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Abstract
Recently, context-dependent text-to-SQL se-001
mantic parsing which translates natural lan-002
guage into SQL in an interaction process has003
attracted a lot of attention. Previous works004
leverage context-dependence information ei-005
ther from interaction history utterances or the006
previous predicted SQL queries but fail in007
taking advantage of both since of the mis-008
match between natural language and logic-009
form SQL. In this work, we propose a History010
Information Enhanced text-to-SQL model011
(HIE-SQL) to exploit context-dependence in-012
formation from both history utterances and013
the last predicted SQL query. In view of the014
mismatch, we treat natural language and SQL015
as two modalities and propose a bimodal pre-016
trained model to bridge the gap between them.017
Besides, we design a schema-linking graph to018
enhance connections from utterances and the019
SQL query to the database schema. We show020
our history information enhanced methods im-021
prove the performance of HIE-SQL by a signif-022
icant margin, which achieves new state-of-the-023
art results on the two context-dependent text-024
to-SQL benchmarks, the SparC and CoSQL025
datasets, at the writing time.026

1 Introduction027

Conversation user interfaces to databases have028

launched a new research hotspot in Text-to-SQL se-029

mantic parsing (Zhang et al., 2019; Guo et al., 2019;030

Wang et al., 2020; Lin et al., 2020; Xu et al., 2021;031

Cao et al., 2021; Hui et al., 2021; Yu et al., 2021b)032

and benefited us in industry (Dhamdhere et al.,033

2017; Weir et al., 2020). Most previous works fo-034

cus on the context-independent text-to-SQL task035

and propose many competitive models. Some mod-036

els (Wang et al., 2020; Scholak et al., 2021) even037

surprisingly work well on the context-dependent038

text-to-SQL task by just appending the interac-039

tion history utterances to the input. Especially,040

PICARD (Scholak et al., 2021) achieves state-of-the-041

art performances both in Spider (Yu et al., 2018b),042

Figure 1: An example of context-dependent text-to-
SQL interaction in CoSQL where Ui is the utterance
of turn i and Si is the corresponding SQL query for
Ui. The tokens with red color are the history informa-
tion that should be considered in later predictions. It is
context-independent if we just consider the prediction
of S1.

a cross-domain context-independent text-to-SQL 043

benchmark, and CoSQL (Yu et al., 2019a), a cross- 044

domain context-dependent text-to-SQL benchmark, 045

before our work. However, every coin has two 046

sides. That implies underachievement of the explo- 047

ration of context information in context-dependent 048

text-to-SQL semantic parsing. 049

Compared with context-independent text-to- 050

SQL semantic parsing, context-dependent text-to- 051

SQL semantic parsing are more challenging since 052

of the various types of dependence in utterances 053

which make models vulnerable to parsing errors. 054

As R2SQL (Hui et al., 2021) considers, different 055

context dependencies between two adjacent utter- 056

ances require the model to establish dynamic con- 057

nections between utterances and database schema 058

carefully. However, context information is not only 059

from the last utterance. Long-range dependence is 060

also the case in CoSQL as the prediction of S3 de- 061

pends on "the name of the teachers and the courses" 062

in U1 in Figure 1. A workable proposition for long- 063

range dependence is to inherit context information 064
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from previous predicted SQL queries. But it is065

not a piece of cake to take advantage of previously066

predicted queries since of the mismatch between067

natural language and logic-form SQL. As Liu et al.068

(2020) conclude, roughly encoding the last pre-069

dicted SQL query and utterances takes the wooden070

spoon while easily concatenation of interaction his-071

tory utterances and current utterance appears to072

be strikingly competitive in their evaluation of 13073

existing context modeling methods.074

In this paper, we propose a history information075

enhanced network to make full use of both history076

interactive utterances and previous predicted SQL077

queries. We first encode the last predicted SQL078

query by treating the logic-form query as another079

modality with natural language. We present SQL-080

BERT, a bimodal pre-trained model for SQL and081

natural language which is able to capture the se-082

mantic connection and bridge the gap between SQL083

and natural language. It produces general-purpose084

representations and supports our context-dependent085

text-to-SQL semantic parsing. As adopted in a ma-086

jority of large pre-trained models, we develop SQL-087

BERT with the multi-layer Transformer (Vaswani088

et al., 2017).We pre-train it with the objective func-089

tion of masked language modeling (MLM) on SQL.090

Besides, we propose a history information en-091

hanced schema-linking graph to represent the rela-092

tions among current utterance, interaction history093

utterances, the last predicted query, and correspond-094

ing database schema. Considering it is weird to095

shift a topic back and forth in an interaction, we096

assume that the long-range dependence is succes-097

sive. For example, that S3 depends on U1 implies098

that S2 does too in Figure 1. In that case, we can099

leverage the long-range dependence from the last100

predicted query. In addition, the corresponding101

SQL queries of adjacent utterances tend to over-102

lap (Zhang et al., 2019). Therefore, unlike the103

previous schema-linking graph just with utterances104

and database schema (Hui et al., 2021), the last105

predicted query takes part in our graph. Besides,106

we distinguish current utterance and interaction his-107

tory utterances in the schema-linking graph. We108

encode the schema-linking relations with Relative109

Self-Attention Mechanism (Shaw et al., 2018).110

In our experiments, the proposed methods of111

SQLBERT and the history information enhanced112

schema-linking substantially improve the perfor-113

mance of our model. At the time of writing, our114

model ranks first on both two large-scale cross-115

domain context-dependent text-to-SQL leader- 116

boards, SparC (Yu et al., 2019b) and CoSQL (Yu 117

et al., 2019a). Specifically, our model achieves 118

a 64.6% question match and 42.9% interaction 119

match accuracy on SparC, and a 53.9% question 120

match and 24.6% interaction match accuracy on 121

CoSQL. 122

2 Related Work 123

Text-to-SQL semantic parsing follows a long 124

line of research on semantic parsing from natural 125

language to logical language (Zelle and Mooney, 126

1996; Zettlemoyer and Collins, 2005; Wong and 127

Mooney, 2007). 128

Recently, context-independent text-to-SQL se- 129

mantic parsing has been well studied. Spider (Yu 130

et al., 2018b) is a famous dataset for the complex 131

and cross-domain context-independent text-to-SQL 132

task. Some works (Bogin et al., 2019a,b; Chen 133

et al., 2021) apply graph neural networks to encode 134

database schema. Xu et al. (2021) succeed in ap- 135

pling deep transformers to the context-independent 136

text-to-SQL task. Yu et al. (2018a) employ a tree- 137

based decoder to match SQL grammar. Rubin and 138

Berant (2021) improve the tree-based decoder by 139

a bottom-up method. Scholak et al. (2021) refine 140

the sequence-based decoder via carefully designed 141

restriction rules. Guo et al. (2019) and Gan et al. 142

(2021) propose SQL intermediate representations 143

to bridge the gap between natural language and 144

SQL. Lei et al. (2020) study the role of schema- 145

linking in text-to-SQL semantic parsing. Wang et al. 146

(2020) propose a unified framework to capture the 147

schema-linking. Lin et al. (2020) represent the 148

schema-linking as a tagged sequence. Cao et al. 149

(2021) further integrate non-local and local fea- 150

tures via taking advantage of both schema-linking 151

graph and its corresponding line graph. Besides, 152

many previous works (Deng et al., 2021; Yu et al., 153

2021a; Shi et al., 2021) focus on pre-train mod- 154

els for context-independent text-to-SQL semantic 155

parsing. 156

With more attentions on context-dependent text- 157

to-SQL semantic parsing, existing works have been 158

devoted to the context-dependent text-to-SQL task. 159

SparC (Yu et al., 2019b) and CoSQL (Yu et al., 160

2019a) datasets are specially proposed for the task. 161

EditSQL (Zhang et al., 2019) and IST-SQL (Wang 162

et al., 2021) focus on taking advantages of the 163

last predicted query for the prediction of current 164

query. EditSQL tries to copy the overlap tokens 165
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Figure 2: Structure and components of HIE-SQL. During the training stage, the parameters of SQL Encoder will
not be updated.

from the last predicted query, while IST-SQL pro-166

poses an interaction state tracking method to en-167

code the information from the last predicted query.168

IGSQL (Cai and Wan, 2020) and R2SQL (Hui et al.,169

2021) leverages the contextual information among170

the current utterance, interaction history utterances171

and database schema via context-aware dynamic172

graphs. Notably, R2SQL simulates the informa-173

tion by connecting the schema graphs with the to-174

kens in interactive utterances. Yu et al. (2021b)175

creatively propose a context-aware pre-trained lan-176

guage model. However, the problem of making177

full use of both interaction history utterances and178

predicted queries for the context-dependent text-to-179

SQL task remains open.180

3 HIE-SQL181

First, we formally define the conversational text-182

to-SQL semantic parsing problem. In the rest of the183

section, we detail the architecture of history infor-184

mation enhanced text-to-SQL model (HIE-SQL).185

3.1 Preliminaries186

Task Definition. Given the current user utterance187

uτ , interaction history hτ = [u1, u2, ..., uτ−1], the188

schema D = 〈T,C〉 of the target database such189

that the set of tables T = {t1, ..., t|T |} and the190

set of columns C = {c1, ..., c|C|}, our goal is to 191

generate the corresponding SQL query sτ . 192

Model Architecture. Figure 2 shows the encoder- 193

decoder framework of HIE-SQL. We will intro- 194

duce it in four modules: (i) Multimodal Encoder, 195

which encodes SQL query and natural language 196

context in a multimodal manner, (ii) SQLBERT, 197

a bimodal pre-trained encoder for SQL and nat- 198

ural language, (iii) HIE-Layers, which encode 199

pre-defined schema-linking relations between all 200

elements of the output of Language Model, and 201

(iv) Decoder, which generates SQL query as an 202

abstract syntax tree. 203

3.2 Multimodal Encoder 204

Since of the huge syntax structure differences 205

between SQL and natural language, using a sin- 206

gle language model to encode both languages at 207

the same time increases the difficulty and cost of 208

training the model. Inspired by the efficiency of the 209

works (Kiela et al., 2019; Tsimpoukelli et al., 2021) 210

to solve the multimodal problems, we build an ad- 211

ditional pre-trained Encoder named SQLBERT (we 212

will detail it in the following section) to pre-encode 213

SQL query. Then we learn weightsW ∈ RN×M to 214

project the N-dimensional SQL query embeddings 215

to M-dimensional token input embedding space of 216
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Figure 3: Input format and training objective of SQLBERT.

the language model:217

S =Wf(sτ−1), (1)218

where f(·) is the last hidden state output of SQL-219

BERT.220

We arrange the input format of HIE-SQL as x =221

([CLS],U ,[CLS],S,[SEP], T ,[SEP], C) in222

which223

U = (u1,[CLS], u2, ...,[CLS], uτ ),

T = (t1,[SEP], t2, ...,[SEP], t|T |),

C = (c1,[SEP], c2, ...,[SEP], c|C|).

(2)224

All the special separator tokens and language word225

tokens in x are converted to the word embedding by226

embedding layer of the language model. Gathering227

the embeddings of natural language and SQL, we228

feed them to self-attention blocks in a language229

model. In the training stage, we directly take the230

golden SQL query of the last turn as an input SQL231

query. As for the inference stage, we apply the232

SQL query generated by HIE-SQL in the last turn.233

When predicting the first turn utterance, we just set234

S to empty.235

3.3 SQLBERT236

As mentioned above, we treat the SQL query237

as another modality that can provide information238

of the SQL query from the previous round as a239

reference for the model. So we need an encoder to240

extract the representation of the SQL query.241

Model Architecture. Considering the success242

of multi-modal pre-trained models, such as ViL-243

BERT (Lu et al., 2019) for language-image and244

CodeBERT (Feng et al., 2020) for natural lan-245

guage and programming language, we propose246

SQLBERT, a bimodal pre-trained model for natural247

language and SQL. We develop SQLBERT by us-248

ing the same model architecture as RoBERTa (Liu249

et al., 2019). The total number of model parameters250

is 125M.251

Input format. As the training method showed 252

in Figure 3, we set the same input as Code- 253

BERT (Feng et al., 2020) does. To alleviate the 254

difficulty of training and resolve inconsistencies be- 255

tween natural language and schema, we append the 256

question-relevant database schema to the concate- 257

nation of SQL query and question. We represent 258

the whole input sequence into the format as x = 259

([CLS], s1, s2, ..sn,[SEP], q1, q2, ..qm,[SEP], 260

t1 : c11, c12, ...,[SEP], t2 : c21, ...,[SEP], ...), 261

in which s, q, t, and c are the tokens of SQL query, 262

question, tables, and columns respectively. 263

Training Objective. The main training objective 264

of SQLBERT is the masked language modeling 265

(MLM). It’s worth noting that we only mask the 266

tokens of SQL query because we only need SQL- 267

BERT to encode SQL query in the downstream task. 268

Specifically, we utilize a special objective refer- 269

enced span masking (Sun et al., 2019) by sampling 270

15% independent span in SQL clause except the 271

reserved word (e.g., SELECT, FROM, WHERE), 272

which aims to avoid leaking answers and help SQL- 273

BERT learn the information structure of SQL better. 274

In the training stage, we adopt a dynamic masking 275

strategy via randomly shuffling the order of tables 276

and columns in the original schema. We describe 277

the masked span prediction loss as 278

L(θ) =
n∑
k=1

−logPθ(smaskk |s\mask, q, t, c), (3) 279

where θ stands for the model parameters, smaskk 280

is the masked span of SQL input, s\mask is the 281

unmasked part. 282

Training data. We train SQLBERT with the 283

open-source Text-to-SQL datasets including Spi- 284

der, SparC and CoSQL, whose data structures and 285

annotation styles are quite similar. For each sam- 286

ple, we only use its question, SQL query, and the 287

corresponding database schema. As for SparC and 288

CoSQL, which is a context-dependent version, we 289

simply concatenate the current utterance with the 290
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Current Utterance Interaction History SQL Query

Columns
U−C−EM (Exact Match)
U−C−PM (Partial Match)
U−C−VM (Value Match)

H−C−EM
H−C−PM
H−C−VM

S−C−EC (Equal Columns)
S−C−UC (Unequal Columns)

Tables
U−T−EM
U−T−PM

H−T−EM
H−T−PM

S−T−ET (Equal Tables)
S−T−UT (Unequal Tables)

Table 1: Edge types between current utterance U , interaction historyH , SQL S, and database schemaD (Columns
C and Tables T ). We omit the pre-existing relations in schema such as the foreign-key relation (C-C-FK) in the
table. We set a default "no relation" edge type for every node pair.

Figure 4: An example of the schema-linking graph for
the prediction of S2 in Figure 1. The graph is a sub-
graph of the whole schema-linking graph. We only
respectively choose one token in the history utterance
(U1), the current utterance (U2), and the last predicted
SQL query (S1) in the example. Besides, we omit all
unequal relation edges (S-C-UC and S-T-UT) and de-
fault "no relation" edges.

history utterances to build the question input. The291

size of the training dataset is 34,175.292

3.4 HIE-Layers293

Schema-Linking Graph. To explicitly encode the294

complex relational database schema. We convert it295

to a directed graph G = 〈V, E〉, where V = C ∪ T296

and E represents the set of pre-existing relations297

within columns and tables such as the foreign-key298

relation. In addition, we also consider the unseen299

linking to the schema in the contexts of current300

utterance, interaction history utterances, and the301

last predicted SQL query. Specifically, we define302

the context-dependent schema-linking graph Gc =303

〈Vc, Ec〉 where Vc = C ∪ T ∪ U ∪ H ∪ S and304

Ec = E ∪ EU↔D ∪ EH↔D ∪ ES↔D. The additional305

relation edges are listed in Table 1. We set two306

match types between the language tokens of U , H ,307

and D: EM for Exact Match, PM for Partial Match.308

When using database contents, we set VM (Value309

Match) for exactly matching the value of columns.310

As for SQL S, we simply match the words of tables311

and columns that appear in it to the target database312

schema: EC (Equal Columns) for column match, 313

ET (Equal Tables) for table match. In Figure 4, we 314

show an example of the proposed schema-linking 315

graph. 316

Graph Encoding. The work (Wang et al., 317

2020) shows that Relative Self-Attention Mech- 318

anism (Shaw et al., 2018) is an efficient way to 319

encode graphs whose nodes are at the token level. 320

It rebuilds the calculation of the self-attention mod- 321

ule in the transformer layers as follows: 322

eij =
xiW

Q(xjW
K + rKij )

T

√
dz

,

αij = softmax
j

{eij},

zi =
n∑
j=1

αij(xjW
V + rVij ).

(4) 323

HIE-Layers consist of 8 transformer layers, 324

whose self-attention modules are described above. 325

Specifically, we initialize a learned embedding for 326

each type of edge defined above. For every input 327

sample, we build a relation matrix R ⊆ (L × L) 328

where L is the length of the input token. R(i,j) 329

represents the relation type between i−th and j−th 330

input tokens. While computing the relative atten- 331

tion, we set the rKij = rVij = R
(i,j)
e whereR(i,j)

e is 332

the corresponding embedding ofR(i,j). 333

3.5 Decoder 334

To build the decoder of HIE-SQL, we apply the 335

same work (Yin and Neubig, 2017) as Wang et al. 336

(2020) propose, which generates SQL as an ab- 337

stract syntax tree in depth-first traversal order by 338

using LSTM (Hochreiter and Schmidhuber, 1997) 339

to output sequences of decoder actions. We rec- 340

ommend the reader to refer to the work (Yin and 341

Neubig, 2017) for details. 342
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Dataset
System

Response
Interaction Train Dev Test User Questions Vocab Avg Turn

CoSQL " 3007 2164 293 551 15598 9585 5.2
SparC % 4298 3034 422 842 12726 3794 3.0

Table 2: Details of SparC and CoSQL datasets.

SparC CoSQL

Model Dev Test Dev Test

QM IM QM IM QM IM QM IM
EditSQL + BERT (Zhang et al., 2019) 47.2 29.5 47.9 25.3 39.9 12.3 40.8 13.7
IGSQL + BERT (Cai and Wan, 2020) 50.7 32.5 51.2 29.5 44.1 15.8 42.5 15.0
IST-SQL + BERT (Wang et al., 2021) - - - - 44.4 14.7 41.8 15.2
R2SQL + BERT (Hui et al., 2021) 54.1 35.2 55.8 30.8 45.7 19.5 46.8 17.0
RAT-SQL† + SCoRe (Yu et al., 2021b) 62.2 42.5 62.4 38.1 52.1 22.0 51.6 21.2
T5-3B + PICARD† (Scholak et al., 2021) - - - - 56.9 24.2 54.6 23.7

HIE-SQL + GraPPa (ours) 64.7 45.0 64.6 42.9 56.4 28.7 53.9 24.6

Table 3: Performances of various models in SparC and CoSQL. QM and IM stand for question match and interac-
tion match respectively. The models with † are proposed for the context-independent text-to-SQL task and applied
to the context-dependent text-to-SQL task by just appending interaction history utterances to the input.

3.6 Regularization Strategy343

We introduce R-Drop (Liang et al., 2021), a sim-344

ple regularization strategy, to prevent the overfit-345

ting of the model. Concretely, we feed every input346

data xi to go through our model twice and the loss347

function is as follows:348

LiNLL =− logP1(yi|xi)− logP2(yi|xi),

LiKL =
1

2
(DKL(P1(yi|xi)‖P2(yi|xi))

+DKL(P2(yi|xi)‖P1(yi|xi))),
Li = LiNLL + LiKL,

(5)349

where -logP1(yi|xi) and -logP2(yi|xi) are two out-350

put distributions for input xi at all decoder steps,351

LiNLL is the negative log-likelihood learning ob-352

jective of decoder actions, and LiKL is the bidirec-353

tional Kullback-Leibler (KL) divergence between354

these two output distributions.355

4 Experiment356

4.1 Setup357

Setting. We initialize the weights of Language358

Model with GraPPa (Yu et al., 2021a), an effective359

pre-training model for table semantic parsing that360

performs well on the context-independent text-to-361

SQL datasets (e.g. Spider). We stack 8 HIE-layers,362

which are introduced in section 3.4, on top of the 363

Language Model. When training the model with 364

R-Drop, we set the Dropout rate of 0.1 for the Lan- 365

guage Model and HIE-Layers, 0.3 for the decoder. 366

We use Adam optimizer to conduct the parame- 367

ter learning and set the learning rate of 1e−5 for 368

fine-tuning GraPPa and 1e−4 for HIE-Layers and 369

Decoder. The learning rate linearly increases to the 370

setting point at first max_steps/8 steps, then de- 371

creases to 0 at max_steps, where max_steps = 372

50000 with 24 training batch-size. As for SQL- 373

BERT, we fine-tune CodeBERTBASE (Feng et al., 374

2020) on the dataset we described in Section 3.3. 375

We set the learning rate as 1e−5, a batch size of 376

64, and train SQLBERT for 10 epochs. The shape 377

of learned weights of the linear layer applied to 378

the output of SQLBERT is 768 × 1024. While 379

inferring, we set the beam size to 3. 380

Datasets. We conduct experiments on two cross- 381

domain context-dependent text-to-SQL datasets, 382

SparC (Yu et al., 2019b) and CoSQL (Yu et al., 383

2019a). Table 2 depicts the statistic information of 384

them. 385

Evaluation Metrics. The main metric we used to 386

measure model performance in SparC and CoSQL 387

is interaction match (IM), which requires all output 388

SQL queries in interaction to be correct. We also 389
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Figure 5: Performances of previous works and HIE-
SQL in different turns (left) and different difficulty lev-
els (right) on SparC.

use question match (QM) to evaluate the accuracy390

of every single question.391

4.2 Experiment Result.392

Results of our proposed HIE-SQL model are393

shown in Table 3. In terms of interaction match,394

our model achieves state-of-the-art performances395

on both development set and test set of SparC and396

CoSQL. For the test set of SparC, HIE-SQL outper-397

forms the prior state-of-the-art (Yu et al., 2021b)398

by 4.8% in IM and 2.2% in QM. For CoSQL, com-399

pared with the previous state-of-the-art (Scholak400

et al., 2021), a rule-based auto-regressive method401

based on the large pre-trained model-T5-3B (Raffel402

et al., 2020) which is optimized for a GPU with403

40GB of memory, HIE-SQL improves IM of de-404

velopment set by 4.5% and IM of the test set by405

0.9%. Besides, HIE-SQL surpasses RAT-SQL +406

SCoRe in all metrics of SparC and CoSQL. This407

demonstrates that properly integrating interaction408

utterances and predicted SQL queries is an effec-409

tive way to enhance the model’s ability for Context-410

Dependent Text-to-SQL Semantic Parsing.411

To further explore the advantages of HIE-SQL,412

we test the performance on different turns and at413

different difficulty levels of utterances. As shown414

in Figure 5, with the increase of turns, the lead415

of our model gets greater and greater. When the416

indexes of turns are greater than or equal to 4, the417

accuracy of HIE-SQL is 17% higher than that of418

R2SQL. It demonstrates that the main contribution419

of introducing SQL query is to improve the robust-420

ness of the model to long interaction. HIE-SQL421

is also robust to the varying difficulty levels of ut-422

terances. Our model performs equally in hard and423

extra hard levels, and achieves 39.6% accuracy on424

the extra hard level, which is 17.8% higher than425

that of R2SQL.426

4.3 Ablation Study427

We provide ablation studies to examine the con-428

tribution of each component of HIE-SQL. We want429

SparC CoSQL

Model QM IM QM IM
HIE-SQL 64.7 45.0 56.4 28.7

w/o SQL query 65.8 44.3 56.5 23.9
w/o SQLBERT 63.9 44.7 54.8 26.3
w/o EH↔D 64.0 44.3 56.0 26.3

Table 4: Ablation study of HIE-SQL in development
sets of SparC and CoSQL. As for ablation on SQL
query, we drop the SQL query and only feed utterances
and database schema to the model. As for ablation on
SQLBERT, we directly concatenate the tokens of SQL
query and other context tokens for the input of the lan-
guage model. And w/o EH↔D means we treat histori-
cal utterances like the current utterance in our schema-
linking.

Dataset Model T-F F-T T-T

SparC
HIE-SQL 125 88 383

w/o SQL query 132 104 379

CoSQL
HIE-SQL 140 106 278

w/o SQL query 161 128 254

Table 5: The counts of different switches in the pairs
of adjacent predicted SQL queries. T-F stands for the
match of the former predicted query and unmatch of the
later predicted query with golden queries. F-T stands
for the reverse case. T-T is the case of both matching.

to identify whether introducing the last SQL query 430

has a significant impact on performance. Also, we 431

would like to investigate whether the pre-trained 432

SQL encoder, SQLBERT, can improve the model’s 433

ability to understand SQL queries. What’s more, 434

we conduct another ablation study regarding ad- 435

ditional graph edges between historical utterances 436

and database schema EH↔D to check the necessity 437

of the join of historical utterance information in 438

schema-linking. 439

As shown in Table 4, Our full model achieves 440

about 5 points and 1 point improvement of IM 441

in CoSQL and SparC respectively compared with 442

the model without the last SQL query input. The 443

pre-encoding SQL query by SQLBERT can further 444

improve the performance. It confirms SQLBERT’s 445

ability to efficiently represent SQL features. In 446

addition, EH↔D also plays a positive role. 447

Table 5 shows the continuity of performance of 448

our model compared with that of the model with- 449

out the last SQL query input. Our model has a 450

higher rate of continuous match, but a lower rate 451
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U1 Which cartoon aired first?

HIE-SQL SELECT title FROM cartoon ORDER BY original_air_date asc LIMIT 1
RAT-SQL SELECT title FROM cartoon ORDER BY original_air_date asc LIMIT 1

U2 What was the last cartoon to air?

HIE-SQL SELECT title FROM cartoon ORDER BY original_air_date desc LIMIT 1
RAT-SQL SELECT title FROM cartoon ORDER BY original_air_date desc LIMIT 1

U3 What channel was it on?

HIE-SQL SELECT channel FROM cartoon ORDER BY original_air_date desc LIMIT 1
RAT-SQL SELECT channel FROM cartoon ORDER BY original_air_date desc LIMIT 1

U4 What is the production code?

HIE-SQL SELECT production_code FROM cartoon ORDER BY original_air_date desc LIMIT 1
RAT-SQL SELECT production_code FROM cartoon ORDER BY original_air_date asc LIMIT 1

Table 6: An example in CoSQL. Ui is the input utterance of turn i with corresponding predictions of HIE-SQL and
RAT-SQL following. All predictions of HIE-SQL are the ground truth queries in the case.

of switching from mismatch to match. It illustrates452

that our model does use the SQL information and is453

sensitive to the accuracy of the last predicted SQL454

query which explains the higher question match455

without SQL query input.456

We regard R-Drop as a simple means of data aug-457

mentation which can improve the generalization of458

the model. As shown in Figure 6, the model with459

R-drop outperforms the model without R-Drop in460

both QM and IM. Additionally, the standard de-461

viations of the IM in the last 20k steps are 0.014462

and 0.015 of HIE-SQL and the one without R-Drop463

respectively even the curve of HIE-SQL has a more464

obvious upward trend. It shows that R-Drop im-465

proves the robustness of our model and stabilizes466

its performance in IM.467

4.4 Case Study468

In Table 6, we show the predictions of HIE-SQL469

and RAT-SQL in an example of CoSQL. Here,470

HIE-SQL and RAT-SQL both fine-tune GraPPa471

on CoSQL. As the example shows, RAT-SQL fails472

to distinguish the right one from two long-range473

dependences in U1 and U2 in Table 6. By contrast,474

HIE-SQL inherits the right context-dependence475

from the last predicted query to avoid confusion476

between U1 and U2.477

5 Conclusion478

We present HIE-SQL, a history information479

enhanced context-dependent text-to-SQL model,480

which targets at explicitly capturing the context-481

Figure 6: Ablation study result of regarding R-Drop in
development set of CoSQL. We show the performances
in QM and IM of two models at different training steps.
We set the beam size = 1 in the inference stage.

dependence from both interaction history utter- 482

ances and the last predicted SQL query. With the 483

help of the proposed bimodal pre-trained model, 484

SQLBERT, HIE-SQL bridge the gap between the 485

utterances and predicted SQL despite the mismatch 486

of natural language and logic-form SQL. Moreover, 487

we also introduce a method of schema-linking to 488

enhance the connections among utterances, SQL 489

query, and database schema. 490

Taken together, HIE-SQL achieves consistent 491

improvements on the context-dependent text-to- 492

SQL task, especially in the interaction match met- 493

ric. HIE-SQL achieves new state-of-the-art re- 494

sults on two famous context-dependent text-to-SQL 495

datasets, SparC and CoSQL. 496
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