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Abstract

As one of the currently significant problems001
in AI-enabled healthcare research, disease di-002
agnosis based on the medical text has made003
substantial progress. However, the length of004
the diagnostic evidences is different, leading to005
the difficulty of capturing multi-scale features006
of each disease. And recent studies have dis-007
covered that structural knowledge from medical008
text is critical for disease diagnosis. This pa-009
per proposes integrating empirical knowledge010
of disease into a multi-view feature attention011
network to address these issues. The multi-012
view feature attention network employs multi013
encoders to capture segment information of014
diagnostic evidences of each illness. Mean-015
while, we used an abductive causal graph con-016
structed from medical text to extract the empir-017
ical knowledge representation of diseases by018
graph convolutional network. The evaluation019
conducted on the MIMIC-III-50 dataset and020
Chinese dataset demonstrates that the proposed021
method outperforms the structural knowledge-022
based state-of-the-art models.1023

1 Introduction024

With the rapid growth of the population, some025

common diseases occupy a large amount of public026

medical resources, which leads to the problem of027

uneven distribution (Bohmer et al., 2020). And028

due to the enormous work pressure, the misdiagno-029

sis rate of doctors will also increase. Meanwhile,030

AI technology has been applied in many fields,031

such as face recognition (Adjabi et al., 2020; Wang032

et al., 2020b), machine translation (Bapna and Fi-033

rat, 2019; Fan et al., 2021), etc. Therefore, it is034

particularly significant to employ AI technology to035

establish an auxiliary diagnosis system, which can036

improve the work efficiency of doctors, reduce the037

misdiagnosis rate, and alleviate the problem of lack038

of medical resources.039

1The code is available at https://github.com/
FutureForMe/MVFAN-EK

EMR Text:
Cough and expectoration for 1 month, worsening with chest tightness for 10 days. The
patient had a cough with no obvious cause before 1 month, showing paroxysmal cough,
coughing a small amount of white foamy sputum, no fever, no chills, no chills, chest
tightness when coughing, no shortness of breath, chest pain, and no night sweats, with
fatigue and appetite. Check the sputum to find AFB: acid-fast bacilli (+++), given infusion
and oral medication. After the treatment, the patient's cough improved, but the patient's
chest tightness increased in the past 10 days. The patient’s chest CT examination in our
hospital indicated: left lower lobe lesions, consideration of left lung Ca and obstructive
atelectasis. 
...
MRI of the lumbar spine showed that the disc degeneration of the lumbar 3-sacral
segment 1, mild bulging of the lumbar 4-5 intervertebral disc, and bulging of the lumbar
5-sacral 1 interve rtebral disc. Please consider after the orthopedic surgery consultation:
give "Celecoxib Capsule" 0.2g po qd, and externally apply Huoxuezhitong ointment. 

Admission diagnosis:
Tuberculosis; Lumbar disc herniation

Figure 1: Each admission diagnosis corresponds
to diagnostic evidences of different lengths. The
segments highlighted are the diagnostic evidence of

tuberculosis . The lumbar disc herniation is like it.

Most methods are based on the Electronic Med- 040

ical Record (EMR) text for disease diagnosis, 041

mainly including the chief complaint, history of 042

present illness, past history, and test results infor- 043

mation. Some existing methods treat it as a multi- 044

label text classification task, such as CNN-based 045

(Mullenbach et al., 2018; Li and Yu, 2020; Liu 046

et al., 2021), RNN-based (Cho et al., 2014; Vu 047

et al., 2020). These methods employ a sequence 048

model and attention mechanism, which mainly fo- 049

cus on the information representation of the entire 050

medical text. Since medical texts often contain pro- 051

fessional knowledge and terminology, some studies 052

incorporate additional medical knowledge into di- 053

agnostic models, e.g., the description of diseases 054

(Xie et al., 2019; Wang et al., 2020a). Besides, the 055

entity-level features and their relationships are also 056

essential for disease diagnosis. Since GCN (Kipf 057

and Welling, 2017) was proposed, some studies 058

have tried to leverage structural knowledge graphs 059

to diagnose disease, such as (Yuan et al., 2020; Xie 060

et al., 2020; Chen et al., 2020; Sun et al., 2020; 061

Chen et al., 2021a). Moreover, doctors will accu- 062

mulate abundant empirical knowledge in clinical 063

practice, which will assist them in diagnosing dis- 064

eases more accurately. Therefore, empirical knowl- 065
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edge of diseases is also essential (Quaranta, 2021).066

Although the current methods have made signif-067

icant progress in disease diagnosis, there are still068

the following challenges: 1) Since there are many069

types of diseases, and each disease corresponds to070

diagnostic evidence segments of different lengths,071

as shown in Figure 1. The first challenge is how to072

accurately extract the diagnostic evidence of each073

disease from the segment information. 2) The em-074

pirical knowledge that doctors gain from clinical075

experience is also essential in disease diagnosis.076

Therefore, the other is how to extract the empirical077

knowledge of diseases from medical texts reason-078

ably and effectively.079

To address these challenges, we propose inte-080

grating Empirical Knowledge into the Multi-View081

Feature Attention Network (MVFAN-EK) model,082

which employs multiple CNNs combined with the083

label attention mechanism, which can extract diag-084

nostic evidence segment information of each dis-085

ease from the long medical text. Besides, we also086

propose a framework for knowledge fusion on the087

abductive causal graph to obtain empirical knowl-088

edge of diseases.089

The main contributions of this paper are as fol-090

lows:091

• We propose a multi-view feature attention092

module that captures disease diagnosis seg-093

ment information of different lengths corre-094

sponding to each disease.095

• We first put forward an abductive causal graph096

constructed from electronic medical records.097

Through GCN fusion, we can obtain dis-098

ease representations that incorporate empir-099

ical knowledge.100

• The experiment results conducted on the real101

medical dataset demonstrate that our proposed102

method outperforms previous state-of-the-art103

methods, which validates the effectiveness of104

our proposed method.105

2 Related Work106

In this section, we will briefly introduce disease107

diagnosis models based on text classification and108

structural knowledge, and finally, discuss the im-109

portance of empirical knowledge of diseases.110

Based on Text Classification Disease diagnosis111

has been a hot topic in the healthcare domain for112

more than 20 years (de Lima et al., 1998). Recent113

works utilized sequence models (Kim, 2014; Cho 114

et al., 2014) and attention mechanisms for disease 115

diagnosis. Some researchers employed CNN to ex- 116

tract n-gram features from the medical text (Yang 117

et al., 2018; Mullenbach et al., 2018; Li and Yu, 118

2020; Liu et al., 2021). In addition, there is a grow- 119

ing interest in using RNN to capture long-range 120

dependent information (Shi et al., 2017; Vu et al., 121

2020). Different from previous work, our work im- 122

proves model performance by extracting segments 123

of diagnostic evidence at different scales for each 124

disease. 125

Based on Structural Knowledge Since GCN 126

(Kipf and Welling, 2017) was proposed, it has at- 127

tracted the attention of many researchers. To cap- 128

ture structural knowledge, some researchers have 129

begun to construct knowledge graph from medi- 130

cal text to diagnose diseases (Xie et al., 2019; Cao 131

et al., 2020; Yuan et al., 2020). As the best model 132

at present,SHiDAN (Chen et al., 2021a) incorpo- 133

rates a subgraph convolutional network and hierar- 134

chical diagnostic attentive network to extract the 135

layered structural features. The difference of our 136

proposed method to SHiDAN (Chen et al., 2021a) 137

is that our disease expression is empirical knowl- 138

edge extracted from clinical experience, which can 139

be applied to all patients rather than personalized. 140

Empirical Knowledge of Disease In clinical prac- 141

tice, the empirical knowledge of diseases can help 142

doctors diagnose diseases and reduce the rate of 143

misdiagnosis. (Quaranta, 2021) emphasized the 144

importance of empirical knowledge in clinical prac- 145

tice in the present society. (Joto et al., 2021) con- 146

structed a knowledge base by the clinical empirical 147

knowledge of neurosurgery to assist in disease di- 148

agnosis. 149

3 Method 150

In this section, we first describe our MVFAN-EK 151

model (Figure 2), which consists of two major mod- 152

ules: multi-view feature attention module that em- 153

ploys multiple encoders to produce the represen- 154

tation of each disease from different perspectives, 155

and empirical knowledge representation module 156

that uses GCN to obtain the empirical knowledge 157

of each disease on an abductive causal graph. 158

3.1 Problem Definition 159

We treat disease diagnosis as a multi-label clas- 160

sification task under the medical text. The in- 161

put of the model is the EMRs text data W = 162
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Figure 2: Architecture of our MVFAN-EK model which contains two main modules, MVFA and EKR. The MVFA
module extracts the diagnostic evidence segment information for each disease from K views. The EKR module
extracts the empirical knowledge of diseases by graph convolutional network in an abductive causal graph.

[w1, w2, ..., wN ], where N denotes the length of163

medical tokens. The output is the prediction re-164

sult ŷ = [y1, y2, ..., yL], where L is the number of165

disease and yi ∈ {0, 1}.166

3.2 Multi-View Feature Attention (MVFA)167

To capture multi-scale diagnostic evidence infor-168

mation of each disease, we define multi encoders169

including convolutional layer, residual block, and170

label attention. Each encoder can extract the seg-171

ment information from one view for each disease.172

Embedding Layer173

We employ a tokenizer to obtain the word tokens174

for the input medical text data W , such as EMR.175

Then by the pre-trained model, like Word2Vec176

(Mikolov et al., 2013) and Bert (Devlin et al.,177

2019), we can acquire the word embedding X =178

[x1,x2, ...,xN], where xi ∈ Rdw , dw is the dimen-179

sion of word embedding.180

Multi View Convolutional181

We apply multiple CNNs of different scales to ex-182

tract the diagnostic evidence segment from differ-183

ent views. For example, a CNN with a convolution184

kernel size of 3 and a convolution kernel channel185

of 100 can capture a segment pattern of length 3.186

The convolutional procedure can be formalized as :187

188

Hc = BatchNorm(tanh(Conv1d(X)) (1)189

where Conv1d represents the 1-dimensional con- 190

volution. Here we forced the row number N of the 191

output Hc ∈ RN×df to be same as that input X. 192

df indicates the out-channel size of the filter. 193

+

Conv1d 

BatchNorm

Hc

Hr

Figure 3: The architecture of a residual block. "+"
represents the element-wise addition.

Residual Block 194

In order to reduce the gradient vanishing issue, we 195

add a residual network (He et al., 2016) after the 196

convolutional layer. The structure of the residual 197

block in our model is shown in Figure 3. The output 198

of multi-view convolutional layer Hc is input the 199

residual block as: 200

Hr = Hc +BatchNorm(Conv1d(Hc)) (2) 201
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where Hr ∈ RN×df and the Conv1d is the same202

as before.203

Label Attention204

To capture each label representation from different205

views, we employ a label attention mechanism (Lin206

et al., 2017) to transform Hc into label-specific207

vectors. First, we compute the label-specific weight208

as:209

Z = tanh(WH⊤
r ) (3)210

A = softmax(UZ) (4)211

Eq 3 is a non-liner projection, where W ∈ Rdp×df212

is a matrix. Then we use a matrix U ∈ R|L|×dp213

to compute the label-specific weight matrix A ∈214

R|L|×N . The attention weight matrix A is used to215

produce the label-specific vectors as:216

V = HrA
⊤ (5)217

Finally, the matrix V ∈ Rdf×|L| is the represen-218

tation of diseases from a view.219

Supposing that we set K encoders in this mod-220

ule, which can obtain the representations of each221

disease V1,V2, ...,VK from K views.222

3.3 Empirical Knowledge Representation223

(EKR)224

To simulate the empirical knowledge representation225

of diseases obtained from clinical experience, we226

construct an abductive causal graph from all EMRs,227

and then use GCN for knowledge fusion to get228

the empirical knowledge representation of each229

disease.230

Abductive Causal Graph Construction (ACGC)231

The first step in constructing an abductive causal232

graph is Named Entity Recognition (NER) (Li233

et al., 2020; Chen et al., 2021b). As a sub-direction234

of NER, there are many mature models of medical235

NER (Wu et al., 2017; Wang et al., 2019), which236

can extract medical entities such as symptoms, test237

results, etc., from medical texts. We use the ex-238

isting medical NER model to obtain the entity set239

E = {e1, e3, ..., eM}, where M is the number of240

entities.241

The abductive causal graph can be constructed242

using co-occurrence frequencies between entities,243

similar to the previous work (Chen et al., 2021a;244

Yuan et al., 2020). Firstly, we construct the co-245

occurrence relationship between symptoms, test246

results, and other entities by setting a threshold247

(e.g., 30). Secondly, we construct the reverse causal 248

relationship between symptoms, test results, and 249

labeled diseases. The construction process is sim- 250

ilar to the former, but the relationship is directed 251

from symptoms and test results to labeled diseases. 252

This kind of directed edge can represent the pro- 253

cess of inferring the disease from the symptoms 254

and the test results. Through the above two steps, 255

the final abductive causal graph G = (E,R) can 256

be constructed. 257

GCN Layer 258

The GCN (Kipf and Welling, 2017) has been 259

widely used in the modeling of graph structure 260

data. But the original GCN was designed for undi- 261

rected graphs. For propagating the information of a 262

node to its nearest neighbors on the directed graph, 263

(Fu et al., 2019; Bian et al., 2020) improved the 264

original GCN. Therefore, we use improved GCN 265

to obtain the high-level representation of medical 266

entities considering the graph structure among the 267

entities. 268

After getting the abductive causal graph from all 269

EMRs, we employ an embedding layer to produce 270

their initial vector representation H
(0)
g ∈ RM×de 271

of medical entities. The disease entities can fuse 272

the information of their nearest medical entities 273

through GCN. Empirical knowledge of diseases 274

can be represented through multi-layer GCN fusion 275

as: 276

H
(l+1)
g = σ(D̂−1ÂH

(l)
g W(l)) (6) 277

where W(l) is a weight matrix for the l-th neural 278

network layer and σ(·) is a non-linear activate func- 279

tion like ReLU . With Â = A+ I, where I is the 280

identity matrix and D̂ is the diagonal node degree 281

matrix of Â . 282

Provided that Hg ∈ RM×de is the output of last 283

GCN layer, we extract the vector representation of 284

each disease entity Hd ∈ R|L|×de from it. 285

3.4 Output Layer 286

We concat the empirical knowledge representation 287

of diseases Hd with the patient feature representa- 288

tion from multiple view attention V1, ...,VM, and 289

then input it into the fully connected layer (FC). 290

H = concat[V⊤
1 , ...,V

⊤
K,Hd] (7) 291

ŷ = sigmoid(WH+ b) (8) 292

where H ∈ R|L|×(K×df+de). The probability of 293

disease ŷ can be predicted by the sigmoid acti- 294

vation function. Here, the probability is used to 295
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# views kernel size
MIMIC-III-50 ChineseEMR

macro F1 micro F1 macro F1 micro F1

1
(3,) 63.8% 69.0% 71.0% 74.7%
(5,) 65.6% 70.1% 72.0% 75.7%

2
(3,5) 65.7% 70.2% 72.7% 76.6%
(3,9) 65.8% 70.3% 70.5% 74.3%

3
(3,5,9) 66.1% 70.5% 76.2% 79.2%

(3,5,15) 65.2% 69.9% 72.4% 75.6%

4
(3,5,9,15) 66.0% 70.0% 75.4% 77.8%
(3,5,9,19) 65.3% 69.9% 74.5% 77.9%

5 (3,5,9,15,19) 64.8% 69.4% 73.8% 76.1%

Table 1: Performance comparisons using different configurations on MIMIC-III-50 and ChineseEMR datasets.

predict the binary output yi ∈ {0, 1} using a prede-296

fined threshold, such as 0.5. The training objective297

is to minimize the binary cross-entropy loss be-298

tween the prediction ŷ and the target y as:299

L(W,G,y, θ) =

−
L∑

j=1

yjlogŷj + (1− yj)log(1− ŷj)
(9)300

where θ denotes all the trainable parameters, W301

denotes the input word sequence and G is the ab-302

ductive causal graph.303

4 Experiment304

4.1 Datasets305

In order to make the results more convincing and306

robust, we conducted experiments on the public307

English dataset (MIMIC-III-50) and the Chinese308

dataset (ChineseEMR) respectively.309

MIMIC-III-50310

Similar to the previous work (Xie et al., 2019; Li311

and Yu, 2020), we focus on the prediction of the312

final diagnosis based on the discharge summary313

of the patient. In particular, we did not use all314

diseases but selected the top 50 diseases with the315

highest frequency for experiments, including 8,067316

discharged summaries for training, 1,574 for vali-317

dation, and 1,730 for testing.318

ChineseEMR319

This dataset is the real EMR data of a tertiary A320

hospital in China, involving 38 common diseases321

and 4,864 EMRs, including 3,392 EMRs are used322

for training, 729 for validation, and 743 for test-323

ing.Each EMR contains the chief complaint, cur-324

rent medical history, past history, and related test325

results. More details of the datasets are in table 2.326

Metrics MIMIC-III-50 ChinsesEMR
# of EMRs 11,368 4,864
# of diagnosis codes 50 38
avg # of diagnosis per EMR 5.8 1
avg # of entities per EMR 81.4 52.9
avg length of EMRs 1,876 740

Table 2: The statistical results of the MIMIC-III–50 and
ChineseEMR datasets. The " # " means number.

Preprocessing 327

For the MIMIC-III-50 dataset, we follow the previ- 328

ous work (Li and Yu, 2020). Due to the biomedical 329

and clinical English model packages of Stanford 330

(Zhang et al., 2021) having achieved the best results 331

on the English open-source dataset 2010 i2b2/VA 332

dataset (Uzuner et al., 2011), we use it to obtain 333

the medical entities in the MIMIC-III-50 dataset. 334

For the ChineseEMR dataset, we tokenize the text 335

based on character. Since Bert has shown excellent 336

performance in many natural language processing 337

fields, we employ Bert as a pre-training model to 338

acquire the initial word embedding of the Chinese 339

dataset. The length of EMRs is from 182 to 1,569. 340

Therefore, we truncate all EMRs to the maximum 341

length of 1,024. Besides, as the classic NER model, 342

we trained the Bi-LSTM-CRF (Lample et al., 2016) 343

model in real EMRs manually marked by medical 344

experts, whose F1 score is reported about 95.07% 345

in the validation set. 346

4.2 Evaluation Metrics 347

In order to ensure the fairness of the model in com- 348

parison, the same evaluation metrics as the previous 349

work (Li and Yu, 2020), macro-F1, macro-AUC, 350

micro-F1, micro-AUC, and P@5 are applied in the 351

MIMIC-III-50 dataset. In the ChineseEMR dataset, 352

since only a few EMRs have multiple diagnostic re- 353
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Model
Macro Micro

P@5
F1 AUC F1 AUC

Bi-GRU (Cho et al., 2014) 48.4% 82.8% 54.9% 86.8% 59.1%
CNN (Kim, 2014) 57.6% 87.6% 62.5% 90.7% 62.0%
CAML (Mullenbach et al., 2018) 53.2% 87.5% 61.4% 90.9% 60.9%
DR-CAML (Mullenbach et al., 2018) 57.6% 88.4% 63.3% 91.6% 61.8%
HyperCore (Cao et al., 2020) 60.9% 89.5% 66.3% 92.9% 63.2%
MultiResCNN (Li and Yu, 2020) 60.6% 89.9% 67.0% 92.8% 64.1%
MSATT-KG (Xie et al., 2019) 63.8% 91.4% 68.4% 93.6% 64.4%
GMAN (Yuan et al., 2020) 62.4% – 66.0% – –
SHiDAN (Chen et al., 2021a) 64.7% – 69.2% – –
MVFAN-EK (Our Model) 66.1% 92.0% 70.5% 94.1% 65.9%

Table 3: The experiment results on the MIMIC-III-50. Since our model and the baseline models use the same
dataset and evaluation metrics, the results of baselines are directly cited from the origin papers.

model
Macro Micro

P@1 R@1
F1 AUC F1 AUC

Bi-GRU (Cho et al., 2014) 63.0% 96.1% 66.0% 97.0% 71.6% 65.1%
CNN (Kim, 2014) 66.8% 92.7% 68.2% 94.1% 65.2% 71.4%
CAML (Mullenbach et al., 2018) 69.7% 94.9% 71.1% 95.9% 74.8% 74.7%
MultiResCNN (Li and Yu, 2020) 70.3% 93.8% 72.7% 94.3% 76.6% 76.5%
MVFAN-EK (Our Model) 76.2% 97.0% 79.2% 97.5% 79.8% 79.6%

Table 4: The experiment results on the ChineseEMR. For the Chinese dataset, we select some baselines with source
code for comparison.

sults, except the previous evaluation metrics macro-354

F1, macro-AUC, micro-F1, and micro-AUC, we355

have added P@1 and R@1 as evaluation metrics.356

As detailed in (Schütze et al., 2008).357

4.3 Experiment Implementation358

We implement out MVFAN-EK model using Py-359

Torch (Paszke et al., 2019). During training model,360

we apply AdamW (Loshchilov and Hutter, 2019)361

as optimizer, and set its learning rate to 0.001. The362

number of epochs and batch size are set to 200 and363

8. If there is no improvement of the micro-F1 score364

on the validation dataset in 10 continuous epochs,365

we will stop early. In addition, we also implement366

a dropout mechanism with dropout probability of367

0.3. Note that to ensure the accuracy of the experi-368

ment, we ran our model three times with the same369

hyper-parameters using different random seeds and370

reported the scores averaged over three times.371

To explore a better configuration for the number372

of views and the kernel sizes of each encoder, we373

follow the previous work (Li and Yu, 2020) to de-374

sign some experiments. The experimental results375

are shown in Table 1. We choose the best config-376

uration for experimentation, which is 3 encoders,377

and the kernel size is (3,5,9). More parameter sen- 378

sitivity analysis in section 5.3. 379

4.4 Baselines 380

We compared the following deep learning mod- 381

els for disease diagnosis, which include text 382

classification-based and structural knowledge- 383

based models: 384

The baselines of text classification-based in- 385

clude CNN (Kim, 2014), Bi-GRU (Cho et al., 386

2014), CAML [CNN with label-wise attention] 387

(Mullenbach et al., 2018), DR-CAML [CAML 388

added text description] (Mullenbach et al., 2018) 389

and MultiResCNN [Multi-filter CNN with ResNet] 390

(Li and Yu, 2020). The baselines of structural 391

knowledge-based include HyperCore [GCN with 392

hyperbolic representation of disease] (Cao et al., 393

2020), MSATT-KG [Multi-scale CNN with atten- 394

tion integrated into the structural knowledge of dis- 395

ease] (Xie et al., 2019), GMAN [GCN with mutual 396

attention] (Yuan et al., 2020) and current state-of- 397

the-art model SHiDAN [subgraph convolutional 398

network with hierarchical attentive network] (Chen 399

et al., 2021a). 400
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5 Results and Analysis401

5.1 Results402

Table 3 shows the comparative results of the evalu-403

ation across all quantitative metrics on the MIMIC-404

III-50 dataset. Compared with the text classifica-405

tion model, our proposed model gets better results406

on all metrics. Compared to the previous state-407

of-the-art model based on structural knowledge408

SHiDAN (Chen et al., 2021a), MVFAN-EK pro-409

duces notable improvements of 1.4% and 1.3% in410

macro-F1 and micro-F1. Besides, our model has411

improved by 0.6%, 0.5%, and 1.5% in macro-AUC,412

micro-AUC, and P@5 compared to the previous413

model MSATT-KG (Xie et al., 2019).414

Table 4 shows the result on ChineseEMR dataset.415

MVFAN-EK outperforms all the baseline models416

across all the metrics. Compared to the previous417

model MultiResCNN (Li and Yu, 2020), MVFAN-418

EK produces notable improvements of 5.9%, 0.9%,419

6.5%, 0.5%, 3.2% and 3.1% in macro-F1, macro-420

AUC, micro-F1, micro-AUC, P@1, and R@1.421

From the results on MIMIC-III-50 and Chine-422

seEMR, we come to a conclusion that the perfor-423

mance of the MVFAN-EK model in disease diagno-424

sis can be remarkably improved by combining the425

diagnostic evidence segment information from dif-426

ferent views and the disease empirical knowledge427

representations.428

5.2 Ablation Experiment429
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Figure 4: "MVFAN-X" means MVFAN without mod-
ule X. "pre" means not applicable for pretrained model.
"single" means use one encoder. "EK" means no struc-
tured knowledge.

To study the contribution of each component in430

the MVFAN-EK, we remove each module with431

an ordinary replacement without changing other 432

modules. Figure 4(a) and figure 4(b) illustrate the 433

results of ablation studies on the MIMIC-III-50 434

dataset and the ChineseEMR dataset, which verify 435

the effectiveness of each module on the proposed 436

model. 437

The reduction amount of the MIMIC-III-50 438

dataset is more apparent than the Chinese dataset. 439

However, when we use one encoder in the MVFA 440

module, the results on the two datasets have a 441

greater degree of decline. For comparative groups 442

without empirical representation of the diseases 443

model, we can see that the performance has slightly 444

decreased. It is observed that removing each com- 445

ponent results in reducing all metrics, showing the 446

effectiveness of these three components. Among 447

the three components, the MVFA module has a 448

more significant impact on all datasets, which 449

means that the multi-view feature attention mod- 450

ule can indeed extract diagnostic evidence segment 451

information of different lengths for each disease. 452

It reveals that using a structural knowledge graph 453

can capture empirical knowledge of the diseases, 454

which helps the model better diagnose diseases. 455

5.3 Parameter Sensitivity 456

64.5%

64.8%

65.0%

65.3%

65.5%

65.8%

66.0%

66.3%

1 2 3 4 5

# views
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69.2%

69.4%

69.6%

69.8%
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70.6%

1 2 3 4 5

# views

micro F1

(a) The results of parameter sensitivity on MIMIC-III-50.
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79.0%
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71.5%
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(b) The results of parameter sensitivity on ChineseEMR.

Figure 5: Parameter sensitivity of MVFAN-EK.

This section investigates the influence of the 457

number of views K and the kernel sizes. As shown 458

figure 5(a) and figure 5(b), we use macro-F1 and 459

micro-F1 as primary metrics on MIMIC-III-50 and 460

ChineseEMR datasets. We vary K from 1 to 5, 461

and there are two different settings for each view, 462

except when K = 5. For different views, we se- 463

lected the best results for plotting. It can be ob- 464

served from the results, with the increase of K, the 465
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ICD: 96.71 [Continuous invasive mechanical ventilation for less than 96 consecutive hours]
... basos atyps metas myelos promyelo nuc rbcs 24pm hypochrom anisocyt poikilocy macrocyt microcyt normal polychrom burr stippled
24pm plt smr very low plt count 24pm pt ptt inr pt 24pm alt sgpt ast sgot ld ldh alk phos tot bili 44pm type art po2 pco2 ph total co2 base xs
brief hospital course patient was transferred from hospital hospital after days of worsening abdominal pain severe hypotension and lactic
acidosis he was admitted to hospital hospital on morning was intubated started on pressors and antibiotics and after notifying the transplant
center he was transferred in the afternoon and admitted to the surgical icu of hospital1 patient was started on neo synephrine norepinephrine
and vasopressin continued of broad spectrum antibiotics and attempted to correct his coagulopathy with blood products prior to perform a
diagnostic paracentesis with hepatology this showed wbc and rbc but no microorganisms on the gram stain a right chest thoracentesis for a
large right pleural was also performed by the sicu to improve his ventilatory settings and improve his oxygenation which drained l of fluid
patient tolerated both procedures well initially but was never stable enough to bring him to ct scan at midnight he started with increasing
pressure requirement and was maximized on neo synephrine levophed and vasopressin his profound lactic acidosis with a worsening lactate
up to was attempted to be corrected with sodium bicarb with no improvement on his ph of his wife was name ni who decided to continue
measures and after giving 5l of fluids including crystalloids colloids blood and at a maximum dose of pressures he was not able to hold his
bp patient expired on at am after his the pastor of his church arrived to the sicu his wife doctor first name was doctor first name while she
was on her way the admitting office was notified and the medical examiner waived the case his family consented for an autopsy which will be
done at hospital1 medications on admission last name un clobetasol clotrimazole 10mg 5x day vit d units weeks lactulose 15mg q4hrs viread
300mg daily mag oxide 400mg hospital1 lasix 80mg hospital1 rifaxamin 550mg hospital1 spironolactome 200mg hospital1 discharge
medications none discharge disposition expired discharge diagnosis cardiopulmonary arrest septic shock multiorgan failure renal liver
neurologic cardiac end stage liver disease congenital hepatitis b discharge condition expired discharge instructions autopsy to be performed
first name11 name pattern1 last name namepattern4 md md number completed by

ICD: 285.9 [Acidosis]
... basos atyps metas myelos promyelo nuc rbcs 24pm hypochrom anisocyt poikilocy macrocyt microcyt normal polychrom burr stippled
24pm plt smr very low plt count 24pm pt ptt inr pt 24pm alt sgpt ast sgot ld ldh alk phos tot bili 44pm type art po2 pco2 ph total co2 base xs
brief hospital course patient was transferred from hospital hospital after days of worsening abdominal pain severe hypotension and lactic
acidosis he was admitted to hospital hospital on morning was intubated started on pressors and antibiotics and after notifying the transplant
center he was transferred in the afternoon and admitted to the surgical icu of hospital1 patient was started on neo synephrine norepinephrine
and vasopressin continued of broad spectrum antibiotics and attempted to correct his coagulopathy with blood products prior to perform a
diagnostic paracentesis with hepatology this showed wbc and rbc but no microorganisms on the gram stain a right chest thoracentesis for a
large right pleural was also performed by the sicu to improve his ventilatory settings and improve his oxygenation which drained l of fluid
patient tolerated both procedures well initially but was never stable enough to bring him to ct scan at midnight he started with increasing
pressure requirement and was maximized on neo synephrine levophed and vasopressin his profound lactic acidosis with a worsening lactate
up to was attempted to be corrected with sodium bicarb with no improvement on his ph of his wife was name ni who decided to continue
measures and after giving 5l of fluids including crystalloids colloids blood and at a maximum dose of pressures he was not able to hold his
bp patient expired on at am after his the pastor of his church arrived to the sicu his wife doctor first name was doctor first name while she
was on her way the admitting office was notified and the medical examiner waived the case his family consented for an autopsy which will be
done at hospital1 medications on admission last name un clobetasol clotrimazole 10mg 5x day vit d units weeks lactulose 15mg q4hrs viread
300mg daily mag oxide 400mg hospital1 lasix 80mg hospital1 rifaxamin 550mg hospital1 spironolactome 200mg hospital1 discharge
medications none discharge disposition expired discharge diagnosis cardiopulmonary arrest septic shock multiorgan failure renal liver
neurologic cardiac end stage liver disease congenital hepatitis b discharge condition expired discharge instructions autopsy to be performed
first name11 name pattern1 last name namepattern4 md md number completed by

Figure 6: Visualization of the label attention score.

performance is boosted at first since more views466

mean more scale features but drops after K = 3 as467

the diagnostic evidence segment may not be too468

long. From the results, we proposed MVFAN-EK469

achieves the best performance when K = 3 and the470

kernel size = (3,5,9).471

5.4 Interpretability Analysis472

Figure 6 illustrates an example of a patient with473

two diseases, which is randomly selected from the474

testing set. We extract the attention value of the475

corresponding disease from the label attention in476

multiple encoders for visualization. The different477

colors indicate different diseases of the patient, and478

We highlight words according to their different479

weights. The higher the weight, the more obvi-480

ous the highlight. The visualization concludes that481

the multi-view feature attention module can extract482

disease-related information from different views.483

Thus, we can interpret the diagnosis results through484

our proposed model to help doctors diagnose dis-485

eases.486

5.5 Limitations487

In our work, the Chinese dataset used has a limited488

amount of data and involves fewer types of diseases.489

The next step is to increase the amount of data and 490

further improve the model. On the other hand, 491

our method is currently only in the experimental 492

stage. We have already cooperated with some large 493

tertiary hospitals in China. Next, we will put our 494

work into practical application. 495

6 Conclusions 496

In this paper, we propose integrating empirical 497

knowledge into the multi-view feature attention 498

network (MVFAN-EK) method, which consists of 499

two parts. The first portion is the multi-view feature 500

attention module which can capture diagnostic evi- 501

dence segment information of different lengths for 502

each disease by multi CNNs and label-wise atten- 503

tion mechanism. Besides, we employ GCN to ex- 504

tract the empirical knowledge representation of dis- 505

eases from an abductive causal graph in the second 506

portion. We mainly use the MVFAN-EK model 507

containing the above two parts for disease diag- 508

nosis, and conduct experiments on two real-world 509

EMR datasets. The experimental results prove that 510

the effectiveness of the proposed model in disease 511

diagnosis. We will further expand this study to 512

diagnose more kinds of diseases by incorporating 513

more structural external knowledge. 514
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