graphs with similar local structures but different

global topologies.
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1 Introduction
In recent years, Graph Neural Networks (GNNs) have emerged as a

powerful framework for analyzing graph-structured data, advanc-

ing capabilities in various tasks [26, 29, 52, 58, 62, 68, 73]. While

most GNNs focus on semi-supervised learning, growing in popu-

larity is Self-Supervised Learning (SSL) that learns graph represen-

tations without human annotations.

Graph Self-Supervised Learning (GSSL) has demonstrated compa-

rable performance to supervised methods in various representation

learning tasks, applicable to both node-level and graph-level down-

stream tasks [61, 76]. In this paper, we focus on graph classification,

a crucial graph-level task with significant applications in areas

such as molecular property prediction, social network analysis,

and protein function classification [17, 20, 62]. Graph classification

presents unique challenges compared to node-level tasks. It requires

capturing and differentiating global structural information across

different graphs, not just local neighborhoods. Graphs can vary

significantly in size and structure, demanding more flexible and ex-

pressive models. To generate effective graph-level representations,

models must aggregate information from all nodes and edges while

preserving discriminative structural features.

Despite GSSL’s success, they often fall to fully leverage the ex-

pressive power of GNNs, by not utilizing both topological and

positional information for graph classification. Topological infor-

mation captures the local structural relationships within the graph

through the k-hop neighborhood substructure patterns (e.g., trian-
gles, cycles), while positional information, derived from Laplacian

eigenvectors or random-walk diffusion, reflects the nodes’ relative

positions within the graph’s global structure. The lack of topological

and positional focus prevents GSSL distinguishing between graphs

with similar local structures but different global topologies. Specif-

ically, in graphs where nodes may have identical local structures

(e.g., isomorphic or symmetrical nodes), relying only on neighbor-

ing features is inadequate for differentiation. Positional information

is critical for enabling GNNs to distinguish such nodes, even when

their connectivity patterns are similar. Isomorphic nodes, which

cannot be differentiated based solely on their structural information,

present a particular challenge. By incorporating positional encod-

ings, GNNs can leverage this additional context to break symmetry,

facilitating better differentiation among nodes. This enhancement

improves the model’s ability to recognize unique identities, leading

to more accurate predictions in graph-related tasks.

The limitations of current GSSLmethods can be attributed to two

main factors: GNN Architecture Limitations and Self-Supervised

Learning Constraints. Conventional GNNs typically aggregate in-

formation from immediate neighborhoods, often missing crucial

structural differences that exist beyond local structures. For in-

stance, GIN [62] has shown that certain GNN-based methods [29,

52] are less effective at distinguishing graph structures compared

to Weisfeiler-Lehman (WL) based methods. Furthermore, current

1
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GSSL methods [21, 48, 53, 67] often fail to fully leverage the com-

plementary nature of structural and positional information, which

hinders their ability to differentiate non-isomorphic graphs with

similar local attributes but different global topologies.

Building on these insights, we develop a framework that funda-

mentally reimagines graph representation learning by innovating

both GNN architecture and the self-supervised learning process.

Our goal is to significantly enhance the expressiveness and rep-

resentational capacity of GSSL in distinguishing non-isomorphic

graphs with similar local structures but different global topologies.

To this end, we focus on two main components:

GenHopNet GNN: A novel GNN architecture designed to capture

complex structural information beyond immediate neighborhoods.

It implements a k-hop message-passing scheme that expands the

receptive field of each node, allowing the model to capture long-

range dependencies and global structural information.

Structural and Positional Aware Self-Supervised Learning: A

new self-supervised learning framework that preserves and uses

crucial topological information by incorporating both structural

and positional information into learning. It overcomes limitations

of methods that focus solely on final graph representations.

Contributions. Below we summarize our main contributions:

i. We introduce GenHopNet, a GNN framework that implements

a k-hop message-passing aggregation scheme and surpasses

the expressiveness of the WL test.

ii. We propose a structural- and positional-aware GSSL frame-

work, namely StructPosGSSL, for GNN pre-training, enabling

the learning of representations invariant to specific structural

and feature augmentations while preserving topological and

positional information.

iii. With extensive experiments on both real-world and synthetic

datasets we demonstrate that our StructPosGSSL achieves su-

perior performance on most graph classification benchmarks.

2 Related Work
GNNs are a class of neural networks designed to effectively process

and represent graph-structured data. Since the development of the

previous GNN models, various adaptations have emerged, includ-

ing GCN [29], GAT [52], GraphSAGE [19], and GIN [62], among

others. These models aim to learn distinguishing representations

of graphs based on their data labels. However, annotating graph

data, such as identifying categories of biochemical molecules, of-

ten requires specialized expertise, making it challenging to obtain

large-scale labeled graph datasets [67]. This challenge highlights a

key limitation of supervised graph representation learning.

Contrastive Learning (CL) stands out as a highly effective self-

supervised technique embedding unlabeled data [31]. By bring-

ing similar examples closer together and pushing dissimilar ones

apart, CL methods—including SimCLR [10], MoCo [22], BYOL [18],

MetAug [32], and Barlow Twins [69]—have demonstrated remark-

able success in the realm of computer vision [44, 59].

Graph Self-Supervised Learning (GSSL) is a promising tech-

nique for learning representations of graph-structured data without

requiring labeled examples, making it especially effective for graph

classification tasks. To date, many GSSLs with unique strategies

have been proposed to enhance graph classification. These methods

build on the strengths of GNNs and CL techniques [21, 49, 53].

A key focus of GSSL is the development of effective graph aug-

mentation strategies. For instance, GraphCL [67] introduces per-

turbation invariance and proposes various graph augmentations,

such as node dropping, edge perturbation, attribute masking, and

subgraph extraction. Recognizing the limitations of using complete

graphs, Subg-Con [25] advocates for subgraph sampling as a more

effective method for capturing structural information. To improve

the semantic depth of sampled subgraphs, MICRO-Graph [72] pro-

poses generating informative subgraphs by learning graph motifs.

Furthermore, the process of selecting suitable graph augmentations

can be time-consuming and labor-intensive; JOAO [66] addresses

this by introducing a bi-level optimization framework that auto-

mates the selection of data augmentations tailored to specific graph

data. RGCL [33] argues that random destruction of graph prop-

erties during augmentation can lead to a loss of critical semantic

information and proposes a rationale-aware approach for graph

augmentation. Additionally, SPAN [34] introduces a spectral per-

spective for guiding topology augmentation, noting that previous

work has largely concentrated on spatial domain augmentation.

To address the neglect of hierarchical structures in existing GSSL

methods, HGCL [27] proposes Hierarchical GSSL, which integrates

node-level CL, graph-level CL, and mutual CL components. An-

other important aspect of GSSL is the process of negative sampling;

BGRL [50] simplifies this process by eliminating the need for con-

structing negative samples, allowing it to scale efficiently to large

graphs. To mitigate sampling bias, PGCL [35] introduces a nega-

tive sampling strategy based on semantic clustering. In contrast

to existing GSSL methods, our approach enhances both global and

local structural understanding. It ensures that global graph repre-

sentations effectively capture complex topological similarities and

differences, while local node embeddings are refined to preserve

detailed structural and positional nuances. By incorporating struc-

tural and positional awareness through invariance, variance, and

covariance across node features, our method improves the ability to

distinguish between isomorphic and non-isomorphic graphs. This

ensures that both global graph structure and local node character-

istics are robustly represented and aligned.

Enhancing GNN Expressiveness. A substantial amount of effort

has been devoted to enhancing the expressive power of GNNs be-

yond the 1-WL
1
. This pursuit arises from the need to capture more

intricate graph structures and relationships to address complex

real-world problems effectively. Broadly, there are four primary

directions which GNNs can extend beyond the 1-WL level: (1) A

number of studies have introduced higher-order variants of GNNs,

demonstrating comparable expressiveness to k-WL with 𝑘 ≥ 3

[2]. As an example, k-order graph networks, introduced by [40],

offer expressiveness that is similar to a set-based variation of k-WL.

[37] introduced a 2-order graph network that maintains expressive

power similar to 3-WL. Furthermore, [39] introduced a localized

variant of k-WL, focusing solely on a subset of vertices within a

neighborhood. Nevertheless, using these expressive GNNs presents

challenges due to their intrinsic computational demands and in-

tricate architecture. In addition, some studies aimed to integrate

1
WL stands for the Weisfeiler Leman graph isomorphism test.
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Figure 1: (a) A high-level overview of the GSSL model architecture of StructPosGSSL (𝐺 is an input graph and 𝐺𝑖
′
,𝐺 𝑗 ′ are

two augmented views). Our design comprises three main components: (i) a structural encoder (SE) that generates structural
embeddings (ℎ𝑆𝐸 and ℎ′

𝑆𝐸
) for nodes based on their local structural properties; (ii) a positional encoder (PE) that generates

positional embeddings (ℎ𝑃𝐸 and ℎ′
𝑃𝐸

) for nodes; and (iii) a pooling layer that aggregates the node representations to generate
the final graph representation. Moreover,𝑀𝐿𝑃𝜙 and𝑀𝐿𝑃𝜃 are two shared projection heads for node representations and graph
representations, respectively. (b) The real-world graph structures of two molecules, Decalin and Bicyclopentyl. While standard
Graph SSL frameworks cannot distinguish between these molecular structures, our model successfully differentiates them.

inductive biases on isomorphism counting w.r.t predefined topo-

logical attributes such as triangles, cliques, and cycles [7, 36, 38].

These efforts similar to the traditional graph kernels, as outlined by

[63]. However, the task of predefining topological characteristics

needs specialised knowledge in the respective domain, a resource

that is frequently not easily accessible. (3) In a different vein, there

has been a recent surge in studies exploring into the notion of

enhancing GNNs through the augmenting of node identifiers or

stochastic features. For example, [54] introduced an approach that

preserves a node’s local context through the manipulation of node

identifiers in a permutation-equivariant fashion. [65] developed

ID-GNNs, incorporating vertex identity information in their design.

[11] and [41] assigned one-hot identifiers to nodes, drawing inspira-

tion from the principles of relational pooling. In a similar vein, [46]

enriched the representational capability of GNNs by incorporating

a random feature for each node. There are some other approaches

modify the MPNN framework or incorporate additional heuristics

to enhance their expressiveness [6, 8, 57]. (4) Some works inject

positional encoding (PE) as initial node features because nodes

in a graph lack inherent positional information. Canonical index

PE can be assigned to the nodes in a graph. However, the model

must be trained on all possible index permutations, or sampling

must be employed [41]. Another direction for PE in graphs is using

Laplacian Eigenvectors [14, 15], as they establish a meaningful local

coordinate system while maintaining the global structure of the

graph. [16] proposed a PE scheme (RWPE) based on random-walk

diffusion to initialize the positional representations of nodes. These

positional encoding methods such as Laplacian positional encoding

[14] or RWPE [16] have a significant limitation in that they usually

fail to quantify the structural similarity between nodes and their

surrounding neighborhoods. Nonetheless, while these techniques

have demonstrated their expressivity to go beyond 1-WL. However,

it remains uncertain what further attributes they can encompass

beyond the scope of 1-WL.

Despite these limitations, our method offers notable advantages.

GenHopNet enjoys greater expressive power than the 1-WL test,

providing improved node and graph-level distinction by account-

ing for both local and global graph structures through closed walk

counts and positional information. Additionally, by incorporating

edge centrality measures to enrich message-passing, StructPosGSSL
enhances the model’s ability to differentiate various types of con-

nections, making it strictly more expressive than Subgraph MPNNs

[12, 65, 71] in distinguishing certain non-isomorphic graphs.

3 An Expressive and Generalizable k-hop
Message Passing Framework

In this section, we introduce the Expressive and Generalizable

Message-Passing (EGMP) framework, designed to incorporate learn-

able local structural information through an aggregation method

that leverages the k-hop neighborhood without the need for explicit

extraction of local substructure patterns. We provide a theoretical

analysis demonstrating how k-hop GNNs within this framework

can achieve greater expressiveness than 1-WL.

Let 𝐺 = (𝑉 , 𝐸,A) be an undirected graph with a set of nodes

𝑉 and a set of edge 𝐸, where |𝑉 | = 𝑚, |𝐸 | = 𝑒 , and A ∈ R𝑚×𝑚

is the adjacency matrix. Nodes are associated with a feature ma-

trix X ∈ R𝑚×𝑧
with 𝑧 features for each node. Let L = D − A

be a Laplacian matrix, where a diagonal matrix D ∈ R𝑚×𝑚
, and

D𝑖𝑖 =
∑
𝑗 A𝑖 𝑗 . L be a real symmetric matrix and diagonalizable as

L = UΛU𝐻 . Here, U = {𝑢𝑖 }𝑚𝑖=1 ∈ R𝑚 are orthogonal eigenvectors,

Λ = 𝑑𝑖𝑎𝑔 ( [𝜆1, . . . , 𝜆𝑚]) ∈ R𝑚×𝑚
are real eigenvalues, and U𝐻 is a

hermitian transpose of U.
Let {{·}} represent a multiset. Let Ã𝑘 =

(
Ã𝑘𝑣𝑢

)
𝑣,𝑢∈𝑉 where Ã𝑘𝑣𝑢 =

A𝑘
𝑣𝑢∑

𝑢∈𝑁 (𝑣)\𝑣 A𝑘
𝑣𝑢

refers to a normalized value ofA𝑘𝑣𝑢 , andX ∈ R𝑚×𝑧
be

thematrix of input feature vectors with each x𝑣 ∈ R𝑧 corresponding
to each vertex 𝑣 ∈ 𝑉 . We indicate the feature vector of vertex 𝑣 at

the t
th
layer as h(𝑡 )𝑣 and set h(0)𝑣 = x𝑣 . Then, the definition of the

3
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(t+1)
th
layer in an aggregation scheme is given as:

M(𝑡 )
𝑒 = Agg

𝐸
({{

(A𝑣𝑢 , h(𝑡 )𝑢 , 𝑒𝑏𝑢𝑣, 𝑒
𝑐
𝑢𝑣) |𝑢 ∈ N (𝑣)

}})
, (1)

M(𝑡 )
𝑢 = Agg

𝑁𝑘
({{

(Ã𝑘𝑣𝑢 , h
(𝑡 )
𝑢 ) |𝑢 ∈ N𝑘 (𝑣)

}})
;𝑘 ≥ 2, (2)

M(𝑡 )
𝑣 = Agg

𝐼
({{

A𝑘𝑣𝑣, h
(𝑡 )
𝑣

}
}
)
;𝑘 ≥ 2, (3)

h(𝑡+1)𝑣 = Combine

(
h(𝑡 )𝑣 ,M(𝑡 )

𝑒 ,M(𝑡 )
𝑢 ,M(𝑡 )

𝑣

)
. (4)

The above equations define a process for aggregating messages

in our GNN, where:

i. Agg
𝐸 (·) in Eq. 1 computes the edge-level aggregated message

𝑀
(𝑡 )
𝑒 for vertex 𝑣 based on the node features and edge attributes

of its neighbors 𝑢 ∈ N (𝑣) within the 1-hop neighborhood;

ii. Agg
𝑁𝑘 (·) in Eq. 2 aggregates a normalized message𝑀

(𝑡 )
𝑢 from

the 𝑘-hop neighbors (𝑘 ≥ 2) of vertex 𝑣 weighing their contri-

butions by the normalized adjacency matrix Ã𝑘𝑣𝑢 ;
iii. Agg

𝐼
in Eq. 3 calculates the self-message M(𝑡 )

𝑣 for vertex 𝑣

using its own adjacency information and features, focusing on

capturing closed-walks of length up to 𝑘 (𝑘 ≥ 2) that return to

node 𝑣 itself;

iv. Eq. 4 combines the current feature vector h(𝑡 )𝑣 of vertex 𝑣 with

the aggregated messages M(𝑡 )
𝑒 , M(𝑡 )

𝑢 , and M(𝑡 )
𝑣 to update final

node representation of 𝑣 for the next layer.

We use the above set of equations to compute the graph’s topo-

logical information. For the positional information, we only use Eq.

1 by replacing node features h(𝑡 )𝑢 with positional features h(𝑡 )𝑢,𝑝𝑜𝑠 .

In more detail, M(𝑡 )
𝑢 is a message aggregated from neighbors of

node 𝑣 , using their normalized coefficients Ã𝑘𝑣𝑢 , whileM
(𝑡 )
𝑣 is the

adjusted message from node 𝑣 to itself, considering walk lengths

up to k-hop. The diagonal elements of A𝑘 , namely A𝑘𝑣𝑣 , count the
number of closed walks of length 𝑘 that start and end at the same

node 𝑣 . Such a mechanism highlights the importance of node 𝑣

within its local topology and its role in the connectivity of the graph

over multiple hops. This should exhibit the following properties:

1. ClosedWalks and Connectivity: The powerA𝑘 enumerates

all possible walks of length 𝑘 in the graph. By examining A𝑘𝑣𝑣 ,
one can infer how connected or central a node is with respect

to walks of length 𝑘 . Tr(A𝑘 ) counts the total number of closed

walks of length 𝑘 starting and ending at the same vertex. This

measure gives a quantitative sense of the graph’s connectivity:

• Local Connectivity: High numbers of shorter closed

walks (smaller 𝑘) indicate strong local connectivity. This is

useful for understanding how tightly knit individual neigh-

borhoods are within the graph.

• Global Connectivity: As 𝑘 increases, the nature of the

closed walks provides insights into the global connectivity

and the presence of cycles within the graph. Any cycle in a

graph is a closed walk; however, not all closed walks are cy-

cles as cycles have the additional constraint of not repeating

vertices or edges except the starting/ending vertex.

2. Isomorphic Invariant: This simple trick facilitates the cre-

ation of unique node representations by ensuring that each

1

2
3 4

5

6

1

2
3 4

5

6

k = 2(a) k = 3(b) k = 4(c)G

Figure 2: A high-level overview of different closed-walks
𝑘 = 2, . . . , 4, where the blue node represents the source node.
For 𝑘 = 2, the walk can traverse between nodes multiple
times, forming a non-cyclic path. For 𝑘 = 3 and 𝑘 = 4, the
walks can capture closed cycles of length 3 and 4, respectively,
effectively identifying cyclic structures in the graph.

node possesses a distinct k-hop topological neighborhood, pro-

vided that k is sufficiently large. The sum

∑
𝑘 A𝑘𝑣𝑣 across differ-

ent powers 𝑘 reflects the number of closed walks of varying

lengths starting and ending at node 𝑣 . For instance, the equal-

ity

∑
𝑘 A𝑘𝑣𝑣 =

∑
𝑘 A𝑘𝑣′𝑣′ , holds if nodes 𝑣 and 𝑣

′
are k-hop iso-

morphic, implying that they share identical local connectivity

patterns up to k-hops. This characteristic serves as a powerful

tool for identifying and distinguishing nodes based on their

structural roles within the network.

Understanding cycle and closed-walk isomorphisms is essential

for elucidating the structural roles of nodes within a graph, reveal-

ing both local and global connectivity patterns. Cycle isomorphism

highlights nodes that engage in similar closed-loop interactions,

while closed-walk isomorphism provides insights into broader con-

nectivity by capturing indirect relationships that contribute to the

overall network topology. The definitions of cycle and closed-walk

isomorphisms formalize these concepts, emphasizing their signifi-

cance in analyzing graph structures.

Definition 1. Cycle Isomorphism (≃𝐶𝑦𝑐𝑙𝑒 ): Two nodes 𝑣 and
𝑣 ′ are cycle isomorphic if the sum of the powers of A over 𝑘 (i.e.,∑
𝑘 A𝑘𝑣𝑣 and

∑
𝑘 A𝑘𝑣′𝑣′ ) considers only closed walks that are also cy-

cles (i.e., walks that do not repeat any vertices or edges except the
starting/ending vertex).

Definition 2. Closed Walk Isomorphism (≃𝐶𝑙𝑜𝑠𝑒𝑑𝑊𝑎𝑙𝑘 ): Two
nodes 𝑣 and 𝑣 ′ are closed walk isomorphic if the sum of the powers
of A over 𝑘 (i.e.,

∑
𝑘 A𝑘𝑣𝑣 and

∑
𝑘 A𝑘𝑣′𝑣′ ) considers all possible closed

walks (i.e., walks that start and end at the same vertex, but may repeat
vertices and edges).

Theorem 1. The following statement is true: (a) If
∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑦𝑐𝑙𝑒∑

𝑘 A𝑘𝑣′𝑣′ , then
∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑙𝑜𝑠𝑒𝑑𝑊𝑎𝑙𝑘

∑
𝑘 A𝑘𝑣′𝑣′ ; but not vice versa.

Going back ot Eq. 1, M(𝑡 )
𝑒 is a message aggregation function

that considers the 1-hop neighborhood, including their edge con-

nections and edge attributes. We enrich the 1-hop neighborhood

aggregation by injecting three different centrality based edge at-

tributes e𝑐𝑢𝑣 , between given pair of nodes: (1) Edge Betweenness

(EB), (2) Edge Closeness (EC), and (3) Edge Clustering Coefficients

(ECC) as additional features [56]. These attributes are designed to

augment the distinguishing capabilities of the model, enabling it

to better differentiate between various types of connections and

facilitating nuanced understanding and processing of edge-related

information in graphs. This should exhibit the following properties:
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1. Local Connectivity: Both EC and ECC provide insights into

the local structure around an edge, highlighting how embedded

an edge is within its immediate neighborhood and how it

contributes to local connectivity and cohesiveness.

2. Global Connectivity: EB extends to more global properties,

reflecting the strategic importance of an edge across the entire

network. It helps in understanding the potential vulnerabilities

of the network, identifying crucial links whose removal or

failure might significantly disrupt network connectivity.

3. Isomorphic Invariant: All three measures (EB, EC, and ECC)

are isomorphic invariant. This is because they are fundamen-

tally based on the relationships and distances between nodes,

which are preserved under graph isomorphism.

Finally, the feature vector for the next layer h(𝑡+1)𝑣 , is derived by

combining h(𝑡 )𝑣 ,M(𝑡 )
𝑒 ,M(𝑡 )

𝑢 , andM(𝑡 )
𝑣 using the Combine function.

4 Generalizable k-Hop Network
Below, we present the GNNmodel design based on the EGMP frame-

work that we proposed in the previous section. There are numerous

ways to designing 𝜙 functions, which result in GNNs with varying

levels of expressiveness. To illustrate this, we introduce a new GNN

model called GenHopNet (Generalizable k-Hop Network), which

utilizes an aggregation scheme based on our generalized message-

passing framework. We demonstrate that the expressive power of

GenHopNet exceeds those of the 1-WL. For each vertex 𝑣 ∈ 𝑉 , the

feature vector for the (𝑡 + 1)-th layer is produced by:

h(𝑡+1)𝑣 = Mlp𝜃

[
(1 + 𝜖)h(𝑡 )𝑣 +

∑︁
𝑢∈𝑁 (𝑣)

A𝑣𝑢
(
h(𝑡 )𝑢 + e𝑏𝑣𝑢 + e𝑐𝑣𝑢

)
+

𝐾∑︁
𝑘=2

(
A𝑘𝑣𝑣h

(𝑡 )
𝑣 +

∑︁
𝑢∈𝑁𝑘 (𝑣)

Ã𝑘𝑣𝑢h
(𝑡 )
𝑢

) ]
.

(5)

The 𝜖 is a learnable scalar param. M(𝑡 )
𝑣 =

∑𝐾
𝑘=2

A𝑘𝑣𝑣h
(𝑡 )
𝑣 , M(𝑡 )

𝑢 =∑𝐾
𝑘=2

∑
𝑢∈𝑁𝑘 (𝑣) Ã

𝑘
𝑣𝑢h

(𝑡 )
𝑢 , andM(𝑡 )

𝑒 =
∑
𝑢∈𝑁 (𝑣) A𝑣𝑢 (h

(𝑡 )
𝑢 +e𝑏𝑣𝑢+e𝑐𝑣𝑢 ).

Expressiveness analysis. We first generalise the result of univer-

sal functions over multisets [62] to universal functions over pairs
of multisets since Eq. 5 involves not only node features but also

edge features e𝑏
𝑖 𝑗
, centrality based edge features e𝑐

𝑖 𝑗
, normalized

k-hop neighboring coefficients Ã𝑘
𝑖 𝑗

and k-hop closed-walk coef-

ficients A𝑘
𝑗 𝑗
. Let H , A, A𝑘

,
˜A𝑘
, W1, W2, and W3 be countable

sets whereH is a node feature space, A is a 1-hop neighborhood

coefficient space, A𝑘
is a k-hop closed-walk coefficient space,

˜A𝑘

is a normalized k-hop neighborhood coefficient space. Moreover,

W1= {A𝑖 𝑗 (h𝑖+e𝑏𝑖 𝑗+𝑒
𝑐
𝑖 𝑗
) |A𝑖 𝑗 ∈A, h𝑖 ∈ H , e𝑏

𝑖 𝑗
∈ E𝑏 , e𝑐

𝑖 𝑗
∈ E𝑐 },W2=

{Ã𝑘
𝑖 𝑗
h𝑖 |Ã𝑘𝑖 𝑗 ∈ ˜A𝑘 , h𝑖 ∈ H}, andW3= {A𝑘𝑗 𝑗h𝑗 |A

𝑘
𝑗 𝑗
∈A𝑘 , h𝑗 ∈ H}.

The following theorem asserts that a GNN can surpass the ex-

pressiveness of 1-WL provided that our framework is sufficiently

robust to differentiate structures beyond neighborhood subtrees,

and the neighborhood aggregation function, 𝜙 is injective, given a

sufficient number of hops where 𝑘 > 1.

Theorem 2. Let 𝑆 represent a GNN with an aggregation scheme
Φ delineated by Eq. 1-Eq. 4. 𝑆 exceeds the expressiveness of 1-WL in
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Figure 3: A pair of non-isomorphic graphs where positional
encoding (with a dimension of 2) and EB attributes outper-
form the 1-WL test in distinguishing between graphs 𝐺1 and
𝐺2, allowing for the detection of structural differences that
the 1-WL test fails to capture.
identifying non-isomorphic graphs, provided that 𝑆 operates over a
sufficient number of hops, 𝑘 > 1, and also meets the following criteria:

(1) Φ
(
h(𝑡 )𝑣 , {

{
(A𝑣𝑢 , h(𝑡 )𝑢 , e𝑏𝑢𝑣, e𝑐𝑢𝑣) |𝑢 ∈ N (𝑣)

}
}, {
{
(�̃�𝑘𝑣𝑢 , h

(𝑡 )
𝑢 ) |𝑢 ∈

N𝑘 (𝑣)
}}
, {
{
(A𝑘𝑣𝑣, h

(𝑡 )
𝑣

)
}}
)
is injective;

(2) The graph-level readout function of 𝑆 is injective.

Lemma 1. Given two distinct pairs of multisets H1,H
′
1

∈ H ,
W1,W

′
1
∈ W1, W2,W

′
2
∈ W2, W3,W

′
3
∈ W3, there exists a func-

tion 𝑓 such that the aggregation function 𝜋 (h𝑣,H1,W1,W2,W3) and
𝜋 (h′

𝑣,H
′
1
,W

′
1
,W

′
2
,W

′
3
) defined as 𝜋 (h𝑣,H1,W1,W2,W3) =∑

h∈H1,w1∈W1
𝑓 (h,w1) +

∑
𝑘

(
𝑓 (h𝑣,w3) +

∑
h∈H1,w2∈W2

𝑓 (h,w2)
)

and𝜋 (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
) = ∑

ℎ∈H′
1
,w1∈W

′
1

𝑓 (h,w1)+
∑
𝑘

(
𝑓 (h′

𝑣,w3)+∑
h∈H′

1
,w2∈W

′
2

𝑓 (h,w2)
)
are unique, respectively.

Lemma 2. Expanding upon Lemma 1, we introduce an extended
aggregation function 𝜋 ′ (h𝑣,H,W1,W2,W3), which incorporates the
feature vector of the central node h𝑣 and the multisets H ∈ H , W1 ∈
W1,W2 ∈ W2, andW3 ∈ W3. There exists a function 𝑓 such that
𝜋 ′ (h𝑣,H,W1,W2,W3) = (1 + 𝜖) 𝑓 (h𝑣) +

∑
h∈H,w1∈W1

𝑓 (h,w1) +∑
𝑘

(
𝑓 (h𝑣,w3) +

∑
h∈H,w2∈W2

𝑓 (h,w2)
)
is unique for any distinct

quintuples (h𝑣,H,W1,W2,W3), where h𝑣 ∈ H , w3 ∈ W3, and 𝜖 is
an arbitrary real number.

Corollary 1. GenHopNet exhibits greater expressiveness com-
pared to 1-WL when evaluating non-isomorphic graphs.

Our proposed graph neural network model, which operates on

up to k-hop local information for feature aggregation, denoted

as 𝑆 , surpasses the expressiveness of 1-WL in distinguishing non-

isomorphic graphs. This is achieved by ensuring the uniqueness of

feature representations through the extended aggregation function

𝜋 ′ (h𝑣,H,W1,W2,W3), as established by Lemma 2. Thus, 𝑆 can

capture and differentiate structural nuances beyond what 1-WL can

achieve, making it a powerful tool for graph classification tasks.

Complexity Analysis: Similar to GIN [23], GenHopNet is compu-

tationally efficient, with its time and memory complexities scaling

linearly in relation to the number of edges in the graph. The time
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and space complexities of GenHopNet are 𝑂 (𝑡𝑒𝑧𝑑) and 𝑂 (𝑒), re-
spectively, where 𝑒 denotes the number of edges in the graph, 𝑡

represents the number of layers, and 𝑧 and 𝑑 correspond to the

dimensions of the input and output feature vectors.

5 Graph Self-Supervised Learning Framework
In this section, we introduce Structural and Positional GSSL (Struct-
PosGSSL), a new class of graph self-supervised learning framework

based on structural and positional information within graphs.

5.1 Data Augmentation for Graph
The goal of data augmentation is to produce consistent, identity-

preserving positive samples of a specific graph. In this work, we

use two main types of augmentation strategies: structural augmen-

tation and feature augmentation [67]. In structural augmentation,

three distinct strategies are considered: (1) Subgraph Induction by

Random Walks (RWS), (2) Node Dropping (ND), and (3) Edge Drop-

ping (ED). For feature augmentation, we employ three different

approaches: (1) Feature Dropout (FD), (2) Feature Masking (FM),

and (3) Edge Attribute Masking (EAM). In our work, we gener-

ate different augmented graphs from a single input graph (A,X),
resulting in two correlated views, namely (Ã𝑖′ , X̃𝑖′ ) and (Ã𝑗 ′ , X̃𝑗 ′ ).
5.2 Expressive/Genralizable Graph Encoders
For each augmented view, we process it through two distinct GNN

encoders. One encoder is dedicated to structural encoding via the

proposed GenHopNet. Alongside structural features in the Gen-
HopNet, we employ another encoder for capturing positional in-

formation. We initiate the positional feature vectors using Lapla-

cian eigenvectors, as outlined in [14]. This second encoder, also

a GNN, applies Eq.1 with the Combine function, i.e., h(𝑡+1)𝑣,𝑝𝑜𝑠 =

Combine

(
h(𝑡 )𝑣,𝑝𝑜𝑠 ,M

(𝑡 )
𝑒

)
, and leverages the spectral properties of

the graph Laplacian. This approach targets the smallest non-trivial

eigenvalues to derive meaningful positional encodings that accu-

rately reflect the structural roles of nodes within the graph. By

focusing on the spectral characteristics of the Laplacian, this en-

coding strategy effectively captures both the local connectivity

of nodes and the broader topology of the graph, significantly en-

hancing the model’s capability to understand and manage complex

graph structures. Each encoder outputs node representations and

a final graph representation for augmented views. We then pass

them through another shared projection head (an MLP) to obtain

the final structural and positional representations for both nodes

and graphs. Next, we concatenate the structural features with posi-

tional features for node representations and graph representations

separately, ensuring a comprehensive integration of both structural

and positional data. To facilitate the end-to-end training of encoders

and generate comprehensive node and graph representations that

are independent of specific downstream tasks, we implement a loss

function that merges NT-Xent [10] and refined VICReg [3].

5.3 Training Pipeline
In the pursuit of effective self-supervised learning frameworks, the

quality of learned representations hinges critically on the choice of

loss functions. To enable end-to-end training of the encoders and

to develop robust graph and node representations that are indepen-

dent of downstream tasks, we employ the NT-Xent [10] loss to learn

Method CSL SR25

GCN 10.0 ± 0.0 6.6 ± 0.0

GIN 10.0 ± 0.0 6.6 ± 0.0

3WLGNN 97.8 ± 10.9 -

3-GCN 95.7 ± 14.8 6.6 ± 0.0

GCN-RNI 16.0 ± 0.0 6.6 ± 0.0

StructPosGSSL-SA 98.6 ± 2.8 100.0 ± 0.0
StructPosGSSL-FA 98.3 ± 2.5 100.0 ± 0.0

Table 1: Classification accuracy (%) on the test set for CSL
and SR25 datasets.

the graph representations and use the refined VICReg [3] loss as a

regularization term to learn the node representations. The NT-Xent

loss, which maximizes discriminative power between positive and

negative samples of graph representations, while VICReg’s regu-

larization terms that ensure a balanced and non-redundant spread

of node features across dimensions to reduce the representational

collapse. This integration stabilizes training in self-supervised setup

and enriches graph representations for downstream tasks.

The NT-Xent loss, is defined by the formula:

𝐿𝑁 (z𝑖
′
, z𝑗

′
) = −𝑙𝑜𝑔 𝑒𝑥𝑝 (𝑠𝑖𝑚(z𝑖′ , z𝑗 ′ )/𝜏)∑

2𝑛
𝑘=1

1[𝑘≠𝑖′ ]𝑒𝑥𝑝 (𝑠𝑖𝑚(z𝑖′ , z𝑘 )/𝜏)
, (6)

where z𝑖
′
, z𝑗

′ ∈ R
˜𝑑
are graph representations for two augmented

views, with
˜𝑑 denoting the embedding size of each graph augmented

view in the dataset. The parameter 𝜏 is the temperature scaling

parameter, and 1[𝑘≠𝑖 ] is an indicator function that is 1 if 𝑘 ≠ 𝑖 and

0 otherwise. Here 𝑠𝑖𝑚(z𝑖′ , z𝑗 ′ ) is a similarity function, typically the

cosine similarity, between two vectors z𝑖
′
and z𝑗

′
.

We combine the refined VICReg loss with the contrastive NT-

Xent loss to create a unified loss function that maximizes mutual

information between graph embeddings while preserving struc-

tural and positional node alignment. This unified approach not

only aligns embeddings for isomorphic node pairs but also main-

tains diversity and enhances the model’s topological discriminative

power. By enabling the model to differentiate between nodes with

subtle structural or positional differences, this method is crucial for

accurately identifying both isomorphic and non-isomorphic node

pairs. In this work, the refined VICReg loss is specifically adapted

for correspondence node alignment to improve isomorphic graph

representation learning in a self-supervised setting.

The refined VICReg loss is given by:

𝐿𝑉 (h𝑖
′
, h𝑗

′
) = 𝜆𝑖𝑛𝑣 · 𝐿𝑖𝑛𝑣 (h𝑖

′
, h𝑗

′
) + 𝜆𝑣𝑎𝑟 · 𝐿𝑣𝑎𝑟 (h𝑖

′
, h𝑗

′
)+

𝜆𝑐𝑜𝑣 · 𝐿𝑐𝑜𝑣 (h𝑖
′
, h𝑗

′
)

(7)

where 𝜆𝑖𝑛𝑣, 𝜆𝑣𝑎𝑟 and 𝜆𝑐𝑜𝑣 are weighting factors for the invariance,

variance, and covariance components, respectively. The Invariance

Loss 𝐿𝑖𝑛𝑣 (h𝑖
′
, h𝑗

′ ) = 1

𝑚

∑
𝑖 | |h𝑖

′
𝑖
− h𝑗

′

𝑖
| |2
2
, where h𝑖

′
, h𝑗

′ ∈ R𝑚×𝑑

represent the node representations of the two augmented views.

The Variance Loss 𝐿𝑣𝑎𝑟 (h𝑖
′
, h𝑗

′ ) = 1

𝑑

∑𝑑
𝑗=1

��𝑚𝑎𝑥 (0, 𝛾 −𝑠𝑡𝑑 (h𝑖′
𝑗
, 𝜖)) −

𝑚𝑎𝑥 (0, 𝛾 − 𝑠𝑡𝑑 (h𝑗
′

𝑗
, 𝜖))

��
. The Covariance Loss 𝐿𝑐𝑜𝑣 (h𝑖

′
, h𝑗

′ ) =
1

𝑑

∑
𝑖≠𝑗

��[C(h𝑖′ )]2
𝑖, 𝑗

− [C(h𝑗 ′ )]2
𝑖, 𝑗

��
, where C(h𝑖′ ) =

1

𝑚−1
∑𝑚
𝑖=1 (h𝑖

′
𝑖
− ˜h𝑖

′ ) (h𝑖′
𝑖
− ˜h𝑖

′ )𝑇 , with ˜h𝑖
′
= 1

𝑚

∑𝑚
𝑖=1 h

𝑖′
𝑖
denoting

the mean over feature vectors. The Invariance Loss captures the

inherent structure of the graph, maintaining node representations’
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structural and positional properties despite augmentation. The Vari-

ance Loss helps distinguish non-isomorphic nodes, enhancing the

model’s ability to capture structural differences. Lastly, the Covari-

ance Loss ensures that node embeddings reflect diverse structural

and positional aspects, improving the expressiveness and discrimi-

native power of the representations.

The total combined loss for integrating NT-Xent and refined

VICReg is simply the sum of these two losses:

𝐿𝑇 (z𝑖
′
, z𝑗

′
, h𝑖

′
, h𝑗

′
) = 𝐿𝑁 (z𝑖

′
, z𝑗

′
) + 𝜇 · 𝐿𝑉 (h𝑖

′
, h𝑗

′
), (8)

where 𝜇 is the weighting factor for VICReg loss. This unified loss

function effectively integrates isomorphism preservation with rep-

resentation expressiveness and diversity.

Theorem 3. StructPosGSSL
2 is more expressive than subgraph

MPNNs in distinguishing certain non-isomorphic graphs.

6 Numerical Experiments
In this section, we evaluate our self-supervised learning frame-

work on graph classification benchmark tasks. The results from

our models are statistically significant with a 95% confidence level.

We evaluate StructPosGSSL on graph classification benchmark tasks

and compare their performance with leading baselines to address

the following questions:

Q1. How effective are StructPosGSSL in small graph classifica-

tion tasks based on empirical performance?

Q2. How effective are StructPosGSSL in large graph classifica-

tion tasks based on empirical performance?

Q3. How effective is StructPosGSSL for isomorphism testing in

synthetic graph classification tasks?

Q4. How do structural and positional encodings impact overall

performance?

In this following sections, we analyze the experimental results to

address the four previously mentioned questions.

6.1 Experiments on Small Graphs
Weuse eight datasets from two categories: (1) bioinformatics datasets:

MUTAG, PTC-MR, NCI1, and PROTEINS [13, 30, 47, 55]; (2) social

network datasets: IMDB-B, IMDB-M, COLLAB and RDT-M5K [63].

We compare our method against fourteen baseline approaches:

(1) Graph kernel methods: WL subtree kernel (WL) [47], WL-OA

[30], RetGK [74], P-WL [45], andWL-PM [43]; (2) GNN-based meth-

ods: PATCHY-SAN [42], DGCNN [70], CAPSGNN [60], and GIN

[62]; (3) Unsupervised methods: InfoGraph [48], GraphCL [67],

MVGRL [21], AutoGCL [64], and JOAO [66].

Specifically, the GenHopNet encoder models are initially trained

in an unsupervised manner, and the resulting embeddings are then

input into a linear classifier to accommodate the labeled data. Then,

for fair comparison, we execute our method using ten random splits

[75] and utilize the 10-fold cross-validation method and present

the best mean accuracy (%) along with the standard deviation. The

results are presented in table 2 and 3. We have two settings: (1)

StructPosGSSL-SA, which considers structure augmentation, and

(2) StructPosGSSL-FA, which considers feature augmentation. In

both settings, we employ the Adam optimizer [28], with hidden

2
The code is available at: https://anonymous.4open.science/r/StructPosGSSL-73D0

dimension of 128, weight decay is 0.0003, a 2-layer MLP with batch

normalization, 100 epochs, positional encoding dimension of 6, a

dropout rate of 0.5, and a temperature scaling parameter 𝜏 of 0.10.

We choose a batch size from {32, 64, 128, 256} and a number of hops

𝑘 ∈ {2, 3, 4, 5, 6}. We use 𝜆𝑖𝑛𝑣 = 1, 𝜆𝑣𝑎𝑟 = 3, 𝜆𝑐𝑜𝑣 = 2, and 𝜇 = 0.5

for MUTAG and 𝜆𝑖𝑛𝑣 = 1, 𝜆𝑣𝑎𝑟 = 23, 𝜆𝑐𝑜𝑣 = 23, and 𝜇 = 0.0003

for PTC-MR, and 𝜆𝑖𝑛𝑣 = 1, 𝜆𝑣𝑎𝑟 = 24, 𝜆𝑐𝑜𝑣 = 24, and 𝜇 = 0.005 for

the remaining datasets. The readout function, as described in [62],

is utilized, which involves concatenating representations from all

layers to derive a final graph representation.

To address Q1, in Tables 2 & 3, StructPosGSSL outperforms

the best baseline by 0.4% (PATCHY-SAN), 1.1% (CapsGNN), 1.1%

(WL-OA, MVGRL), 0.5% (WL-PM), and 0.2% (GIN) on the datasets

MUTAG, PTC-MR, IMDB-B, IMDB-M, and RDTM5K, respectvely.

These gains are a reflection of the inherent characteristics of

the datasets. Graphs with smaller diameters, i.e., IMDB-B, IMDB-

M, PTC-MR, and MUTAG, feature nodes that are closer together,

promoting localized interactions that enable GNNs to capture both

local and global information effectively, even with few message-

passing steps. In such cases, structural encodingwith closedwalks is

particularly beneficial, as it differentiates local structures by captur-

ing repeated node interactions and identifying cycles. Conversely,

datasets such as NCI1 and COLLAB, with larger diameters, present

increased structural complexity, making it challenging to capture

patterns using closed walks alone due to the difficulty of accounting

for distant node interactions with limited local information.

6.2 Experiments on Large Graphs
We utilize five large graph datasets from the Open Graph Bench-

mark (OGB) [24], comprising one molecular graph dataset (ogbg-

moltoxcast, ogbg-moltox21, ogbg-molhiv, ogbg-molpcba) and one

protein-protein association network (ogbg-ppa). We compare our

approach with the following methods that have reported results on

the aforementioned OGB datasets: GIN and GIN+VN [24], GSN [9],

ID-GNNs [65], Deep LRP [11], GraphSNN [57], DS-GNN (EGO+),

DSS-GNN (EGO+) [5], and POLICY-LEARN [4].

For large graph datasets, we adopt the same experimental frame-

work as outlined in [24]. Our evaluation process is divided into

two distinct learning phases. In the initial phase, the models are

trained in a self-supervised fashion using only node features and

graph structure without any label data. Subsequently, in the second

phase, the representations generated by the GNN encoders during

the first phase are fixed in place and employed to train, validate,

and test the models using a straightforward linear classifier.

We utilize the Adam optimizer with a learning rate of 0.001, a

batch size of 32, dropout of 0.5, positional encoding dimension of 6,

and run training for 100 epochs across all datasets. We use a 2-layer

MLP with a hidden dimension of 200 and a temperature scaling

parameter 𝜏 of 0.10 for both settings. We choose 𝜆𝑖𝑛𝑣 = 1, 𝜆𝑣𝑎𝑟 =

24, 𝜆𝑐𝑜𝑣 = 24, and 𝜇 = 0.005 for all datasets. The classification

accuracy results are presented in Table 4.

To address Q2, in Table 4, StructPosGSSL consistently outper-

forms all the baseline methods across all OGB graphs listed. Struct-

PosGSSL surpasses best results of existing GNNs by 0.50% (POLICY-

LEARN), 0.55% (DSS-GNN (EGO+)), 0.32% (GIN+VN), 0.24% (Graph-

SNN), and 0.42% (GIN+VN) on the datasets ogbg-moltoxcast, ogbg-

moltox21, ogbg-molhiv, ogbg-ppa, and ogbg-molpcba, respectively.
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Method MUTAG PTC-MR NCI1 PROTEINS

Graph kernel methods

WL 90.4 ± 5.7 59.9 ± 4.3 86.0 ± 1.8 73.8 ± 3.9

WL-OA 84.5 ± 1.7 63.6 ± 1.5 86.1 ± 0.2 74.2 ± 0.4

RetGK 90.3 ± 1.1 62.5 ± 1.6 84.5 ± 0.2 72.3 ± 0.6

P-WL 90.5 ± 1.3 64.0 ± 0.8 85.4 ± 0.1 70.4 ± 0.1

WL-PM 87.7 ± 0.8 61.4 ± 0.8 86.4 ± 0.2 73.6 ± 0.2

GNN-based methods

PATCHY-SAN 92.6 ± 4.2 60.0 ± 4.8 78.6 ± 1.9 73.1 ± 2.4

DGCNN 85.8 ± 0.0 58.6 ± 0.0 74.4 ± 0.0 70.0 ± 0.9

CapsGNN 86.6 ± 1.5 66.0 ± 1.8 78.3 ± 1.3 73.1 ± 4.8

GIN* 89.4 ± 5.6 64.6 ± 7.0 82.7 ± 1.7 75.1 ± 5.1

Unsupervised methods

InfoGraph 89.0 ± 1.1 61.7 ± 1.4 76.2 ± 1.4 74.4 ± 0.3

GraphCL 86.8 ± 1.3 61.3 ± 2.1 77.9 ± 0.4 74.4 ± 0.4

MVGRL 89.7 ± 1.1 62.5 ± 1.7 77.0 ± 0.8 -

AutoGCL 88.6 ± 1.0 - 82.0 ± 0.3 75.8 ± 0.4

JOAO 87.3 ± 1.0 - 78.0 ± 0.4 74.5 ± 0.4

Our work

StructPosGSSL-SA 93.0 ± 5.3 67.1 ± 4.9 82.9 ± 3.8 75.8 ± 2.6
StructPosGSSL-FA 91.5 ± 2.5 66.5 ± 3.7 82.5 ± 3.5 75.3 ± 2.9

Table 2: Classification accuracy (%) on bioinformatics datasets
averaged over 10 runs.

Method IMDB-B IMDB-M COLLAB RDTM5K

Graph kernel methods

WL 73.8 ± 3.9 50.9 ± 3.8 78.9 ± 1.9 52.5 ± 2.1

WL-OA 74.2 ± 0.4 51.3 ± 0.2 80.7 ± 0.1 -

RetGK 72.3 ± 0.6 48.7 ± 0.6 81.0 ± 0.3 56.1 ± 0.5

P-WL 70.4 ± 0.1 50.9 ± 0.3 - -

WL-PM 73.6 ± 0.2 52.3 ± 0.2 81.5 ± 0.5 -

GNN-based methods

PATCHY-SAN 73.1 ± 2.4 - 72.6 ± 2.2 49.1 ± 0.7

DGCNN 70.0 ± 0.9 50.0 ± 1.9 73.7 ± 0.0 -

CapsGNN 73.1 ± 4.8 51.1 ± 3.1 79.6 ± 2.9 52.8 ± 1.4

GIN* 75.1 ± 5.1 52.3 ± 2.8 80.2 ± 1.9 57.0 ± 1.7

Unsupervised methods

InfoGraph 73.0 ± 0.9 49.7 ± 0.5 70.7 ± 1.1 53.4 ± 1.0

GraphCL 71.1 ± 0.4 49.2 ± 0.6 71.4 ± 1.2 55.9 ± 0.2

MVGRL 74.2 ± 0.7 51.2 ± 0.5 76.0 ± 1.2 -

AutoGCL 73.3 ± 0.4 - 70.1 ± 0.7 56.7 ± 0.2

JOAO 70.2 ± 3.0 - 69.5 ± 0.3 55.7 ± 0.6

Our work

StructPosGSSL-SA 75.5 ± 3.3 52.8 ± 3.5 76.5 ± 3.6 57.2 ± 3.3
StructPosGSSL-FA 75.1 ± 3.1 52.3 ± 3.6 76.1 ± 3.3 56.8 ± 3.4

Table 3: Classification accuracy (%) on social network datasets
averaged over 10 runs.

Method ogbg-molhiv ogbg-moltox21 ogbg-moltoxcast ogbg-ppa ogbg-molpcba

GIN [62] 75.58 ± 1.40 74.91 ± 0.51 63.41 ± 0.74 68.92 ± 1.00 22.66 ± 0.28

GIN+VN [24] 75.20 ± 1.30 76.21 ± 0.82 66.18 ± 0.68 70.37 ± 1.07 27.03 ± 0.23

GSN [7] 77.99 ± 1.00 - - - -

ID-GNN [65] 78.30 ± 2.00 - - - -

Deep LRP [11] 77.19 ± 1.40 - - - -

GraphSNN [57] 78.51 ± 1.70 75.45 ± 1.10 65.40 ± 0.71 70.66 ± 1.65 24.96 ± 1.50

DS-GNN (EGO+) [5] 77.40 ± 2.19 76.39 ± 1.18 - - -

DSS-GNN (EGO+) [5] 76.78 ± 1.66 77.95 ± 0.40 - - -

POLICY-LEARN [4] 78.49 ± 1.01 77.36 ± 0.60 - - -

StructPosGSSL-SA 78.80 ± 2.27 78.50 ± 2.30 66.50 ± 2.60 70.81 ± 1.45 27.10 ± 1.65
StructPosGSSL-FA 79.00 ± 2.43 77.60 ± 2.25 67.00 ± 2.20 70.90 ± 1.86 27.45 ± 1.95

Table 4: Class. acc. (%) on OGB datasets averaged over 10 runs.

6.3 Experiments on Synthetic Graphs
We use 2 publicly accessible datasets : (1) the Circular Skip Link

(CSL) dataset [41]; and (2) SR25 [1]. Both benchmarks involve clas-

sifying graphs into isomorphism classes. CSL dataset, initially pre-

sented by [41] and frequently utilized to assess graph expressiveness

[15], comprises 10 isomorphism classes of 41-node 4-regular graphs,

almost all of which can be distinguished by the 3-WL test. SR25

dataset [1] comprises 15 strongly regular graphs, each consisting

of 25 nodes, which cannot be distinguished by the 3-WL test.

We compare our approach against the five baselines: GCN [29],

GIN [23], 3WLGNN [37], 3-GCN [40], and GCN-RNI [1]. We use

the Adam optimizer with a learning rate of 0.001, a batch size of 32,

dropout of 0.7, positional encoding dimension of 6, a temperature

scaling parameter 𝜏 of 0.10, and run training for 500 epochs across

both datasets. We use a 3-layer MLP with a hidden dimension of

Method CSL SR25

StructPosGSSL-SA [POS] 54.7 ± 3.7 65.3 ± 3.5

StructPosGSSL-FA [POS] 82.7 ± 2.5 88.3 ± 2.8

StructPosGSSL-SA [CW] 92.0 ± 2.8 93.5 ± 3.7
StructPosGSSL-FA [CW] 91.3 ± 3.2 92.5 ± 2.8

Table 5: Ablation study classification accuracy (%) for CSL
and SR25 test sets.

200 and a number of hops 𝑘 = 3 for both settings. We choose

𝜆𝑖𝑛𝑣 = 1, 𝜆𝑣𝑎𝑟 = 25, 𝜆𝑐𝑜𝑣 = 25, and 𝜇 = 0.0009 for the CSL dataset

and 𝜆𝑖𝑛𝑣 = 1, 𝜆𝑣𝑎𝑟 = 24, 𝜆𝑐𝑜𝑣 = 24, and 𝜇 = 0.005 for the SR25

dataset. In Table 1, we present the average and standard deviation

obtained from 10-fold cross-validation.

Note that none of the baselines achieved the best performance

on both synthetic datasets we evaluated, compared to the other

baselines. To address Q3, as shown in Table 1, StructPosGSSL con-

sistently achieves the best performance on both synthetic datasets.

Specifically, StructPosGSSL improves upon the best results of the

baselines by a margin of 0.8% (3WLGNN) and 93.4% (GCN, GIN,

3-GCN, and GCN-RNI) on the datasets CSL and SR25, respectively.

6.4 Ablation Analysis of Structural and
Positional Encoding

To showcase the effectiveness of structural and positional informa-

tion, we perform an ablation study on the following variants:

• POS: This variant excludes only Positional (POS) encoding.

• CW: This variant keeps only Closed-Walk (CW) information.

We performed an ablation study on the StructPosGSSL variants.

The results presented in Table 5 demonstrate that the closed-walk

structural information plays a key role in performance. Notably,

this structural information has the most significant influence, while

positional information has the least impact on the CSL and SR25

datasets, as shown in Table 5.

To address the Q4, performance on the CSL dataset decreases by

43.9% on StructPosGSSL-SA [POS], by 15.6% on StructPosGSSL-FA

[POS], 6.6% on StructPosGSSL-SA [CW], and 7% on StructPosGSSL-

FA [CW], compared to the original performance shown in Table 1.

Similarly, performance on the SR25 dataset decreases by 34.7% on

StructPosGSSL-SA [POS], by 11.7% on StructPosGSSL-FA [POS],

6.5% on StructPosGSSL-SA [CW], and 7.5% on StructPosGSSL-FA

[CW], compared to the original performance shown in Table 1.

7 Conclusions
In conclusion, our proposed StructPosGSSL framework effectively

addresses a key limitation in Graph Self-Supervised Learning by

improving the capture of topological information. Leveraging the

k-hop message-passing mechanism of GenHopNet and the integra-

tion of structural and positional awareness, StructPosGSSL exceeds

the expressiveness of traditional GNNs and the Weisfeiler-Lehman

test. Our experimental results show that the framework delivers

superior performance on graph classification tasks, enhancing accu-

racy while maintaining computational efficiency. This advancement

significantly strengthens GSSL’s capability to distinguish between

graphs with similar local structures but distinct global topologies.
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A Appendix
A.1 Laplacian Eigenvectors for Positional

Encoding
Positional features should ideally differentiate nodes that are far

apart in the graph while ensuring that nearby nodes have similar

features. We use graph Laplacian eigenvectors as node positional

features because they have fewer ambiguities and more accurately

represent distances between nodes [15, 51]. Laplacian eigenvectors

can embed graphs into Euclidean space, providing a meaningful

local coordinate system while preserving the global graph structure.

They are mathematically defined by the factorization of the graph

Laplacian matrix as L = UΛU𝐻 , where U = {u𝑖 }𝑚𝑖=1 ∈ R𝑚 are

orthogonal eigenvectors, Λ = 𝑑𝑖𝑎𝑔 ( [𝜆1, . . . , 𝜆𝑚]) ∈ R𝑚×𝑚
are real

eigenvalues, and U𝐻 is a hermitian transpose of𝑈 . After normal-

izing to unit length, eigenvectors are defined up to a factor of ±1,
leading to random sign flips during training. In our experiments,

we employ the 𝑝 smallest non-trivial eigenvectors, with 𝑝 speci-

fied for each experiment. The initial positional encoding vector for

each node is computed beforehand and assigned as node attributes

during dataset creation.

A.2 Proofs of Lemmas and Theorems
Theorem 1 The following statement is true: (a) If

∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑦𝑐𝑙𝑒∑

𝑘 A𝑘𝑣′𝑣′ , then
∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑙𝑜𝑠𝑒𝑑𝑊𝑎𝑙𝑘

∑
𝑘 A𝑘𝑣′𝑣′ ; but not vice versa.

Proof. The implication

∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑦𝑐𝑙𝑒

∑
𝑘 A𝑘𝑣′𝑣′ ⇒∑

𝑘 A𝑘𝑣𝑣 ≃𝐶𝑙𝑜𝑠𝑒𝑑𝑊𝑎𝑙𝑘

∑
𝑘 A𝑘𝑣′𝑣′ is true because every cycle is a

closed walk, but not every closed walk is a cycle. Thus, if two

nodes are isomorphic with respect to cycles, they must also be

isomorphic with respect to closed walks. The reverse implication∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑙𝑜𝑠𝑒𝑑𝑊𝑎𝑙𝑘

∑
𝑘 A𝑘𝑣′𝑣′ ⇒

∑
𝑘 A𝑘𝑣𝑣 ≃𝐶𝑦𝑐𝑙𝑒

∑
𝑘 A𝑘𝑣′𝑣′ is not

true because closed walks can include walks that repeat vertices or

edges, which do not qualify as cycles. □

Theorem 2 Let 𝑆 represent a GNN with an aggregation scheme
Φ delineated by Eq. 1-Eq. 4. 𝑆 exceeds the expressiveness of 1-WL in
identifying non-isomorphic graphs, provided that 𝑆 operates over a
sufficient number of hops, where 𝑘 > 1, and also meets the following
criteria:

(1) Φ
(
h(𝑡 )𝑣 , {

{
(A𝑣𝑢 , h(𝑡 )𝑢 , e𝑏𝑢𝑣, e𝑐𝑢𝑣) |𝑢 ∈ N (𝑣)

}
}, {
{
(Ã𝑘𝑣𝑢 , h

(𝑡 )
𝑢 ) |𝑢 ∈

N𝑘 (𝑣)
}}
, {
{
(A𝑘𝑣𝑣, h

(𝑡 )
𝑣

)}
}
)
is injective;

(2) The graph-level readout function of 𝑆 is injective.

Proof. For the proof, we proceed in two steps. First, we assume

the existence of two graphs 𝐺1 and 𝐺2 that are distinguishable by

1-WL but indistinguishable by 𝑆 , and we demonstrate a contradic-

tion. We consider the iterations of 1-WL from 1 to 𝑘 , where 𝑘 is

the number of hops. If 1-WL distinguishes 𝐺1 and 𝐺2 using the

information up to the 𝑘-th iteration but 𝑆 cannot, it implies the

existence of k-hop local neighborhood subgraphs G𝑖 and G𝑗 with
different multisets of H ∈ H , W1 ∈ W1, W2 ∈ W2, W3 ∈ W3.

However, by the injectiveness property ofΦ, 𝑆 should yield different
tuple (H,W1,W2,W3) for G𝑖 and G𝑗 , contradicting the assumption.

In the second step, we prove the existence of at least two graphs
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Variants MUTAG PTC-MR NCI1 PROTEINS IMDB-B IMDB-M

NT-Xent+NoVICReg 88.5 ± 3.5 63.1 ± 3.0 78.3 ± 3.1 70.7 ± 3.9 72.0 ± 3.6 49.0 ± 3.6

NT-Xent+Inv 90.0 ± 3.4 64.3 ± 4.1 79.3 ± 3.2 71.7 ± 4.1 73.1 ± 4.1 49.8 ± 3.3

NT-Xent+Var 90.5 ± 3.6 64.8 ± 4.2 79.9 ± 3.6 72.8 ± 4.6 73.8 ± 4.3 50.3 ± 4.3

NT-Xent+Cov 92.0 ± 3.4 66.0 ± 3.2 81.0 ± 3.4 73.9 ± 4.3 74.2 ± 3.4 51.6 ± 4.1

Table 6: Classification accuracy (%) averaged over 10 runs.

distinguishable by 𝑆 but indistinguishable by 1-WL. This step in-

volves providing specific examples of such graphs, illustrating 𝑆’s

enhanced expressiveness compared to 1-WL. By completing these

steps, we establish the validity of Theorem A.2, confirming that un-

der the specified conditions, 𝑆 indeed surpasses the expressiveness

of 1-WL in identifying non-isomorphic graphs. □

Lemma 1 Given two distinct pairs of multisets H1,H
′
1

∈ H ,
W1,W

′
1
∈ W1, W2,W

′
2
∈ W2, W3,W

′
3
∈ W3, there exists a func-

tion 𝑓 such that the aggregation function 𝜋 (h𝑣,H1,W1,W2,W3) and
𝜋 (h′

𝑣,H
′
1
,W

′
1
,W

′
2
,W

′
3
) defined as 𝜋 (h𝑣,H1,W1,W2,W3) =∑

h∈H1,w1∈W1
𝑓 (h,w1) +

∑
𝑘

(
𝑓 (h𝑣,w3) +

∑
h∈H1,w2∈W2

𝑓 (h,w2)
)

and𝜋 (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
) = ∑

ℎ∈H′
1
,w1∈W

′
1

𝑓 (h,w1)+
∑
𝑘

(
𝑓 (h′

𝑣,w3)+∑
h∈H′

1
,w2∈W

′
2

𝑓 (h,w2)
)
are unique, respectively.

Proof. Since H , W1, W2, and W3 are countable, there must

exist four functions𝜓1 : H → N𝑜𝑑𝑑 mapping h ∈ H to odd natural

numbers and𝜓2,𝜓3, and𝜓4 mapping elements fromW1,W2, and

W3 to even natural numbers, respectively. For any pair of multisets

(h𝑣,H1,W1,W2,W3), given that the cardinalities of H1,W1,W2,

and W3 are bounded, there must be a natural number 𝑁 such that

|H1 | < 𝑁 , |W1 | < 𝑁 , |W2 | < 𝑁 , and |W3 | < 𝑁 . Consider a prime

number 𝑃 > 4𝑁 . Define the function 𝑓 such that 𝑓 (h,w1,w2,w3) =
𝑃−𝜓1 (h) + 𝑃−𝜓2 (w1 ) + 𝑃−𝜓3 (w2 ) + 𝑃−𝜓4 (w3 )

. Then, the aggregation

functions 𝜋 (h𝑣,H1,W1,W2,W3) and 𝜋 (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
) are

unique for each distinct pair of multisets because the sum of these

functions will be unique for distinct pairs of multisets by the prop-

erties of prime numbers and the unique mappings 𝜓1,𝜓2,𝜓3, and

𝜓4. □

Lemma 2 Expanding upon Lemma 1, we introduce an extended
aggregation function 𝜋 (h𝑣,H,W1,W2,W3), which incorporates the
feature vector of the central node ℎ𝑣 and the multisets H ∈ H , W1 ∈
W1,W2 ∈ W2, andW3 ∈ W3. There exists a function 𝑓 such that
𝜋 (h𝑣,H,W1,W2,W3) = (1 + 𝜖) 𝑓 (h𝑣) +

∑
h∈H,w1∈W1

𝑓 (h,w1) +∑
𝑘

(
𝑓 (h𝑣,w3) +

∑
h∈H,w2∈W2

𝑓 (h,w2)
)
is unique for any distinct

quintuples (h𝑣,H,W1,W2,W3), where h𝑣 ∈ H , w3 ∈ W3, and 𝜖 is
an arbitrary real number.

Proof. Let (h𝑣,H1,W1,W2,W3) and (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
) be

two different tuples. Then, there are two cases:

(1) When h𝑣 = h
′
𝑣 but (h𝑣,H1,W1,W2,W3) ≠ (h′

𝑣,H
′
1
,W

′
1
,W

′
2
,W

′
3
),

by Lemma A.2, we know that

∑
h∈H1,w1∈W1

𝑓 (h,w1) +∑
𝑘

(
𝑓 (h𝑣,w3) +

∑
h∈H1,w2∈W2

𝑓 (h,w2)
)
≠

∑
h∈H′

1
,w1∈W

′
1

𝑓 (h,w1)+
∑
𝑘

(
𝑓 (h′

𝑣,w3)+
∑
h∈H′

1
,w2∈W

′
2

𝑓 (h,w2)
)
.

Thus, 𝜋 (h𝑣,H1,W1,W2,W3) ≠ 𝜋 (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
).

(2) When h𝑣 ≠ h
′
𝑣 , we prove 𝜋 (h𝑣,H1,W1,W2,W3) ≠

𝜋 (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
) by contradiction. Assume that

𝜋 (h𝑣,H1,W1,W2,W3) = 𝜋 (h′
𝑣,H

′
1
,W

′
1
,W

′
2
,W

′
3
). Then,

we have:

(1 + 𝜖) 𝑓 (h𝑣) +
∑︁

h∈H,w1∈W1

𝑓 (h,w1)+∑︁
𝑘

(
𝑓 (h𝑣,w3) +

∑︁
h∈H,w2∈W2

𝑓 (h,w2)
)
=

(1 + 𝜖) 𝑓 (h
′
𝑣) +

∑︁
h∈H′

1
,w1∈W

′
1

𝑓 (h,w1)+∑︁
𝑘

(
𝑓 (h

′
𝑣,w3) +

∑︁
h∈H′

1
,w2∈W

′
2

𝑓 (h,w2)
)
.

This gives us the following equation:

(1 + 𝜖)
(
𝑓 (h𝑣) − 𝑓 (h

′
𝑣)
)
=

∑︁
h∈H,w1∈W1

𝑓 (h,w1) −
∑︁

h∈H′
1
,w1∈W

′
1

𝑓 (h,w1)

+
(∑︁
𝑘

(
𝑓 (h𝑣,w3) +

∑︁
h∈H,w2∈W2

𝑓 (h,w2)
)

−
(∑︁
𝑘

(
𝑓 (h

′
𝑣,w3) +

∑︁
h∈H′

1
,w2∈W

′
2

𝑓 (h,w2)
)
.

If 𝜖 is an irrational number, the left-hand side of the equa-

tion is irrational, while the right-hand side is rational, lead-

ing to a contradiction. Therefore, 𝜋 (h𝑣,H1,W1,W2,W3) ≠
𝜋 (h′

𝑣,H
′
1
,W

′
1
,W

′
2
,W

′
3
).

□

Corollary 1 GenHopNet exhibits greater expressiveness compared
to 1-WL when evaluating non-isomorphic graphs.

Proof. We demonstrate this theorem by proving that GenHop-
Net is a GNN that meets the conditions specified in Theorem 2. For

the first condition, consider the two graphs depicted in Figure 1(b).

GenHopNet can differentiate these graphs as {
{
(𝐴𝑣𝑢 , ℎ (𝑡 )𝑢 , 𝑒𝑏𝑢𝑣, 𝑒

𝑐
𝑢𝑣) |𝑢 ∈

N (𝑣)
}
} ≠ {

{
(𝐴𝑣′𝑢′ , ℎ (𝑡 )𝑢′ , 𝑒

𝑏
𝑢′𝑣′ , 𝑒

𝑐
𝑢′𝑣′ ) |𝑢

′ ∈ N (𝑣 ′)
}
}, {
{
(�̃�𝑘𝑣𝑢 , ℎ

(𝑡 )
𝑢 ) |𝑢 ∈

N𝑘 (𝑣)
}}

≠ {
{
(�̃�𝑘
𝑣′𝑢′ , ℎ

(𝑡 )
𝑢′ ) |𝑢

′ ∈ N𝑘 (𝑣 ′)
}}
, and {

{
(A𝑘𝑣𝑣, h

(𝑡 )
𝑣

)}
} ≠

{
{
(A𝑘
𝑣′𝑣′ , h

(𝑡 )
𝑣′

)}
}. For the second condition, leveraging Lemmas 1

and 2, along with the fact that an MLP can serve as a universal

approximator [62] to model and learn the functions 𝑓 and 𝑔, we

establish that GenHopNet also satisfies this condition. □
11
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Theorem 3 StructPosGSSL is more expressive than subgraph
MPNNs in distinguishing certain non-isomorphic graphs.

Proof. To prove Theorem 3, we consider the two non-isomorphic

graphs 𝐺1 and 𝐺2 shown in Figure 4. Let 𝑣 ∈ 𝐺1 and 𝑣 ′ ∈ 𝐺2 be

the middle nodes in each graph. In the case of Subgraph MPNNs

(e.g., [12, 65, 71]), the aggregation function over the neighborhoods

of 𝑣 and 𝑣 ′ fails to differentiate between the two nodes. This is be-

cause Subgraph MPNNs rely on local subgraphs, and the structural

features and neighborhood-based information are symmetric for 𝑣

and 𝑣 ′.
Let us first consider the structural encoder (i.e., GenHopNet) with

only closed-walk information up to 𝑘 = 3, without EB attributes

𝑒𝑐𝑢𝑣 . In this case, the node representations for 𝑣 and 𝑣 ′ generated
by the structural encoder using closed-walks are identical, since

{
{
(𝐴𝑣𝑢 , ℎ (𝑡 )𝑢 , 𝑒𝑏𝑢𝑣) |𝑢 ∈ N (𝑣)

}
} = {

{
(𝐴𝑣′𝑢′ , ℎ (𝑡 )𝑢′ , 𝑒

𝑏
𝑢′𝑣′ ) |𝑢

′ ∈ N (𝑣 ′)
}
},

{
{
(�̃�𝑘𝑣𝑢 , ℎ

(𝑡 )
𝑢 ) |𝑢 ∈ N𝑘 (𝑣)

}}
= {

{
(�̃�𝑘
𝑣′𝑢′ , ℎ

(𝑡 )
𝑢′ ) |𝑢

′ ∈ N𝑘 (𝑣 ′)
}}
, and

{
{
(A𝑘𝑣𝑣, h

(𝑡 )
𝑣

)}
} = {

{
(A𝑘
𝑣′𝑣′ , h

(𝑡 )
𝑣′

)}
}. This indicates that the closed-

walk information alone is insufficient to distinguish these non-

isomorphic graphs. Now, we show how StructPosGSSL, when en-

hancedwith positional encodings and 𝑒𝑐𝑢𝑣 , can differentiate between

the non-isomorphic graphs 𝐺1 and 𝐺2. Let ℎ
(𝑡 )
𝑢,𝑝𝑜𝑠 be the positional

encoding of node 𝑢. When positional encodings are combined with

𝑒𝑐𝑢𝑣 , the aggregation function can distinguish these non-isomorphic

graph pairs. Using Lemmas 1 and 2, we know that the aggrega-

tion function is still injective when positional encodings and 𝑒𝑐𝑢𝑣
are included. Thus, for the middle nodes of each graph, we have

{
{
(𝐴𝑣𝑢 , ℎ (𝑡 )𝑢,𝑝𝑜𝑠 , 𝑒

𝑏
𝑢𝑣, 𝑒

𝑐
𝑢𝑣) |𝑢 ∈ N (𝑣)

}
} ≠ {

{
(𝐴𝑣′𝑢′ , ℎ (𝑡 )𝑢′,𝑝𝑜𝑠 , 𝑒

𝑏
𝑢′𝑣′ , 𝑒

𝑐
𝑢′𝑣′ ) |𝑢

′ ∈
N (𝑣 ′)

}
}. Therefore, the StructPosGSSL with positional encodings

and EB attributes yields different representations for 𝑣 and 𝑣 ′, even
though they were previously indistinguishable. □

A.3 Ablation Analysis of Loss Function
To showcase the effectiveness of each element in the loss function,

we perform an ablation study on the following variants:

• NoVICReg: This variant excludes the VICReg regularization

term from the overall loss.

• Inv: This variant keeps only the Invariance term in the

VICReg regularization term.

• Var: This variant keeps only the Variance term in the VI-

CReg regularization term.

• Cov: This variant keeps only the Covariance term in the

VICReg regularization term.

We conducted the ablation study on the StructPosGSSL-SA vari-

ant. The results shown in Table 6 indicate that the Invariance, Vari-

ance, and Covariance terms are crucial to the performance. Specifi-

cally, the covariance term has the greatest impact on performance,

whereas the invariance term has the least effect across all datasets,

as detailed in Table 6. Specifically, as shown in Table 6, performance

on graphs decreases by 3.5% to 5.1% with the NT-Xent+NoVICReg

loss function, by 2.4% to 4.1% with NT-Xent+Inv, by 1.7% to 3.0%

with NT-Xent+Var, and by 1.0% to 1.9% with NT-Xent+Cov, com-

pared to the combined NT-Xent+VICReg loss function.

k = 2(a) k = 3(b) k = 4(c)G4
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Figure 4: A pair of non-isomorphic graphs where the colored
square box on each node represents the feature representa-
tions derived from closed-walk information. The two middle
nodes (colored gray) in graphs 𝐺1 and 𝐺2 cannot be distin-
guished using only closed-walk information (up to 𝑘 = 3),
as they receive the same representation (colored blue). How-
ever, by incorporating positional information along with EB
attributes, we can successfully distinguish these nodes.

Figure 5: Accuracy (%) of StructPosGSSL-SA under different
𝜇 values.

A.4 Comparison under Different 𝜇
To evaluate the impact of the regularization term 𝜇 on the perfor-

mance of our StructPosGSSL framework, we conduct experiments

by evaluating StructPosGSSL-SA across six datasets (MUTAG, PTC-

MR, PROTEINS, IMDB-B, IMDB-M, and RDT5K), using varying

values for the regularization term 𝜇 = [0.1, 0.2, . . . , 0.9]. For this
experimental setup, we use the same hyperparameter configuration

for each dataset as described in Section 6.1. Figure 5 represents the

experimental results. In our experiments, we observed that setting

𝜇 either too low or too high leads to suboptimal performance. To

achieve better results, it is essential to select an intermediate value

for 𝜇, as this provides a balance that optimizes the StructPosGSSL’s
performance.
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