
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

MultiGPrompt for Multi-Task Pre-Training
and Prompting on Graphs

Anonymous Author(s)

ABSTRACT

Graphs can inherently model interconnected objects on the Web,
thereby facilitating a series of Web applications, such as web ana-
lyzing and content recommendation. Recently, Graph Neural Net-
works (GNNs) have emerged as a mainstream technique for graph
representation learning. However, their efficacy within an end-to-
end supervised framework is significantly tied to the availability
of task-specific labels. To mitigate labeling costs and enhance ro-
bustness in few-shot settings, pre-training on self-supervised tasks
has emerged as a promising method, while prompting has been
proposed to further narrow the objective gap between pretext and
downstream tasks. Although there has been some initial exploration
of prompt-based learning on graphs, they primarily leverage a sin-
gle pretext task, resulting in a limited subset of general knowledge
that could be learned from the pre-training data. Hence, in this
paper, we propose MultiGPrompt, a novel multi-task pre-training
and prompting framework to exploit multiple pretext tasks for more
comprehensive pre-trained knowledge. First, in pre-training, we
design a set of pretext tokens to synergize multiple pretext tasks. Sec-
ond, we propose a dual-prompt mechanism consisting of composed
and open prompts to leverage task-specific and global pre-training
knowledge, to guide downstream tasks in few-shot settings. Finally,
we conduct extensive experiments on six public datasets to evaluate
and analyzeMultiGPrompt1.

CCS CONCEPTS

• Information systems→Web mining; Data mining; • Com-

puting methodologies→ Learning latent representations.

KEYWORDS

Graph neural networks, prompting, pre-training, multi-task, few-
shot learning.

ACM Reference Format:

Anonymous Author(s). 2018.MultiGPrompt for Multi-Task Pre-Training
and Prompting on Graphs. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

1See https://anonymous.4open.science/r/MultiGPrompt for code & data for review.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

The World Wide Web has evolved into an universal data repository,
linking an expansive array of entities to create vast and intricate
graphs. Mining such widespread graph data has fueled a myriad
of Web applications, ranging from Web mining [1, 52] and social
network analysis [59, 63] to content recommendation [34, 64]. Con-
temporary techniques for graph analysis predominantly rely on
graph representation learning, particularly graph neural networks
(GNNs) [15, 24, 43, 51]. Most GNNs operate on a message-passing
framework, where each node updates its representation by itera-
tively receiving and aggregating messages from its neighbors [50],
whilemore recent approaches have also explored transformer-based
architectures [19, 54, 57].
Pre-training. GNNs are conventionally trained in an end-to-end
manner, which heavily depends on the availability of large-scale,
task-specific labeled data. To reduce the dependency on labeled
data, there has been a growing emphasis on pre-training GNNs
[17, 18, 30, 33], following the success of pre-training in natural
language and computer vision domains [3, 7, 9]. Pre-training GNNs
involves optimizing self-supervised pretext tasks on graphs without
task-specific labels. Such pretext tasks are designed to capture in-
trinsic graph properties, such as node and edge features [17, 18, 55],
node connectivity [15, 18, 30, 55], and local or global graph patterns
[17, 30, 33, 43, 55]. Hence, pre-training yields a task-agnostic founda-
tion that can be subsequently fine-tuned to a specific downstream
task with a limited amount of labeled data. To further mitigate
the inconsistency between pre-training and fine-tuning objectives
[26], prompt-based learning has been first proposed in language
models [5]. A prompt acts as an intermediary that reformulates
the downstream task to align with pre-training, without the need
to update the parameters of the pre-trained model. As a prompt
entails much fewer parameters than the pre-trained model, it is es-
pecially amenable to few-shot settings where there are very limited
task-specific labels.

Following the success of prompt-based learning, researchers
have also begun to explore prompt-based or related parameter-
efficient learning on graph data [11, 25, 29, 40–42]. However, most
existing research in prompt-based graph learning only utilizes a
single pretext task in pre-training. Not surprisingly, different pre-
text tasks capture different self-supervised signals from the graph.
For example, link prediction tasks are more concerned with the
connectivity or relationship between nodes [40], node/edge feature-
based tasks focus more on the feature space [42], and subgraph-
based tasks focus more on local or global information [29, 53]. To
cater to diverse downstream tasks, the pre-training step should
aim to broadly extract knowledge from various aspects, such as
node connectivity, node or edge features, and local or global graph
patterns. Hence, it is ideal to incorporate multiple pretext tasks in
pre-training in order to cover a comprehensive range of knowledge.

1

https://doi.org/XXXXXXX.XXXXXXX
https://anonymous.4open.science/r/MultiGPrompt
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

𝑪𝒐𝒎𝒑𝒐𝒔𝒆𝒅

prompts

𝑶𝒑𝒆𝒏 prompts

Initialize

𝑷𝒓𝒆𝒕𝒆𝒙𝒕 tokens1

𝒍𝒐𝒔𝒔𝟏

𝒍𝒐𝒔𝒔𝟐

𝒍𝒐𝒔𝒔𝐊

𝒍𝒐𝒔𝒔

Loss

(a
)

P
re

-t
ra

in
in

g
(b

)
P

ro
m

p
ti

n
g

FrozenInitialize

𝑷𝒓𝒆𝒕𝒆𝒙𝒕 tokens2

𝑷𝒓𝒆𝒕𝒆𝒙𝒕 tokensK

Tuned

Graph

encoder

Pre-trained

graph

encoder

…
… …
…

…
…

Pre-trained

𝒑𝒓𝒆𝒕𝒆𝒙𝒕 tokens

+

+

+

…
…

Figure 1: Illustration of MultiGPrompt. (a) Multi-task pre-

training on graphs. (b) Prompting on downstream tasks.

Challenges.To address the limitation of a single pretext task, in this
work we study multi-task pre-training for graphs and the effective
transfer of multi-task knowledge to downstream few-shot tasks.
The problem is non-trivial due to the following two challenges.

First, in the pre-training stage, how can we leverage diverse pre-
text tasks for graph models in a synergistic manner? A straightfor-
ward way is to sum the losses of multiple pretext tasks directly,
which have been explored in language [6, 38, 48], vision [14, 32] and
graph data [10, 16, 18, 30]. However, several works on multi-task
learning [46, 49, 56] observe frequent task interference when tasks
are highly diverse, resulting in suboptimal pre-training. A recent
work [46] sheds light on more synergistic multi-task pre-training
in language models via an improved transformer design, which
uses an attention mask and weighted skip connection to reduce
task interference. Nonetheless, it largely remains an open problem
for graph models.

Second, in the adaptation stage, how can we transfer both task-
specific and global pre-trained knowledge to downstream tasks? Mul-
tiple pretext tasks further complicates the alignment of downstream
objectives with the pre-trained model. On one hand, recent prompt-
based learning on graphs [11, 29, 40] only focus on the downstream
adaptation to a single pretext task. On the other hand, for language
models a prompt-aware attention module has been incorporated
into the transformer architecture [46] to focus on extracting task-
specific information from pre-training, lacking a global view of the
pre-trained knowledge.
Contributions. To address the above two challenges, we propose a
novel framework calledMultiGPrompt for multi-task pre-training
and prompting for few-shot learning on graphs.

Toward the first challenge, we draw inspiration from multi-task
prompt-aware language models [46], and design a series of pretext
tokens to synergize the pretext tasks during pre-training. As illus-
trated in Fig. 1(a), we associate each pretext task with one (or more)
task-specific pretext tokens, which are used to reformulate the in-
put of the pretext task. A pretext token is simply a learnable vector,
and thus yields a learnable reformulation in a task-specific fashion.
The reformulation guides multiple pretext tasks into a synergis-
tic integration that enables collaboration, rather than interference,
among the diverse tasks.

Towards the second challenge, we propose a dual-prompt mech-
anism, employing both a composed prompt and an open prompt to
harness task-specific and global pre-training knowledge, respec-
tively, as shown in Fig. 1(b). More specifically, a composed prompt is
a learnable composition (e.g., a linear or neural network-based com-
bination) of the pre-trained (frozen) pretext tokens, similar to the
approach in language models [46]. As the composed prompt builds
upon the pretext tokens, it is designed to query the pre-trained
model for a precise mixture of information specific to each pretext
task, focusing on task-specific pre-trained knowledge. However,
it falls short of a global view to extract relevant inter-task knowl-
edge (e.g., the relations or interactions between pretext tasks) from
the whole pre-trained model. Hence, we propose the concept of
open prompt, which aims to transfer global inter-task knowledge to
complement the task-specific knowledge of the composed prompt.

To summarize, we make the following contributions in this work.
(1) To the best of our knowledge, for the first time we propose
MultiGPrompt, a multi-task pre-training and prompting frame-
work for few-shot learning on graphs. (2) In pre-training, we in-
troduce pretext tokens to reduce task interference, optimizing mul-
tiple pretext tasks in synergy. (3) In downstream adaptation, we
propose a dual-prompt design with a composed prompt to extract
task-specific pre-trained knowledge, as well as an open prompt
to extract global inter-task knowledge. (4) We conduct extensive
experiments on six public datasets, and the results demonstrate
the superior performance of MultiGPrompt in comparison to the
state-of-the-art approaches.

2 RELATEDWORK

Graph pre-training. Borrowing insights from the realm of pre-
training methodologies in both the language [5, 7, 13, 36] and vision
[2, 58, 61, 62] domains, a myriad of GNN-based pre-training ap-
proaches have emerged [16, 18, 23, 30, 33]. These methods leverage
the intrinsic graph structures in a self-supervised manner, setting
the stage for knowledge transfer to downstream tasks. This transfer
can be accomplished by a fine-tuning process that capitalizes on
labeled data pertinent to each downstream task.

However, a gap emerges between the objectives of pre-training
and fine-tuning [27]. On one hand, pre-training seeks to distill
general knowledge from the graph without relying on explicit su-
pervision. Conversely, fine-tuning tailors to specific supervisory
signals aligned with the downstream tasks. This gap in objectives
can hinder the transfer of knowledge from the pre-trained model,
potentially hurting the downstream performance.
Graph prompt learning. Originated in the language domain
[5, 47], prompt-based learning has been effective in bridging the
gap between pre-training and downstream objectives. Specifically,
prompts can be tuned for each downstream task, steering each
task toward the pre-trained model while keeping the pre-trained
parameters frozen. Due to the parameter-efficient nature of prompt,
it has been quickly popularized in favor of fine-tuning larger pre-
trained models, or when the downstream task only has few-shot
labels. Given the advantages, prompt-based learning has also been
explored on visual data [20, 21, 62] and graphs [11, 29, 40–42].

Specific to graph data, GraphPrompt [29] and ProG [41] attempt
to unify pre-training and typical downstream tasks on graphs into

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

MultiGPrompt Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

a common template, and further introduce learnable prompts to
guide the downstream tasks. Their difference mainly lies in learning
scenarios: ProG requires a set of base classes in a typical meta-
learning setup [28, 44, 60], while GraphPrompt does not make use of
base classes. In contrast, GPPT [40] and VNT [42] only focus on the
node classification task downstream. However, all these methods
only employ a single pretext task, and thus lack a comprehensive
coverage of pre-trained knowledge in different aspects.
Multi-task pre-training. To broaden and diversify beyond a single
pretext task, multi-task pre-training methods have been proposed
for language [6, 38, 48], vision [14, 32] and graph data [10, 16, 18, 30].
However, on one hand, these methods directly aggregate multiple
losses from diverse pretext tasks, resulting in task interference
in the pre-training stage [46, 49, 56]. On the other hand, these
approaches only perform fine-tuning for the downstream tasks
in the adaptation stage, which is inadequate to align the multiple
pretext tasks with the downstream objective. To mitigate these
issues, a recent study [46] employs prompts to integrate multiple
pretext tasks and further guide downstream tasks. However, it is
designed for language models, requiring specific modification to
the transfomer architecture. Moreover, it lacks a global view over
the multiple pretext tasks.

On another line, there is some research on multi-modal prompts
[8, 22], employing multiple prompts to different modality of data
such as vision and language. They aim to align the representa-
tions from different modalities, which diverges from our multi-task
objectives in pre-training.

3 PRELIMINARIES

In this work, our goal is to pre-train a graph encoder through self-
supervised pretext tasks. Subsequently, the pre-trained encoder can
be used for few-shot downstream tasks on graph data. We introduce
related concepts and definitions in the following.
Graph. A graph is represented as 𝐺 = (𝑉 , 𝐸), with 𝑉 denoting
the set of nodes and 𝐸 the set of edges. Equivalently, the graph
can be represented by an adjacency matrix A, such as A𝑖 𝑗 = 1 iff
(𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸, for any 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 . We further consider an input feature
matrix for the nodes, given by X ∈ R |𝑉 |×𝑑 . For a node 𝑣𝑖 ∈ 𝑉 , its
feature vector is represented as x𝑖 ∈ R𝑑 .

For a dataset with multiple graphs, we use the notation G =

{𝐺1,𝐺2, . . . ,𝐺𝑁 }.
Graph encoder. GNNs are popular choices of graph encoder, most
of which employ a message-passing mechanism [50]. Specifically,
each node in the graph aggregates messages (i.e., input features or
embeddings) from its neighboring nodes to update its own embed-
ding. Multiple layers of neighborhood aggregation can be stacked,
facilitating recursive message passing across the graph. Formally,
let H𝑙 be the embedding matrix of the graph at the 𝑙-th layer, where
its 𝑖-th row, h𝑙

𝑖
, corresponds to the embedding of node 𝑣𝑖 . It is

computed based on the embeddings from the preceding layer:

H𝑙 = MP(H𝑙−1,A;𝜃𝑙), (1)

whereMP(·) is a message passing function, 𝜃𝑙 denotes the learnable
parameters of the graph encoder at the 𝑙-th layer. In particular, the
initial embedding matrix H0, is simply given by the input feature
matrix, i.e., H0 = X. The output after a total of 𝐿 layers is then H𝐿 ;

for brevity we simply writeH. We abstract the multi-layer encoding
process as

H = GraphEncoder(X,A;Θ), (2)

whereΘ = (𝜃1, . . . , 𝜃𝐿) is the collection of weights across the layers.
The output embedding matrix H can then be fed into a loss

function and optimized. In the pre-training stage, the loss can be
defined with various self-supervised pretext tasks, such as DGI
[43], GraphCL [55] and link prediction [29]. In the downstream
adaptation stage, the loss is computed based on labeled data.
Few-shot problem. For downstream tasks, we focus on few-shot
learning for two graph-based tasks: node classification and graph
classification. Specifically, for node classification within a graph
𝐺 = (𝑉 , 𝐸), let 𝐶 denote the set of node classes. For each node
𝑣𝑖 ∈ 𝑉 , its class label is ℓ𝑖 ∈ 𝐶 . For graph classification over a set of
graphs G, we introduce C as the set of possible graph labels. Here,
𝐿𝑖 ∈ C represents the class label for a specific graph 𝐺𝑖 ∈ G.

Under the few-shot setting, in either node or graph classification,
there are only𝑚 labeled examples (be it nodes or graphs) for each
class, where 𝑚 is a small number (e.g., 𝑚 ≤ 10). This setup is
commonly referred to as𝑚-shot classification.

4 PROPOSED APPROACH

In this section, we present our proposed modelMultiGPrompt.

4.1 Overall Framework

We begin with the overall framework of MultiGPrompt in Fig. 2,
which consists of two high-level stages: (a) multi-task pre-training
on some label-free graphs, and (b)/(c) prompt-based learning for
few-shot downstream tasks.

First, as shown in Fig. 2(a), our framework incorporates 𝐾 pre-
text tasks for multi-task pre-training. For the 𝑘-th pretext task, we
employ a series of pretext tokens T[𝑘] to store task-specific infor-
mation. The pretext tokens are learnable vectors that reformulate
the input of the pretext task, which guide various pretext tasks into
a synergistic integration to alleviate task interference.

Next, as shown in Fig. 2(b), we aim to transfer the pre-trained
knowledge to different downstream tasks.We propose a dual-prompt
mechanism with a series of composed prompts, P⟨com⟩ , and open
prompts,P⟨op⟩ . The composed prompt is obtained by a learnable ag-
gregation of the pretext tokens to leverage task-specific pre-trained
knowledge. The open prompt, on the other hand, is a learnable
vector that learns global inter-task insights from the pre-trained
model. Both are then used to reformulate the downstream input
to the pre-trained model separately, and their respective output
embeddings are combined and further fed into the downstream
task loss.

4.2 Multi-task Pre-training

In this part, we discuss the first stage on multi-task pre-training. In
general, any graph-based pretext tasks can be used in our frame-
work. Without loss of generality, in our experiments, we leverage
there well-known pretext tasks, namely, DGI [43], GraphCL [55],
and link prediction [29]. We aim to aggregate the losses of multiple
pretext tasks in a synergistic manner under the guidance of pretext
tokens.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Composed

prompts

Open

prompts𝒫 𝐨𝐩𝒫 𝐜𝐨𝐦

Open

prompts

Composed

prompts
Pretext tokens

+

v

Initialize

Tuned Frozen

Graph encoder
Pretext

task1

Pretext

task2

Pretext

taskK

𝒍𝒐𝒔𝒔𝟐

𝒍𝒐𝒔𝐬𝐊

Pre-train

𝒍𝒐𝒔𝒔 v𝒗

(a) Multi-task pre-training (b) Downstream node classification (c) Downstream graph classification

Pre-trained graph encoder
𝒍𝒐𝒔𝒔𝟏

+

𝑮

……

+

…
…

…
…

Pre-trained pretext tokens

……

…
…

𝓣 𝟏 𝓣 𝟐 𝒯𝑲 𝓣 𝟏 𝓣 𝟐 𝓣 𝑲

𝐇 𝟏

𝐇 𝟐

𝐇 𝑲

Node classification

downstream 𝒍𝒐𝒔𝒔
Graph classification

downstream 𝒍𝒐𝒔𝒔

𝒫 𝐜𝐨𝐦 𝒫 𝐨𝐩

𝐇 𝐜𝐨𝐦 𝐇 𝐜𝐨𝐦
𝐇 𝐨𝐩 𝐇 𝐨𝐩

෩𝐇 ෩𝐇

Figure 2: Overall framework of MultiGPrompt, consisting of two main stages: (a) Multi-task pre-training, and (b)/(c) Prompt-

based learning for downstream few-shot tasks.

𝐭 𝒌 ,𝟏

Encoder

layer2

+

…

Encoder

layer1𝐭 𝒌 ,𝟎

…

…

…

+

Encoder

layer2

Encoder

layerL

Encoder

layer1

Encoder

layer2

Encoder

layerL

Encoder

layer1

Encoder

layerL

…

𝐭 𝒌 ,𝑳

𝐇𝐭 𝒌 ,𝟎

𝐇𝐭 𝒌 ,𝟏

𝐇𝐭 𝒌 ,𝑳

𝐇 𝒌

Figure 3: Application of pretext tokens to the graph encoder.

t⟨𝑘 ⟩,𝑙 represents the pretext token that modifies the 𝑙-th layer

of the graph encoder for the 𝑘-th pretext task.

Pretext tokens. Assume we employ a total of 𝐾 pretext tasks for
multi-task pre-training. Different pretext tasks focus on diverse
aspects, and each has its unique loss function. Directly optimizing
the sum of the 𝐾 losses leads to interference between tasks [46, 49,
56], and degrades the pre-training efficacy.

To avoid task interference, we leverage the concept of pretext
tokens, which have been used to reformulate the task input in
an earlier approach for pre-training language models [46]. In the
context of graph, different layers of the graph encoder may have
different emphasis on the representation, and thus carry variable
significance to different pretext tasks. For instance, the input layer
focuses on individual nodes’ features and thus are more important
to node-level pretext tasks, while the hidden or output layers focus
more on subgraph or graph features and thus are more important
to local or graph-level tasks. Hence, we introduce a series of pretext
tokens for each pretext task, to modify the input, hidden and output
layers of the graph encoder alike.

Specifically, consider a graph 𝐺 , an encoder with a total of 𝐿
layers, and 𝐾 pretext tasks. As shown in Fig. 2(a), we put forth 𝐾
sets of pretext tokens, represented by T⟨1⟩ ,T⟨2⟩ , . . . ,T⟨𝐾 ⟩ . Each T⟨𝑘 ⟩
denotes a set of 𝐿 + 1 pretext tokens for the 𝑘-th pretext task, with
one pretext token for each layer (including the input layer):

T⟨𝑘 ⟩ = {t⟨𝑘 ⟩,0, t⟨𝑘 ⟩,1, . . . , t⟨𝑘 ⟩,𝐿}. (3)

That is, t⟨𝑘 ⟩,𝑙 is a learnable vector representing the pretext token
that modifies the 𝑙-th layer of the encoder for the 𝑘-th pretext task,
for 1 ≤ 𝑘 ≤ 𝐾 and 0 ≤ 𝑙 ≤ 𝐿. This gives a total of 𝐾 × (𝐿 + 1)
pretext tokens, and we illustrate how they are applied to modify
different layers for one pretext task in Fig. 3.

Next, given any pretext token t in general, let Ht denote the
output from the graph encoder after applying the pretext token t

to one of its layers, as follows.

Ht = GraphEncodert (X,A;Θ), (4)

where GraphEncodert (·) indicate that one of its layers has been
modified by t. To be more specific, a pretext token t⟨𝑘 ⟩,𝑙 will modify
the 𝑙-th layer of the graph encoder into t⟨𝑘 ⟩,𝑙 ⊙H𝑙 with an element-
wise multiplication, where we multiply the pretext token t⟨𝑘 ⟩,𝑙 with
each row of H𝑙 element-wise2. Subsequently, when 𝑙 < 𝐿, the next
layer will be generated as

H𝑙+1 = MP(t⟨𝑘 ⟩,𝑙 ⊙ H𝑙 ,A;𝜃𝑙). (5)

Finally, for the 𝑘-th pretext task, we must generate one embed-
ding matrix H⟨𝑘 ⟩ to calculate the task loss. However, with Eq. (4),
each of the 𝐿 + 1 pretext tokens for the pretext task will generate
its own embedding matrix. Thus, we further aggregate the 𝐿 + 1
embedding matrices to obtain the overall embedding matrix for the
𝑘-th task as

H⟨𝑘 ⟩ =
𝐿∑︁
𝑙=0

𝛼𝑙Ht⟨𝑘⟩,𝑙 , (6)

where {𝛼𝑙 : 0 ≤ 𝑙 ≤ 𝐿} are hyperparameters. Typically, a graph
encoder adopts a shallow architecture with few layers. In our im-
plementation, we have 𝐿 = 1 and thus only two 𝛼𝑙 ’s. Furthermore,
as 𝛼𝑙 ’s adjust the relative weights across layers, one of them can be
fixed to 1, which means there is effectively only one free hyperpa-
rameter here.
Pre-training loss. Equipped with a set of tailored pretext tokens
for each pretext task, our multi-task pre-training can capture spe-
cific information pertinent to every pretext task in synergy. After
obtaining the embedding matrix for the 𝑘-th pretext task in Eq. (6),
we can calculate the corresponding task loss Lpre⟨𝑘⟩ (H⟨𝑘 ⟩ ;T⟨𝑘 ⟩ ,Θ),
where Θ represents the model weights of graph encoder. Note that
H⟨𝑘 ⟩ is used to calculate the loss while T⟨𝑘 ⟩ ,Θ are trainable param-
eters. Then, we aggregate the losses of all 𝐾 pretext tasks together
into an overall loss for the multi-task pre-training stage:

Lpre (H ;T ,Θ) =
𝐾∑︁
𝑘=1

𝛽𝑘Lpre⟨𝑘⟩ (H⟨𝑘 ⟩ ;T⟨𝑘 ⟩ ,Θ), (7)

2Hence, a pretext token must adopt the same dimensions as the layer it applies to.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

MultiGPrompt Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

where {𝛽𝑘 : 1 ≤ 𝑘 ≤ 𝐾} contains 𝐾 hyperparameters, H =

{H⟨1⟩ , . . . ,H⟨𝐾 ⟩} represents the collection of task-specific embed-
dings, and T = {T⟨1⟩ , . . . ,T⟨𝐾 ⟩} denotes the collection of pretext
token sets. The overall loss is optimized by updating the pretext
tokens T and encoder weights Θ. Note that the number of pretext
tasks 𝐾 should be a small constant, with 𝐾 = 3 in our experiments.
Similar to 𝛼𝑙 ’s, one of 𝛽𝑘 ’s can be fixed at 1, leaving only two free
hyperparameters.

Specifically, we employ DGI [43], GraphCL [55], and Link Pre-
diction [29] as pretext tasks. Additional details are provided in
Appendix D.

4.3 Prompting for Downstream Tasks

To leverage not only task-specific pre-trained knowledge, but also
global inter-task knowledge from the whole pre-trained model, we
propose a dual-prompt mechanism with a set of composed prompts,
P⟨com⟩ , and a set of open prompts,P⟨op⟩ . Composed prompts aim at
transferring pretext task-specific knowledge to downstream tasks,
through a learnable mixture of pretext tokens. Simultaneously, open
prompts facilitate the transfer of global inter-task knowledge.

Both composed prompts and open prompts are applied to differ-
ent layers of the pre-trained graph encoder in the same manner as
pretext tokens, as illustrated in Fig. 3. That is, the set of composed
prompts P⟨com⟩ contains 𝐿 + 1 prompts, so does the set of open
prompts P⟨op⟩ , as follows.

P⟨com⟩ = {p⟨com⟩,0, p⟨com⟩,1, . . . , p⟨com⟩,𝐿} (8)
P⟨op⟩ = {p⟨op⟩,0, p⟨op⟩,1, . . . , p⟨op⟩,𝐿}, (9)

Each prompt p ∈ P⟨com⟩ or P⟨op⟩ is a vector that modifies a spe-
cific layer of the pre-trained encoder. Similar to Eq. (10), let Hp be
the output from the pre-trained graph encoder after applying the
prompt p to one of its layers, as follows.

Hp = GraphEncoderp (X,A;Θpre), (10)

where Θpre contains pre-trained model weights that are frozen
throughout the downstream stage. Then, define H⟨com⟩ and H⟨op⟩
as the final output of the pre-trained graph encoder after applying
the composed prompts and open prompts, respectively. That is,

H⟨com⟩ =
𝐿∑︁
𝑙=0

𝛼𝑙Hp⟨com⟩,𝑙 , H⟨op⟩ =
𝐿∑︁
𝑙=0

𝛼𝑙Hp⟨op⟩,𝑙 , (11)

where 𝛼𝑙 ’s take the same values as those in Eq. (6).
In the following, we elaborate how a composed prompt and an

open prompt is constructed.
Composed prompt. As given in Eq. (8), a composed prompt
p⟨com⟩,𝑙 ∈ P⟨com⟩ modifies the 𝑙-th layer of the pre-trained graph
encoder, following the same fashion as Eq. (5). However, p⟨com⟩,𝑙 is
not directly learnable, but is instead a learnable composition of the
𝐾 pre-trained pretext tokens in the same layer, as given below.

p⟨com⟩,𝑙 = Compose(t⟨1⟩,𝑙 , t⟨2⟩,𝑙 , . . . , t⟨𝐾 ⟩,𝑙 ; Γ), (12)

where Compose(·) is a function to “compose” the 𝐾 pretext tokens
together, such as a linear combination or neural network, and Γ
represents the learnable parameters of the function. Therefore, a
composed prompt aims to learn a precise mixture of task-specific
pre-trained knowledge.

Table 1: Summary of datasets.

Graphs Graph
classes

Avg.
nodes

Avg.
edges

Node
features

Node
classes

Task∗
(N/G)

Cora 1 - 2,708 5,429 1,433 7 N
Citeseer 1 - 3,327 4,732 3,703 6 N

PROTEINS 1,113 2 39.06 72.82 1 3 N, G
ENZYMES 600 6 32.63 62.14 18 3 N, G

BZR 405 2 35.75 38.36 3 - G
COX2 467 2 41.22 43.45 3 - G

∗ indicates the type(s) of downstream task associated with each dataset: “N” for node
classification and “G” for graph classification.

Open prompt. Similar to a composed prompt, an open prompt
p⟨op⟩,𝑙 ∈ P⟨op⟩ modifies the 𝑙-th layer of the pre-trained graph
encoder. However, unlike the composed prompts, p⟨op⟩,𝑙 is directly
tuned, instead of being composed from the pretext tokens. In this
way, an open prompt does not extract pre-trained knowledge spe-
cific to any pretext task, but focus on the global pre-trained model
holistically.
Prompt tuning. Lastly, we generate a final embedding matrix to
compute the downstream task loss. To leverage not only pretext
task-specific knowledge but also global information from the pre-
trained model, we incorporate the output embeddings from both
the composed and open prompts given by Eq. (11). To this end,
let us define an aggregation function Aggr(·), which gives the
final embedding matrix H̃ after applying the dual prompts to the
pre-trained encoder, as follows.

H̃ = Aggr(H⟨com⟩ ,H⟨op⟩ ;Δ), (13)

where Δ denotes the set of learnable parameters of the aggregation
function.

To tune the dual prompts for an arbitrary downstream task, the
loss can be abstracted as Ldown (H̃;P⟨op⟩ , Γ,Δ), where H̃ is used to
calculate the loss, and P⟨op⟩ , Γ,Δ are tunable parameters associated
with the prompts. Note that during prompt tuning, the pre-trained
weights of the graph encoder and the pretext tokens are frozen
without any tuning. Only P⟨op⟩ , Γ,Δ are updated, which is much
more parameter-efficient than fine-tuning the pre-trained model.
Hence, our approach is particularly suitable for few-shot settings
when the downstream task only offers a few labeled examples.

More concretely, in this work, we have experimented with two
popular types of downstream task, namely, node classification and
graph classification, and follow the same loss formulations in a
previous work [29]. Details of the losses can be found in Appendix E.

5 EXPERIMENTS

In this section, we undertake comprehensive experiments across six
benchmark datasets, to evaluate the efficacy of the proposedMulti-
GPrompt on few-shot node classification and graph classification
tasks.

5.1 Experimental Setup

Datasets. We employ six benchmark datasets for evaluation. (1)
Cora [31] and (2) Citeseer [37] are both citation graphs. Each of
them involves a single graph, where the nodes are publications
and the edges are citations. As with previous work [24, 43], we

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Accuracy evaluation on few-shot node and graph classification.

Methods Node classification Graph classification
Cora Citeseer PROTEINS ENZYMES BZR COX2 PROTEINS ENZYMES

GCN 28.57 ± 5.07 31.27 ± 4.53 43.31 ± 9.35 48.08 ± 4.71 56.33 ± 10.40 50.95 ± 23.48 50.56 ± 3.01 17.10 ± 3.53
GAT 28.40 ± 6.25 30.76 ± 5.40 31.79 ± 20.11 35.32 ± 18.72 50.69 ± 23.66 50.58 ± 26.16 50.59 ± 12.43 16.80 ± 2.97

DGI/InfoGraph 54.11 ± 9.60 45.00 ± 9.19 45.22 ± 11.09 48.05 ± 14.83 52.57 ± 18.14 54.62 ± 15.36 48.21 ± 12.35 21.69 ± 5.98
GraphCL 51.96 ± 9.43 43.12 ± 9.61 46.15 ± 10.94 48.88 ± 15.98 54.11 ± 16.63 54.29 ± 17.31 53.69 ± 11.92 21.57 ± 5.20

GPPT 15.37 ± 4.51 21.45 ± 3.45 35.15 ± 11.40 35.37 ± 9.37 - - - -
GraphPrompt 54.25 ± 9.38 45.34 ± 10.53 47.22 ± 11.05 53.54 ± 15.46 54.60 ± 10.53 54.35 ± 14.78 54.73 ± 8.87 25.06 ± 7.56

MultiGPrompt 57.72 ± 9.94 54.74 ± 11.57 48.09 ± 11.49 54.47 ± 15.36 60.07 ± 12.48 56.17 ± 12.84 56.02 ± 8.27 26.63 ± 6.22
Results are reported in percent. The best method is bolded and the runner-up is underlined.

treat their edges as undirected. (3) PROTEINS [4] comprises 1,113
protein graphs. Each node signifies a secondary structure, and the
edges represent the neighboring relations between the structures,
within the amino-acid sequence or in 3D space. (4) ENZYMES [45],
(5) BZR [35], and (6) COX2 [35] are collections of molecular graphs,
describing the structures of 600 enzymes from the BRENDA enzyme
database, 405 ligands pertinent to the benzodiazepine receptor, and
467 cyclooxygenase-2 inhibitors, respectively.

We summarize the characteristics of these datasets in Table 1,
and provide a comprehensive description in Appendix A.
Baselines. We evaluate MultiGPrompt against a spectrum of
state-of-the-art methods that can be broadly grouped into three
primary categories, as follows.

(1) End-to-end graph neural networks: These include GCN [24]
and GAT [43], which are trained in a supervised manner using the
downstream labels directly, without pre-training.

(2) Graph pre-training models: We compare to DGI/InfoGraph3
[39, 43], and GraphCL [55]. Specifically, the pre-training stage only
uses label-free graphs, and the downstream adaptation stage fur-
ther trains a classifier using few-shot labels while freezing the
pre-trained weights.

(3) Graph prompt-based learning: GPPT [40] and GraphPrompt
[29] are included under this umbrella. Their modus operandi re-
volves around leveraging link prediction during pre-training, and
unifying downstream tasks into a common template as the pretext
task. Both of them utilizes a single pretext task, and subsequently a
single type of prompt in downstream adaptation. Note that GPPT
is purposely designed to work with the downstream task of node
classification, and cannot be directly applied to graph classifica-
tion. Hence, in our experiments, we only employ GPPT for node
classification.

We present more details of the baselines in Appendix B. It is
worth noting that certain few-shot methodologies on graphs, such
as Meta-GNN [60], AMM-GNN [44], RALE [28], VNT [42], and
ProG [41], hinge on the meta-learning paradigm [12], requiring an
additional set of labeled base classes in addition to the few-shot
classes. Hence, they are not comparable to our framework.
Setup of downstream tasks. We conduct two types of down-
stream task, i.e., node classification and graph classification. The

3Original DGI only works at the node level, while InfoGraph extends it to the graph
level. In our experiments, we use DGI for node classification, and InfoGraph for graph
classification.

tasks are configured in a𝑚-shot classification setup, i.e., for each
class, we randomly draw𝑚 examples (nodes or graphs) as super-
vision. In our main results, we use𝑚 = 1 for node classification,
and𝑚 = 5 for graph classification. Nevertheless, we also vary the
number of shots for 1 ≤ 𝑚 ≤ 10, to show the robustness of our
approach under different settings.

We repeat the sampling 100 times to construct 100𝑚-shot tasks
for node classification as well as graph classification. For each task,
we run with five different random seeds. Thus, there are a total of
500 results per type of task, and we report the average and standard
deviation over the 500 results. Since the𝑚-shot tasks are balanced
classification, we simply evaluate the performance using accuracy,
in line with previous works [28, 29, 44].

Note that, for datasets with both node and graph classification
tasks, i.e., PROTEINS and ENZYMES, we only pre-train the graph
encoder once for each dataset. Subsequently, we employ the same
pre-trained model for both types of downstream task.
Parameter settings. For all baselines, we reuse the original au-
thors’ code and their recommended settings, and further tune their
hyper-parameters to ensure competitive performance. A more gran-
ular description of the implementations and settings, for both the
baselines and ourMultiGPrompt, is furnished in Appendix C.

5.2 Few-shot Performance Evaluation

We first report the performance of one-shot node classification and
five-shot graph classification. Next, we study the impact of varying
number of shots on the performance.
One-shot node classification. The results are presented in Table 2.
We make the following observations.

First,MultiGPrompt surpasses all baselines on all four datasets,
indicating its advantage in the overall strategy of multi-task pre-
training. We will further conduct a series of ablation studies in
Sect. 5.3 to evaluate the importance of specific designs. Second,
pre-training methods (DGI/InfoGraph, GraphCL) generally out-
perform supervised methods (GCN, GAT), as the former group
leverage a pre-trained model. The results highlight the importance
of acquiring general knowledge from label-free graphs. Lastly, “pre-
train, prompt” methods, such as GraphPrompt and our MultiG-
Prompt, can further outperform the pre-training approaches with-
out prompts, demonstrating the advantage of prompt-based learn-
ing epsecially in few-shot settings.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

MultiGPrompt Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

10 8 6 4 2 0
50

60

70

80

A
cc

 (
%

)

0 2 4 6 8 10

42

44

46

48

50

52

54

56

Ac
c
(%
)

Shot m

 DGI GraphCL GraphPrompt MultiGPrompt

ENZYMES

Node Classification

ENZYMES

Graph Classification

Citeseer

PROTEINS

BZR

PROTEINS

COX2

Cora

10 8 6 4 2 0
44

46

48

50

52

54

56

A
cc

 (
%

)

10 8 6 4 2 0
45

50

55

60

65

70

75

A
cc

 (
%

)

10 8 6 4 2 0
40

50

60

70

A
cc

 (
%

)

10 8 6 4 2 0
48

50

52

54

56

58

60

62

64

A
cc

 (
%

)

10 8 6 4 2 0
50

52

54

56

58

A
cc

 (
%

)

10 8 6 4 2 0
16

18

20

22

24

26

28

30

A
cc

 (
%

)

10 8 6 4 2 0

48

50

52

54

56

A
cc

 (
%

)
Number of shots 𝑚 Number of shots 𝑚

Number of shots𝑚

Number of shots𝑚

Number of shots𝑚

Number of shots𝑚

Number of shots𝑚

Number of shots𝑚

Figure 4: Impact of shots on node and graph classification.

Five-shot graph classification.We further conduct graph clas-
sification and also report the results in Table 2. The trends on
graph classification aremostly consistent with those observed in the
node classification results, underpinning the generality of MultiG-
Prompt (and more broadly, the paradigm of prompt-based learning)
across both node- and graph-level tasks.
Impact of different shots. To delve deeper into the robustness
of MultiGPrompt in different learning setups, we vary the the
number of shots𝑚 for both node and graph classification tasks. We
present the performance of MultiGPrompt against a line-up of
competitive baselines in Fig. 4, and make several observations.

First,MultiGPrompt largely performs better than the baselines,
especially in low-shot settings (e.g., 𝑚 ≤ 5) when very limited
labeled data are given. Second, when more shots are given (e.g.,

Node Classification Graph Classification
BZR COX2 PROTEINS ENZYMES

20

50

60

A
cc

 (
%

)

Cora Citeseer PROTEINS ENZYMES
40

50

60

A
cc

 (
%

)

Cora Citeseer PROTEINS ENZYMES
40

50

60

A
cc

 (
%

)

 DGI DGI+ GraphCL GraphCL+ LP LP+ MultiGPrompt

Figure 5: Ablation study on pretext tasks.

Node Classification Graph Classification

0.00 0.02 0.04 0.06 0.08 0.10
53

54

55

56

57

58

59

60

Ac
c
(%
)

alpha

 Cora Citeseer BZR COX2

1E-6 1E-5 1E-4 0.001 0.01
55

56

57

58

59

A
cc

 (
%

)

1E-6 1E-5 1E-4 0.001 0.01
53

54

58

A
cc

 (
%

)

Figure 6: Impact of hyperparameter 𝛼0.

𝑚 > 5), all methods perform better in general, which is expected.
Nonetheless, the performance of MultiGPrompt remains compet-
itive, if not better. Note that on certain datasets such as PROTEINS,
the performance of most methods suffer from large variances. One
potential reason is it has least node features (see Table 1), which
exacerbate the difficulty of few-shot classification. Additionally,
the graphs in PROTEINS tend to vary in size more significantly
than other datasets4, which may also contribute to the larger vari-
ances in the performance. Despite these issues, the performance of
MultiGPrompt is still more robust than other methods.

5.3 Ablation study

To thoroughly understand the impact of each component within
MultiGPrompt, we conduct two ablation analyses. The initial
analysis studies the effect of multiple pretext tasks, and the sec-
ond analysis contrasts MultiGPrompt with variants employing
different prompts.

We start with three basic variants that only utilize a single pretext
task: using only DGI/InfoGraph (DGI), GraphCL, and link prediction
(LP). These three basic variants simply employ a classifier during
downstream fine-tuning, without any prompting. We further com-
pare three more advanced variants, namely, DGI+, GraphCL+ and
LP+, which has the exact same architecture and dual-prompt design
as the full model MultiGPrompt, but only utilize one pretext task.
Referring to Fig. 5, we observe thatMultiGPrompt consistently
outperforms all variants using a single pretext task, with or without
prompts. This finding underscores the value of leveraging multiple
pretext tasks.

4The graph sizes in PROTEINS has a standard deviation of 45.78, where other datasets
lie in the range between 4.04 and 15.29.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Ablation study on prompt design for multi-task pre-training.

Methods Pretext Composed Open Node classification Graph classification
token prompt prompt Cora Citeseer PROTEINS ENZYMES BZR COX2 PROTEINS ENZYMES

Variant 1 × × × 56.58 50.69 46.48 48.04 49.63 54.35 55.72 21.07
Variant 2 × × ✓ 56.54 53.08 47.79 51.09 47.56 54.89 55.61 24.23
Variant 3 ✓ × × 45.00 52.36 45.11 50.55 57.14 54.43 55.67 21.06
Variant 4 ✓ × ✓ 56.59 50.63 47.64 50.52 57.52 55.21 55.12 24.30
Variant 5 ✓ ✓ × 56.83 53.72 47.50 53.11 55.71 53.04 55.15 23.33
MultiGPrompt ✓ ✓ ✓ 57.72 54.74 48.09 54.47 60.07 56.17 56.02 26.63

Results are evaluated using classification accuracy, reported in percent. The best variant is bolded.

Next, for multi-task pre-training, we investigate several variants
of MultiGPrompt by removing key designs in our dual prompts,
including the use of pretext tokens, composed prompts and open
prompts. These variants and their corresponding results are tab-
ulated in Table 3. The outcomes corroborate that each individual
design is instrumental, as analyzed below. First, employing pretext
tokens and composed prompts is beneficial. Notably, Variant 5 typi-
cally outperforms Variants 1 and 3, which do not utilize a composed
prompt. However, solely employing pretext tokens, as in Variant 3,
does not give a stable improvement over Variant 1, implying that
the pretext tokens work the best in conjunction with the composed
prompts. (Note that composed prompts are built upon the pretext
tokens and cannot work alone without the latter.) Second, omitting
open prompts leads to diminished performance, as evident in the
higher accuracy of Variants 2 and 4 against Variants 1 and 3. This
shows the importance of leveraging global inter-task knowledge
via open prompts. Lastly, the dual-prompt design, comprising both
composed and open prompts, proves beneficial, helpingMultiG-
Prompt achieve the most optimal performance.

5.4 Further Model Analysis

We conduct further analysis related to the hyperparameter selection
and parameter efficiency of MultiGPrompt.
Hyperparameter selection. We assess the impact of 𝛼𝑙 ’s, used
in Eqs. (6) and (11), which adjust the balance between the pretext
tokens or prompts across different layers. In our experiments, we
only employ one message-passing layer in the graph encoder, i.e.,
𝐿 = 1, giving us two hyperparameters 𝛼0 and 𝛼1. Note that 𝛼0
controls the importance of prompts on the input layer, whereas 𝛼1
controls that of the output layer of the graph encoder. We fix 𝛼1 = 1
while varying 𝛼0, and illustrate its impact in Fig. 6.

We observe that, for node classification, as 𝛼0 increases, the
accuracy initially rises. Upon reaching a peak, the accuracy begins
to gradually decline with further increases in 𝛼0. In contrast, for
graph classification, it appears to follow a different trend. As 𝛼0
decreases, accuracy tends to improve. Overall, node classification
tasks favor somewhat larger 𝛼0, while graph classification tasks
lean toward smaller 𝛼0. This phenomenon could be attributed to
the differences in node classification and graph classification. Being
a node-level task, node classification naturally focuses more on
the node’s input features, while graph classification is affected
more by the global graph representation. Hence, node classification
would place a higher weight on the input layer as controlled by 𝛼0,
whereas graph classification would weigh the output layer more,

Table 4: Comparison of the number of tunable parameters

during the downstream adaptation stage.

Methods Node classification Graph classification
Cora Citeseer BZR COX2

GCN 368,640 949,504 1,280 1,280
DGI/InfoGraph 1,792 1,536 768 768
GraphCL 1,792 1,536 768 768
GraphPrompt 256 256 256 256
MultiGPrompt 522 522 522 522

which captures comparatively more global information across the
graph after undergoing the message-passing layers.
Parameters efficiency. Lastly, we analyze the parameter efficiency
of our approach MultiGPrompt in comparison to other represen-
tative methods. Specifically, we calculate the number of parameters
that require updating or tuning during the downstream adaptation
stage, and list the statistics in Table 4. For GCN, as it is trained
end-to-end, all the model weights have to be updated, leading to
the worst parameter efficiency. For DGI/InfoGraph and GraphCL,
we only update the downstream classifier without updating the pre-
trained model, resulting in a significant reduction in the number of
tunable parameters. Finally, prompt-based methods GraphPrompt
andMultiGPrompt are the most parameter efficient, as prompts
are light-weight and contain fewer parameters than a typical clas-
sifier such as a fully connected layer. Note that, due to our dual-
prompt design,MultiGPrompt needs to update more parameters
than GraphPrompt in the downstream adaptation stage. However,
the increase in the tunable parameters downstream is still insignifi-
cant compared to updating the classifier or the full model weights,
and thus does not present a fundamental problem.

6 CONCLUSIONS

In this paper, we explored multi-task pre-training and prompting on
graphs, aiming to encompass a comprehensive range of knowledge
from diverse pretext tasks. Our proposed approachMultiGPrompt
designs a series of pretext tokens to leverage multiple pretext tasks
in a synergistic manner. Moreover, we introduced a dual-prompt
mechanism with both composed prompts and open prompts, to
utilize both pretext task-specific and global inter-task knowledge.
Finally, we conducted extensive experiments on six public datasets
and demonstrated thatMultiGPrompt significantly outperforms
various state-of-the-art baselines.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

MultiGPrompt Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Vibhor Agarwal, Sagar Joglekar, Anthony P Young, and Nishanth Sastry. 2022.
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Pre-
diction in Online Debates. In Proceedings of the ACM Web Conference 2022. 2729–
2737.

[2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. 2021. Beit: Bert pre-training
of image transformers. arXiv preprint arXiv:2106.08254 (2021).

[3] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. 2022. BEiT: BERT Pre-
Training of Image Transformers. In International Conference on Learning Repre-
sentations.

[4] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,
Alex J Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via
graph kernels. Bioinformatics 21, suppl_1 (2005), i47–i56.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[7] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
Gao, Ming Zhou, and Hsiao-Wuen Hon. 2019. Unified language model pre-
training for natural language understanding and generation. Advances in Neural
Information Processing Systems 32 (2019).

[8] Xue Dong, Xuemeng Song, Minghui Tian, and Linmei Hu. 2024. Prompt-based
and weak-modality enhanced multimodal recommendation. Information Fusion
101 (2024).

[9] Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. 2010. Why
does unsupervised pre-training help deep learning?. In Proceedings of the thir-
teenth international conference on artificial intelligence and statistics. JMLR Work-
shop and Conference Proceedings, 201–208.

[10] Ziwei Fan, Zhiwei Liu, Shelby Heinecke, Jianguo Zhang, Huan Wang, Caiming
Xiong, and Philip S Yu. 2023. Zero-shot Item-based Recommendation via Multi-
task Product Knowledge Graph Pre-Training. arXiv preprint arXiv:2305.07633
(2023).

[11] Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen.
2022. Universal Prompt Tuning for Graph Neural Networks. arXiv preprint
arXiv:2209.15240 (2022).

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In International conference on
machine learning. PMLR, 1126–1135.

[13] Tianyu Gao, Adam Fisch, and Danqi Chen. 2020. Making pre-trained language
models better few-shot learners. arXiv preprint arXiv:2012.15723 (2020).

[14] Haifan Gong, Guanqi Chen, Sishuo Liu, Yizhou Yu, and Guanbin Li. 2021. Cross-
modal self-attention with multi-task pre-training for medical visual question
answering. In Proceedings of the 2021 international conference on multimedia
retrieval. 456–460.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1024–1034.

[16] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2019. Strategies for pre-training graph neural networks. arXiv
preprint arXiv:1905.12265 (2019).

[17] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2020. Strategies for Pre-training Graph Neural Networks. In
International Conference on Learning Representations.

[18] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
GPT-GNN: Generative pre-training of graph neural networks. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1857–1867.

[19] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In Proceedings of the web conference 2020. 2704–2710.

[20] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le,
Yun-Hsuan Sung, Zhen Li, and Tom Duerig. 2021. Scaling up visual and vision-
language representation learning with noisy text supervision. In International
conference on machine learning. PMLR, 4904–4916.

[21] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie,
Bharath Hariharan, and Ser-Nam Lim. 2022. Visual prompt tuning. In Euro-
pean Conference on Computer Vision. Springer, 709–727.

[22] Muhammad Uzair Khattak, Hanoona Abdul Rasheed, Muhammad Maaz,
Salman H. Khan, and Fahad Shahbaz Khan. 2023. MaPLe: Multi-modal Prompt
Learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR. 19113–19122.

[23] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[24] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with
graph convolutional networks. In ICLR.

[25] Shengrui Li, Xueting Han, and Jing Bai. 2023. AdapterGNN: Efficient Delta
Tuning Improves Generalization Ability in Graph Neural Networks. arXiv
preprint arXiv:2304.09595 (2023).

[26] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Gra-
ham Neubig. 2021. Pre-train, prompt, and predict: A systematic survey of prompt-
ing methods in natural language processing. arXiv preprint arXiv:2107.13586
(2021).

[27] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1–35.

[28] Zemin Liu, Yuan Fang, Chenghao Liu, and Steven CH Hoi. 2021. Relative and
absolute location embedding for few-shot node classification on graph. In Pro-
ceedings of the AAAI conference on artificial intelligence, Vol. 35. 4267–4275.

[29] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. 2023. Graphprompt:
Unifying pre-training and downstream tasks for graph neural networks. In
Proceedings of the ACM Web Conference 2023. 417–428.

[30] Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to pre-
train graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35. 4276–4284.

[31] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
2000. Automating the construction of internet portals with machine learning.
Information Retrieval 3 (2000), 127–163.

[32] Romain Mormont, Pierre Geurts, and Raphaël Marée. 2020. Multi-task pre-
training of deep neural networks for digital pathology. IEEE journal of biomedical
and health informatics 25, 2 (2020), 412–421.

[33] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. GCC: Graph contrastive coding for graph
neural network pre-training. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1150–1160.

[34] Liang Qu, Ningzhi Tang, Ruiqi Zheng, Quoc Viet Hung Nguyen, Zi Huang, Yuhui
Shi, and Hongzhi Yin. 2023. Semi-decentralized Federated Ego Graph Learning
for Recommendation. arXiv preprint arXiv:2302.10900 (2023).

[35] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Reposi-
tory with Interactive Graph Analytics and Visualization. In AAAI. https:
//networkrepository.com

[36] Timo Schick and Hinrich Schütze. 2020. It’s not just size that matters: Small
language models are also few-shot learners. arXiv preprint arXiv:2009.07118
(2020).

[37] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[38] Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai, and Yi
Zhang. 2021. Multi-task pre-training for plug-and-play task-oriented dialogue
system. arXiv preprint arXiv:2109.14739 (2021).

[39] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. Infograph: Un-
supervised and semi-supervised graph-level representation learning via mutual
information maximization. arXiv preprint arXiv:1908.01000 (2019).

[40] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. 2022. Gppt:
Graph pre-training and prompt tuning to generalize graph neural networks. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 1717–1727.

[41] Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. 2023. All in One:
Multi-Task Prompting for Graph Neural Networks. (2023).

[42] Zhen Tan, Ruocheng Guo, Kaize Ding, and Huan Liu. 2023. Virtual Node Tuning
for Few-shot Node Classification. arXiv preprint arXiv:2306.06063 (2023).

[43] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.

[44] Ning Wang, Minnan Luo, Kaize Ding, Lingling Zhang, Jundong Li, and Qinghua
Zheng. 2020. Graph few-shot learning with attribute matching. In Proceedings of
the 29th ACM International Conference on Information & Knowledge Management.
1545–1554.

[45] SongWang, YushunDong, XiaoHuang, Chen Chen, and Jundong Li. 2022. FAITH:
Few-Shot Graph Classification with Hierarchical Task Graphs. arXiv preprint
arXiv:2205.02435 (2022).

[46] Zeyuan Wang, Qiang Zhang, HU Shuang-Wei, Haoran Yu, Xurui Jin, Zhichen
Gong, and Huajun Chen. 2022. Multi-level Protein Structure Pre-training via
Prompt Learning. In The Eleventh International Conference on Learning Represen-
tations.

[47] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian
Lester, Nan Du, AndrewM Dai, and Quoc V Le. 2021. Finetuned language models
are zero-shot learners. arXiv preprint arXiv:2109.01652 (2021).

[48] Ho-Hsiang Wu, Chieh-Chi Kao, Qingming Tang, Ming Sun, Brian McFee,
Juan Pablo Bello, and Chao Wang. 2021. Multi-task self-supervised pre-training
for music classification. In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 556–560.

[49] Sen Wu, Hongyang R Zhang, and Christopher Ré. 2020. Understanding
and improving information transfer in multi-task learning. arXiv preprint

9

https://networkrepository.com
https://networkrepository.com

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

arXiv:2005.00944 (2020).
[50] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[51] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful
are graph neural networks?. In ICLR.

[52] Weizhi Xu, Junfei Wu, Qiang Liu, Shu Wu, and Liang Wang. 2022. Evidence-
aware fake news detection with graph neural networks. In Proceedings of the
ACM Web Conference 2022. 2501–2510.

[53] Zixuan Yi, Iadh Ounis, and Craig Macdonald. 2023. Contrastive graph prompt-
tuning for cross-domain recommendation. ACM Transactions on Information
Systems (2023).

[54] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do transformers really perform badly
for graph representation? Advances in Neural Information Processing Systems 34
(2021), 28877–28888.

[55] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
Neural Information Processing Systems 33 (2020), 5812–5823.

[56] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman,
and Chelsea Finn. 2020. Gradient surgery for multi-task learning. Advances in
Neural Information Processing Systems 33 (2020), 5824–5836.

[57] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.
2019. Graph transformer networks. Advances in neural information processing
systems 32 (2019).

[58] Yuhang Zang, Wei Li, Kaiyang Zhou, Chen Huang, and Chen Change Loy. 2022.
Unified vision and language prompt learning. arXiv preprint arXiv:2210.07225
(2022).

[59] Yanfu Zhang, Hongchang Gao, Jian Pei, and Heng Huang. 2022. Robust Self-
Supervised Structural Graph Neural Network for Social Network Prediction. In
Proceedings of the ACM Web Conference 2022. 1352–1361.

[60] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji
Geng. 2019. Meta-GNN: On few-shot node classification in graph meta-learning.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 2357–2360.

[61] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. 2022. Condi-
tional prompt learning for vision-language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 16816–16825.

[62] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. 2022. Learning
to prompt for vision-language models. International Journal of Computer Vision
130, 9 (2022), 2337–2348.

[63] Zhilun Zhou, Yu Liu, Jingtao Ding, Depeng Jin, and Yong Li. 2023. Hierarchi-
cal knowledge graph learning enabled socioeconomic indicator prediction in
location-based social network. In Proceedings of the ACM Web Conference 2023.
122–132.

[64] Ruitao Zhu, Detao Lv, Yao Yu, Ruihao Zhu, Zhenzhe Zheng, Ke Bu, Quan Lu,
and Fan Wu. 2023. LINet: A Location and Intention-Aware Neural Network for
Hotel Group Recommendation. In Proceedings of the ACM Web Conference 2023.
779–789.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

MultiGPrompt Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

APPENDICES

A Further Descriptions of Datasets

We provide further details of the datasets.
(1) Cora5 [31] comprises 2,708 scientific publications, each cat-

egorized into one of seven classes. The citation network encom-
passes 5,429 links. Every publication in the dataset is depicted by
a 0/1-valued word vector, indicating the absence/presence of the
corresponding word from the dictionary, which consists of 1433
unique words.

(2) Citeseer6 [37] is composed of 3,312 scientific publications,
each categorized into one of six classes. The citation network entails
4,732 links. Each publication in the dataset is characterized by a
0/1-valued word vector, indicating the absence/presence of the
corresponding word from the dictionary, which encompasses 3,703
unique words.

(3) PROTEINS7 [4] encompasses a collection of protein graphs,
embodying various attributes including the amino acid sequence,
conformation, structure, and distinctive features such as active sites
of the proteins. In this collection, each node signifies the secondary
structures, whereas each edge represents the neighboring relation
either within the amino-acid sequence or in 3D space. The nodes
are classified into three categories, while the graphs are divided
into two classes.

(4) ENZYMES8 [45] constitutes a dataset comprising 600 enzymes,
meticulously collected from the BRENDA enzyme database. These
enzymes are meticulously categorized into 6 distinct classes in
accordance with their top-level EC enzyme classification.

(5) BZR9 [35] encompasses a collection of 405 ligands, each as-
sociated with the benzodiazepine receptor and graphically repre-
sented as individual entities. The entire ligand set is bifurcated into
2 distinct categories.

(6) COX210 [35] encompasses a dataset that includes 467 molecu-
lar structures, specifically of cyclooxygenase-2 inhibitors, wherein
each node symbolizes an atom and each edge represents the chemi-
cal bond—be it single, double, triple, or aromatic—between atoms.
The entirety of the molecules is categorized into two classes.

We conduct node classification on Cora, Citeseer, PROTEINS, and
ENZYMES, by aggregating the graphs within a dataset into a larger
graph. Additionally, graph classification is conducted on PROTEINS,
COX2, ENZYMES, and BZR.

B Further Descriptions of Baselines

In this section, we present more details for the baselines.

(1) End-to-end Graph Neural Networks

• GCN [24]: GCN employs a mean-pooling-based neighbor-
hood aggregation approach to consolidate messages from
adjacent nodes.

• GAT [43]: GAT also leverages neighborhood aggregation
for end-to-end node representation learning, distinguishes

5https://relational.fit.cvut.cz/dataset/CORA
6https://nrvis.com/download/data/labeled/citeseer.zip
7https://www.chrsmrrs.com/graphkerneldatasets/PROTEINS.zip
8http://www.chrsmrrs.com/graphkerneldatasets/ENZYMES.zip
9https://www.chrsmrrs.com/graphkerneldatasets/BZR.zip
10https://www.chrsmrrs.com/graphkerneldatasets/COX2.zip

itself by allocating varied weights to neighboring nodes,
thus modifying their influence in the aggregation process.

(2) Graph Pre-training Models

• DGI [43]: DGI operates as a self-supervised pre-training
methodology tailored for homogeneous graphs. It is pred-
icated on the maximization of mutual information (MI),
aiming to enhance the estimated MI between locally aug-
mented instances and their global counterparts.

• InfoGraph [39]: Expanding upon DGI, InfoGraph is cen-
tered on graph-level tasks, endeavoring to maximize the
alignment between node and graph embeddings.

• GraphCL [55]: GraphCL leverages a variety of graph aug-
mentations for self-supervised learning, tapping into the
intrinsic structural patterns of graphs. The overarching goal
is to amplify the concordance between different augmenta-
tions throughout graph pre-training.

(3) Graph Prompt Models

• GPPT [40]: GPPT embraces a GNN model, pre-trained
through executing a link prediction task. The utilization
of a prompt module structures the downstream node clas-
sification task, orchestrating it cohesively with the link
prediction format.

• GraphPrompt [29]: GraphPrompt employs subgraph sim-
ilarity calculations as a mechanism to amalgamate pre-
training and downstream tasks, inclusive of node and graph
classification. A learnable prompt is subsequently refined
during the execution of the downstream task to incorporate
task-specific nuances.

C Implementation Details of Approaches

Details of baselines. For all the baseline models, we utilize the
codes officially disseminated by their respective authors. Each
model is tuned in accordance with the settings recommended in
their respective literature to ascertain optimal performance.

For the baseline GCN [24], we employ a 3-layer architecture, and
set the hidden dimensions to 256. For GAT [43], we employ a 2-layer
architecture and set the hidden dimension to 64. Additionally, we
apply 8 attention heads in the first GAT layer.

For DGI [43], we utilize a 1-layer GCN as the base model and
set the hidden dimension to 256. Additionally, we employ prelu as
the activation function. For GraphCL [55], a 1-layer GCN is also
employed as its base model, with the hidden dimensions set to 256.
Specifically, we select edge dropping as the augmentations, with a
default augmentation ratio of 0.2.

For GPPT [40], we utilize a 2-layer GraphSAGE as its base model,
setting the hidden dimension to 256. For base GraphSAGE, we also
employ a mean aggregator. For GraphPrompt [29], a 3-layer GCN is
used as the base model for all datasets, with the hidden dimensions
set to 256.
Details of MultiGPrompt. For our proposedMultiGPrompt,
we utilize a 1-layer GCN as the base model for all datasets, assigning
the hidden dimensions a value of 256. We designate 𝛼0 = 0.0001 for
node classification tasks, while setting 𝛼0 = 0 for graph classifica-
tion tasks. And 𝛼1 is set to 1. The parameters 𝛽1, 𝛽2, and 𝛽3 are set
to 0.9, 0.9, and 0.1 respectively.

11

https://relational.fit.cvut.cz/dataset/CORA
https://nrvis.com/download/data/labeled/citeseer.zip
https://www.chrsmrrs.com/graphkerneldatasets/PROTEINS.zip
http://www.chrsmrrs.com/graphkerneldatasets/ENZYMES.zip
https://www.chrsmrrs.com/graphkerneldatasets/BZR.zip
https://www.chrsmrrs.com/graphkerneldatasets/COX2.zip

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

D Pretext Tasks

In our experiments, we employ three novel pretext tasks, i.e., DGI
[43], GraphCL [55] and link prediction [29]. Consequently, given
a pretext task 𝑘 and graph 𝐺 . T⟨𝑘 ⟩ serves as the pretext tokens for
pretext task 𝑘 . A denotes the set of positive samples, B represents
the set of corresponding negative samples. Define h⟨𝑘 ⟩,𝑣 , a row of
H⟨𝑘 ⟩ , as node 𝑣 ’s representation. h⟨𝑘 ⟩,𝐺 denotes the representation
of 𝐺 , that is:

h⟨𝑘 ⟩,𝐺 = Readout(H⟨𝑘 ⟩) . (14)
Therefore, DGI’s loss function Lpre⟨DGI⟩ (H⟨DGI⟩ ;T⟨DGI⟩ ,Θ) =

1
|A| + |B| (

∑︁
𝑎∈A

log[sim(h⟨DGI⟩,𝑎, h⟨DGI⟩,𝐺)]+∑︁
𝑏∈B

log[1 − sim(h⟨DGI⟩,𝑏 , h⟨DGI⟩,𝐺)]),
(15)

where |A| represents the number of positive samples, similarly |B|
serves as the number of negative samples.

Similarly, the pre-training loss for GraphCL (hereinafter abbre-
viated as GCL) Lpre⟨GCL⟩ (H⟨GCL⟩ ;T⟨GCL⟩ ,Θ) =

− ln
exp(sim(h⟨GCL⟩,𝑎, h⟨GCL⟩,𝑣)/𝜏)∑

𝑏∈B exp(sim(h⟨GCL⟩,𝑏 , h⟨GCL⟩,𝑣)/𝜏)
. (16)

Finally, let the 1-hop subgraph of node 𝑣 be denoted as 𝑆𝑣 , and
the pre-training loss for link prediction (subsequently abbreviated
as LP) is Lpre⟨LP⟩ (H⟨DGI⟩ ;T⟨LP⟩ ,Θ) =

−
∑︁

(𝑣,𝑎,𝑏) ∈Xpre

ln
exp(sim(h⟨LP⟩,𝑆𝑣 , h⟨LP⟩,𝑆𝑎)/𝜏)∑

𝑢 ∈ {𝑎, 𝑏} exp(sim(h⟨LP⟩,𝑆𝑣 , h⟨LP⟩,𝑆𝑏)/𝜏)
, (17)

where h⟨LP⟩,𝑆𝑣 serves as the vector representation of 𝑆𝑣 with pretext
tokens T⟨LP⟩ which is calculated in the same way as Eq. (14). Xpre
denotes the sampled tuples utilized for link prediction [29], 𝑎 serves
as positive sample and 𝑏 denotes negative samples.

E Prompt Tuning Loss

We resort to a loss based on node/graph similarity. Consider an NC
orGC taskwith a labeled training setDdown = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . .},
where 𝑥𝑖 is either a node or a graph, and 𝑦𝑖 ∈ 𝑌 is 𝑥𝑖 ’s class label
from a set of classes 𝑌 . Then, the prompt tuning loss is defined as
Ldown (H̃;Pop, Γ,Δ) =

−
∑︁

(𝑥𝑖 ,𝑦𝑖) ∈Ddown

ln
exp

(
1
𝜏 sim(h̃𝑥𝑖 , h̃𝑦𝑖)

)
∑
𝑐∈𝑌 exp

(
1
𝜏 sim(h̃𝑥𝑖 , h̃𝑐)

) , (18)

where h̃𝑥𝑖 denotes the final embedding of node/graph 𝑥𝑖 . Class 𝑐
prototype embedding h̃𝑐 is also generated based on the dual-prompt
combination of composed prompt and open prompt.

Specifically, for node 𝑣 , h̃𝑣 is a row of H̃. While for graph 𝐺 ,

h̃𝐺 = Readout(H̃) . (19)

F Cross Data Scenario

To further analyze the robustness of MultiGPrompt, we conduct
additional experiments using various datasets for pre-training and
downstream prompting. Specifically, we select BZR and COX2, as

Table 5: Accuracy evaluation for cross data scenario on graph

classification.

Pretext BZR COX2
Downstream BZR COX2 BZR COX2

InfoGraph 52.57 ± 18.14 53.71 ± 16.07 52.44 ± 24.49 54.62 ± 15.36
GraphCL 54.11 ± 16.63 51.60 ± 16.78 53.61 ± 24.38 54.29 ± 17.31
GraphPrompt 54.60 ± 10.53 55.48 ± 11.36 53.78 ± 11.92 54.34 ± 14.78
MultiGPrompt 60.07 ± 12.48 55.81 ± 13.08 59.58 ± 13.03 56.17 ± 12.84

they possess the same node attribute dimensions, thus the pre-
trained model can directly adapted to the other dataset. We respec-
tively employ BZR and COX2 for pre-training, and perform prompt-
ing on these two datasets. The results are delineated in Table 5. We
have the following observations. First,MultiGPromptconsistently
surpasses other baselines even in cross-data scenario, demonstrat-
ing the robustness of the overall multi-task pre-training and prompt-
ing approach. Second, multi-task pre-training and prompting on
various data do not necessarily lead to diminished performance
compared to operations on identical data. This further attests to
the efficacy of multi-task pre-training in acquiring effective pre-
text knowledge and transferring it effectively via a dual-prompt
approach.

12

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Approach
	4.1 Overall Framework
	4.2 Multi-task Pre-training
	4.3 Prompting for Downstream Tasks

	5 Experiments
	5.1 Experimental Setup
	5.2 Few-shot Performance Evaluation
	5.3 Ablation study
	5.4 Further Model Analysis

	6 Conclusions
	References
	A Further Descriptions of Datasets
	B Further Descriptions of Baselines
	C Implementation Details of Approaches
	D Pretext Tasks
	E Prompt Tuning Loss
	F Cross Data Scenario

