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Abstract
Compositionality is believed to be fundamental to
intelligence. In humans, it underlies the structure
of thought and language. In AI, it enables a
powerful form of out-of-distribution generaliza-
tion, in which a model systematically adapts to
novel combinations of known concepts. However,
while we have strong intuitions about what
compositionality is, we lack satisfying formal def-
initions for it. Here, we propose such a definition
called representational compositionality that is
conceptually simple, quantitative, and grounded
in algorithmic information theory. Intuitively,
representational compositionality states that a
compositional representation is both expressive
and describable as a simple function of parts. We
validate our definition on both real and synthetic
data, and show how it unifies disparate intuitions
from across the literature in both AI and cognitive
science. We hope that our definition can inspire the
design of novel, theoretically-driven models that
better capture the mechanisms of compositional
thought. We make our code available here.

1. Introduction
Compositionality is thought to be one of the hallmarks
of human cognition. In the domain of language, it lets us
produce and understand utterances that we have never heard,
giving us “infinite use of finite means” (Chomsky, 1956).
Beyond this, one of the most influential ideas in cognitive
science is the Language of Thought hypothesis (Fodor, 1975;
Quilty-Dunn et al., 2023), which conjectures that all thought
involved in higher-level human cognition is compositional.
Compositionality has been equally influential in AI from
its very origins, motivating efforts in neurosymbolic AI
(Garcez & Lamb, 2023; Sheth et al., 2023; Marcus, 2003),
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probabilistic program inference (Lake et al., 2017; Ellis
et al., 2023), modular deep neural networks Bengio (2017);
Goyal & Bengio (2022); Pfeiffer et al. (2023); Andreas
et al. (2016); Goyal et al. (2021; 2020); Schug et al. (2024),
disentangled representation learning (Higgins et al., 2017;
Lachapelle et al., 2022; Ahuja et al., 2022; Brehmer et al.,
2022; Lippe et al., 2022; Sawada, 2018), object-centric
learning (Locatello et al., 2020; Singh et al., 2023; Wu et al.,
2024), and chain-of-thought reasoning (Wei et al., 2022;
Kojima et al., 2022; Hu et al., 2024), to name only a few.
One of the primary appeals of compositionality is that it
enables a powerful form of out-of-distribution generalization
(Lake & Baroni, 2018): if a model is compositional with
respect to a set of features in its training data, it need not
observe all possible combinations of those features in order
to generalize to novel ones (Schug et al., 2024; Wiedemer
et al., 2024; 2023; Bahdanau et al., 2019; Mittal et al., 2021).

Despite its importance, compositionality remains an elusive
concept: there are currently few formal, quantitative defi-
nition of compositionality that could be used to measure it,
and those that do exist have important theoretical drawbacks.
Compositionality is often described in the following way:

Definition 1 (Compositionality – colloquial)
The meaning of a complex expression is determined by its
structure and the meanings of its constituents (Szabó, 2022).

In the context of neural representations in brains or deep
neural networks (DNNs), we can take these “meanings” to
be high-dimensional vectors of activations. Definition 1
lacks formal rigour and breaks down upon inspection.

First, the definition presupposes the existence of a symbolic
“complex expression” associated to each meaning. In some
cases, this makes sense; for instance, consider human lan-
guages and the neural representations they elicit. But where
do these expressions and their constituent parts come from
when considering neural representations themselves such
as in the Language of Thought hypothesis, where thoughts
are encoded in distributed patterns of neural activity?

Second, it is unclear what the expression’s “structure” should
be. The definition is motivated from human language, where
sentences have syntactic parses and individual words have
types (e.g., noun, verb), but these properties are not intrinsic
to the sentences themselves, which are simply strings.
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Third, the definition says that meaning is “determined by”
the structure and meanings of the constituents, but it does not
put any kind of restriction on these semantics for the mean-
ings to qualify as compositional: any function qualifies. For
instance, functions that arbitrarily map constituents to their
meanings (as in the case of idioms like “he kicked the bucket”)
are functions nonetheless and thus satisfy Definition 1, but
it is commonly agreed that they are not compositional (Wein-
reich, 1969; Mabruroh, 2015; Swinney & Cutler, 1979).

Finally, the colloquial definition of compositionality suggests
that it is a binary property of representations, when it should
arguably be a matter of degree. For instance, while linguists
often model the syntax and semantics of language using hi-
erarchical decompositions that are considered compositional
(Chomsky, 1956), human language regularly deviates from
this idealization. In particular, language has some degree
of context-sensitivity, where the meanings of words depend
on those of others in the sentence. Thus, human language
does not satisfy the colloquial binary definition of composi-
tionality, even though it is considered largely compositional.

The colloquial definition of compositionality is thus flawed
if we wish to formalize and measure it quantitatively, moving
beyond mere intuitions that are fundamentally limited in
their explanatory reach. In this paper, we introduce such a
definition, which we call representational compositionality.
The definition is grounded in algorithmic information
theory, and says that compositional representations are
both expressive and easily describable as a simple function
of symbolic parts. We argue that this definition not only
addresses Definition 1’s flaws, but also accounts for and
generalizes our many intuitions about compositionality.
Finally, we provide empirical experiments that clarify
implications of the definition and validate its agreement with
intuition. Since representational compositionality is rigorous
and quantitative, we hope that it can inspire new principled
methods in AI for learning compositional representations.

2. Compressing a Representation
The definition that we will propose rests on the idea that
compositional representations can be described as a simple
function of constituent parts. While there may be many ways
to describe a representation, a natural and principled way
is through the lens of optimal compression and Kolmogorov
complexity. We provide a brief introduction to Kolmogorov
complexity below, and give more background Appendix A.

Kolmogorov complexity Kolmogorov complexity (Li
et al., 2008; Kolmogorov, 1965) is a notion of information
quantity. Intuitively, the Kolmogorov complexity of an
object x, denoted K(x), is the length of the shortest program
(in some language) that outputs x. A related notion is the
conditional Kolmogorov complexity of x given another

object y, denoted K(x|y), which is the length of the shortest
program that takes y as input and outputs x. Kolmogorov
complexity has many intuitive properties as a measure
of information quantity. The more “structure” an object
has (regularity, patterns, rules, etc.), the more it can be
compressed using a short program.

In the context of ML, an interesting quantity is the Kol-
mogorov complexity of a dataset X = (x1, ...,xn) where
each sample is drawn from a distribution p(x). If the dataset
is sufficiently large, the optimal method for compressing it
is to first specify p and then encode the data using it, giving
K(X) = K(X|p) +K(p) (Fortnow, 2000). For the first
term K(X|p), each sample can be optimally encoded using
− log2 p(xi) bits, as in the case of Shannon information
(Shannon, 2001). The second term K(p) refers to the
complexity of the data distribution (i.e., the length of the
shortest program that computes the function p :X →R+).

CompressingZ as a function of parts Let us denote a rep-
resentation by a matrix Z∈RN×D, where each row zn is ob-
tained by sampling iid from some data distribution and model
p(x)p(z|x). For instance, p(x) could be a distribution over
natural images, zn∼p(z|x) could be the (often deterministic)
output of some intermediate layer in a trained image classifier,
and the resulting representation Z∈RN×D would be a ma-
trix of these layer activations. We will argue that a natural way
to think about compositional representations is that they can
be significantly compressed as a function of constituent parts.
In other words, the shortest program that outputs the repre-
sentation, with length K(Z), has a particular form: it first de-
scribesZ using short parts-based constituents, and then maps
these parts to the high-dimensional representation. This pro-
gram form is shown in Figure 1 and described in detail below.
We also give a summary of all program components in Table 1.
Crucially, the components of this program will be used in Sec-
tion 3 to construct our formal definition of compositionality,
in which representations that are more compressible as a func-
tion of constituent parts are more compositional. Before com-
bining them into a definition of compositionality, we now de-
scribe the components of this program in the following steps.

Step 1: describe Z using parts-based constituents We
assume that every sample of the representation zn of data
point xn can be compressed using a sequence of constituent
parts, which in practice are discrete tokens. By analogy to
natural language, we will call these sequences “sentences”,
denoted by W ∈VN×M where V is the vocabulary and M is
the maximum sentence length. Each row in W is a sentence
that describes a high-dimensional vector in the corresponding
row ofZ. Importantly, these are not sentences in a human lan-
guage like English: they are sequences of discrete tokens that
best compress the representation, and can be thought of as the
representation’s intrinsic language. For instance, if the repre-
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def construct_z():
    # 1. Describe   using a compressed code  
    def p_w(w):  #  length of this function
        ...  # returns a probability
    w_compressed = [...]  #  
    w = decode(w_compressed, p_w)  #   = small constant

    # 2. Decode   from  
    def f(w):  #   length of this function
        ...  # returns mean and std of a normal distribution
    def p_normal(mu, std):  #   = small constant
        ...  # returns a probability
    z_mu, z_std = f(w)  #   = small constant
    z_correction = [...]  #  
    z = decode(z_correction, p_normal, z_mu, z_std)  #   = small constant

    return z

Z W
K ( p w ) =

K (W | p w ) = ∑ − log p w (wn )
K

Z W
K ( f ) =

K

K
K (Z |W , f ) = ∑ − log 𝒩(zn; z μ

n , z σn )
K

Representation

 pw(w )
 𝒩(z ; f (w ))

 Z ∈ ℝN× D W ∈ 𝒱N× M

Semantics

f

 K (Z ) ≈ min
pw ,W, f

K ( pw ) + K (W | pw ) + K ( f ) + K (Z |W, f )

a. b.

c.

Sentences
Discrete symbol sequences 

describing the representation 
Mapping from sentences 

to the representation
Latent model 
representation

Distribution over 
sentences

Reconstruction 
error

Representation samples from a pretrained model, brain, etc.
A

B

C

D

…

Figure 1. Form of the shortest program outputting a compositional representation Z. a. Pseudocode of the program, which describes
the representation using sentencesW (sequences of discrete tokens) that are compressed using a prior pw(w), and then maps these sentences
to high-dimensional vectors in representation-space using a function f(w) that outputs the sufficient statistics of a Normal distribution.
decode() is a short function that decodes an object compressed using arithmetic coding (Witten et al., 1987). b. Illustration of the
program compressing a representation from a pretrained model layer, brain region, etc. c. The total Kolmogorov complexity of the
representation is estimated by the length of the shortest program that has this form.

Name Symbol Example (for representations of scene images)

Representation Z∈RN×D Layer activations of a CNN in response to N scene images
Sentences W ∈VN×M Symbol sequence expressing a scene graph for each z∈Z
Language pw Distribution over sentences expressing scene graphs
Semantics f Embed & concatenate each object/relation in the scene graph
Recon. error N (z;f(w)) Correct remaining error unaccounted for by the semantics

Table 1. Components of assumed shortest program that outputs a compositional representation Z

sentation describes visual scenes, the sentences might specify
the objects and relations that the scene is composed of.

To encode sentences in their most compressed form, the
program should also define a distribution over the sentences
pw(w). This is because optimal coding schemes (e.g.,
arithmetic coding Witten et al., 1987) allow us to encode
an object using only − log p(x) bits if p is known (see
Equation (7)). Together then, the part of the program in
Figure 1 that describes a representation using discrete
sentences contributes a total Kolmogorov complexity of:

K(pw)+K(W |pw)=K(pw)−
∑N

n=1
logpw(wn).

Step 2: decode Z from W Given sentences W , the
program must output Z. It must therefore define a function
f :VM→RD—which we call the semantics in analogy to
natural language—that maps discrete tokens sequences to
their high-dimensional vector representations. In general,
f(wn) will not perfectly reconstruct zn (wn is discrete but
zn is continuous), and these errors must be corrected. This
can be achieved if f outputs the sufficient statistics of some
distribution in RD, in which case the number of bits needed

to encode zn is−logp(zn;f(wn)). For simplicity, we take
p to be a Normal distributionN whose mean and standard
deviation are given by f(wn). In sum, the part of the
program in Figure 1 that decodes representations from their
sentences contributes a total Kolmogorov complexity of:

K(f)+K(Z|W,f)=K(f)−
∑N

n=1
logN (zn;f(wn)).

As a small technical note, because Z lives in a continuous
space, it would take an infinite number of bits to encode.
Thus, in practice, Z must be discretized to some finite
precision and a discrete approximation of the Normal
distribution can be used (e.g., the Skellam distribution).

Summary The steps above describe a program outputting
Z. We take representations to be compositional if they
are highly compressible as a function of constituent parts
(justified in Section 3). Under this framework, the total Kol-
mogorov complexity of the representation decomposes as:

K(Z)= min
pw,W,f

K(pw)+K(W |pw)+K(f)+K(Z|W,f)

(1)

3



Towards a Formal Theory of Representational Compositionality

The minimization above is important: the shortest program
is the one in which pw, W , and f are jointly selected so as
to minimize the total program length. With K(Z) defined,
we can provide some more intuition for its components.

K(pw) is the complexity of the language used to describe the
representation. For instance, a language in which each word
is independent of the others would be simpler than a language
in which each word is highly context-sensitive. K(W |pw) is
the complexity of the sentences needed to describe the repre-
sentation using the language pw. If sentences tend to be typi-
cal utterances with high probability under the language, they
will have low complexity. K(f) is the complexity of the se-
mantics that define how sentences (discrete token sequences)
map to their meanings (high-dimensional vectors). This term
is central to the definition of compositionality that we will
introduce in Section 3. K(Z|W,f) arises from imperfect
reconstructions of Z, such as errors due to continuous parts
of Z that can’t be modeled as a function of discrete inputs.

3. Representational Compositionality
Our definition of compositionality is a ratio of constituent
terms in the decomposition of K(Z) in Equation (1):

Definition 2 (Representational compositionality)
The compositionality of a representation C(Z) is:

C(Z)=
K(Z)

K(Z|W )
=

K(Z)

K(f)+K(Z|W,f)
, (2)

where W , and f are obtained from the shortest program that
compresses Z in Equation (1).

Crucially, pw, W , and f are not free parameters: they are
intrinsic to the representation in that they best compress Z
(see the minimization in Equation (1)). Like Kolmogorov
complexity, C(Z) is intractable to compute, but it can still be
tractably estimated using efficient compression and optimiza-
tion methods. In Appendix B, we outline a strategy for esti-
mating (pw,W,f) and thus, C(Z) for general cases, though
we leave precise implementation for future work. Impor-
tantly, Definition 2 can also be adapted for language systems
where a symbolic mappingW (a language) is given and fixed:

Definition 3 (Language system compositionality)

The compositionality of a language CL(Z) is:

CL(Z)=
K(Z)

K(Z|WL)
=

K(Z)

K(fL)+K(Z|WL,fL)
, (3)

where fL is obtained from the shortest program that com-
presses Z given sentences WL.

Intuitively, C(Z) measures how expressive a representation

is relative to how well it can be compressed as a simple
function of parts W that constitute an intrinsic language. In
CL(Z), however, the language WL is externally defined;
for instance in a natural language, WL are the sentences that
a person might utter while Z are the neural activity patterns
that those sentences elicit. While C(Z) is more general,
CL(Z) can be used to estimate the compositionalities of
real-world languages or other mappings between symbolic
sequences and representations (e.g. tokenization schemes),
making it a useful tool for AI development. In addition,
CL(Z) can be used to investigate a learned representation’s
compositionality with respect to a dataset’s underlying gen-
erative factors, as is done in prior work (Ren & Sutherland,
2024; Wiedemer et al., 2023; Ren et al., 2023).

In Section 4, we will first illustrate and test properties of
C(Z) using synthetic data where computations are tractable.
We follow with real-world evaluation of CL(Z) on various
language systems. Before doing so, we begin by unpacking
our definitions to see how they account for the problems
of the colloquial Definition 1 and explain computational
properties typically associated with compositionality. We
discuss related work around compositionality in Section 5
and limitations of our definition in Section 6.

Expressivity and compression Representational compo-
sitionality says that the compositionality of a representation
is a compression ratio that depends on two things: (1)
the complexity of the representation (numerator), and
(2) the complexity of the semantics which construct the
representation from its constituent parts (denominator).
When a representation is highly expressive (high K(Z))
but can nevertheless be compressed as a simple function of
constituent parts (low K(Z|W )), representational composi-
tionality says that the representation is highly compositional.
Representational compositionality therefore formalizes
a hypothesis in cognitive science that compositionality
emerges from competing pressures for expressivity and
compression (e.g., Kirby, 1999; Kirby et al., 2004; 2008, and
references therein), which has also recently been explored in
AI from a theoretical perspective (Ren & Sutherland, 2024).

Constituent “parts” are intrinsic to Z Unlike the
colloquial Definition 1, representational compositionality
makes it clear where the constituent parts (tokens in W ),
complex expressions (W ), and structure (f ) associated with
a representation come from: optimal compression. This is a
significant difference between Definition 2 and other related
ideas in the literature which quantify compositionality in
terms of reconstruction from externally-defined parts (e.g.,
Andreas, 2019; Trager et al., 2023; Lewis et al., 2022).

Systematicity and generalization Representational com-
positionality formalizes the intuition that the constituent parts
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of a compositional representation determine the meaning of
the whole in a systematic way (Szabó, 2022; 2012), where
“systematicity” is a term from cognitive science that roughly
means “structured” or “non-arbitrary”. If f arbitrarily maps
sentences w to their representations z in a way that does not
take the structure or words of the sentence into account (as
in the case of idioms), then its complexity K(f) is necessar-
ily high and compositionality is low (we demonstrate this
through experiments in Section 4.1). In addition, if f is inac-
curate in how it maps sentences to their representations, the
errorK(Z|W,f) is high and the compositionality low. A rep-
resentation that is highly compositional according to our def-
inition thus benefits from the generalization ability of simple
functions (lowK(f)) that fit their data well (lowK(Z|W,f)).
This ability of f to generalize to novel sentences explains the
fundamental relationship between compositionality and no-
tions of systematicity from cognitive science (Szabó, 2022).

Structure-preserving maps Representational composi-
tionality explains the widely-held intuition that semantics
functions f which are compositional are structure-preserving
in how they map w → z (Montague et al., 1970). In a
structure-preserving map, each word in the sentence w inde-
pendently affects a different subspace of the representation
z so that pairwise-distances are similar in sentence-space
and representation-space. As explained in Ren et al. (2023),
structure-preserving maps have lower complexity, and
thus higher compositionality according to our definition.
We support this claim empirically through experiments in
Section 4.1.

Modularity Representational compositionality explains
the relationship between compositionality and modularity,
which has been difficult to formally articulate in past
work (Lepori et al., 2023; Goyal & Bengio, 2022; Mittal
et al., 2022). Modularity refers to a system which can be
decomposed into interacting sub-parts that can be understood
separately (Poole & Mackworth, 2010); an example in ML is
mixture-of-experts models. A modular f is simple because
it decomposes knowledge into smaller reusable components,
each of which only needs to be defined once. This also
explains why natural language is highly compositional. Lin-
guists model language using context-free grammars (Chom-
sky, 1956), in which a sentence decomposes into a parse tree
with a “production rule” recursively applied at each node.
The production rules are akin to a small number of reusable
modules in f , giving language simple semantics. We support
these claims empirically through experiments in Section 4.1.

Ultimately, a formal definition of compositionality should be
judged based on whether it agrees with our intuitions and gen-
eralizes them in meaningful ways. Based on the properties
listed above, we argue that representational compositionality
satisfies all of these desiderata. To provide further intuition

for representational compositionality and its implications, we
describe some concrete illustrative examples in Appendix D.

4. Empirical Results
In this section, we evaluate our compositionality definitions,
C(Z) and CL(Z), on both synthetic and real-world datasets
to see if they agree with intuitions.

We compare to a heuristic metric of compositionality called
topological similarity that is commonly used in the literature.
For some (W,Z), topological similarity computes a distance
between all pairs of sentences ∆ij

W = dW(wi,wj) using a
distance metric dW(·) inW , and a distance between all pairs
of representation elements ∆ij

Z =dZ(zi,zj) using a distance
metric dZ(·) inZ . It then computes the Pearson correlation
ρ between the two pairwise distance matrices, quantifying
the degree to which the two spaces share linear structure.

4.1. Synthetic Representations

We first consider representations Z that are generated syn-
thetically using known rules through: z∼N (z;f(w)),w∼
pw(w). Since we know the underlying programs that
generated the representations in this case, we know the true
complexity termsK(pw),K(W |pw),K(f), andK(Z|W,f)
needed to compute C(Z) exactly, allowing us to better
validate representational compositionality. We describe our
synthetic representations below (details in Appendix I).

Lookup tables The simplest way to construct a represen-
tation from sequences of discrete tokens is to assign each
token in the vocabulary a fixed embedding in a lookup table,
and then concatenate these embeddings across the sequence
(Figure 2a). Alternatively, the lookup table could assign each
unique n-gram an embedding and we could concatenate the
embeddings for consecutive n-sized chunks in the sequence.
We call n the “disentanglement” factor because n = 1
corresponds to a representation in which each word fully
determines a subset of dimensions in the representation. We
generate representations by varying certain parameters of
the generative program while keeping others constant, and
observe the effects on compositionality in Figure 2b.

Sentence length: As sentence length increases, compo-
sitionality should intuitively increase. For instance, if
sentences are of length 1, we are not tempted to call the
representation compositional. The more the representation
decomposes according to parts, the more compositional it
should be. Representational compositionality empirically
matches this intuition becauseK(Z) increases with sentence
length (there are more possible z values, for instance)
and K(f)—proportional to the size of the lookup table—
decreases with sentence length (embeddings become
lower-dimensional). In contrast, topological similarity
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a. Lookup table

d. Synthetic grammar results

b. Lookup table results

c. Synthetic grammar

w :

z :

f :

A B A

[ − ]

scared A d j cats N run Vw :

z :

f :
N P

V P

R1

R2

R1 : A d j + N 𝒩 N P
R2 : N P + V 𝒩 V P. . .

Ri : [x1, x2] Ai

. . .

Repr. comp. (ours) 
Top. similarity

Repr. comp. (ours) 
Top. similarity

Figure 2. Compositionality of synthetically-generated representations. C(Z) is consistent with intuitions about compositionality across
all experiments, whereas topological similarity is not. a. In lookup table representations, words (or n-grams) are assigned embeddings
which are concatenated to form z. b. Compositionality as a function of ground-truth representation properties. “Disentanglement” refers
to varying n-gram size. c. In grammar representations, sentences are parsed with a context-free grammar, and each production rule
is associated with a linear projection. Production rules are recursively applied, and the embedding at the parse tree’s root defines z. d.
Compositionality as a function of ground-truth properties of the grammar. Error bars show σ over 10 seeds.

decreases with sentence length, thus violating intuitions.

Vocabulary size: If the vocabulary is too small relative to
sentence length, then expressivity and compositionality are
limited (e.g., with only one word, nothing can be expressed).
On the other hand, if the vocabulary is too large relative to sen-
tence length, then compositionality is low because expressiv-
ity doesn’t come from combining constituent parts (e.g., with
one-word sentences, there is no notion of parts). For a given
sentence length, then, compositionality should peak at some
intermediate vocabulary size. We observe this empirically
with representational compositionality: a sharp early increase
in compositionality followed by a monotonic decrease as vo-
cabulary size increases further. In Appendix E, we confirm
that this peak compositionality occurs at larger vocabulary
sizes for larger sentence lengths. While topological similar-
ity also decreases with vocabulary size, it does not show the
early increase, and is in fact largest for a vocabulary size of 1.

Representation dimensionality: We increased representation
dimensionality by increasing the dimensionality of the word
embeddings. The representation grows more expressive with
dimensionality, but from increased word complexity rather
than word combinations. We should therefore expect com-
positionality to decrease. Representational compositionality
empirically captures this phenomenon because the only thing
increasing in this scenario is the size of the lookup tableK(f),
so that C(Z) decreases. Topological similarity, in contrast,
increases as a function of representation dimensionality.

Disentanglement: When the meanings of words are context-
dependent, a language is considered less compositional (e.g.,

idioms like “break a leg” are not considered compositional).
Compositionality should therefore decrease as a function
of disentanglement. Notably, a disentanglement of 1 in these
experiments corresponds to a structure-preserving map,
which has grounded some longstanding intuitions about
compositionality (Montague et al., 1970). Representational
compositionality empirically aligns with expectations by
decreasing as a function of disentanglement because the
size of the lookup table defining K(f) grows exponentially.
This supports the claims we made in Section 3 about
how our definition encompasses prior intuitions around
structure-preserving maps. Topological similarity follows
the same trend as our definition in this case because it is
designed to be maximal for a structure-preserving map.

Context-free grammars While our lookup table exper-
iments provide intuitions for representational compositional-
ity, they are unlikely to reflect the structure of representations
in DNNs and brains. For instance, The Language of Thought
hypothesis (Fodor, 1975) posits that representations under-
lying human thought have a hierarchical structure akin to
context-free grammars in natural language (Chomsky, 1956).
In such grammars, the meanings of sentences decompose
according to parse trees, where children merge into parents
through production rules and leaves correspond to words.
For instance, the sentence “scared cats run” decomposes ac-
cording to “ADJECTIVE (scared) + NOUN (cats) →
NOUN-PHRASE (scared cats)” followed by
“NOUN-PHRASE (scared cats) + VERB (run) →
VERB-PHRASE (scared cats run)”, where symbols such
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as NOUN-PHRASE are parts of speech (similar to data
types) and functions between parts of speech such as
NOUN+VERB→VERB-PHRASE are production rules.

To model such systems using representational composition-
ality, we generated representations using simple synthetic
grammars (Figure 2c). First, we assigned each word in
a vocabulary an embedding and a part of speech, and we
defined a grammar with a set of production rules. We
then generated a dataset of sentences and parsed them
using the grammar. Finally, the semantics were defined by
embedding each word in the sentence and then applying a
rule-specific function at every node in the parse tree until
the root was reached, whose value we defined to be the
representation. The rule-specific functions concatenated
children embeddings and applied a linear projection.

We generated many synthetic representations in this way and
measured their resulting representational compositionality
(Figure 2d). For representational compositionality to match
intuition, the number of rules in the grammar should be
inversely proportional to compositionality. For example, in
a natural language like English, we can express an infinite
number of ideas using a relatively small set of grammatical
rules and vocabulary, and this is why we believe natural
language is compositional. We thus varied two properties
of the grammar: its “width” and its “depth”. Width refers
to the number of rules that are defined for each level of the
parse tree’s hierarchy. Depth refers to the number of levels
in the parse tree’s hierarchy with unique rules prior to solely
recursive application.

As both width and depth increase the complexity of the
grammar, we should expect compositionality to decrease
as a function of both. Representational compositionality
is empirically consistent with this intuition because K(f)
increases as a function of the number of rules, each of
which was associated with its own linear projection matrix.
Topological similarity only loosely correlates with intuition,
and has far more noise for different draws ofZ from the same
grammar. Notably, these experiments support the theoretical
claims made in Section 3 on how our definition relates
compositionality to modularity, because each production
rule serves as an independent module in f .

4.2. Emergent Languages from Multi-Agent Training

Next, we further validate our compositionality metric by
applying it to real-world representations. To avoid having
to solve the difficult optimization problem involved in mea-
suring C(Z) (which requires a minimization of K(Z) w.r.t.
pw, W , f ) we instead consider language systems in which
W =WL is fixed and measure CL(Z) through Definition 3.

One interesting case of real language systems is those
that emerge in multi-agent settings where agents must
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Figure 3. Compositionality of language systems that emerge
in multi-agent settings. Our language system compositionality
metric CL(Z) agrees with topological similarity on the ordering of
models trained with and without iterated learning, but the numerical
values provided by CL(Z) provide more theoretical insight (see
main text). Error bars show σ over 5 seeds.

learn to communicate. We consider the setting of Li &
Bowling (2019); Ren et al. (2020) in which a speaker and
a listener learn to communicate in a simple object reference
game, where objects have symbolic attributes analogous to
color, size, shape, etc. Agents trained using reinforcement
learning typically communicate successfully, but often
learn non-compositional language systems that arbitrarily
map sentences to objects. However, Li & Bowling (2019);
Ren et al. (2020) have shown that compositionality can
emerge through a multi-generation process called iterated
learning (Kirby et al., 2015), where the agents’ parameters
are periodically reset and pretrained on sentence/object pairs
from the previous generation. Kirby et al. (2015) hypothesize
that this occurs because iterated learning amplifies a model’s
inductive bias for simpler language systems that are more
easily learnable across subsequent generations.

We trained agents both with and without iterated learning
and measured CL(Z) for the resulting language systems.
Training details are provided in Appendix J. After N gener-
ations, we obtain a dataset consisting of all possible objects
Z and the sentences output by the speaker WL when given
those objects as input. To measure CL(Z), we need both
K(Z) and K(Z|WL). Since Z consists of a set of sym-
bolic objects sampled uniformly, K(Z) is simply equal to
|O|log2(|O|), whereO is the set of all possible objects. To
measure K(Z|WL), we used a compression method called
prequential coding (Blier & Ollivier, 2018) because it pro-
vides good estimates in practice when DNNs are used for pre-
diction (see Appendix H), but other compression techniques
can be used if they provide tighter bounds. Prequential coding
compressesZ givenW by incrementally encoding individual
datapoints z<i and fitting a model θi−1 to predict them using
w<i as input. The more datapoints are encoded, the better
the model becomes by having seen more training data, and
the more accurately it can predict the next datapoint zi. Since
prediction error is equivalent to complexity, K(zi|wi,θi−1)
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will decrease as a function of i, which means that every sub-
sequent datapoint takes fewer bits to encode. The total com-
plexity K(Z|W ) is estimated by summing all of these terms.

Li & Bowling (2019) and Ren et al. (2020) measured com-
positionality using topological similarity. Using CL(Z), we
find that we are able to reproduce their results (see Figure 3):
iterated learning produces languages that are more compo-
sitional. However, a desirable property of our definition is
that the absolute quantities of the metric are meaningful and
interpretable. In particular, language systems trained without
iterated learning obtain the lowest possible compositionality
score, CL(Z) = K(Z)/K(Z|WL) = 1, meaning that the
mapping from sentences to representations is entirely arbi-
trary. In contrast, topological similarity can at best only be
used as a relative metric for comparing different languages, as
its theoretical link to compositionality is not well understood.

4.3. Natural Languages

While it is commonly accepted that all natural languages
are roughly equal in their expressive power (their ability
to express ideas and thoughts), a highly debated question
in linguistics is whether or not they are all equally compo-
sitional (Joseph & Newmeyer, 2012). This question has
been difficult to answer definitively, partly due to the lack of
principled and quantitative definitions of compositionality.

To investigate the compositionalities of natural language sys-
tems using our definition, we leveraged an existing dataset of
English sentences describing natural images (COCO, 2024),
which we then translated into French, Spanish, German, and
Japanese using a large open source model (Costa-jussà et al.,
2022). To obtain proxies of “meanings”Z for these sentences,
we encoded them using a multilingual LLM that embeds
sentences to a dense fixed-size vector (Reimers & Gurevych,
2020). More experimental details as well as limitations of this
approach can be found in Appendix K. Using these datasets of
sentence/representation pairs, we measured the composition-
alities of each natural language systemCL(Z)using the same
prequential coding approach as in Section 4.2. However, to
estimate CL(Z) exactly, we would also have to estimate
K(Z) in the numerator for each language. While this quan-
tity can be estimated in principle using compression tech-
niques, for the sake of simplicity here we assume that these
natural languages are all equally expressive in their abilities to
express ideas and identify referents (i.e., equalK(Z)), which
is a common assumption in linguistics. As a consequence,
however, we cannot estimate the absolute compositionalities
of these languages, but only their relative compositionalities;
for this reason, compositionality in Figure 4 is measured in ar-
bitrary units where we set the compositionality German to 1.

Our results are shown in Figure 4. Using prequential
coding, we find that K(Z|WL) is similar for all languages,
indicating that they have semantics fL of roughly equal

Figure 4. Compositionality of natural language systems. We
consider language natural systems in which WL are sentences
in some language and Z are sentence embeddings obtained from
a pretrained multilingual model. The relative compositionalities
of languages measured using our definition CL(Z) are similar
(left). Note that we do not estimate the numerator K(Z) of CL(Z)
and assume that it is constant across languages; as a result we can
only compare relative compositionalities but do not know their
absolute values (y-axis in arbitrary units, a.u.). c. Using topological
similarity as a measure of compositionality gives counter-intuitive
results (right): most languages have near-zero topological similarity
and Japanese is a strong outlier with a topological similarity of
−0.2. Error bars show σ over 3 seeds.

complexity. This means that the relative compositionalities
of these languages as measured by our definition CL(Z)
are roughly equivalent, with Japanese being slightly more
compositional. This result shows that our definition
supports the equal compositionality side of the debate in
linguistics surrounding natural languages that motivated this
experiment at the start of the section (Joseph & Newmeyer,
2012). Using topological similarity as an alternative
definition of compositionality gives counter-intuitive results
that contradict our own: most languages have near-zero
topological similarity, except for Japanese which is a strong
outlier with a negative topological similarity of−0.2.

5. Related Work
Communication and simplicity Our definition is most
closely related to experimental work in cognitive science
which suggests that compositional languages evolve over
time in human cultures due to competing pressures for effec-
tive communication and simplicity (Kirby, 1999; Kirby et al.,
2004; 2008)—a result which has also been explored in AI
(Li & Bowling, 2019; Ren et al., 2020; 2023; Ren & Suther-
land, 2024) through emergent languages games described in
Section 4.2. Our work builds on these foundations in several
ways. First, we formalize the notions of a language (the tu-
ple (W,f,Z)), the language’s simplicity (simple semantics
with low K(f)), and effective communication (expressive
meanings through high K(Z) with low information loss
K(Z|W,f)). Second, Kirby’s work is about the composi-
tionality of a language system whereW is externally-defined
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(our Definition 3), whereas we also provide a definition for
representational compositionality where W is intrinsically
defined through optimal compression of Z. The latter notion
is more directly relevant to the Language of Thought hypothe-
sis (Fodor, 1975) and to the learned representations of DNNs.

Representation reconstruction Many formal definitions
frame compositional representations as those that can be
reconstructed as a function of parts—our definition can
be seen as an extension or generalization of many of these
alternatives. First, reconstruction-based approaches to quan-
tifying compositionality often measure the reconstruction
error of a representation Z from externally-defined parts W ,
where W might be the input to the function that output Z
(Andreas, 2019; Ram et al., 2024), paired natural language
data (Trager et al., 2023; Lewis et al., 2022), or underlying
task latent variables (Wiedemer et al., 2024; 2023)—again
representational compositionality extends these works by
defining a W that is intrinsic to Z in a non-arbitrary way
through optimal compression.

Second, prior work measuring compositionality through
reconstruction from parts often makes strong assumptions
about the form of the reconstruction for instance that
it is a linear (Yun et al., 2021; Trager et al., 2023) or
hierarchical (Andreas, 2019; Ram et al., 2024) function of
word embeddings. In contrast, our definition makes no such
assumptions and abstracts over arbitrary functions through
the lens of their complexity K(f), thereby generalizing
prior work. When reconstruction-based approaches do not
explicitly constrain complexity by imposing functional
constraints (e.g., when they instead use use unconstrained
DNN decoders), they neither minimize nor measure the
complexity of the resulting semantics function, but instead
measure the generalization ability of this function to novel
sentences (Lewis et al., 2022; Bricken et al., 2023), which
can be seen as a proxy for simplicity.

6. Limitations
Representational compositionality, while of theoretical in-
terest for understanding compositionality, is uncomputable
because its terms involve Kolmogorov complexities. Like
Kolmogorov complexity, it can be estimated using tractable
compression algorithms, but while we did this for CL(Z)
we did not attempt it for C(Z) in the current paper. We sug-
gested one way that C(Z) could potentially be estimated in
Appendix B that involves training a discrete auto-encoder
with a maximum likelihood prior in the latent space, but
in practice this approach might be sensitive to modeling
choices such as the DNN architectures, the training hyperpa-
rameters, and the quantity of training data. Indeed, related
reconstruction-based approaches to measuring composition-
ality (Section 5) that impose tighter modeling constraints

such as linear semantics (Yun et al., 2021; Trager et al., 2023)
might be inherently more stable than our approach, because
there are fewer modeling choices to make. However, we also
emphasize that the advantage of an abstract definition like
ours is precisely that it allows practitioners to design a breadth
of estimators that make different tradeoffs between flexibility
and sensitivity to modeling choices. Empirical comparisons
between our definition and other reconstruction-based mea-
sures is an important direction for future work. Finally, we
defined compositionality with respect to discrete parts, but it
may be possible to generalize this to continuous parts as well.

7. Conclusion
We introduced a novel definition of compositionality
grounded in algorithmic information theory. Using theoreti-
cal arguments and empirical experiments, we showed that this
simple definition not only accounts for our many intuitions
about compositionality, but also extends them in useful ways.

In virtue of being quantitatively precise, representational
compositionality can be used to investigate compositionality
in real-world systems. We demonstrated this with emergent
and natural languages where the sentences describing a
representation are externally defined. In future work, this
quantity can readily be applied to score tokenization schemes
producing different representations in downstream models,
which may lead to improvements in their design.

More generally, measuring the compositionalities of repre-
sentations without a given mapping to sentences is an impor-
tant direction for future work, as it will allow us to investigate
the compositionalities of representations that emerge from
different learning objectives, neural architectures, inductive
biases, and brain regions. In turn, we will be able to see how
representational compositionality empirically relates to other
topics in ML such as compositional generalization, multi-
task generalization, and latent space generative models—we
give some hypotheses and ideas for future work along
these lines in Appendix F. In particular, representational
compositionality has the potential to explain the success of
varied methods because it defines compositionality through
compression, which abstracts across the architecture, learn-
ing details, and particular representational format of a model.
Representational compositionality can therefore be used to
validate or reject diverse hypotheses about compositionality,
such as the Language of Thought hypothesis (Fodor, 1975).

We hope that representational compositionality can also aid
in the design of machine learning models with principled
inductive biases for compositionality. Namely, in addition
to supporting a given task, a compositional representation
must be easily describable as a simple function of constituent
parts; we describe some approaches for achieving this in
Appendix G that can be pursued in future work.
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Anaya Pozo, L., Hewitt, L., Solar-Lezama, A., and
Tenenbaum, J. B. Dreamcoder: growing generalizable,
interpretable knowledge with wake–sleep bayesian
program learning. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and
Engineering Sciences, 381(2251), June 2023. ISSN
1471-2962. doi: 10.1098/rsta.2022.0050. URL http:
//dx.doi.org/10.1098/rsta.2022.0050.

Fodor, J. A. The language of thought, volume 5. Harvard
university press, 1975.

Fortnow, L. Kolmogorov complexity. In Aspects of
Complexity, Minicourses in Algorithmics, Complexity, and
Computational Algebra, NZMRI Mathematics Summer
Meeting, Kaikoura, New Zealand, pp. 73–86, 2000.

Garcez, A. d. and Lamb, L. C. Neurosymbolic ai: The 3 rd
wave. Artificial Intelligence Review, 56(11):12387–12406,
2023.

Goldblum, M., Finzi, M., Rowan, K., and Wilson, A. G.
The no free lunch theorem, kolmogorov complexity, and
the role of inductive biases in machine learning. arXiv
preprint arXiv:2304.05366, 2023.

Gordon, J., Lopez-Paz, D., Baroni, M., and Bouchacourt,
D. Permutation equivariant models for compositional
generalization in language. In International Conference
on Learning Representations, 2020. URL https:
//openreview.net/forum?id=SylVNerFvr.

Goyal, A. and Bengio, Y. Inductive biases for deep learning
of higher-level cognition. Proceedings of the Royal
Society A, 478(2266):20210068, 2022.

Goyal, A., Lamb, A., Gampa, P., Beaudoin, P., Levine, S.,
Blundell, C., Bengio, Y., and Mozer, M. Object files
and schemata: Factorizing declarative and procedural
knowledge in dynamical systems. arXiv preprint
arXiv:2006.16225, 2020.

Goyal, A., Didolkar, A., Ke, N. R., Blundell, C., Beaudoin,
P., Heess, N., Mozer, M. C., and Bengio, Y. Neural
production systems. Advances in Neural Information
Processing Systems, 34:25673–25687, 2021.

Grünwald, P. D. The minimum description length principle.
MIT press, 2007.
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Szabó, Z. G. The case for compositionality. In The
Oxford Handbook of Compositionality. Oxford Uni-
versity Press, 02 2012. ISBN 9780199541072. doi:
10.1093/oxfordhb/9780199541072.013.0003. URL
https://doi.org/10.1093/oxfordhb/
9780199541072.013.0003.
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A. Background on Kolmogorov complexity
Kolmogorov complexity was independently developed in the 1960s by Kolmogorov (1965), Solomonoff (1964), and Chaitin
(1966), and defines a notion of “information quantity”.

Intuitively, the Kolmogorov complexity of an object is the length of the shortest program (in some programming language) that
outputs that object. Specifically, given some finite string x,K(x) is the length l(r) (in bits) of the shortest binary program r that
prints x and halts. LetU be a universal Turing machine that executes these programs. The Kolmogorov complexity of x is then:

K(x)=min
r
{l(r) :U(r)=x,r∈{0,1}∗}, (4)

where {0,1}∗ denotes the space of finite binary strings. A related notion is the conditional Kolmogorov complexity of a string
x given another string y, which is the length of the shortest program that takes y as input and outputs x:

K(x|y)=min
r
{l(r) :U(r(y))=z,r∈{0,1}∗}, (5)

where r(y) denotes a program taking y as input. Finally, we can also define a “joint” Kolmogorov complexity K(x,y), which
denotes the length of the shortest program that jointly outputs both x and y. Surprisingly, joint Kolmogorov complexity is
related to conditional Kolmogorov complexity (up to an additive logarithmic term, which we will ignore) by the Symmetry
of Information theorem (Li et al., 2008):

K(x,y)=K(y|x)+K(x)=K(x|y)+K(y). (6)

Kolmogorov complexity has many intuitive properties that make it attractive as a measure of information quantity, and
although it is less common than notions from Shannon information theory (Shannon, 2001), it is strictly more general (as we
will show later below). The smaller and the more “structure” an object has—regularity, patterns, rules, etc.—the more it can
be compressed using a short program and the lower its Kolmogorov complexity. Kolmogorov complexity therefore is deeply
rooted in the idea of compression. For instance, a sequence with repeating patterns or a dataset that spans a low-dimensional
subspace can be significantly compressed relative to its original size, and this results in low Kolmogorov complexity. In
contrast, a random string devoid of any structure cannot be compressed at all and must in effect be “hard-coded”, making
its Kolmogorov complexity equal to its original size in bits.

While powerful, Kolmogorov complexity has certain limitations. First and foremost, Kolmogorov is intractable to compute
exactly because it requires a brute force search over an exponentially large space of possible programs. It is therefore often
of conceptual rather than practical value, although it can nevertheless be upper-bounded using more efficient compression
strategies. Second, Kolmogorov complexity depends on the programming language of choice. For instance, if a programming
language has a built-in primitive for the object being encoded, Kolmogorov complexity is trivially small. This concern,
however, is often overblown: given any two Turing-complete programming languages, the difference in Kolmogorov
complexity that they assign to an object is upper-bounded by a constant that is independent of the object itself, because any
Turing-complete programming language can simulate another (Grünwald & Vitányi, 2003; Fortnow, 2000). In practice,
we can simply consider “reasonable” Turing-complete programming languages that don’t contain arbitrary object-specific
primitives, in which case this simulation constant will be relatively small and the particular programming language of choice
will have little effect. Finally, Kolmogorov complexity is only defined for discrete objects because no terminating program
can output a continuous number with infinite precision. This concern is also less consequential in practice, because we can
always represent continuous objects using finite (e.g., floating-point) precision.

Important properties for machine learning In ML, we are often concerned with datasets and probabilistic models.
Kolmogorov complexity relates to these two concepts in several interesting ways. First, we can ask about the Kolmogorov
complexity of a finite dataset X =(x1,...,xn) where each sample is drawn iid from a distribution p(x). It turns out that if
we have access to the true distribution p(x), optimal algorithms such as arithmetic coding (Witten et al., 1987) can encode
each sample using only log2p(xi) bits. Intuitively, this is because samples that occur more frequently can be encoded using
shorter codes in order to achieve an overall better compression. We thus have that:

K(X|p)=−
n∑

i=1

log2p(xi). (7)

15



Towards a Formal Theory of Representational Compositionality

If instead of access to the true distribution p(x) we only have a probabilistic model of the data pθ(x), we have that:

K(X|pθ)≤−
n∑

i=1

log2pθ(xi), (8)

where we have equality when pθ=p. This insight is significant. Notice that−
∑n

i=1log2pθ(xi) is the negative log-likelihood
of the data under the model, which is a common loss function used in ML. This tells us that models with lower error better
compress their data, and directly relates Kolmogorov complexity to optimization in ML. However, what if we do not have
a model? What is the Kolmogorov complexity of the data itself? Intuitively, if the dataset is sufficiently large, the optimal
method for encoding it should be to first specify a model and then encode the data using that model as in Equation (8).
Specifically, using identities in Fortnow (2000), we have:

K(X)≤K(X|pθ)+K(pθ). (9)

This encoding scheme on the RHS is referred to as a 2-part code (Grünwald, 2007). We have equality when the model’s de-
scription length and error are jointly minimized, which occurs when the model pθ(x) is equivalent to the true distribution p(x):

K(X)=argmin
pθ

K(X|pθ)+K(pθ)=argmin
pθ

−
n∑

i=1

log2pθ(xi)+K(pθ) (10)

=K(X|p)+K(p)=−
n∑

i=1

log2p(xi)+K(p). (11)

Again, we can draw important connections to ML. Equation (9) says that the Kolmogorov complexity of a dataset is
upper-bounded by the a model’s error and complexity. In addition, Equations (10) and (11) tell us that the simplest model that
explains the data is most likely to be the true one, which draws a theoretical link between compression, maximum likelihood
training, model complexity, and generalization (Goldblum et al., 2023).

Relation to Shannon information In Shannon information theory (Shannon, 2001), the notion of information quantity
is entropy. Given a random variable X ∼ p(x), entropy is defined as: H(X) = Ex∼p(x)− log2(p(x)). Notice that the
−log2(p(x)) inside the expectation is equal the quantity inside the sum of Equation (7), which specified the minimum number
of bits needed to encode a sample from a dataset given the distribution that sample was drawn from. This is no accident:
entropy can be seen as the average number of bits needed to compress events from a distribution using an optimal encoding
scheme when the distribution p(x) is known. If we simply sum these bits for a finite number of samples instead of taking
an expectation, we get exactly K(X|p) as defined in Equation (7).

As we have seen, though, the assumption about a known distribution p(x), need not be made in the Kolmogorov complexity
framework. In this sense, Kolmogorov complexity is a strict generalization of Shannon information theory: K(X) as defined in
Equation (11) is equivalent to summed entropy plus the complexity of the distribution p(x), which is unknown and needs to be
encoded. In the Shannon framework, it is difficult to derive a meaningful notion for the information quantity in the distribution
p(x) because it is an individual object—a function, in particular—and Shannon information is only defined for random variables
(Grünwald & Vitányi, 2003). A second drawback of Shannon information is that entropy is a measure of statistical deter-
minability of states; information is fully determined by the probability distribution on states and unrelated to the representation,
structure, or content of the individual states themselves (Grünwald & Vitányi, 2003). For this current work, we require a notion
of complexity that can account for representations and functions, making Kolmogorov complexity better suited to the task.

B. Compressing a representation using discrete auto-encoders
To measure compositionality as defined in Definition 2, we must first compress K(Z) using the program form in Section 2.
This involves finding a pw, W , and f that jointly minimize:

K(Z)= min
pw,W,f

K(pw)+K(W |pw)+K(f)+K(Z|W,f) (1 revisited)

= min
pw,W,f

K(pw)−
N∑

n=1

logpw(wn)+K(f)−
N∑

n=1

logN (zn;f(wn)).
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While this is an intractable search problem, it can be turned into an easier optimization problem using modern deep learning
tools. In particular, we can minimize at least some of the terms in Equation (1) by fitting a discrete auto-encoder to Z using
a learned prior in the latent W -space, as illustrated in Figure B.1. This auto-encoder consists of an encoder w= e(z) that
maps the representation to a discrete latent space of sentences, a latent prior pw(w), and a decoderN (z;f(w)) that outputs
the sufficient statistics of a Gaussian distribution in order to evaluate the likelihood of the original representation. In practice,
the latent prior pw(w) can be parameterized using an auto-regressive model such as a causal Transformer, which tends to
work well on language data. We can then train this discrete auto-encoder using the following loss function:

L(Z;e,pw,f)=
∑
z∈Z

−logpw(e(z))−logN (z;f(e(z))). (12)

The first term in this loss ensures that W has high prior likelihood, and optimizes both the prior model pw as well as the
encoder e that produces the latent sentences. The second term in the loss ensures that Z has high likelihood given W , and
optimizes the decoder f as well as the encoder e so that they preserve information about Z. Recall from Equation (7) that
the negative likelihood of an object under some probability distribution is equal to its conditional Kolmogorov complexity
given that distribution. As a result, minimizing the loss in Equation (12) is equivalent to finding a pw, W , and f that jointly
minimize K(W |pw)+K(Z|W,f).

Auto-regressive prior

Sentences Representation

pw(w )

−(z ; f (w ))
Z 𝒩 ∈Nℝ DW 𝒩 ×Nℝ M

Decoder

fe

EncoderRepresentation

Z 𝒩 ∈Nℝ D

𝒱 = ≈ log pw(W ) ≈ log p (Z | f (W ))
1. Fit a discrete auto-encoder with learned prior 2. Measure complexity terms

K (Z ) = K ( pw) + K (W | pw) + K ( f ) + K (Z |W, f )

Figure B.1. Estimating the complexity of a representation K(Z) by fitting a discrete auto-encoder with learned latent prior. The
encoder, prior, and decoder are jointly trained with a loss that maximizes the likelihood of Z using sentences that have high prior likelihood
pw(W ). If pw and f are also regularized to be simple functions, fitting this discrete auto-encoder is equivalent to finding a pw, W , and
f that jointly minimize K(Z).

To measure K(Z), we also need to minimize K(pw) and K(f). For this, two options present themselves:

1. Hope that the implicit simplicity bias of DNNs trained using SGD does a good enough job on its own of finding solutions
with low complexity (Blier & Ollivier, 2018).

2. Use additional regularization techniques that implicitly minimize the complexities of the models, such as simple
architectures, L1 or L2 weight penalties, modularity (Goyal & Bengio, 2022), dropout (Hinton et al., 2012), periodic
resetting (Zhou et al., 2021), etc.

Regardless of which method is used, the complexities of the final trained models can be estimated using a method called
prequential coding (Blier & Ollivier, 2018), which we describe in Appendix H. Thus, we are able to estimate all of the
constituent complexity terms of K(Z) in Equation (1). The main challenge in this overall approach then becomes how to
successfully train a discrete auto-encoder with a prior in latent space, in a way that is both stable and scalable.

VQ-VAE The most popular method for training discrete auto-encoders is the Vector-Quantized Variational Auto-Encoder
(VQ-VAE) (Van Den Oord et al., 2017). While the latent prior in a VQ-VAE is generally trained post-hoc, some work has
managed to train the prior end-to-end along with the rest of the model (Jones & Moore, 2020; Yasuda et al., 2021; Cohen
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et al., 2022). The main challenge with VQ-VAEs is that they explicitly discretize in the latent space during training—which
is an inherently non-differentiable operation—and then attempt to approximate gradients using imperfect estimators (Bengio
et al., 2013; Jang et al., 2016). As a result, training is often unstable and fraught with degenerate solutions that collapse in
the latent space (Łańcucki et al., 2020).

Simplicial embeddings Another option, which avoids the difficulty of training with hard-discretization, is to use so-called
simplicial embeddings in the latent space (Lavoie et al., 2023). Simplicial embeddings amount to soft attention: each vector
“chunk” representing a word in the latent space is projected onto |V| word embeddings followed by a softmax, and the
weighted word embeddings are then summed at each sentence position. The temperature of the softmax can then be gradually
decreased over the course of training such that the operation approaches a hard-discretization in the limit. As the operation is
entirely continuous and deterministic, it is easier to train using end-to-end gradient descent methods (although it may become
numerically unstable at low softmax temperatures). One challenge becomes how to define and train the prior pw in this case,
where W is in fact a sequence of continuous word embedding mixtures as opposed to a sequence of discrete tokens. One
possibility is to perform a hard-discretization of the latent before it is passed to the prior, along with relevant gradient estimators
(e.g. Bengio et al., 2013; Jang et al., 2016). While this could make training more difficult, the encoder-decoder part of the
model would at least remain entirely continuous and deterministic. Another option is to define pw in continuous space, where
the input is a sequence of word embedding mixtures and the “next-token” targets are categorical distributions over words.

GFlowNets If we still wish to perform hard-discretization, but do not want to resort to imperfect gradient estimators
required for end-to-end training, Generative Flow Networks (GFlowNets) could be a promising alternative (Bengio et al.,
2021; 2023). GFlowNets can learn to sample some compositional discrete object in proportion to a reward function. The
reward function and GFlowNet can also be conditioned on some input, and the reward function can be learned in alternation
with the GFlowNet using expectation-maximization (GFlowNet-EM) (Hu et al., 2023). In the case of a discrete auto-encoder,
the encoder would be a GFlowNet, while the decoder and prior would be the reward function. While this approach has
been used to train a discrete auto-encoder before (Hu et al., 2023), it comes with its own challenges. First, GFlowNet-EM
is not an end-to-end training procedure (no gradients flow from the decoder to the encoder), which makes it more difficult
to train. Second, while GFlowNets sample proportionally to their reward, our ultimate goal is to maximize the reward (i.e.,
find sentences W that maximize the prior and reconstruction). To do this, we will ultimately have to decay the temperature
of the reward over the course of training in order to settle to a final solution that minimizes the loss in Equation (12). Training
GFlowNets with a sparse reward, however, is more difficult due to exploration challenges (Atanackovic & Bengio, 2024).

Computational complexity If the discrete auto-encoder described in this section can be trained successfully, then estimating
representational compositionality is tractable, despite being defined theoretically in terms of Kolmogorov complexities.
Fitting the auto-encoder itself is tractable using modern machine learning hardware. Then, to estimate K(pw) and K(f)
we must use prequential coding (see Appendix H), which amounts to fitting a neural network at varying dataset sizes. While
fitting a neural network N times (where N is the dataset size) is inefficient, it is nonetheless tractable, and can be approximated
efficiently by chunking the data into coarser sizes as we did in our experiments. There are also methods for computing
prequential coding online rather than retraining the model from scratch each iteration (Bornschein et al., 2022).

C. Assumptions in compressing a representation
In laying out our framework for measuring K(Z) in Section 2, we made several key assumptions.

First, we assumed that the shortest program that outputs Z has a particular form. If it does not, then the estimated K(Z)
can be far greater than the true one. However, we argue that the assumed program form is safe for the kinds of representations
that we are interested in and the kinds of insights we wish to gain from estimating K(Z). Namely, we are interested in seeing
if given neural representations share similar properties to conscious human thought, which is believed to have a symbolic
structure where each thought is a composition of discrete concepts (Fodor, 1975). If a representation does not have this kind
of structure, then our method would detect it in the form of a high estimated K(Z), even if this is an overestimate of the true
Kolmogorov complexity due to incorrectly assuming the program form in Section 2.

Second, actually estimating K(Z) using Equation (1) requires a minimization over pw, W , and f . This optimization approach
assumes that the pw and f which minimize K(Z) are DNNs. While this can seem unintuitive at first given the significant
number of parameters in DNNs, it has been found that they converge to solutions that are remarkably simple and compressible
(Blier & Ollivier, 2018; Goldblum et al., 2023; Sutskever, 2023; Rae, 2023), which likely explains their strong generalization
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abilities. We therefore believe that for neural representations with sufficient complexity, the assumption that they can be
best compressed using DNNs is justified.

D. Examples of compositional representations
To supplement and clarify the arguments in Section 3, it is easiest to gain further intuition for our definition of compositionality
through concrete examples of different hypothetical representations. For each, we have strong intuitions about whether or
not the representation is compositional, and we will see that our definition agrees with—and indeed extends—these intuitions.
We illustrate these examples in Figure D.1.
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Figure D.1. Examples of different representations and their compositionalities according toC(Z). Example 1. A representation whose
clusters lack any structure has semantics f that map w→z arbitrarily using a lookup table, resulting in high K(f) and low C(Z). Example
2. A representation that is smooth and continuous cannot be compressed as a function of discrete parts without incurring significant
prediction error, resulting in high K(Z|W,f) and low C(Z). Example 3. A representation that cannot express many different things
(thoughts, visual scenes, ideas, etc.), such as one that is sampled from a unimodal distribution, has low K(Z) and low C(Z). Example 4. A
representation that can be described by assigning word embeddings which are then processed using a simple operation (e.g., concatenation,
as in disentanglement) has low K(f) and high C(Z). Example 5. A representation whose semantics can be compressed using a small
number of simple and reusable modules has low K(f) and high C(Z). Example 6. A representation whose semantics have a large number
of symmetries, or equivariances, has low K(f) and high C(Z).

Example 1, ↓ C(Z): f is a lookup table from w to z Consider a representation Z that is sampled from a mixture of
Gaussians, where the centroids are far apart but their locations lack any kind of structure (i.e., they are randomly distributed).
To simplify things, let us assume that there are as many unique centroids as there are possible sentences. In such a case, the
semantics function f would identify each centroid with a unique sentence and the resulting error K(Z|W,f) would be low.
However, because these centroids lack any structure, f would have to define an arbitrary mapping from each sentence to
its corresponding centroid. In other words, f would function as a lookup table from w to z that does not leverage the internal
structure (i.e., words and their ordering) in the sentence to achieve a more compressed mapping. The resulting description
length of f would be equal to the size of the lookup table, which would grow exponentially with the sentence size. f would
be, in effect, a complex “hard-coded” mapping (in fact, the most complex possible) withO(K(f))= |V|M , where M is the
sentence length and |V| is the vocabulary size. The resulting compositionality C(Z) would be extremely low.

Example 2, ↓C(Z): Z is smooth and continuous The above example considered a case where the representation had
discrete structure that could be accurately modeled by sentences, and the source of low compositionality came from a high
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K(f). However, the compositionality can also be low if Z is inherently continuous, in which case modeling it using a discrete
W is at best an approximation via quantization. In such a case, the error K(Z|W,f) would be high and the corresponding
compositionality would be low. Note that it might be possible to compress Z using a low-dimensional continuous code rather
than discrete sentences, from which an equivalent (perhaps even identical) definition of continuous compositionality could
be derived, but in this work we consider only compositions of discrete parts.

Example 3, ↓C(Z): Z is simple Most of the discussion thus far has focused on the denominator of C(Z) in Definition 2.
However, a representation can also lack compositionality if the complexity of the numerator, K(Z), is low. If Z were very
low—say it were a constant, for instance—then it could be modeled using a simple f that achieves low error K(Z|W,f).
However, we would certainly not be tempted say that the representation is compositional. In fact, it would be best compressed
using a single word and an f that outputs a constant, rather than using complex sentences and simple compositional rules.
Compositionality must therefore also increase with the expressivity of the representation, which is captured by the numerator
K(Z) in our definition. In cognitive science, where the scientific notion of compositionality has its origins, expressivity
is considered an essential component of compositionality; Chomsky (1956) famously argued that natural language as a
compositional system derives its power because it gives us “infinite use of finite means”, or in the language of our definition
high expressivity as a simple function of parts.

Example 4, ↑C(Z): f assigns an embedding to each word followed by a simple operation We now turn to paradigmatic
examples of high compositionality, beginning with the most intuitive. Consider once again a representation Z that is sampled
from a mixture of Gaussians like in Example 1, but this time imagine that the centroids are arranged in a structured way. In
particular, imagine that they are structured such that each can be described as a concatenation of subcomponents that are
shared across all centroids. Now, the simplest f would be one that first assigns a vector embedding to each word such that
it represents a possible subcomponent of the centroid, and then concatenates the embeddings for all words in the sentence.
The complexity of f would then scale only linearly as a function of the number of words in the vocabulary (assuming they
are all necessary), because concatenation is a simple operation that takes a constant number of lines of code. We would have
O(K(f))= |V|, which is independent of the sentence length, in contrast to the arbitrary mapping in Example 1 that scaled
asO(K(f))= |V|M . This is a substantial reduction in complexity and increase in compositionality, and it comes from the
fact that the words contribute independently to the representation. This is a case of a perfectly disentangled representation,
which in our theory is simply an extreme case of compositionality, but intermediate cases are possible as well. For instance,
the representation could be determined by interactions between pairs of words in the sentence, or it might be the case that
words largely contribute independently to the representation but that there is some small degree of context-sensitivity, as
in human language. Our theory unifies all of these cases under a single, succinct definition.

Example 5, ↑C(Z): f is modular As already explained in Section 2, a modular f is simpler to describe and thus implies
higher compositionality. To see why modular functions are more compressible, consider a paradigmatic case: computer
programs. When a computer program is written in such a way that it can be refactored into a small number of functions and
classes that are reused several times, the total length of the program decreases substantially. Programs that are not written
with modularity in mind tend to be much longer and complex. Modular functions therefore tend to have far lower complexity
because the modules only need to be defined once, but can then be reused many times inside the function. In ML, modularity is
leveraged in a similar fashion. For instance, Goyal et al. (2021) introduces an architecture that consists of N DNNs as well as a
learned attention-based routing mechanism for how they communicate. Crucially, these modules are leveraged by the routing
mechanism in a context-dependent way, and each module can be reused many times to process each individual input. This
means that while the entire model is simple (small number of modules and simple routing mechanism), it is nevertheless highly
expressive due to the combinatorial way in which modules can be composed. Our definition explains how this expressivity and
compression endowed by modular functions formally relates to compositionality (Lepori et al., 2023; Goyal & Bengio, 2022).

Example 6, ↑C(Z): f has many equivariances The connection between equivariance and compositionality is perhaps less
obvious (Gordon et al., 2020), but it is a natural and intuitive consequence of our definition. Equivariances (and invariances)
are symmetries—sources of structure that decreases the complexity of a function (Immer et al., 2022; Wilk et al., 2018; van der
Ouderaa & van der Wilk, 2022). For instance, convolutional layers have local connectivity and reuse weights across spatial loca-
tions, which both reduces their description length and makes them equivariant to spatial translations. We can also consider linear
equivariance as a special case that is easy to illustrate. If f is linearly equivariant to a particular operation g in sentence-space, it
means that f(g(w))=f(w)+vg , where vg is a constant vector that corresponds to the equivariant change in the representation
output by f . The difference in the function’s behaviour for two different inputs, w and g(w), can therefore be compactly de-
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scribed by a single vector, whereas in the general non-equivariant case the change in the function’s behaviour can be arbitrarily
complex. In an extreme case, if f can be completely described by a set of linear equivariances, then each w corresponds to a
set of gi’s applied to a constant “default” sentence, and f merely needs to encode a single vector for each of these gi’s then sum
those that apply to a particular input. The resulting function is very similar to the one described in Example 4, where f applied a
simple operation to a sequence of word embeddings in a sentence (in this case vector addition). The function also bears similar-
ities to the one described in Example 5 if we view the equivariances as modules. Similar arguments can be made for non-linear
equivariance, where the complexity K(f) would still be reduced, but to a lesser extent. In general, the more equivariances a
function has and the simpler those equivariances are, the lower the complexityK(f) and the higher the compositionalityC(Z).

E. Synthetic representations: varying both sentence length and vocabulary size in lookup tables
In Section 4.1 when discussing our results on synthetic representations generated from lookup tables, we argued that sentence
length and vocabulary size should have a joint impact on compositionality. Namely, if the vocabulary is too small relative
to sentence length, then expressivity and compositionality are limited (e.g., with only one word in the vocabulary, nothing
can be expressed). On the other hand, if the vocabulary is too large relative to sentence length, then compositionality is low
because expressivity doesn’t come from combining constituent parts (e.g., with one-word sentences and a large vocabulary,
there is no notion of parts). A good quantitative definition of compositionality should capture this intuition. In Figure E.1,
we demonstrate that our definition of representational compositionality reproduces this result empirically: as sentence length
grows, the vocabulary size that maximizes compositionality does as well.
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Figure E.1. Compositionality C(Z) for synthetically-generated lookup table representations as a function of both vocabulary size
and sentence length. As in Section 4.1, lookup table representations are generated by uniformly sampling sentences of a particular length
and vocabulary size, and mapping individual words to vectors in a lookup table, followed by concatenation. As sentence length grows,
the vocabulary size that maximizes compositionality does as well. Note that for clarity, vocabulary size is shown on a log scale. Vertical
lines show peaks. Error bars show σ over 10 seeds.

F. Relations between representational compositionality and other ML topics
Compositional generalization One of the benefits of compositional representations is that they enable better compositional
generalization (Lake & Baroni, 2018). If a model is compositional with respect to a set of features in its training data, it
need not observe all possible combinations of those features in order to generalize to novel ones (Schug et al., 2024; Wiedemer
et al., 2024; 2023; Bahdanau et al., 2019; Mittal et al., 2021; Hupkes et al., 2020; Jarvis et al., 2024; Lippl & Stachenfeld,
2024; Lachapelle et al., 2024). For instance, if an image classifier’s representation is compositional with respect to foreground
objects and background scenes, then it should be able to correctly classify an image of “a cow on a beach” at inference time
after having only observed cows and beaches separately at training time.

In certain cases, compositionality is defined in terms of a model’s ability to compositionally generalize compositionally
(e.g., Jarvis et al., 2024; Wiedemer et al., 2024; 2023; Lippl & Stachenfeld, 2024). However, while such definitions of
compositionality can often provide theoretical guarantees on generalization, they also place strong assumptions on either
the representation, the downstream model, or both. For instance, Wiedemer et al. (2023) assumes that the representation
is perfectly disentanglement with respect to some underlying task constituents. Similarly, Lachapelle et al. (2024) assumes
disentanglement and that the downstream function using the representation is additive with respect to the the disentangled
factors, and Lippl & Stachenfeld (2024) assumes disentanglement and “conjunction-wise additivity”. Wiedemer et al. (2024)
takes from the object-centric learning literature and defines a compositional representation as one that is structured into
distinct “slots” (Locatello et al., 2020), and then requires that the downstream model using these slots is additive.

In contrast, our definition of representational compositionality is far more general: it defines compositionality in terms
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of compression, which abstracts across the architecture producing and using the representation, learning details, data
requirements, and particular representational format. For instance, disentangled and slot-wise representations are particular
cases of representational compositionality in terms of their simple semantics K(f) (see Appendix D), but these are rigid
assumptions to build into a model that might negatively impact performance. In contrast, representational compositionality
has the potential to explain the success of more varied and flexible methods in terms of compositional generalization, such
as loss regularizers or simply scaling dataset and model size.

As a consequence of its generality, it may be difficult to formally characterize the relationship between representational
compositionality and compositional generalization with theoretical guarantees, and we did not attempt to do so in this paper.
Nevertheless we hypothesize that representations with high C(Z) should enable better compositional generalization. This
is because the representation of constituent parts is systematic: the semantics mapping constituent parts to the representation
is a simple function that will generalize better to novel part combinations (i.e., it will assign them a meaningful rather than
arbitrary representation, which downstream functions should be able to leverage). One of our central goals for future work
is to test this hypothesis empirically, where we measure the compositionalities of many model representations using our
definition and then correlate this score with the models’ compositional generalization abilities.

Generative models in latent space In addition to compositional generalization, representational compositionality also
relates to generative models that sample in latent space. In particular, once a compositional representation is learned, efficient
and generalizable generative models can be constructed by sampling in the space of discrete sentences, rather than in the high-
dimensional continuous latent space directly. This is because the semantics function f of a representation with highC(Z) is sim-
ple, and can generalize to novel sentences that the generative model might produce. Empirically, modeling and sampling from
discrete distributions is often easier and more effective, especially for complex multi-model distributions (Razavi et al., 2019).

To give a concrete example, imagine that a vision model has been pretrained on some task like object classification and
produces latent representations with high C(Z). Using this representation, we can train a generative model of the form
z∼pw(w)N (z;f(w)) described in Section 2, and then generate novel samples for downstream visual reasoning tasks directly
in the abstract latent space, rather than in the low-level image space. This is similar to thought and reasoning involved in
human cognition, which are generative processes believed to exhibit a discrete language-like structure (Fodor, 1975; Dehaene
et al., 2022; Lake et al., 2017; Bengio, 2017; Goyal & Bengio, 2022).

G. Inductive biases for representational compositionality
In virtue of being formally precise and quantitative, representational compositionality can inspire the design of novel inductive
biases for compositional representations in ML models. In this section, we outline two approaches that we believe have
promise: one that directly optimizes for C(Z), and another that indirectly attempts to increase it through task and data
constraints. In addition, C(Z) can be used to validate existing inductive biases for compositionality (e.g., architectures for
object-centric representations Locatello et al., 2020).

Regularizing K(Z|W ) The most direct way to learn representations with high C(Z) is to regularize the denominator
K(Z|W ) so that the representations become more verbalizable, as suggested in Bengio (2017) and Goyal & Bengio (2022).
Definition 2 says that compositional representations are (a) expressive and (b) easily described using sequences of discrete
symbols—in other words, that they are verbalizable like human thoughts that can largely be conveyed in natural language.
Expressivity can be obtained simply by training on a sufficiently complex task; for example, representations for image
classification need to be expressive so that they can discriminate different objects. Task pressure alone, however, does not
guarantee that the representation will be verbalizable. This second desiderata can be achieved, however, through a prior
that regularizes the model’s loss function.

Say that some model gθ produces a representation Z = gθ(X) of inputs X . Verbalization corresponds to minimizing the
denominator in Definition 2: K(Z|W ) = K(f) +K(Z|W,f). Crucially, W and f here are obtained from the shortest
program that outputs Z as described in Section 2, which can be approximated by optimizing a discrete auto-encoder who’s
training scheme is sketched out in Appendix B. To make the dependence of W and f on Z more explicit here, we will use
the superscripts WZ and fZ . If we wish to increase verbalizability (and therefore compositionality), we therefore need to
perform some update update θ→θ′ such that:
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K(fZ′
)+K(Z ′|WZ′

,fZ′
)<K(fZ)+K(Z|WZ ,fZ), (13)

where Z ′=gθ′(X). One option for accomplishing this is by backpropagating the reconstruction error of the discrete auto-
encoder, K(Z|WZ ,fZ). This approach assumes that the semantics before and after the update are unchanged (i.e., fZ′

=fZ ),
so that the only thing that needs to be considered is the auto-encoding reconstruction error K(Z|WZ ,fZ)→K(Z ′|WZ′

,fZ).
While this assumption will be violated in practice, it may hold approximately such that regularizing reconstruction error
alone is sufficient to increase compositionality.

In sum, the approach described here consists of training a DNN gθ(X) on some task as usual, but with an additional loss:
a discrete auto-encoder is fit to a layer in the model which we want to be more compositional, and the θ is regularized to
minimize the loss of this discrete auto-encoder. As a result, in addition to subserving task demands, the representation is
optimized to be more compressible as a function of constituent discrete parts (i.e., it is verbalizable).

Multi-task training A common observation in deep learning is that the model representations after training tend to be surpris-
ingly simple despite the significant number of parameters in the network (Blier & Ollivier, 2018), as evidenced by their strong
iid generalization abilities. However, absent additional constraints (e.g., Lachapelle et al., 2024), these same representations do
not enable compositional out-of-distribution generalization, suggesting that they lack sufficient compositional structure. One
hypothesis is that while the simplest representation used to solve a single task may not be compositional, the simplest representa-
tion used to solve many related tasks might be. An analogy can be made to computer programs. When a program is written for a
single narrow purpose, writing it in a compositional manner that reuses shared functions and classes might in fact result in bloat
that increases the total program length. However, if these same functions and classes constitute a useful library that can be lever-
aged to write other programs as well, significant compression might be possible because the library is shared across all programs.

In the terminology of C(Z), learning the simplest representation that subserves many different related tasks might result
in low K(Z|W ) and high compositionality because the semantics f are shared across these tasks and therefore lead to high
compression; only K(pw) grows to accommodate additional tasks, analogous to how a programming library would be used
in novel ways to write a new program. Since DNNs already tend to learn simple representations (Blier & Ollivier, 2018),
our definition suggests that ordinary training in certain multi-task settings (those that reuse certain task components) might be
a simple method for learning compositional representations. Indeed, this has long been hypothesized and observed empirically
(Driscoll et al., 2024; Johnston & Fusi, 2023; Lachapelle et al., 2023; Vafidis et al., 2024a; Maziarka et al., 2022; Vafidis
et al., 2024b), especially in the case of disentangled representation learning, and could be verified more formally using our
definition of representational compositionality.

H. Prequential coding
While the Kolmogorov complexity of a model K(pθ) is difficult to measure directly, it turns out that we can jointly estimate
K(D|pθ) +K(pθ) in cases where the model was fit to the data using a learning algorithm, as is the case in ML. From
Equation (6), we have that:

K(D|pθ)+K(pθ)=K(D,pθ). (14)

Instead of trying to estimate the terms on the LHS directly, we can estimate the RHS by finding the shortest program that
jointly compresses both the dataset and the model, which we turns out to be easier through a compression algorithm called
prequential coding illustrated in Figure H.1 and described below.

Prequential coding first assumes that we have access to a learning algorithm T which was used to fit the model pθ. For instance,
pθ=T (D) might correspond to a randomly initialized DNN architecture fit to D using SGD with some set of hyperparameters.
Then, consider an ordering of iid datapoints D={D1,...,DN}, and denote D1:i={D1,...,Di}. In prequential coding, the
first datapoint D1 is hard-coded in an uncompressed form, which takes a large number of bits. The learning algorithm T is
then used to train a model pθ1 =T (D1) on this single observation. Because the model is trained on only one datapoint, it will
not be very accurate; however, it should be better than a random model that has seen no data at all. Because of the relationship
between probabilistic generative models and compression described in Appendix A, we can use this model to specify the
next datapoint D2 in a compressed form using only −log2pθ1(D2) bits. At this point, we have encoded 2 datapoints, on
which we can train a new model pθ2 =T (D1:2). Having seen more data, this model should assign a higher likelihood to a
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# Prequential coding to compress D
def construct_D_and_p(T):
  D = []    # Starting off without any data
   for _ in range(0, N):
        # Train a model on all the data so far
        p = T(D)

        # Specify the (encoded) next datapoint
        D_next_encoded = [...]  # K = -log(p(D_next))

        # Extend the dataset after decoding with p
       D += decode(D_next_encoded, p)

    return D, T(D)

Lpreq (D ; T ) =
N−1
∑
i=0

− log2 pθi (Di+1)

Data index i

−log2 pθi
(Di+1)

Generalization  Simplicity⟺

a.

K ( pθ )
K (D | pθ )

b.

Figure H.1. Illustration of prequential coding, a method for estimating K(D,θ)=K(D|pθ)+K(pθ) using pθ’s learning algorithm T .
a. Pseudocode of the prequential coding program that outputs both D and pθ . The program jointly compresses D and pθ by incrementally
training a model using T on increasingly more data, each time efficiently encoding the next datapoint using the model obtained from all
previous ones. The primary sources contributing to total program length come from specifying each next datapoint Di+1 in compressed
form using the current model pθi , which takes −log2pθi(Di+1) bits. b. A visual illustration of the number of bits needed to specify each
next datapoint given the model that was trained on all previous ones. As the learner T sees more data, it outputs models that assign a higher
likelihood to new observations, and can thus better compress them. The total prequential code length Lpreq(D;T ) is given by the area
under the curve. The area underneath the curve’s last point is equal to the number of bits needed to encode the entire dataset given the
final model, K(D|pθ). Since Lpreq(D;T )=K(D|pθ)+K(pθ), the area above the curve’s last point is equal to K(pθ). Prequential coding
formalizes the intuition that simple models generalize better, thus quickly decreasing their prediction error for the next datapoint.

new datapoint D3, which we can specify in compressed form using−log2pθ2(D3) bits. This process repeats until the entire
dataset has been generated. At this point, the model pθ can be obtained simply by applying the learning algorithm to the
complete dataset pθ=T (D), since we assumed by construction that this was where the model came from.

The total number of bits that it takes to jointly compress D and pθ using prequential coding is the sum of how many bits
it takes to specify each next datapoint using a model that was trained on all previous ones. Visually, it is the area under the
prequential coding curve shown in Figure H.1b. We can call the total length of this compression program the prequential
code length Lpreq(D;T ) (Blier & Ollivier, 2018):

Lpreq(D;T )=

N−1∑
i=0

−log2pθi(Di+1) (15)

Lpreq(D;T )≥K(D,pθ)=K(D|pθ)+K(pθ). (16)

Strictly speaking,Lpreq(D;T ) is an upper-bound onK(D,pθ): the prequential coding algorithm is one way to jointly compress
the data and model, but it is not necessarily the optimal way. The upper-bound is tight in practice, however, if (a) the final model
pθ does a good job of compressing the data (i.e., K(D|pθ)≪K(D)) and (b) passing data to the learner T through the prequen-
tial coding algorithm is an effective strategy for compressing the model. Regarding this second point, consider how the model
is obtained through prequential coding. Data is gradually transmitted to the learner T , with each additional datapoint requiring
fewer bits to encode. If the speed of improvement in predicting the next datapoint is fast as a function of the amount of data ob-
served, it means that the learner is effectively able to converge to the final model using only a small amount of data that takes few
bits to encode, and thus that the model has low complexity. Concretely, when prequential coding is a good algorithm for jointly
compressing the data and model, then Lpreq(D;T )≈K(D,pθ) and the model complexity is given by (Blier & Ollivier, 2018):

Lpreq(D;T )≈K(D|pθ)+K(pθ)

K(pθ)≈Lpreq(D;T )−K(D|pθ). (17)

Assuming that the model’s error decreases monotonically with the size of the training dataset, K(D|pθ) is equal to the area
under the lowest point of the prequential coding curve in Figure H.1b. The area above this point is therefore the complexity
of the model K(pθ). This relates Kolmogorov complexity to intuitions about generalization in ML: the simpler a model
is, the quicker it generalizes from limited amounts of training data.
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I. Synthetic representations — experimental details
I.1. Lookup table representations

Generating the representations We generated our synthetic lookup table representations Z (and their ground-truth
sentences W ) according to the program summarized in Algorithm 1. In short, the program does the following:

• Generate a lookup table: We begin by constructing a lookup table from words (or n-grams) to their embeddings. This
table has dimensions (Kq, D

M×q ), where K is the vocabulary size, q is our disentanglement factor (i.e., the size of the
n-grams), and D is the desired dimensionality of Z. We use the Skellam distribution to generate lookup table entries,
which is a discrete approximation of a Gaussian distribution with precision λ. This discretization is necessary because
a continuous distribution would cause the correction term K(Z|W,f) to be infinite.

• Sample W : We generate random integer sentences uniformly with shape (N,L), where N represents the number of
samples and L denotes the number of words per sentence. Each integer in W corresponds to a word from our vocabulary
of size K.

• DecodeW to getZ: For each sentencew∈W , we perform the following steps to obtain the corresponding representation
sample z∈Z:

– We divide the sentence into consecutive L/q subsequences, each representing an n-gram (or a word if q=1).
– For each subsequence, we retrieve the corresponding embedding from the lookup table.
– We concatenate these embeddings to form the complete representation sample z for the sentence.

• Add noise: We then add Gaussian noise (discretely approximated by a Skellam distribution with mean 0 and standard
deviation r for the same reason as above) to the representation. This introduces stochasticity to our representations
that cannot easily be modeled with discrete parts. The final representation Z has shape (N,D).

Calculating the compositionality To compute representational compositionality C(Z) according to Definition 2, we need
to calculate the following terms: K(pw), K(W |pw), K(f), and K(Z|W,f). We show how to do this below for a lookup
table representation:

• K(pw): The language pw in this case a uniform categorical distribution over integers in range (0,K−1) at each sentence
position l∈{0..(M−1)}, where K is the vocabulary size and M is the sentence length. To specify an integer u, we
need log2u bits, so we have K(pw)=log2K+log2M . There is also a complexity term associated with describing the
function for the uniform distribution itself, but we ignore this because it is a small constant.

• K(W |pw): As described in Section 2, K(W |pw) is simply equal to −
∑N

i=1 log2 pw(wi). To derive pw(wi)
for each sentence wi ∈ W , we notice that each wi is composed of L words, each sample from a uni-
form categorical distribution over (0, K − 1). Thus pw(wi) = 1

KM for each sentence wi. In total, then,
K(W |pw)=−

∑N
i=1log2pw(wi)=−

∑N
j=ilog2

1
KM =NM log2K bits.

• K(f): In this case, the function that maps sentences to their meanings is mainly composed of the lookup table, with
some additional small constant complexity to describe how to use the lookup table. To describe each number a in the
lookup table, we need −log2p(a) bits, where p is the PMF of the distribution these numbers were sampled from. In
our case, this distribution is the Skellam distribution with a mean of 0, a standard deviation of 1, and a precision of λ. We
therefore have K(f)=−

∑
a∈lookup tablelog2p(a). Given that the size of the lookup table is (Kq× D

M/q )), the complexity
of the semantics K(f) grows linearly in D, polynomially in K, and exponentially in q.

• K(Z|W, f): This term comes from imperfect reconstructions of Z. It can be thought of as the number of bits
needed to correct the errors in these imperfect reconstructions. In these lookup table representations, these imperfect
reconstructions come from the noise added to Z when it is sampled, which cannot be recovered since the lookup table
does not contain it. To describe the corrections, we therefore just need to describe this noise. Each noise sample ϵ can
be described using−log2q(ϵ) bits where q is the PMF of the distribution the noise was sampled from. In our case this
is a Skellam distribution with a mean of 0, standard deviation of r, and precision of λ. If we let E be the matrix of all
noises added form Z, we have that K(Z|W,f) is equal to−

∑
ϵ∈E log2q(ϵ).
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Algorithm 1: Sampling Z using a lookup table program
Input:

number of samples N
sentence length M
vocabulary size K
embedding dimension D
disentanglement factor q
quantization precision λ
noise ratio r

// Generate lookup table:
lookup table←skellam sample(µ=0,σ=1,λ=λ,shape=(Kq, D

M/q ))

// Sample W:
W← random integer(0,K−1,shape=(N,M))

// Decode W to get Z:
Z← []
for each w in W do

z← []
for position=0 to (M/q)−1 do

entry←(w[position×q :position×q+q−1])
z.append(self.lookup table[entry])

end for
z←concatenate(z)
Z.append(z)

end for
Z←stack(Z)

// Add noise:
if r>0 then

noise←skellam sample(µ=0,σ=r,λ=λ,shape=Z.shape)
Z←Z+noise

end if
return Z

Combining these complexity terms together, the final expression for C(Z) following Definition 2 is:

C(Z)=
K(Z)

K(Z|W )
=

K(pw)+K(W |pw)+K(f)+K(Z|W,f)

K(f)+K(Z|W,f)

=
log2K+log2M+NM log2K−

∑
a∈lookup tablelog2p(a)−

∑
ϵ∈E log2q(ϵ)

−
∑

a∈lookup tablelog2p(a)−
∑

ϵ∈E log2q(ϵ)

Experiment parameters We used the following parameter values to generate representations (except when sweeping one
parameter while keeping the others constant): N=1000, M=16, K=10, D=64, q=1, λ=0.01, r=0.01. To sweep over
sentence length, we varied M from (1,D), only keeping values where D was divisible by M . To sweep over vocabulary size,
we varied K from (2,100). To sweep over representation dimensionality, we varied D from (M,2M,...,10M). To sweep over
disentanglement, we varied q from (1,M), only keeping values where M was divisible by q. For each setting of experiment
parameters, we generated representations across 10 different random seeds.

26



Towards a Formal Theory of Representational Compositionality

I.2. Context-free grammar representations

Generating the representations We generated our context-free grammar representations Z (and their ground-truth
sentences W ) according to the following procedure:

• Generate a context-free grammar: Our context-free grammars consist of exclusively binary production rules that
combine two child non-terminals into a parent non-terminal. We define a vocabulary of size K and evenly assign each
word to one of T possible base part of speech types that serve as the first non-terminal symbols in the context-free
grammar. We call these T first non-terminals “terminal parts of speech”. We algorithmically generate the grammar
in a way that depends on two parameters: the width and the depth. The depth refers to the number of levels in
the parse tree (above the parts of speech) that have unique non-terminal symbols which can only exist at that level. The
width refers to the number of unique non-terminal symbols defined at each level of depth. At any given level of depth,
we generate a production rule for all possible combinations of non-terminals at that level, each of which produces one
of the possible non-terminals at the next level (we evenly distribute outputs across these possible non-terminals at the
higher level). For arbitrarily long sentences to still have valid parses despite the finite depth of our grammar, we define
additional recursive production rules that take non-terminals at the highest level of the grammar and produce one of
those same non-terminals. To provide additional clarity for how we generated these grammars, we give an example
below for T =5, width=2, and depth=5 (we exclude the vocabulary for brevity). In this grammar, the terminal
parts of speech are denote by the prefix “T ” and other non-terminals are denoted by the prefix “r[depth level] ”.

s t a r t : r 2 1 | r 2 2
r 0 1 : T 1 ” ” T 2 | T 2 ” ” T 3

| T 3 ” ” T 4 | T 4 ” ” T 5 | T 5 ” ” T 1
r 0 2 : T 1 ” ” T 3 | T 2 ” ” T 4

| T 3 ” ” T 5 | T 4 ” ” T 1 | T 5 ” ” T 2
r 1 1 : r 0 1 ” ” r 0 1 | r 0 2 ” ” r 0 1
r 1 2 : r 0 1 ” ” r 0 2 | r 0 2 ” ” r 0 2
r 2 1 : r 1 1 ” ” r 1 1 | r 1 2 ” ” r 1 1

| r 2 1 ” ” r 2 1 | r 2 2 ” ” r 2 1
r 2 2 : r 1 1 ” ” r 1 2 | r 1 2 ” ” r 1 2

| r 2 1 ” ” r 2 2 | r 2 2 ” ” r 2 2

• Sample W : We generate random integer sentences of length M based on a transmission sentence defined over terminal
parts of speech. Denote a terminal part of speech by t∈1..T . A sentence w always randomly starts from a word that
has either t=1 or t=2 with equal probability. Permissible transitions to the next word’s terminal part of speech are
ti+1← ti+1 or ti+1← ti+2, which we sample between with equal probability (we also wrap ti+1 so that it remains
in range 1..T ). Given a sampled terminal part of speech at a location in w, we randomly sample a word that has been
assigned that terminal part of speech.

• Semantics f : The representation is assigned a dimensionality D. Each word in the vocabulary is given a D-dimensional
embedding by sampling from a Skellam distribution, which is a discrete approximation of a Gaussian distribution,
using µ=0, σ=1, and quantization precision λ. For each production rule i in the grammar, we define a linear mapping
Ai∈R2D×D with values sampled from a Skellam distribution using µ=0, σ=1, and quantization precision λ. Given
a sentence w, the semantics function f is defined by the following steps:

– Parse w using Earley parser (Earley, 1970) implemented with the Lark Python package.
– Retrieve the embedding for each word in w.
– Hierarchically apply the function [x1,x2]Ai at each node in the parse tree to obtain a node embedding, where

[x1,x2] are the concatenated embeddings of the child nodes and Ai is the linear transform of the production rule
at the node. The embedding of the root node is taken to be z for the sentence.

• Add noise: We then add Gaussian noise (discretely approximated by a Skellam distribution with mean 0 and standard
deviation r) to the representation. This introduces stochasticity to our representations that cannot easily be modeled
with discrete parts. The final representation Z has shape (N,D).
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Calculating the compositionality To compute representational compositionality C(Z) according to Definition 2, we need
to calculate the following terms: K(pw), K(W |pw), K(f), and K(Z|W,f). We show how to do this below for a context-free
grammar representation:

• K(pw): The language pw in this case is defined by a terminal part of speech for each vocabulary item and a binary matrix
of permissible transitions between terminal parts of speech. Defining the terminal part of speech for each vocabulary item
takes log2T bits, and we have K vocabulary items. The binary transition matrix is of shape (T+1)×T (where the +1 is
for the grammar’sstart symbol), and so takesT (T+1) bits to define. The total Kolmogorov complexity of the language
(ignoring code of a constant complexity that doesn’t scale with K or T ) is therefore K(pw)=Klog2T+T (T+1).

• K(W |pw): As described in Section 2, K(W |pw) is simply equal to−
∑N

i=1log2pw(wi). Since pw is defined by a transi-
tion matrix over terminal parts of speech, and for each terminal part of speech each word having that terminal part of speech
has equal probability, we have that pw(wi)=

∏M
m=1

1
|t(wi,m−1)| where t(·) is the set of all permissible next wordswi,m that

the previous wordwi,m−1 can lead to based on the transition matrix between terminal parts of speech, andwi,0 denotes the
grammar’s start symbol. We therefore have that K(W |pw)=−

∑N
i=1log2pw(wi)=−

∑N
j=i

∑M
m=1log2

1
|t(wi,m−1)|

bits.

• K(f): The semantics are defined by the parser, the production rule operations (linear maps), and the word embeddings.
Both the parsing algorithm and the production rule operations scale in complexity as a function of the number of production
rules in the grammar, so we ignore the parsing algorithm’s complexity and only consider the production rules and word em-
beddings as the scaling behaviour is the same. To describe each number in the word embedding tablea, we need−log2p(a)
bits, where p is the PMF of the distribution these numbers were sampled from. In our case, this distribution is the Skellam
distribution with a mean of 0, a standard deviation of 1, and a precision of λ. The complexity of the embedding table
is therefore−

∑
a∈embedding tablelog2p(a). Given that the size of the embedding table is (K×D)), the complexity of the

embedding table grows linearly in both K and D. To describe each production rule i, we must describe a matrix of shape
2D×D. Each number in this matrix takes−log2p(v) bits to encode, where p is the PMF of the distribution these numbers
were sampled from. In our case, this distribution is the Skellam distribution with a mean of 0, a standard deviation of 1,
and a precision of λ. The total complexity of all production rules is therefore−

∑
i∈num rules

∑
(r,c)∈2D×Dlog2p(Ai,(r,c)).

We therefore have that K(f)=−
∑

a∈embedding tablelog2p(a)−
∑

i∈num rules
∑

(r,c)∈2D×Dlog2p(Ai,(r,c)) bits.

• K(Z|W, f): This term comes from imperfect reconstructions of Z. It can be thought of as the number of bits
needed to correct the errors in these imperfect reconstructions. In these lookup table representations, these imperfect
reconstructions come from the noise added to Z when it is sampled, which cannot be recovered since the lookup table
does not contain it. To describe the corrections, we therefore just need to describe this noise. Each noise sample ϵ can
be described using−log2q(ϵ) bits where q is the PMF of the distribution the noise was sampled from. In our case this
is a Skellam distribution with a mean of 0, standard deviation of r, and precision of λ. If we let E be the matrix of all
noises added form Z, we have that K(Z|W,f) is equal to−

∑
ϵ∈E log2q(ϵ).

Combining these complexity terms together, the final expression for C(Z) following Definition 2 is:

C(Z)=
K(Z)

K(Z|W )
=

K(pw)+K(W |pw)+K(f)+K(Z|W,f)

K(f)+K(Z|W,f)

=

Klog2T+T (T+1)−
∑N

j=i

∑M
m=1log2

1
|t(wi,m−1)|

−
∑

a∈embedding tablelog2p(a)−
∑

i∈num rules
∑

(r,c)∈2D×Dlog2p(Ai,(r,c))−
∑

ϵ∈E log2q(ϵ)

−
∑

a∈embedding tablelog2p(a)−
∑

i∈num rules
∑

(r,c)∈2D×Dlog2p(Ai,(r,c))−
∑

ϵ∈E log2q(ϵ)

Experiment parameters We used the following parameter values to generate representations (except when sweeping
one parameter while keeping the others constant): N =1000, M =16, K =100, D=10, T =5, width=3, depth=2,
λ=0.01, r=0.01. To sweep over sentence length, we varied M from (1,D), only keeping values where D was divisible
by M . To sweep over grammar width, we varied width from (1,4). To sweep over grammar depth, we varied depth from
(1,4). For each setting of experiment parameters, we generated representations across 10 different random seeds.
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J. Emergent languages — experimental details
Dataset construction To obtain emergent languages from multi-agent reinforcement learning in a simple object
reference game, both with and without iterated learning, we used the code base from Ren et al. (2020), found at https:
//github.com/Joshua-Ren/Neural_Iterated_Learning. Objects consisted of 2 attributes with 8 possible
discrete values each, for a total of 82=64 possible objects. Sentences similarly were of length 2 and had a vocabulary size of 8.
We used the default values in Ren et al. (2020) for all model and training hyperparameters (refer to their associated code base
for details), but reserved no held-out objects for separate validation. After training, we generated 50 sentences from the speaker
agent for each unique object, giving us WL and Z, respectively. The resulting size of these datasets were thus 50×82=3200.

Estimating compositionality Estimating the compositionalities of these different emergent language systems CL(Z)
requires estimates of the numerator K(Z) and denominator K(Z|WL). Both with and without iterated learning, Z consisted
of the same enumeration over all possible discrete symbolic objectsO. Each z∈Z can therefore be represented using a single
integer indexing the object, where these integers range from {1..|O|} and therefore each require log2(|O|) bits to encode.
Summing these bits over all objects gives a total of K(Z)= |O|log2(|O|).

We estimated K(Z|WL) for each language using prequential coding (see Appendix H). The model architecture used for
prequential coding was an MLP with 2 hidden layers of size 256. Each word in WL embedded into a 64-dimensional vector,
and these concatenated embeddings were the input to the MLP. The MLP output logits over object values for each attribute.
To estimate prequential code lengths more efficiently and avoid having to retrain the model N times (where N is the dataset
size), we incremented the size of the dataset by chunks of size 50 at a time. We used the Adam optimizer with a learning
rate of 1×10−3 to train the model at each iteration of prequential coding. We reserved 400 datapoints for a separate validation
set that was used for early stopping at each iteration of prequential coding.

K. Natural languages — experimental details
Dataset construction We obtained English sentences from captions that were used to describe images in the Common
Objects in Context (COCO) dataset (COCO, 2024), downloaded from Hugging Face. The reason for using a dataset of image
captions was that we expected these captions to use common words and simple sentence structures, given their grounding
in visual stimuli. For each image, the dataset contained two independent captions, and we kept only the first. This gave us
a total of 414,010 English sentences. We then translated each sentence to French, Spanish, German, and Japanese using
a large open-source language model with 3.3 billion parameters (Costa-jussà et al., 2022). We visually inspected several
of the French, German, and Japanese sentences (no authors spoke Spanish) to make sure the translations were reasonable,
and we found them to be of high quality. These sentences constituted the WL’s for our experiments. We obtained proxies
for the “meanings” Z of these sentences by passing them through a large (278 million parameter), pretrained, multilingual
sentence embedding model that output a fixed-size vector for each sentence (Reimers & Gurevych, 2020). Both the translation
model and the sentence embedding model were obtained from Hugging Face.

Estimating compositionality Estimating the compositionalities of these different language systems CL(Z) requires
estimates of the numerator K(Z) and denominator K(Z|WL). While we did not estimate K(Z), we assumed that it was
approximately equal among languages. This is a common assumption in linguistics, where languages appear to be equivalent
in their expressive power to express ideas, refer to objects, etc. Fixing the numerator K(Z) to some (unknown) constant
shared among languages allowed us to assess their relative compositionalities by estimating only the denominator K(Z|WL).
We estimated K(Z|WL) for each language using prequential coding (see Appendix H).

The model architecture used for prequential coding was the same as the one used to generate Z (Reimers & Gurevych, 2020).
Learning a significant number of word embeddings from only≈400,000 samples would have been difficult however. We
therefore used the original model’s pretrained word embeddings and only computed prequential code length by resets of the
model’s downstream weights, which encode the semantics of the grammar rather than the word meanings. Strictly speaking,
then, we only estimated K(Z|embeddings(WL)). To estimate prequential code lengths more efficiently and avoid having
to retrain the model≈400,000 times, we incremented the size of the dataset in chunks. Chunk boundaries were selected on a
base-10 logarithmic scale from 1,000 to N datapoints (the full size of the dataset), with 15 interval boundaries. A logarithmic
scale was used because we observed that next-datapoint prediction error as a function of dataset size changed more quickly
in low-data regimes and more slowly in high-data regimes. We could therefore more accurately estimate the true prequential
coding curve using a logarithmic chunking scale that had higher resolution in low-data regimes. We used the Adam optimizer
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with a learning rate of 1×10−4 to train the model at each iteration of prequential coding. We reserved 10,000 datapoints
for a separate validation set that was used for early stopping at each iteration of prequential coding.

Limitations Our approach for measuring the compositionalities of real-world language systems has several limitations
that should be taken into account when judging the results. First, the translation model that we used may not have been trained
on equal amounts of text from the different languages we studied, which could have lead to lower quality translations for some
languages compared to others. Similarly, the multilingual sentence embedding model that we used may have not been trained
on equal amounts of data from the different languages, leading to lower quality embeddings for some languages compared
to others which could have impacted the quantity and accuracy of “true” sentence meaning captured in Z. Indeed, for these
reasons we did not include the original English language sentences and embeddings in our experiments (we thought it very
likely that the sentence embedding model had been trained on far more English text compared to other languages). Finally,
the use of pretrained sentence embeddings as a proxy for sentence meaning Z is likely flawed. The sentence embedding
model that we used is trained with invariance-based self-supervised methods, and the resulting representations are unlikely
to capture the full scope meaning that would be represented in human brains processing these sentences.
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