Less is More: an Attention-free Sequence Prediction
Modeling for Offline Embodied Learning

Wei Huang'?" Jianshu Zhang'? Leiyu Wang® Heyue Li* Luoyi Fan?
Yichen Zhu® Nanyang Ye3' Qinying Gu!'
'Shanghai AI Laboratory >Tsinghua University 3Shanghai Jiao Tong University
*Wuhan University 3Midea Group
{huangwei, guqinying}@pjlab.org.cn
{jianshuzhang, leiyuwang33, luoyi_fan,ynylincoln}@sjtu.edu.cn
liheyue@whu.edu.cn yichen_zhu@foxmail.com

Abstract

Offline reinforcement learning (offline RL) is increasingly approached as a se-
quence modeling task, with methods leveraging advanced architectures like Trans-
formers to capture trajectory dependencies. Despite significant progress, the mech-
anisms underlying their effectiveness and limitations remain insufficiently under-
stood. We conduct a thorough analysis on the representative Decision Transformer
(DT) model using an entropy analysis and identify the inconsistencies in state-
action-reward ((s, a, R)) distributions causing attention “dispersal". To address
this, we propose a hierarchical framework that decomposes sequence modeling into
intra-step relational modeling—handled by a Token Merger that fuses each (s, a, R)
triplet—and inter-step modeling—handled by a Token Mixer across timesteps. We
investigate several Token Merger designs and validate their effectiveness across
various offline RL methods. Furthermore, our theoretical analysis and experimental
results suggest that while Token Mixers are important, lightweight architecture
can also achieve even better performance to more complex ones. We therefore
propose a parameter-free Average Pooling Token Mixer, which, combined with
a convolutional Token Merger, forms our final model, Decision HiFormer (DHi).
DHi achieves a 73.6 % improvement in inference speed and an 9.3% gain in pol-
icy performance on the D4RL benchmark compared to DT. DHi also generalizes
well to real-world robotic manipulation tasks, offering both practical benefits and
insights into sequence-based policy design for offline RL. Code and models are
public at project page.

1 Introduction

Offline Reinforcement Learning (offline RL) focuses on learning policies from fixed, static datasets
without further environment interaction. Traditional methods often rely on policy regularization or
value function approximation. Recently, a shift has occurred toward framing offline RL as a sequence
prediction problem, where policies are learned by predicting actions based on sequences of past
state-action-reward triplets. This reformulation enables the use of advanced sequence modeling
techniques, particularly various token mixers, to capture dependencies within trajectories.

A representative work is Decision Transformer (DT) [6] which leverages Transformers [29] to model
entire trajectories through global self-attention and has inspired numerous follow-up methods [4}

“This work was done when Wei Huang interned at Shanghai Artificial Intelligence Laboratory.
"Qinying Gu and Nanyang Ye are co-corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://wei-nijuan.github.io/DecisionHiFormer/

SLILOL 120 [14) 1154 (18] 20422} [25H27) 130H33]]. Despite its great success in this domain, some studies
highlight its limitations in local dependency modeling. To address it, the Decision ConvFormer
(DC) [I15] replaces self-attention with convolutional layers to enhance local feature extraction.
StARformer [25] adheres to the self-attention mechanism by explicitly separating short-term and
long-term dependencies through interleaved Step and Sequence Transformers, enhancing both local
and global trajectory modeling. Similarly, Graph Decision Transformer (GDT) [12]] uses a graph
transformer to capture potential dependencies between adjacent states, actions, and rewards and
differentiate the impact of these different tokens.

The aforementioned previous studies demonstrate that the standard DT architecture is not well-
suited for modeling local dependencies in a Markov process [[15, 22| [27]. This is because the DT
tends to consider all past context preventing it from effectively “attending” to useful states. To
mitigate this, alternative operators such as convolutions, linear attention, and state-space models
are proposed to replace the self-attention layers for improved performance. However, several key
questions remain unresolved: (1) Why is the attention mechanism in DT unable to “attend” to useful
states in the context? (2) Beyond performance scores, can we measure the model’s ability to capture
local dependencies using internal metrics? (3) Does offline RL exhibit significant differences across
various operators, and are there simpler, more effective operators available?

To address the above questions, we make the

following contributions: (1) We introduce atten- Performance vs. Speed

tion entropy as a novel metric to theoretically 951 ®
explain the limitations of DT in modeling lo- | o © ®
cal dependencies, attributing attention disper- ® e o
sion to inconsistent state-action-reward distribu- 2 % @)

tions; (2) We propose a Token Merger to har- £ s0

monize intra-step representations through ex- ;E 75] D Vodel ContentLongth ()
plicit modality alignment, demonstrating univer- b K ® bii o K0 g. o
sal effectiveness across different architectures 701 ° ° @ o k20 @ K12
for enhanced trajectory modeling; (3) We de- s O x @ ki @ Ko
velop a parameter-free Token Mixer using win- 4000 4500 5000 5500 6000 6500 7000 & 7500
dowed average pooling [34] to capture inter-step Speed (step/s)

dependqnmes and preserve th_e Markov.prop- Figure 1: Performance and speed of the proposed
erty, \{ahdated through theoretical anal}{s1s gnd Decision HiFormer (DHi) are compared with DT
experiments for efficiency and generalization; 4pd the recently proposed DC on the MuJoCo
(4) We present a generalized hierarchical frame- Hopper-medium task. The results show that our

work that decomposes sequence modeling into method achieves significant improvements in both
intra-step modeling (Convolution-based Token performance and speed.

Merger) and inter-step modeling (Pooling Token

Mixer) operations, achieving a 73.6% increase

in speed and an 9.3% improvement in performance on the D4RL benchmark compared to DT, as
shown in Figure[I} (5) We demonstrate the generalization of our method to real-world robotic arm
operations, achieving a high success rate, smooth trajectory execution, and fast inference speed.

2 Related Work

2.1 Offline RL

Offline reinforcement learning (offline RL) learns policies from fixed datasets without environment
interaction, but suffers from distributional shift between the learned and behavior policies [19].
Q-learning method is one of the most prominent categories to address this by learning conservative
or constrained value functions [10, [11} 16} [17, 28]. For example, Batch-Constrained Q-learning
(BCQ) [[L1]] constrains the learned policy to remain near the dataset support by using a generative
model and action perturbation. Conservative Q-learning (CQL) [17] penalizes Q-values for actions
not in the datasets, explicitly enforcing conservatism. Implicit Q-learning (IQL) [[16]] avoids behavior
constraints by decoupling policy and value learning, using advantage-weighted regression. While
effective, these methods rely on value estimation and are sensitive to bootstrapping error.

2.2 Sequence Modeling for Offline RL

Recent advances in offline RL have shifted focus toward sequence modeling[6l [14], which reframe
policy learning as predicting future actions from historical trajectories using architectures that
capture temporal dependencies. A pioneering work, DT [6], uses Transformers to model long-term
dependencies by conditioning actions on past states and future returns, eliminating the need for
bootstrapping. DT’s success inspires various follow-ups leveraging Transformers for temporal feature
modeling. For example, EDT [31]] introduces a dynamic history length mechanism to address DT’s
trajectory stitching limitation, while Waypoint Transformer [2] focuses on implicit goal generation
for trajectory planning. GDT [[12] combines Graph Neural Networks (GNN) with Transformers to
model complex state-action relationships. StARformer [25] uses interleaved Step and Sequence
Transformers to explicitly separate short-term and long-term dependencies.

Despite their success, vanilla self-attention’s global focus can overlook local patterns and incurs
significant computational overhead. To alleviate these issues, alternative lightweight structures have
been proposed. For instance, RvS [8]] uses a two-layer MLP to condition on current state and return;
DC [[15]] replaces self-attention with local convolution to enhance local modeling; and FCNet [27]]
adopts Fourier transforms to capture low-frequency trajectory patterns for real-time decision-making.
State-space Models (SSMs), such as S4 [3]] and Mamba [[7, [22]] have also been adopted as lightweight
alternatives to self-attention, offering enhanced local dependency modeling.

3 Method

3.1 Preliminaries: Trajectory Modeling and Attention Structure

In offline reinforcement learning (RL), the goal is to learn a policy that maximizes the expected
cumulative return from a fixed dataset of trajectories, without any further environment interaction.
Each trajectory 7 = (so, ao, 70, - - -, SL, @, 1) is collected under an unknown behavior policy, where
S¢, at, and r; denote the state, action, and reward at timestep ¢, respectively. To enable autoregressive
modeling, a common approach—exemplified by DT—represents trajectories as sequences of return-
to-go (RTG), state, and action tokens.

For each timestep ¢, a subtrajectory of length K is constructed in the form:
T k1t = (Re— K41, St K41, QK415 - - -5 R, 8¢), ()

where the return-to-go is defined as R, = Ztl;:t ry . Each token in the subtrajectory is embedded
into a d-dimensional vector and passed through a multi-layer Transformer encoder.

Given an input of length N = 3K, multi-head self-attention is applied. For each attention head
h e {1,..., H}, attention weights are computed using linearly projected queries and keys:

TRNT (o T17R
(fUzWQ) (QCJVVK)>7)

ij N
where x; € R? is the embedded token at position i, and W/, W € R4 are learnable projection
matrices. These attention weights form the basis for downstream value aggregation and temporal
dependency modeling.

al’. = softmax (

3.2 Quantifying Attention Focus with Attention Entropy

Mathematical Formulation Although Transformers possess strong sequence modeling capabili-
ties, their attention mechanism is inherently position-agnostic and does not favor temporally local
structure. In offline RL, however, effective decision-making often relies on short-range temporal
dependencies—e.g., transitions from ¢ — 1 or ¢ — 2—due to the Markovian nature of the environment.
These short-range inter-step relationships, referred to here as local dependencies, play a crucial role
in credit assignment and behavioral consistency across trajectories. To evaluate whether the model
captures such local dependencies, we analyze the sharpness of its attention distributions. Specifically,
we adopt attention entropy as a proxy measure. Let a,f’j denote the attention weight from token ¢ to
token j in head h of the Transformer. These weights can be interpreted as a probability distribution

(a) DT S1 Sy 83 84 S5 Sg St

4.0
—e— Attention Entropy S1
3.5 Rewards s
---- Reference Entropy n
S
3.0 i 3
S4
2.5] L 1 . /,q\ I
o A) A J48 85
- WANSPRY & VN .2 WO L PO S\ V20 VOO . WP W
g A A e A
o \/ A ° S6
e\ s T
1.5 oo LR] s7
10 (b) DT with Token Merger
| —e— Attention Entropy I\\\ by
N
3.5 Rewards 8 N t5
---- Reference Entropy N S
3.0 \\\ N tg
\\\ \\\ tn
2.5 NN N
S N
2.13 N N tia
2.0 N By
\\\ \\\ tir
1.5 i ta
Step 200 400 600 800 bty tu tu oty

Figure 2: Entropy-reward correlation (left) and attention maps (right) for DT (top) and DT with
Token Merger (bottom), where lower entropy signifies more focused attention and thus stronger local
dependency modeling. DT exhibits state-dominated attention, with sparse weights on RTG and action
tokens, leading to higher attention entropy and a strong correlation between local entropy maxima
and reward minima. In contrast, DT with Token Merger achieves significantly lower entropy, more
balanced inter-step dependencies, and notably higher rewards.

over keys j for each query ¢, conditioned on the attention head h. The average attention entropy for

head h is defined as:
A
_ h h
Sp = N z;z:laij log &, 3)
i=1 j—

where N = 3K is the total number of input tokens in the subtrajectory (with each timestep contribut-
ing RTG, state, and action tokens). The overall attention entropy is obtained by averaging across all

H heads: S = & Zthl Sh. A lower value of S indicates more focused attention distributions, often
associated with stronger local dependency modeling, while high entropy implies dispersed, possibly
uninformative focus.

Empirical results We empirically evaluate this relationship in the MuJoCo Hopper-medium en-
vironment by measuring attention entropy and its correlation with rewards from the first layer of
DT after a warm-up of 50 steps. As shown in Figure 2|(a, left), a clear negative correlation emerges:
spikes in entropy align with sharp reward drops, while periods of low entropy coincide with improved
returns. Notably, low entropy does not always guarantee high reward—Ilikely due to delayed credit
assignment—but high entropy consistently correlates with degraded performance. These patterns
indicate that attention dispersion undermines stable decision behavior.

We further disentangle intra-step and inter-step behaviors by analyzing attention maps of DT from
the perspective of attention entropy (Figure 2{a, right)). Within a timestep, attention is highly
concentrated on state tokens, with RT'G and action tokens receiving minimal weight. We refer to the
attention entropy within a single time step as intra-step modeling entropy. This modality imbalance
indicates that DT’s intra-step attention is focused but biased—emphasizing state over other decision-
relevant inputs. When extending this analysis across multiple timesteps, however, the attention scores
for the dominant state become more dispersed across time steps, forming a full lower triangular
matrix, aligning with the observations in [15]. We treat the state, action, and RTG of a single time
step as a whole and refer to the attention score entropy across different time steps as inter-step
modeling entropy. The inter-step modeling entropy is consistently higher, indicating that while DT
exhibits structured intra-step attention behavior, it struggles to capture inter-step dependencies. This

observation supports a key insight: DT’s local modeling limitations stem not from weak intra-step
fusion, but from its inability to propagate relevant information across adjacent timesteps. Note that
in this context, local dependency modeling does not refer to intra-step modeling but the modeling
between very adjacent timesteps.

| g1 Gt [Gy 1 !
! [(] !
: : T e = |
‘ (Model) (Model j | Feed Forward
i — . i
i |
a w D OO EoEmr s e — | | S— — i
] % . G2 Ry 81 a1 R St At—2 Ry St-1 a1 Ry St !
; i]
838 ! (a) Straightforward (b) Concatenation ' @
£33 . "ol
‘ = e 4
X, * Pooling
/,/ : ;I I;l ;l I;I . Pl :
g L G— |
! T T T T '
— o w ' Self-Attentionj (Self-Attention] [Conv j [Conv J\\] }
i i
. g2 + + NN
Token Merger: "’;E N i — o [— o s s s | s S
; £ ' a2 Ry S4-1 a1 Re St G2 Ry St-1 a1 Ry St i
= i ‘
i i

Yoy
@ @ @ ! (c) Self-Attention (d) Convolution ' @ @ @

Figure 3: Hierarchical modeling framework and micro structure of Token Merger. Token Merger
merges < R, s,a > triplets into unified representations, while Token Mixer models dependencies
across timesteps.

3.3 Structured Entropy Reduction: Token Merger

To address the limitations in inter-step modeling observed in DT, a natural idea would be to train the
model via backpropagation to capture dependencies across timesteps. However, since Transformers
model pairwise interactions between individual tokens, learning relationships between coherent
(s, a, R) triplets becomes challenging. The standard DT struggles with this due to the absence of
timestep-level structure in its token sequence. Our proposed solution is to first merge the components
of each (s, a, R) triplet into a single composite token, and then model dependencies across these
merged tokens. To this end, we introduce two modules: the Token Merger for intra-step modeling
and the Token Mixer for inter-step modeling.

The Token Merger merges the state, action, and RTG within each timestep into a single unified
representation, dynamically balancing the contributions of each component to prevent Transformer
from over-relying on state while neglecting action and return-to-go. This design ensures that decision-
making accounts for the dynamic relationship between state transitions and reward optimization.
Additionally, in its original form, DT was responsible for both intra-step and inter-step modeling, but
it struggled to balance these tasks. The Token Merger relieves this burden by providing timestep-level
representations, allowing the Transformer to focus exclusively on inter-step modeling. Assuming
that the total attention entropy remains unchanged after adding the Token Merger, we can apply
Theorem [3.1] to conclude that DT’s overall attention entropy should decrease.

Theorem 3.1. Let P = (p1,...,px) represent the original attention probability distribution. By
grouping tokens into triplets: G; = {psi—2,p3i—1,p3i}, P’ = (91,92,--)s 9 = X jcq, Pi-
The entropy can be decomposed using the chain rule: H(P) = H(P') + Z g:H(G;), H(G;) =
N—— N—————
Inter-group

=2 ica, Z—: log Z—Z Since H(G;) > 0, we can conclude: H(P) > H(P").

Intra-group

Remark: This inequality guarantees that triplet grouping reduces attention entropy, enabling more
focused attention across timesteps.

We further analyze the attention entropy and attention map of DT with a Token Merger in the same
Hopper-medium environment discussed in Sec.3.2. As shown in Figure 2[b, left), introducing a
Token Merger significantly reduces average attention entropy and yields a more stable and higher
reward trajectory, supporting the conclusion of Theorem [3.1] In terms of attention distribution
(Figure 2{b, right)), compared to the original DT model—which exhibits modality imbalance within

Table 1: Performance in the Gym domain with different Token Mixer and Merger configurations. All
models are trained for 20k steps, and scores are averaged over nine task-dataset pairs (combinations
of Halfcheetah, Hopper, Walker2d tasks and medium-expert, medium, medium-replay datasets) and
five random seeds.

Mixer Merger Straightforward Concatenation Attention Convolution Pooling | Average
None (MLP only) 60.7 75.6 79.8 79.3 75.5 74.2
Linear Attention 74.6 78.1 78.8 80.4 80.0 78.4
Attention 73.5 76.9 76.4 78.9 754 76.2
Convolution 76.7 78.6 76.4 80.1 79.8 78.3
Pooling 75.0 78.5 78.5 80.7 78.1 78.2
Average 72.1 77.5 78.0 79.9 77.8 77.1

each timestep—the merged attention pattern is more structured and focused across timestep-level
tokens. This suggests that the Token Merger not only compresses intra-step information but also
promotes a more focused and temporally coherent inter-step attention profile.

3.4 Hierarchical Modeling Framework

This subsection outlines our hierarchical trajectory modeling framework. We first define the Token
Merger for intra-step fusion and evaluate several merger operations, ultimately selecting convolution
for its effectiveness. We then analyze the role of the Token Mixer in inter-step modeling, examining its
necessity, architectural choices, and interaction with the Token Merger. Motivated by the short-range
nature of dependencies in offline RL, we demonstrate through both empirical results and theoretical
analysis that a lightweight, non-parametric average pooling operation is an even preferable Token
Mixer to more complex alternatives. Together, these components form our final model, shown in

Figure[3]

Token Merger. As mentioned, Token Merger maps each timestep’s triplet (R, s, a) into a unified

representation f : R3*¢ — R?. To ensure the alignment of R, s and a in the sequence, we obtain
the input by performing an action shift to the trajectory 7;_ g y1.¢, restructuring it as: 7/_p ., =

(at_K,]:Zt_KH, St— K41y Qt—K+1s-- -,]A%t, st). This adjustment ensures that the model predicts a;
using (a¢—1, S¢, Ry) rather than (s;, Ry, a;), reinforcing a structured input format.

In standard sequence modeling architectures for offline RL—comprising an embedding layer, encoder
blocks, and a prediction head—the Token Merger is applied to trajectory sequences before they enter
the encoder blocks (Figure[3). We evaluate four types of single-step Token Mergers: Concatenation
directly merges the state, action, and return vectors by combining them before applying an embedding
layer; Self-Attention introduces a local attention mechanism over adjacent tokens to capture short-
range dependencies [25]]; Convolution applies a kernel to extract local patterns from neighboring
tokens; Pooling performs an average operation over adjacent tokens to aggregate their representations
into a single merged token. Experiments in the Gym domain show that performance is lowest when no
merger is used, and highest with convolution (Table[I). Our experimental results are consistent with
our intuition that convolution performs the best because it effectively captures local dependencies
between the tokens and smooths the information fusion.

Token Mixer. As mentioned, recent studies have explored various token mixers, such as self-
attention [6], linear attention [27]] and convolution [15]], all of which have demonstrated strong
performance in offline RL tasks. This raises three key questions: (1) Is the Token Mixer essential for
effective offline RL? (2) Do different Token Mixers significantly impact performance? and (3) Can
the Token Merger mechanism generalize across different types of Token Mixers?

We evaluate various token mixers on nine Gym task-dataset pairs, as shown in Table [I] The
experimental results indicate that: (1) The Token Mixer is essential, particularly in the absence
of a Token Merger. Models without a Token Mixer (i.e., MLP only) perform significantly worse
than those incorporating Token Mixers. However, with the Token Merger in place, the Residual
MLP (without a Token Mixer) already performs reasonably well, similar to behavior cloning (BC)
methods that cannot utilize historical trajectory information or cumulative returns. (2) There is limited

performance variation between different token mixers. (3) Most Token Mixers achieve substantially
better performance when combined with a Token Merger, demonstrating that the effectiveness of the
Token Merger extends across different Token Mixers.

Hierarchical Framework with Token Merger and Token Mixer. Based on these observations,
we propose a hierarchical framework that integrates both a Token Merger and a Token Mixer.
While the Token Merger alone, when combined with residual MLP, can implicitly model temporal
dependencies, it struggles with stability across timesteps due to the lack of context. Meanwhile,
Transformer-style Token Mixers incur high computational costs and do not necessarily improve
across-timestep dependency modeling, often overemphasizing long-range interactions that are less
relevant in offline RL. Given that decision-making in offline RL is primarily driven by short-range
dependencies, and that excessive modeling capacity can lead to instability or inefficiency, we propose
a non-parametric average pooling operation as the Token Mixer. This aggregates adjacent timestep
representations, providing stable cross-timestep smoothing without introducing additional parameters.

The convolution-based Token Merger encodes each token as an (R, s, a) tuple, reducing the input
sequence length to one-third of its original size and improving the computational efficiency of the
multi-layer encoder. Given this reduction, a pooling size of 2 is sufficient to capture temporal
information from the current and preceding timesteps. We provide a theoretical proof of the pooling
layer’s expressive power in modeling Markov problems in Appendix [A]and Appendix [B] We refer
to our model as Decision HiFormer (DHi), a lightweight, hierarchical, and high-performance
alternative to Transformer-based architectures that demonstrates strong empirical and theoretical
performance in modeling local dependencies.

4 Experiment

In this section, we present a comprehensive evaluation of the model using the widely recognized
D4RL benchmark [9]. A broad range of offline RL baselines are included. To bridge the gap between
simulated benchmarks and real-world applications, we further deploy DHi on a 7-DOF Franka Emika
Panda robotic arm for physical validation. Ablation studies are also conducted to examine the impact
of different window sizes in the pooling layer and different Token Mergers on model performance.
We further demonstrate the outstanding performance of DHi in sparse reward environments as well
as its generalization across context lengths.

4.1 Experiment Setting

Baselines We compare our approach with existing SOTA offline RL approaches, each excelling in
specific domain tasks. For value-based approaches, we include IQL [16], BCQ [11]], and CQL [17].
For supervised learning approaches, we include DT [6], StAR [25)], GDT [12]], FCNet [27] and
DC [15]]. Further experimental details and more baseline comparisons are provided in Appendix [C]
and Appendix D} respectively.

D4RL Datasets We explore four domains in the D4RL benchmark, each presenting unique chal-
lenges for evaluating offline RL algorithms. The Gym-MuJoCo environments provide a straightfor-
ward assessment platform with near-optimal trajectories and clear reward structures. In contrast, the
Adroit domain, based on human demonstrations, features a constrained state-action space where the
agent must maintain reasonable behavior within strict limits. The Kitchen domain involves multi-task
complexity, requiring agents to complete four sequential subtasks in a specific order and generalize
beyond training data to reach the target configuration. Finally, the AntMaze domain uses an 8-DOF
robotic agent with sparse rewards and increased locomotor complexity to make navigation even more
difficult.

Real-World Environment Datasets. We further evaluate the model’s inference speed and gen-
eralization ability in real-world settings using a 7-DOF Franka Emika Panda robotic arm equipped
with a single-joint torque sensor. The experiments involve four tasks of varying complexity, as
shown in Figure [In the Lift task, the robotic arm lifts a green cube, while in the Place task, it
picks up a teddy bear and places it into a green bowl. The Selective Lift and Selective Place tasks
introduce additional challenges, with Selective Place incorporating obstacles to assess the model’s

Table 2: Performance of DHi and baselines on Gym, Adroit, Kitchen and AntMaze domains. All
models are trained for 100k steps, and scores are averaged over five random seeds. Best and second-
best scores are denoted in bold and underlined, respectively.

Gym Tasks CQL IQL BCQ BC DT StAR GDT FCNet DC Ours
halfcheetah-medium-expert 91.6 86.7 69.6 55.2 86.8 93.7 93.2 91.2 93.0 94.2
hopper-medium-expert 1054 915 109.1 52.5 107.6 111.1 111.1 1105 1104 | 111.7
walker2d-medium-expert 108.8 109.6 67.3 107.5 108.1 109.0 107.7 108.8 109.6 | 109.6
halfcheetah-medium 492 474 415 426 426 429 429 429 43.0 434
hopper-medium 69.4 66.3 65.1 529 67.6 59.5 77.6 57.8 92.5 90.1
walker2d-medium 83.0 78.3 52.0 75.3 74.0 73.8 76.5 75.2 79.2 79.9
halfcheetah-medium-replay 455 442 348 36.6 36.6 36.8 40.5 39.8 41.3 41.5
hopper-medium-replay 95.0 94.7 31.1 18.1 82.7 29.2 85.3 85.8 94.2 97.7
walker2d-medium-replay 77.2 73.9 13.7 323 79.4 39.8 71.5 63.5 76.6 81.2
Average 80.6 71.0 53.8 52.6 76.2 66.2 79.1 75.1 82.2 83.3
Adroit Tasks CQL IQL BCQ BC DT StAR GDT FCNet DC Ours
pen-human 37.5 71.5 66.9 63.9 79.5 77.9 92.5 57.7 93.8 86.6
hammer-human 4.4 1.4 0.9 1.2 3.7 3.7 5.5 1.2 43.0 31.2
door-human 9.9 4.3 -0.1 2.0 14.8 1.5 20.6 0.4 22.6 25.2
pen-cloned 39.2 37.3 50.9 37.0 75.8 33.1 86.2 50.4 98.2 89.1
hammer-cloned 2.1 2.1 0.4 0.6 3.0 0.3 8.9 0.2 33.8 44.6
door-cloned 0.4 1.6 0.01 0.0 16.3 0.0 19.8 -0.2 23.6 23.6
Average 15.6 19.7 19.8 17.5 322 19.4 389 18.3 52.5 50.1
Kitchen Tasks CQL IQL BCQ BC DT StAR GDT FCNet DC Ours
kitchen-complete 43.8 62.5 8.1 65.0 50.8 40.8 43.8 28.0 50.0 55.0
kitchen-partial 49.8 46.3 18.9 338 57.9 12.3 733 325 75.0 75.0
Average 46.8 54.4 13.5 494 54.4 26.6 58.6 30.3 62.5 65.0
AntMaze Tasks CQL IQL BCQ BC DT StAR GDT FCNet DC Ours
antmaze-umaze 74.0 87.5 78.9 54.6 59.2 51.3 76.0 84.0 85.0 86.9
antmaze-umaze-diverse 84.0 62.2 55.0 45.6 53.0 45.6 69.0 82.0 78.5 84.0
Average 79.0 74.9 67.0 50.1 56.1 48.5 72.5 83.0 81.8 85.5

generalization capabilities. In Selective Lift, the model must identify a red cube among various objects
and place it onto a green plate.

To train the model, 50 image-based trajectories
were collected for the Lift and Place tasks (with
the same set used for both Place and Selective
Place tasks), and 60 trajectories were gathered
for the Selective Lift task. The latter includes an
equal split of trajectories with the red cube on
the left and the yellow cube on the right, adding
complexity to the model’s task execution.

Vn @
Selective A 4 Selective
% Lift Flace - Place

Figure 4: Real-world applications.
4.2 Main Results

Results on D4RL Datasets We evaluate DHi

across four task domains from the D4RL benchmark: Gym, Adroit, Kitchen, and AntMaze, with
results summarized in Table[2] To ensure a fair comparison, we normalize the scores following the
protocol established by [9], where a score of 100 represents expert-level performance. We report
average scores from five random seeds. DHi demonstrates strong and consistent performance across
all domains, surpassing baseline methods in many cases. In the Gym domain, DHi achieves the highest
average score of 83.3, indicating its effectiveness in handling a wide variety of tasks. In the Adroit
domain, where offline RL struggles with extrapolation errors due to limited human demonstration
data, DHi significantly outperforms most baselines and achieves a highly competitive average score.
For Kitchen tasks, which require generalization to unseen states and long-term value optimization,

DHi delivers strong performance, indicating its high expressiveness. In the AntMaze domain, which
presents challenges due to sparse rewards and sub-optimal trajectories, DHi consistently matches or
surpasses existing methods. Overall, these results highlight the robustness of our approach across
different domains and task complexities, reinforcing its effectiveness in addressing the challenges
posed by the D4RL benchmark.

Real-World Applications We further evaluate yple 3: Performance of real-world experiments.

the performance of DHi and DT on the real- g [jfi and S-Place represent the Selective Lift and
world robotic dataset, measuring their success gejective Place tasks respectively.

rates over 10 trials and the inference time for

generating 400 actions. As shown in Table[3] Policy | Lift | S-Lift | Place | S-Place | Params/M | Time/s
DHi achieves a 100% success rate across all DT | 090 | 040 | 100 | 1.00 9.7 23
tasks, whereas DT struggles with the Lift task DHi | 1.00 | 1.00 | 1.00 | 1.00 6.6 17

and performs significantly worse in the more
challenging Selective Lift task.

Moreover, visualization results (Appendix [G] and videos in supplementary material) indicate that
DHi produces significantly smoother robotic arm trajectories than DT and completes tasks more
quickly. Under the same hyperparameter settings, DHi also demonstrates greater efficiency, requiring
approximately 32% fewer parameters than DT (6.6M compared to 9.7M) and achieving a 35%
improvement in inference speed (1.7s compared to 2.3s). This efficiency gain is primarily due
to replacing the self-attention layer with a non-parametric, constant-complexity average pooling
operation.

4.3 Ablation Study

The Design of Token Merger As discussed in the Method section, we evaluate the performance
of different Token Mergers across various Token Mixers in the Gym domain (Table [I). Among
them, the convolution-based Token Merger consistently achieves the highest average performance.To
further analyze its effectiveness, we perform t-SNE visualizations on the same task using convolution-
based token merging. Figure [5]shows that before applying the Token Merger, embeddings exhibit a
random distribution of states, actions, and RTGs. After applying the Token Merger, the embeddings
demonstrate improved local clustering, reinforcing its role in structuring input representations.
Combined with the conclusion of Theorem [3.T] these results suggest that the introduction of a Token
Merger significantly improves the inter-step modeling consistency. This finding is further supported
by evaluations under a more extensive training regime, as detailed in Appendix [E-T}

(a) without Token Merger (b) with Token Merger
o7
7\ 91 P
(8)
° o o © ® %
(5) @ 0
© 690 © O @
o © ©
States ﬂ Actions RTGsn Merged Tokens

Figure 5: t-SNE visualization of embeddings with/without Token Merger. Post-merger embeddings
exhibit structured clustering, indicating enhanced local associations.

The Size of Pooling Layer To analyze how pooling sizes influence the model’s ability to capture
token dependencies, we experiment with pooling sizes of 1, 2, 5, 10, 15 and 20 in the pooling
layer. As shown in Appendix [E2} the experimental results show that when the pooling size is set
to 1 (equivalent to MLP only), the model’s performance significantly decreases due to the lack of
contextual history. Smaller pooling sizes (2-10) result in better performance, while excessively large
window sizes hinder the modeling of dependencies. We set the pooling size to 2 to align with the
Markov property and ensure efficiency.

Generalization Across Context Lengths and Sparse Reward Settings We provide an in-depth
discussion of our method’s robustness to context length and its performance under sparse reward

settings in Appendix [F] These analyses further validate the design choices behind DHi, particularly
its insensitivity to context size and its resilience in sparse reward conditions.

5 Conclusion

In this study, we address the challenges of Offline RL by proposing a novel hierarchical decision
modeling framework. Our approach effectively captures state-action-return relationships through
intra-step and inter-step modeling. To quantify the model’s ability to focus on relevant states, we
introduce attention entropy as a metric and reveal its negative correlation with performance. To tackle
this issue, we propose the Token Merger to unify representations within each time step and design a
parameter-free Token Mixer based on Average Pooling for efficient inter-step dependency modeling.
The resulting Decision HiFormer (DHi) outperforms existing baselines on the D4RL benchmark
while enhancing computational efficiency. Furthermore, DHi has demonstrated strong generalization
capabilities and practical benefits in real-world robotic manipulation tasks, underscoring its appli-
cability beyond simulated environments. A limitation of this study is the lack of evaluation on the
transferability of our approach to other RL paradigms, which we leave for future investigation.

6 Acknowledgments

This work was supported by the Shanghai Artificial Intelligence Laboratory and the National Natural
Science Foundation of China (Grant Nos. 62572313 and 62106139).

References

[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal. Is
conditional generative modeling all you need for decision making? In Proc. of ICLR. OpenReview.net,
2023.

[2] Anirudhan Badrinath, Yannis Flet-Berliac, Allen Nie, and Emma Brunskill. Waypoint transformer:
Reinforcement learning via supervised learning with intermediate targets. In Proc. of NeurIPS, 2023.

[3] Shmuel Bar-David, Itamar Zimerman, Eliya Nachmani, and Lior Wolf. Decision S4: efficient sequence-
based RL via state spaces layers. In Proc. of ICLR. OpenReview.net, 2023.

[4] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics transformer for
real-world control at scale. ArXiv preprint, abs/2212.06817, 2022.

[5] Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning via
autoregressive g-functions. In Proc. of CoRL, pages 3909-3928. PMLR, 2023.

[6] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling.
In Proc. of NeurIPS, pages 15084-15097, 2021.

[7]1 Yang Dai, Oubo Ma, Longfei Zhang, Xingxing Liang, Shengchao Hu, Mengzhu Wang, Shouling Ji, Jincai
Huang, and Li Shen. Is mamba compatible with trajectory optimization in offline reinforcement learning?
In Proc. of NeurIPS, 2024.

[8] Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for offline
RL via supervised learning? In Proc. of ICLR. OpenReview.net, 2022.

[9] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
data-driven reinforcement learning. ArXiv preprint, abs/2004.07219, 2020.

[10] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In Proc.
of NeurIPS, pages 20132-20145, 2021.

[11] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without explo-
ration. In Proc. of ICML, pages 2052-2062. PMLR, 2019.

[12] Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Graph decision transformer. ArXiv preprint,
abs/2303.03747, 2023.

10

[13]

(14]

(15]

[16]

(171

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng Tao. Q-value
regularized transformer for offline reinforcement learning. In Proc. of ICML. OpenReview.net, 2024.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Proc. of NeurIPS, pages 1273-1286, 2021.

Jeonghye Kim, Suyoung Lee, Woojun Kim, and Youngchul Sung. Decision convformer: Local filtering in
metaformer is sufficient for decision making. In Proc. of ICLR. OpenReview.net, 2024.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-learning.
In Proc. of ICLR. OpenReview.net, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. In Proc. of NeurlPS, 2020.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Sergio Guadarrama, Ian Fischer,
Winnie Xu, Eric Jang, Henryk Michalewski, and Igor Mordatch. Multi-game decision transformers. In
Proc. of NeurIPS, 2022.

Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. ArXiv preprint, abs/2005.01643, 2020.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An Huang,
Ekin Akyiirek, Anima Anandkumar, Jacob Andreas, Igor Mordatch, Antonio Torralba, and Yuke Zhu.
Pre-trained language models for interactive decision-making. In Proc. of NeurIPS, 2022.

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao. Constrained
decision transformer for offline safe reinforcement learning. In Proc. of ICML, pages 21611-21630. PMLR,
2023.

Qi Lv, Xiang Deng, Gongwei Chen, Michael Yu Wang, and Ligiang Nie. Decision mamba: A multi-grained
state space model with self-evolution regularization for offline RL. In Proc. of NeurIPS, 2024.

Ashok Vardhan Makkuva, Marco Bondaschi, Alliot Nagle, Adway Girish, Hyeji Kim, Martin Jaggi, and
Michael Gastpar. Attention with markov: A curious case of single-layer transformers. In Proc. of ICLR,
2025.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. In Proc. of AAAI, pages 3942-3951. AAAI Press, 2018.

Jinghuan Shang, Kumara Kahatapitiya, Xiang Li, and Michael S Ryoo. Starformer: Transformer with
state-action-reward representations for visual reinforcement learning. In Proc. of ECCV, pages 462-479.
Springer, 2022.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Proc. of CoRL, pages 785-799. PMLR, 2023.

Hengkai Tan, Songming Liu, Kai Ma, Chengyang Ying, Xingxing Zhang, Hang Su, and Jun Zhu. Fourier
controller networks for real-time decision-making in embodied learning. In Proc. of ICML. OpenReview.net,
2024.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Proc. of IJCAI,
pages 4950-4957. ijcai.org, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. of NeurIPS, pages 5998-6008, 2017.

Muning Wen, Jakub Grudzien Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang.
Multi-agent reinforcement learning is a sequence modeling problem. In Proc. of NeurlPS, 2022.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. In Proc. of NeurIPS,
2023.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua B. Tenenbaum, and Chuang Gan.
Prompting decision transformer for few-shot policy generalization. In Proc. of ICML, pages 24631-24645.
PMLR, 2022.

Taku Yamagata, Ahmed Khalil, and Rail Santos-Rodriguez. Q-learning decision transformer: Leveraging
dynamic programming for conditional sequence modelling in offline RL. In Proc. of ICML, pages
38989-39007. PMLR, 2023.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and Shuicheng
Yan. Metaformer is actually what you need for vision. In Proc. of CVPR, pages 10819-10829, 2022.

11

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes. Our main contributions are also detailed in Sec.[I]and Sec.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, please see Sec. E]for limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

12

Justification: We present the assumption and proof for the entropy reduction using the Token
Merger in Sec.[3] Additionally, we provide the assumption and proof of the theoretical
results on the expressiveness of the pooling layer for Markov problems in Appendix [A]and

Appendix
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Yes, please see Sec. [3]and Appendix [C|
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

13

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Once the blind review period is finished, we’ll open-source all codes and
instructions.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, please see Appendix [C|
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes, please see Appendix [D]and Appendix [E]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: please see Table[3|and Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper focuses on technical contributions without direct societal implica-
tions, and no explicit positive or negative societal impacts are discussed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

15

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: We do not foresee any high risk for misuse of this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we credited them in appropriate ways.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

16

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

17

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This work does not involve the use of LLMs in the core methods.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

18

https://neurips.cc/Conferences/2025/LLM

A Pooling with Markov

Given the inherent complexity of deep neural networks, our work builds upon the mathematical
framework proposed by [23]], focusing on simplified scenarios involving first-order binary Markov
data and single-layer pooling token mixer. We conduct a principled analysis of pooling token mixer
using Markov chains and further extend the framework to accommodate multi-state Markov processes.
Our notation is summarized in Table [ST]

Table S1: Mathematical Notations and Definitions

Notation Definition Notation Definition

z,y Scalars v Vectors

M,P,W Matrices -1l {2-norm / Frobenius norm

(K] Set{1,...,K} ! Sequence from z; to z;

o(z) Sigmoid function ReLU(z) ReLU function: max(0, z)

P(A) Probability of event A P(A| B) Probability of A given B

X Vocabulary, e.g., {0, 1} N Length of input sequence

{zn}h1 Input sequence S Vocabulary size (multi-state)

Py; Transition probability P(zn41 = | P Transition kernel matrix (P;;)
jlan =1)

™ Probability distribution of state x,,) Initial state distribution

D, q Switching probabilities Po1 = | P(p,q) Binary Markov kernel [1;” 1fq]
»,Pio=¢q

H(Y | X) Conditional entropy h(p") Binary entropy function

H(Zp+1 | ©n) | Markov chain entropy rate DxiL(P || Q) | Kullback-Leibler divergence

Data. We assume a binary vocabulary X = {0, 1} and model the input sequence {x,,}_; as a
first-order Markov chain (i.e., with memory order m = 1). In such processes, the probability of the
next state depends solely on the current state, independent of any preceding states:

Pij éIP>(l'n—i-1 :j|$n:Z):]P)($n+1 =j|£E1,...7In:i)

For any i,j € X, we consider a Markov process governed by the transition kernel P = (P;;),
which determines the system’s dynamics. Specifically, if 7w(") € [0, 1)/*I represents the probability
distribution of the state x,, at time n, then the distribution evolves according to antl) — z(n) . p,

In this paper, we focus on a specific transition kernel defined over the binary state space:

1—

where p,q € (0, 1) denote the switching probabilities (i.e., Py = p and Py = ¢). We define a
first-order binary Markov chain (z,),>1 characterized by the transition kernel P(p, ¢) and an initial
distribution 7w(*). Formally, we denote this process as (z,,)n>1 ~ (71, P(p,¢)). When the initial
distribution 7r(1) is clear from the context, we adopt the simplified notation (z,,11 | 2,)n>1 ~ P(p,q)
to describe the conditional transitions.

The entropy rate of a first-order Markov chain, defined as H(x,+1 | =), quantifies the average
uncertainty of the next state given the current state. For the binary Markov process considered in this
work, the entropy rate is given by

qh(p) +ph(q)

H(zpt1 | zn) =
(o |) = DD

where h(-) denotes the binary entropy function.

19

Model. To study a concrete instance of a Pooling Token Mixer, we modify the model architecture
from [23]]. The Self-Attention layer in this base model is substituted with a module comprising an
average pooling operation of size k followed by a single-layer LayerNorm. Let {z,, })_, € {0, 1}
denote an input sequence of length V. For each n € [N], the operations within this model are defined
as follows:

Xy = Tp€+ Pn € R? (Embedding)
1 - d :

an = = | Z x; €R (Pooling)
i=n—k+1

~ qn — fu(Qn) d

qn =7, © —————= + B; € R® (LayerNorm)
' Jo(an)? + ¢ !

Yn=Xn+qn (Shortcut)

t, = WoReLU(W;y,,) € R (Feed-Forward)

Zp = Yo +t, €RY (Shortcut)

Sn={(a,zn,) +bER (Linear)

fo(z}) = o(sn) €[0,1] (Prediction)

In the above equations, d is the embedding dimension. The term e € R? is the embedding vector,
where specific vectors e; (for x,, = 1) and eg (for z,, = 0) are utilized. p, € R¢ represents a
trainable positional encoding. For the LayerNorm operation applied after pooling, v,,3, € R?
are learnable parameters used for scaling and shifting, respectively; € > 0 is a small constant for
numerical stability. The functions f,,(+), f-(-) : R? — R? compute the mean and standard deviation,
respectively, of their input features (here, the pooled features q,,). The feedforward network (FFN)
consists of matrices W, € R"*% and W4 € R?*"_ where r is the hidden dimension of the FFN. The
final linear layer is characterized by the weight vector a € R and scalar bias b € R, which produce
the logits s,,. The probability for the symbol 1 is then computed from these logits using the sigmoid
function o (+) as

fo(x]) £ Po(zpi1 = 1| 2) = o(sn).

Note that a single symbol probability suffices, as the vocabulary is binary. The set of all trainable
parameters in our model is given by

é = (e7 {pn}r[:I:D’Y]MahWhWQ?aﬁ b) .

Loss. We train the parameters using a next-token prediction loss, defined as the cross-entropy loss
between the predicted probability fg(z7) and the ground truth token z,, 41 at each position n € [N].
Specifically, the loss function is given by

L) 2 _% > Eupps | @nsalog fo(@}) + (1= anin)log (1 - fo@D) |, (1
n€e[N]

where the expectation is taken over the data distribution of the sequence {x,, }_,. In practice, this
expectation is approximated by the empirical average computed over sequences sampled from the
corpus, and stochastic optimizers such as SGD or Adam are used to update the model parameters.

Objective. Building on the theoretical framework described above, we investigate the modeling
capacity of the aforementioned single-layer pooling-based models (i.e., those utilizing a pooling
token mixer). We address the following research question:

Can single-layer models utilizing a pooling token mixer effectively capture the
dynamics of data sequences that exhibit Markovian properties?

By analyzing the global minimum of the loss function, we derive the theoretical conditions under
which these single-layer pooling-based models, when equipped with appropriately designed param-
eters, can provably model the Markovian dynamics present in input streams with state transition
dependencies.

20

Lemma 1. (Loss as KL Divergence) Let the input sequence {x,}Y_, be generated by a Markov
chain (m(p, q),P(p, q)) with fixed (p,q) € (0,1)% Let @ = (eg,e1,{pn}i_4,...,b,a) € RP
denote the model parameters. The cross-entropy loss L(0), as defined in Eq. (1), can then be
expressed as the sum of the KL divergence between the Markov kernel and the predicted distribution,
and the entropy rate of the Markov chain:

1

L) =+ > Buy [Dre(PC | 2) | Po(- | 9)) | + H(zasr |),
n€e[N]

where Dk (P || Q) denotes the Kullback—Leibler divergence between two distributions P and Q,

and H(xp41 |) is the entropy rate of the Markov chain. The detailed proof is available in [23)].

Lemma 2. (Gradient Computation) Retaining the setup from Lemma 1, let L(0) be the cross-
entropy loss defined in Eq. (). Then, for any parameter w € 0, the gradient V,,L(0) is expressed
as:

V., L(0)

—% Z vall-%—l {(anrl - fe(x?))vw(sn)]

ne[N]

S B (B = 1) — Sola?) Tuon)].
n€e[N]

The second equality is derived using the law of total expectation. The detailed proof is available in
[23].

Theorem 1. (Global Minimum in the Weight-tied Case) Let the input sequence {x,,}_, be gen-
erated by a Markov chain (m(p,q),P(p, q)) with fixed (p,q) € (0,1)2. For the weight-tied case,
let & € RP~ denote the complete set of model parameters. Then, for any (p, q), there exists an
explicitly constructed parameter 8 € RP~% such that 6* is a global minimum of the population loss
L() defined in Eq. (1)) and its predictions perfectly match the Markov kernel. More precisely, we
have:

(i) L(8) > L(6) forall @ ¢ RP~1,
(ii) Por(znt1 =1 a7) = P(xni1 = 1| zn),
(i) L(0%) = H(zpy1 |),
(iv) VL(0*) = 0, i.e., 0% is a stationary point.
The detailed proof is available in Appendices[B.1)and[B.2]

Corollary 1. (Global Minimum in the Untied Case) The weight-tied solution 0* ¢ RP~4 from
Theorem|l.| can be extended to an untied parameter vector 6 = (6%, a*) € RP by introducing an

independent copy a*. This construction ensures that the prediction probability under 0" matches that
under 0%, and thus the true Markov kernel:

Poe (#n41 =1]27) =P (2pt1 =1 2]) = P(an1 =1 zn).

Since this prediction matching (which is property (ii) of Theorem adapted for 8") is a sufficient
condition for global optimality (as established in the proof of Theorem|l.| e.g., Appendices
and , it follows that 0" is a global minimum of the loss L(-) in RP. Consequently, 8" also
satisfies properties analogous to (i), (iii), and (iv) of Theorem with 0" replacing 0* and the
parameter space being RP .

Multi-state Markov Chains. Our framework, originally formulated for the binary setting X =
{0, 1}, naturally generalizes to the multi-state setting X = {0,1,...,S — 1}, where S denotes the
state (vocabulary) size. Let the input sequence (z,,),>1 ~ P(p) be a first-order Markov chain such
that, for some p € (0, 1), either x,,41 = x,, with probability 1 — p or z,+1 switches uniformly at
random to a different state with probability <. The symmetric kernel P(p) described earlier (with
p = q in the binary case) generalizes naturally to this multi-state setting. For the model architecture,
we use the same design as before, except that the embedding and linear layers now incorporate .S
token embeddings.

21

B Proof of Theorem 1

B.1 Proof of Theorem 1 for p + ¢ < 1, Weight-tied Case

Proof. Assume that p + ¢ < 1 and that we employ weight tying, i.e., the parameter set is given by

0= (e =a, {pa} 4, ..., b) € RP—4,

According to Lemmas[I] and[2] if a set of parameters 6 configures our model such that its output
fo(x?) perfectly matches the true conditional probability P(x,,+1 = 1 | x,,), then 8 achieves a global
minimum for the loss function L(-). At this minimum, the loss equals the entropy rate of the process,
and 6 is also a stationary point.

Consequently, it is sufficient to construct such a parameter set, which we denote 8. To inform the
design of 8*, we note that the explicit form of the target Markov kernel is:

]P)(xn—&-l =1 | xn) = Tn (1 - P Q) +p.
Therefore, to enforce

fg(ﬂ??) = Tn (1 —P— Q) +Dp,

it is sufficient for the model to use only the information from the current symbol z,, and ignore the
preceding tokens x?‘l. According to the architecture described in Appendix |Al a natural way to
achieve this is to set W1 = 0 and «v; = 3; = 0 in the LayerNorm module. Moreover, by choosing
the positional embeddings p,, = 0 for all n, we have

Xn =Tn€, Yn =2ZXpn, Znp=Xn.
The logits are then computed as
5n = (€,2,) +b=x,|e|]*+0.
Since fo(z}) = o(s,) must equal the Markov kernel, we require that

o (wallel? +b) =20 (1-p—q) +p.

Taking the inverse of the sigmoid (i.e., the logit function) yields

2 T,(1—p—q)+p
Tnllel|” + b= log(.
lel 1-p)(1—z,)+qz,
By substituting z,, = 0 and x,, = 1, we obtain:

T, =0: bzlog(p >7
1-p
1—
Zp=1: |le2+b= 1og<q) .
q
Subtracting the first equation from the second, we obtain

ol = tog(E=2U=1).

Thus, a global minimum @ must satisfy

||e210g<(1p;;1q)> and b1og(1fp).

Note that this choice is well defined since (1_”;% > 1 when p + ¢ < 1, implying
(1-p)(1—q)
1og< ”) > 0.

Although there are infinitely many solutions (e, p,,, b) satisfying the above conditions, a canonical
choice for the global minimum 6 = 6* is

[t (i-pi-g) o
o | 1\/d1g< pq) {pn = Ofnzs.

¥1 =08, =0, b:log(1p>, W; =0, Wy;=0
—D

where 1 € RP~9 denotes the all-one vector. This completes the explicit construction of 8 and hence
the proof.

22

B.2 Proof of Theorem 1 for p + ¢ > 1, Weight-tied Case

Proof. We follow a similar strategy as in the p + ¢ < 1 case by constructing a parameter § € RP~¢
such that

f@(ir?) = IP)(anrl =1 | ‘rn) =Tn (1 —PpP—- Q) +p.
However, in this case we must utilize the ReLU component of the feed-forward mechanism, unlike
the earlier case where we set Wy = 0. We now describe the construction of ™.

First, we set the embedding vectors as e = a = 1, and the positional encodings as
1
Pn = _5 17 vn Z 17

where 1 € R? denotes the all-one vector. Consequently, the embedded input becomes

Xn:xne+pn:an17

{+;, ifz, =1,
Ap =

1 . _
— 9 lfxn—O

We also set the LayerNorm parameters to zero:
Y1 =B8,=0.
For the feed-forward layer, we choose W1 and W so that
W, ReLU(Wl Yn) = ﬁn 1,

where (,, is a scalar that may depend on z,,. Consequently, the output of the feed-forward block
becomes

with

Znp =X, + Wo ReLUW1y,) =a, 1+ 8,1= (e, + 6n) 1.
The logits are then computed as

Sp = (a,2,) +b=d(a, + Bn) +0,
sincea = 1and (1,1) = d. As fg(z]) = o(s,) must equal the Markov kernel, we require
U(d(avz+ﬁn)+b) =z, (1—-p—q)+p, z,€{0,1}.

Taking the logit (i.e., the inverse of o) yields

am(l—p—q)+p
dan+ﬁn+blog(, xn €{0,1}.
() (1-p)(A—2,) +qzn 0.1}
By substituting z,, = 0 and z,, = 1 separately and denote the corresponding values of 5 by 5y and
(1, respectively, we obtain:

p

1—
Tp=1: d(;—i—ﬁl)—&—b:log(q(]).
Subtracting the first equation from the second yields

@

d(l + 51 —50> = log<(1_p)(1_(1)>)

pq

It remains to choose [y and (3 so that above equation holds. To this end, consider the design of the
feed-forward layer. Let Wy = w 11" and Wy = —2 W | for some w € R.q. Since y,, = v, 1,
we have

Wiy, =wll'(a,1) =wa, d1.
Thus,
0, if oy, = —% (ie. x, = 0),

ReLU(Wl yn) = {wdl

=71, ifa, = % (ie. o, =1).

23

Then,
- 0, if x, =0,
W, ReLU(W1 yn) =—-2W,; ReLU(W1 yn) =
—w?d?1, ifz, =1

Hence, we obtain 8y = 0 and 3; = —w? d?. Substituting these into Eq. (2)) gives
1—p)(1—
pq

1P = % log<(1p)(1q)).

pq

That is,

Let w = w* be the solution:

S AR

Next, substitute o = 0 in the equation for x,, = 0 to obtain the bias:

1 D P d
d(—f) b=log(L b=log(L)+ 2.
2) " Og(l—p) — Og(l—p)+2
Piecing everything together, we define the canonical global minimizer 8™ as
e=a=1, {pn:_%l}g:h Y1 =08, =0,

0" = d
b:log<1p> +5 Wi=w 11T, Wo=—2W]
- P

This completes the explicit construction of 8* and the proof.

C Experimental Setup

C.1 D4RL

In this section, we detail the experimental setup for our Decision HiFormer (DHi) model on the
D4RL benchmark [9]]. We implement DHi by building upon the official Decision ConvFormer (DC)
[15]] codebase and incorporate our proposed pooling module. This module performs a lightweight
temporal averaging operation: for an input sequence (e.g., of merged tokens) [z1, Za, ..., Zx], it
produces an output sequence [z1, ’”1;“52 , ””2;”53 yeeny z”‘l;rN]. This specific form of pooling, with
an effective window of two for the averaged elements, aligns with our goal of efficiently capturing
local temporal dependencies from current and preceding timesteps, as discussed for DHi.

Our experiments are conducted on several offline RL tasks from the D4RL benchmark [9]], which span
diverse challenges including continuous control, dexterous manipulation, and long-horizon navigation
with sparse rewards. Specifically, we select representative tasks from the following domains:

¢ Gym-MuJoCo: This domain includes classic continuous control tasks such as HalfCheetah,
Hopper, and Walker2d. These tasks generally feature dense reward signals and are used to
evaluate the model’s ability to learn fundamental motor skills from offline data. The datasets
used are medium (generated by a medium-performance policy), medium-replay (collected
from the replay buffer during the training of a medium policy, containing a large volume of
suboptimal states), and medium-expert (a mixture of trajectories generated by medium and
expert policies, providing both generalization challenges and high-quality demonstrations).

* Adroit: This domain consists of high-dimensional, fine-grained dexterous manipulation
tasks such as Door, Hammer, Pen, and Relocate. These tasks originate from (potentially
noisy) human demonstration data and present significant challenges due to action complexity
and system dynamics. The datasets used include human (trajectories from real human
operations, which are natural but may be unstable), cloned (data generated by a low-
quality policy obtained through behavioral cloning from the ‘human® data), and expert (data
generated from expert policies).

24

* AntMaze: This domain encompasses navigation tasks of varying scales, such as ‘umaze,
‘medium®, and ‘large‘ mazes. The core challenges lie in sparse rewards and long-term
temporal dependencies, requiring the agent to perform long-term credit assignment and
effective exploration. The datasets used are play (non-goal-oriented human teleoperation
data, offering broad state coverage but low policy efficiency) and diverse (data collected
from multiple policies, enhancing state coverage while increasing the learning difficulty).

Kitchen: This domain involves multi-task scenarios where the agent must complete a
sequence of four subtasks in a specific order to reach a target configuration, testing general-
ization and sequential task completion. We use the complete dataset (trajectories showing
successful, ordered completion of all subtasks) and the partial dataset (trajectories with
incomplete or out-of-order subtask attempts, representing suboptimal data).

The hyperparameters for Decision HiFormer (DHi) in our DARL experiments, detailed in Table[S2]
guide the model’s architecture and training. DHi is trained for 10° steps with a batch size of 64.
Architecturally, it consists of 3 layers with GELU activation. The context length K, defining the
length of historical state-action-reward sequences fed into the model, is set to 20. The hidden
dimension is optimized from {128,256} based on preliminary experiments. For training, we use
the AdamW optimizer with a Cosine learning rate scheduler, selecting an initial learning rate from
{107%,1073}. Regularization includes a weight decay of 10~% and gradient clipping at 0.25 to
ensure stable training.

Upon completion of training, the model is evaluated online in the respective D4RL task environments.
We adopt the standard evaluation protocol from D4RL [9] to quantify performance in these test
environments. Specifically, we report the normalized score, calculated as:

score — random score

normalized score = 100 x .
expert score — random score

Here, score refers to the agent’s raw score, random score is the average score achieved by a random
policy, and expert score is the average score achieved by an expert policy for that task. This normal-
ized score typically ranges from 0 to 100, where O corresponds to random policy performance and
100 corresponds to expert policy performance. For each task, we report the average of normalized
scores over five random seeds, where each seed is evaluated over 100 episodes.

Table S2: Hyperparameter Settings of DHi in D4RL Dataset.

Hyperparameter Value

Total number of updates 10°

Number of layers 3

Context length K 20

Dropout 0.1

Batch size 64

Optimizer AdamW
Learning rate scheduler ~ Cosine Scheduler
Learning rate {1074, 1073}
Weight decay 1074
Gradient norm clip 0.25

Nonlinearity function GELU

We compare our approach with existing SOTA offline RL approaches, each excelling in specific
domain tasks. For value-based approaches, we include Implicit Q-learning (IQL) [[16], Batch-
Constrained deep Q-learning (BCQ) [11]], and Conservative Q-Learning (CQL) [[17]. For supervised
learning approaches, our comparisons encompass Behavioral Cloning (BC), Decision Transformer
(DT) [6], StARformer (StAR) [25], Graph Decision Transformer (GDT) [12], Fourier Controller
Networks (FCNet) [27] and Decision ConvFormer (DC) [[15]. For FCNet and DC, we report the
results from the original papers, while results for the other baselines are cited from [[13]].

Table [S3| presents the computation time for one training epoch, GPU memory usage, and the number
of parameters. These metrics offer a comparative analysis of the computational efficiency between

25

Table S3: Comparison of Model Complexity and Training Resources on D4RL.

Complexity MLP DT DC DHi (Ours)
Training time (s) 30.4 34.8 34.2 31.9
GPU memory usage 1.82GiB 2.10GiB 2.00GiB 1.84 GiB
Total parameters 1.84M 2.63M 1.86 M 1.84M
Token Mixer parameters 0.0K 789.5K 13.8K 0.0K

MLP vs DT vs. DC vs DHi (Ours), all of which are trained on a single RTX 4090 GPU. It is observed
that DHi is more efficient than DT and DC in terms of training time, GPU memory usage, and the
number of parameters.

C.2 Real-World Applications

We further evaluate DHi’s inference speed and generalization ability in real-world settings using a 7-
DOF Franka Emika Panda robotic arm equipped with a single-joint torque sensor. The model’s input
consists of RGB images captured by cameras at three positions (right, left, and wrist), as well as 7-
dimensional joint position data. The input images are encoded using ResNet50 for visual information,
and the joint position features are fused with the visual features through FiLM [24]]. These fused
features are then passed through a linear layer to transform them into a 512-dimensional state vector,
which is input into DHi. The final output is a 10-dimensional action. The hyperparameters of
Decision HiFormer and the environment used for real-world evaluation are summarized in Table
and Table[S5] respectively.

Table S4: Hyperparameter Settings. Table S5: Latency Measurement Environment.
Hyperparameter Value Configuration Value
Total number of updates 2 x 10° Warm Up 10 dummy state inputs
Number of layers 3 CPU Intel Xeon Platinum 8383C
Hidden dimension 512 CPU Clock 2.70 GHz
Context length K 16 Memory Clock 3200 MHz
Batch size 8 oS Ubuntu 20.04 (Kernel 5.15)
Optimizer AdamW Python 3.10.16
Learning rate scheduler ~ MultiStepLR GCC 9.4.0
Learning rate 10—* Torch Version 2.1.1

Nonlinearity function GELU

D Supplementary Experiments

D.1 More Comparison

For extensive comparison, we compare DHi with more baselines: TD3+BC [10], a model-free
actor—critic method, utilizing behavior cloning for regularization; RvS [§]], a reward-conditioned
behavior cloning approach framed as supervised learning; Decision Diffuser (DD) [1]], a diffusion-
based generative model for iterative trajectory refinement; Waypoint Transformer (WT) [2], a
transformer-based sequence-modeling approach using automatically generated subgoals; Decision
Mamba (DM) [22]], an SSM-based decision-making model with multi-grained architecture. The
results are shown in Table[S@l

D.2 Further Validation

To assess whether the experimental patterns observed earlier persist under an extended training
regime, we conduct this experiment exclusively on the Hopper-medium dataset, increasing the total
number of parameter updates from 2 x 10% to 1 x 105, performing evaluations every 10% steps. All
other experimental settings remain unchanged.

26

Table S6: Performance of DHi and more baselines on Gym domains, where dataset abbreviations are:
‘medium’ as ‘m’, ‘medium-replay’ as ‘m-r’, and ‘medium-expert’ as ‘m-e’. The results are all cited
from their original papers.

Task Name TD3+BC RvS DD WT DM Ours
halfcheetah-m-e 97.9 922 90.6 93.2 93.5 94.2+1.0
hopper-m-e 112.2 101.7 111.8 1109 1119 | 111.74+2.6
walker2d-m-e 101.1 106.0 108.8 109.6 111.6 | 109.6+1.0
halfcheetah-m 42.8 41.6 49.1 43.0 43.8 43.4+1.0
hopper-m 99.5 60.2 79.3 63.1 98.5 90.1£2.9
walker2d-m 79.7 71.7 82.5 74.8 80.3 79.9+£2.7
halfcheetah-m-r 43.3 38.0 39.3 39.7 40.8 41.5£1.0
hopper-m-r 314 73.5 100.0 88.9 89.1 97.7+£1.9
walker2d-m-r 25.2 60.6 75.0 67.9 79.3 81.24+8.3
Average 70.3 71.7 81.8 76.8 83.2 83.3

As shown in Table the results obtained by extending the training budget largely corroborate the
conclusions drawn from our experiments with a smaller training budget. Specifically, we reconfirm
that: (1) the Token Mixer is essential for achieving higher performance (average scores of 8§1.3-86.2
with mixers vs. 76.6 for MLP-only), though an MLP-only model can perform reasonably well
when combined with an effective Token Merger (e.g., 81.2 with the Convolution merger); (2) the
performance variation among different Token Mixers remains limited (average scores ranging from
81.3 to 86.2); and (3) Token Mergers consistently improve performance across different Token Mixers
and the MLP-only baseline, highlighting their general utility. These findings under a constrained
training regime further validate the importance of the Token Mixer component and the synergistic
benefits derived from employing Token Mergers.

Table S7: Performance in Hopper-medium task. We report the mean normalized scores obtained
across five random seeds.

Mixer Merger Straightforward Concatenation Attention Convolution Pooling | Average
None (MLP only) 64.0 76.5 79.4 81.2 82.1 76.6
Linear Attention 76.9 89.5 79.1 94.8 90.8 86.2
Attention 67.6 78.9 85.6 89.0 85.6 81.3
Convolution 92.5 89.2 64.4 85.1 88.2 83.9
Pooling 75.6 84.3 84.7 90.1 87.1 84.4
Average 75.3 83.7 78.6 88.0 86.8 82.5

D.3 Standard Deviation

Due to limited space in Table E] of the main text, the standard deviations for the Gym domain are
reported in Table[S6€] while those for the remaining tasks are shown in Table [S§]

Table S8: Standard deviations of DHi across different domains.

Adroit Domain Kitchen Domain
Task DHi Task DHi
pen-human 86.6 £ 11.8 kitchen-complete 55.0+4.5
hammer-human 31.2 + 5.6 kitchen-partial 75.0+£53
door-human 252+19
pen-cloned 89.1 = 11.1 AntMaze Domain
hammer-cloned 44.6 +=9.5 antmaze-umaze 869 +11.9
door-cloned 23.6 £ 2.1 antmaze-umaze-diverse 84.0 + 13.6

27

E Ablation Study

E.1 The Design of Token Merger

The Token Merger fuses the per-timestep return-to-go (RTG), state, and action into a unified rep-
resentation, which enables the subsequent encoder layers to focus on modeling inter-timestep de-
pendencies. To investigate the impact of different Token Merger, we compare several Token Merger
variants—Attention, Pooling, Concatenation, and Convolution—against a Straightforward baseline
that directly feeds separate RTG, state, and action tokens into the model without explicit merging.
The comparative results in the Gym domain are summarized in Table[S9]

Experimental results show that all Token Merger variants outperform the Straightforward baseline,
indicating the importance of explicitly integrating RTG, state, and action. Among the different
approaches, the Convolution-based Token Merger consistently achieves the best average performance,
as it effectively captures local dependencies between the input tokens and smooths the information
fusion. In contrast, the Attention-based variant, known for its strength in global modeling, shows
poor performance on this task.

Table S9: Performance of DHi with various Token Merger in Gym domain, where dataset abbrevia-
tions are: ‘medium’ as ‘m’, ‘medium-replay’ as ‘m-r’, and ‘medium-expert’ as ‘m-e’.

Task Name Straightforward Attention Pooling Concatenation Convolution
halfcheetah-m-e 89.3 92.7 88.9 90.8 94.2
hopper-m-e 108.9 111.7 110.8 111.0 111.7
walker2d-m-e 108.4 96.2 108.0 107.3 109.6
halfcheetah-m 43.1 43.0 43.1 43.1 434
hopper-m 75.6 84.7 87.1 84.3 90.1
walker2d-m 80.1 78.8 79.5 79.0 79.9
halfcheetah-m-r 38.8 38.8 36.0 38.0 41.5
hopper-m-r 83.4 92.6 95.1 97.1 971.7
walker2d-m-r 71.3 74.4 75.4 76.4 81.2
Average 77.8 79.2 80.4 80.8 83.3

E.2 Analysis of Pooling Size

In this section, we detail our investigation into the impact of varying pooling window sizes on the
model’s capacity to learn inter-step dependencies. The core of this investigation revolves around
the Pooling Module, which executes a lightweight temporal averaging operation. Given an input

sequence of tokens [z1, z, ..., 2] and a pooling size P > 1:
* For the initial P—1 positions in the output sequence (i.e., 1, . . . , yp—1), a simpler averaging
or direct mapping is typically employed. For instance, one might set y; = % >y @ for
1<i< P

* For all subsequent positions ¢ > P, the output token y; is computed as the average of the P
input tokens ending at x;: y; = % ZkP:_Ol Ti_f-

In the specific instance where P = 2, as is used in some of our primary configurations, this module’s
output sequence starts with y; = x1, followed by y; = % fori > 1.

We experiment with pooling sizes (P) of 1, 2, 5, 10, 15, and 20 for this module. The results, shown
in Figure[ST|(a), indicate a clear trend. Notably, a pooling size of P = 1 (which effectively reduces
the model to an MLP architecture by negating any temporal averaging beyond the current token if
we consider y; = ;) results in a significant performance drop due to the lack of contextual history
integration. In contrast, better results are achieved with smaller pooling windows, particularly for
P values between 2 and 10. However, further increasing the window size beyond this range proves
detrimental, hindering effective dependency modeling. Based on the design in [[15]—which sets filter
length to current and previous timesteps per the Markov assumption—we choose a pooling size of
P = 2 to maintain efficiency and temporal locality.

28

100 100

Expert Level: 100 Expert Level: 100
95.0
95
8
=
g 90.1 90.2
£ 90 $9.0
S
5 86.7 86.1
a
l)
80
1 2 5 10 15 20 10 20 40 80 120 160
(a) Pooling Size (b) Context Length

Figure S1: Performance comparison on Hopper-medium task: (a) Impact of varied pooling size; (b)
Impact of varied context length.

F Discussion

F.1 Context Length

In our experiments on the Hopper-medium task, DHi demonstrates robust performance across both
small and large context lengths by replacing the attention layer—traditionally dependent on context
length—with a size-2 average pooling layer, as shown in Figure [ST[b). For example, the model
achieves a performance score of 86.1 with a context length of 10 and 89.0 with a context length of
160. This consistent performance, regardless of the context window length, underscores the model’s
resilience to variations in context length. Furthermore, by substituting the attention mechanism with
a pooling layer, our approach mitigates the potential issue of out-of-distribution generalization, which
can occur when there is a mismatch between context lengths during training and testing. In summary,
our method effectively reduces sensitivity to context length, ensuring that the model maintains high
decision-making quality across a range of settings.

F.2 Sparse Reward Processing

We assess DHi’s performance in a delayed (sparse) reward setting, where rewards are not provided
throughout the trajectory but are instead accumulated and given at the final timestep [6,[13]]. Table[ST0]
displays the results for both delayed and dense reward conditions in the D4RL-Hopper dataset. The
results show that delayed returns minimally affect DHi and DT while CQL collapses, indicating
the resilience of sequence modeling approaches in such conditions. Additionally, compared to the
straightforward method, DHi with convolution-based Token Merger achieves a notable performance
improvement, suggesting that sparse rewards do not affect the local modeling capability of CNNs.

Table S10: Results on the D4ARL-Hopper datasets with sparse rewards, where dataset abbreviations
are: ‘medium’ as ‘m’, ‘medium-replay’ as ‘m-1’, and ‘medium-expert’ as ‘m-e’.

Dense Setting Sparse Setting
Task Name CQL DT DHi | CQL DT DHi
halfcheetah-m 492 426 434 1.0 422 435
hopper-m 694 676 90.1 | 233 573 81.7
walker2d-m 83.0 740 799 00 699 79.6
halfcheetah-m-r || 45.5 36.6 41.5 78 330 404
hopper-m-r 95.0 827 977 7.7 50.8 943
walker2d-m-r 7712 66.6 81.2 32 516 746
Average 69.9 61.7 723 7.2 50.8 69.0

29

G Visualization

G.1 D4RL Visualization

We observe that the "attention dispersal” problem appears to be a core architectural issue, rather
than a direct consequence of trajectory quality. As shown in Figure[S2] our visualizations across the
medium-expert and medium-replay datasets show similar dispersed attention patterns in the standard
DT. Importantly, these visualizations also indicate that this issue is effectively mitigated in each
scenario after applying our Token Merger, resulting in a more structured and focused attention maps.
These observations support our conclusion that the benefit of our hierarchical structure is not tied to a
specific data type, but rather provides a more robust foundation for policy learning across the various
datasets of differing qualities found in the D4RL benchmark.

(a) DT (b) DT with Token Merger

Figure S2: Attention maps for DT (left) and DT with Token Merger (right) in MuJoCo Hopper-
medium-expert and Hopper-medium-replay environments.

G.2 Real-World Visualization

Visualization of DHi in real-world applications, as shown in Figure [S3a] [S3b]

(c) Lift red cube and put it on the plate by DHi. (d) Lift red cube and put it on the plate by DT.
Figure S3: Visualization of DHi and DT in real-world applications

30

	Introduction
	Related Work
	Offline RL
	Sequence Modeling for Offline RL

	Method
	Preliminaries: Trajectory Modeling and Attention Structure
	Quantifying Attention Focus with Attention Entropy
	Structured Entropy Reduction: Token Merger
	Hierarchical Modeling Framework

	Experiment
	Experiment Setting
	Main Results
	Ablation Study

	Conclusion
	Acknowledgments
	Pooling with Markov
	Proof of Theorem 1
	Proof of Theorem 1 for p + q <= 1, Weight-tied Case
	Proof of Theorem 1 for p + q > 1, Weight-tied Case

	Experimental Setup
	D4RL
	Real-World Applications

	Supplementary Experiments
	More Comparison
	Further Validation
	Standard Deviation

	Ablation Study
	The Design of Token Merger
	Analysis of Pooling Size

	Discussion
	Context Length
	Sparse Reward Processing

	Visualization
	D4RL Visualization
	Real-World Visualization

