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Abstract

Deep neural networks have made it possible for reinforcement learning algorithms
to learn from raw high dimensional inputs. This jump in the progress has caused
deep reinforcement learning algorithms to be deployed in many different fields
from financial markets to biomedical applications. While the vulnerability of
deep neural networks to imperceptible specifically crafted perturbations has also
been inherited by deep reinforcement learning agents, several adversarial training
methods have been proposed to overcome this vulnerability. In this paper we focus
on state-of-the-art adversarial training algorithms and investigate their robustness to
semantically meaningful natural perturbations ranging from changes in brightness
to rotation. We conduct several experiments in the OpenAI Atari environments,
and find that state-of-the-art adversarially trained neural policies are more sensitive
to natural perturbations than vanilla trained agents. We believe our investigation
lays out intriguing properties of adversarial training and our observations can help
build robust and generalizable neural policies.

1 Introduction

The advancements in deep neural networks lead to wide spread of applications from image classifica-
tion Krizhevsky et al. (2012) to natural language processing Sutskever et al. (2014), and from speech
recognition Hannun et al. (2014) to self learning systems Mnih et al. (2015). Yet the ability to learn
from raw high dimensional data brought some of the drawbacks inherited from deep neural networks
to deep neural policies.

Szegedy et al. (2014) showed that specifically crafted imperceptible perturbations can lead to misclas-
sification in image classification. After this initial work a new research area emerged to investigate
the vulnerabilities of deep neural networks against specifically crafted adversarial examples. While
various works studied many different ways to compute these examples Carlini & Wagner (2017);
Madry et al. (2018); Goodfellow et al. (2015); Kurakin et al. (2016) several works focused on studying
ways to increase the robustness against such specifically crafted perturbations, based on training
with the existence of such perturbations Madry et al. (2018); Tramèr et al. (2018); Goodfellow et al.
(2015); Xie & Yuille (2020).

As image classification suffered from this vulnerability towards worst-case distributional shift in the
input a series of work conducted in deep reinforcement learning showed that deep neural policies
are also susceptible towards the specifically crafted imperceptible perturbations Huang et al. (2017);
Kos & Song (2017); Pattanaik et al. (2018); Lin et al. (2017). While one line of work put effort
on exploring these vulnerabilities in deep neural policies Korkmaz (2020a, 2021a,d,b,c), another
line in parallel focused making them robust and reliable via adversarial training Pinto et al. (2017);
Mandlekar et al. (2017); Zhang et al. (2020).

To be able to build generalizable and robust deep neural policies, in this paper we approach the
problem of performance degradation with respect to observed input from a wider perspective of
distributional shift and make the following contributions:
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• We conduct an investigation on the robustness of state-of-the-art adversarially trained deep
neural policies against various types of distributional shift in the input.

• We perform several experiments in the OpenAI Atari baselines.

• We compare the performance drop of the vanilla trained agents with the state-of-the-art
adversarially trained agents against natural semantically meaningful perturbations.

• We find that vanilla trained agents are more robust against natural semantically meaningful
perturbations than the state-of-the-art adversarially trained agents.

2 Background

2.1 Adversarial Examples

Adversarial examples were introduced in computer vision by Szegedy et al. (2014) based on producing
perturbations via a box constrained optimization method. Goodfellow et al. (2015) proposed a fast
method called the fast gradient sign method (FGSM) to produce adversarial examples based on the
linearization of the cost function used to train the network at the input sample point.

xadv = x+ ε · ∇xJ(x, y)
||∇xJ(x, y)||p

, (1)

where x represents the input, y represents the labels and J(x, y) represents the cost function used to
train the deep neural network. Kurakin et al. (2016) propose the iterative version of the fast gradient
sign method inside an ε-ball.

x0adv = x, (2)

xN+1
adv = clipε(x

N
adv + αsign(∇xJ(xNadv, y))) (3)

This method is also known as projected gradient descent (PGD) as proposed by Madry et al. (2018).

2.2 Deep Reinforcement Learning and Adversaries

Initially adversarial examples were introduced to the deep reinforcement learning domain by Huang
et al. (2017) and Kos & Song (2017) concurrently by utilizing FGSM as proposed by Goodfellow
et al. (2015). Korkmaz (2020a) proposed to optimize the adversarial example search via Nesterov
momentum. Several studies have been conducted to make deep reinforcement learning policies
more robust to such specifically crafted malicious examples. Mandlekar et al. (2017) use adversarial
examples produced via modifying the environment by taking the gradient of the cost function with
respect to input at training time to regularize the policy in an attempt to increase robustness. Pinto
et al. (2017) model the interaction between the perturbation maker and the agent as a zero-sum
Markov game, and propose a joint training algorithm to improve robustness against an adversary
that aims to minimize the expected cumulative reward of the agent. Gleave et al. (2020) model the
relationship between the adversary and the agent as a zero-sum game where the agent is limited
to taking natural actions in the environment rather than minimal `p-norm bounded perturbations,
and proposed a self-playing approach to gain robustness against such an adversary. Finally, Zhang
et al. (2020) propose a modified MDP called a state-adversarial MDP with the aim of obtaining
theoretically principled robust polices. Recently, Korkmaz (2021d,a) demonstrated the vulnerabilities
of state-of-the-art adversarial training techniques in deep reinforcement learning. In our work, we
further will show that adversarial training causes problems on the generalization capabilities of deep
reinforcement learning agents.
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Figure 1: Original frame and environmental modifications. Columns: original frame, rotation,
compression artifacts, brightness and contrast.

3 Experimental Setup

In our experiments we use OpenAI Brockman et al. (2016) Atari baselines Bellemare et al. (2013).
Our models are trained with DDQN Wang et al. (2016) and Zhang et al. (2020). We test trained
policies averaged over 10 episodes. We measure the performance drop of the agent as,

I =
Scoreclean − Scoreadv

Scoreclean − Scorefixed
min

. (4)

where Scoreclean represents the score from a clean run of the game where no perturbations are
introduced to the agent’s observations, Scorefixed

min represents the minimum score available for a given
game, and Scoreadv represents a run of the game where perturbations are introduced to agent’s
observation system.

4 Adversarially Trained Models under Natural Perturbations

In this paper we focus on investigating adversarial training and its effects on generalization of
neural policies. In particular, we focus on the state-of-the-art adversarial training method proposed
by Zhang et al. (2020). In this paper the authors propose to model the observation perturbations
as a modified MDP, which they refer to as a state-adversarial MDP, with the aim of making the
agent more robust towards natural measurement errors or adversarial noises. The authors test their
adversarially trained models under the PGD attack proposed by Madry et al. (2018). In our paper
we test adversarially trained DDQN models proposed by Zhang et al. (2020) under several natural
perturbations proposed by Korkmaz (2020b). In particular, we introduce several minimal natural
perturbations (e.g. rotation, brightness, contrast and compression artifacts) to deep reinforcement
learning policy observation systems and investigate the performance drop of the trained policies. Note
that these natural modifications are quite small and some of the perturbations are not even recognizable
by human perception (see Figure 1). Most importantly, we compare the proposed state-of-the-art
adversarially trained agents with vanilla trained agents under the natural semantically meaningful
perturbations and find that vanilla trained models are more robust than adversarially trained models
against many natural perturbations including brightness, rotation, compression artifacts, and contrast.

While we observe this particular sensitivity increase to natural perturbations in adversarially trained
models in baselines like Atari environments where the generalization capabilities of deep reinforce-
ment learning agents is not the primary concern, this sensitivity increase caused by adversarial training
might cause severe problems for the environments where generalization is essential for learning
reasonable policies. In particular, Cobbe et al. (2019) environment is more challenging and focused
on testing generalization capabilities compared to Atari Baselines. The observation on the limitations
of adversarial trained neural policies towards such natural perturbations implies that adversarially
trained neural policies are going to experience challenges in obtaining reasonable policies in these
type of environments proposed by Cobbe et al. (2019).
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Figure 2: Sensitivity of adversarially trained model and vanilla trained model to the changes in
rotation and contrast.

Figure 3: Sensitivity of adversarially trained model and vanilla trained model to the changes in
compression artifacts and brightness.

The fundamental takeaway from these results is the fact that current state-of-the-art proposed solutions
to resolve the sensitivity towards imperceptible perturbations indeed do not solve this problem and
make it even worse in the case of more natural perturbations.

5 Conclusion

In this paper we focused on the generalization capabilities of vanilla trained and the state-of-the-art
adversarially trained neural policies. In particular, we tested adversarially trained neural policies under
semantically meaningful natural perturbations and we found that vanilla trained deep neural policies
are more robust against natural perturbations than adversarially trained deep neural policies. We
further argue that this kind of sensitivity increase towards natural perturbations in adversarially trained
models can hurt generalization. We believe our study provides a holistic view on the robustness of
adversarial training for deep neural policies and can contribute to designing resilient and robust self
learning systems for future work.
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