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Abstract: Self-supervised learning (SSL) is an emerging technique that has been
successfully employed to train convolutional neural networks (CNNs) and graph
neural networks (GNNs) for more transferable, generalizable, and robust repre-
sentation learning. However its potential in motion forecasting for autonomous
driving has rarely been explored. In this study, we report the first systematic explo-
ration and assessment of incorporating self-supervision into motion forecasting.
We first propose to investigate four novel self-supervised learning tasks for motion
forecasting with theoretical rationale and quantitative and qualitative comparisons
on the challenging large-scale Argoverse dataset. Secondly, we point out that
our auxiliary SSL-based learning setup not only outperforms forecasting methods
which use transformers, complicated fusion mechanisms and sophisticated online
dense goal candidate optimization algorithms in terms of performance accuracy,
but also has low inference time and architectural complexity. Lastly, we conduct
several experiments to understand why SSL improves motion forecasting.

Keywords: Motion Forecasting, Autonomous Driving, Self-Supervised Learning

1 Introduction

Motion forecasting in a real-world urban environment is an important task for autonomous robots. It
involves predicting the future trajectories of traffic agents including vehicles and pedestrians. This is
absolutely crucial in the self-driving domain for safe, comfortable and efficient operation. However,
this is a very challenging problem. Difficulties include inherent stochasticity and multimodality
of driving behaviors, and that future motion can involve complicated maneuvers such as yielding,
nudging, lane-changing, turning and acceleration or deceleration.

The motion prediction task has traditionally been based on kinematic constraints and road map in-
formation with handcrafted rules. These approaches however fail to capture long-term behavior and
interactions with map structure and other traffic agents in complex scenarios. Tremendous progress
has been made with data-driven methods in motion forecasting [3, 4, 5, 6, 7, 8, 9, 10]. Recent
methods use a vector representation for HD maps and agent trajectories, including approaches like
Lane-GCN [2], Lane-RCNN [11], Vector-Net [12], TNT [5] and Dense-TNT [6]. More recently, the
enormous success of transformers [13] has been leveraged for forecasting in mm-Transformer [9],
Scene transformer [8], Multimodal transformer [14] and Latent Variable Sequential Transformers
[15]. Most of these methods however are extremely complex in terms of architecture and have low
inference speeds, which makes them unsuitable for real-world settings.

In this work, we extend ideas from self-supervised learning (SSL) to the motion forecasting task.
Self-supervision has seen huge interest in both natural language processing and computer vision
[16] to make use of freely available data without the need for annotations. It aims to assist the
model to learn more transferable and generalized representation from pseudo-labels via pretext tasks.
Given the recent success of self-supervision with CNNs, transformers, and GNNs, we are naturally
motivated to ask the question: Can self-supervised learning improve accuracy and generalizability
of motion forecasting, without sacrificing inference speed or architectural simplicity?

Contributions: Our work, SSL-Lanes, presents the first systematic study on how to incorporate
self-supervision in a standard data-driven motion forecasting model. Our contributions are: (a)
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Figure 1: Motion forecasting on Argoverse [1] validation. We show four challenging scenarios at
intersections. The baseline [2] misses all the predictions. In the first row, our proposed lane masking
successfully captures the right-turn. For the second row, predicting distance to intersection helps the
most in capturing the left turn. In the third row, acceleration at an intersection is best captured by
the model that is made to classify maneuvers of traffic agents. Finally, in the fourth row, classifying
successful final goal states is the most effective at capturing the left turn. These tasks are trained
with pseudo-labels which are obtained for free from data.

We demonstrate the effectiveness of incorporating self-supervised learning in motion forecasting.
Since this does not add extra parameters or compute during inference, SSL-Lanes achieves the best
accuracy-simplicity-efficiency trade-off on the challenging large-scale Argoverse [1] benchmark.
(b) We propose four self-supervised tasks based on the nature of the motion forecasting problem.
The key idea is to leverage easily accessible map/agent-level information to define domain-specific
pretext tasks that encourage the standard model to capture more superior and generalizable represen-
tations for forecasting in comparison to pure supervised learning. (c) We further design experiments
to explore why forecasting benefits from SSL. We provide extensive results to hypothesize that
SSL-Lanes learns richer features from the SSL training as compared to a model trained with vanilla
supervised learning.

2 Related Work
Motion Forecasting: Traditional methods for motion forecasting primarily use Kalman filtering
[17] with a prior from HD-maps to predict future motion states [18, 19]. With the huge success
of deep learning, recent works use data-driven approaches for motion forecasting. These methods
explore different architectures involving rasterized images and CNNs [3, 20, 21], vectorized repre-
sentations and GNNs [12, 11, 22, 4, 7], point-cloud representations [23], transformers [8, 9, 15, 14]
and sophisticated fusion mechanisms [2], to generate features that predict final output trajectories.
While the focus of these works is to find more effective ways of feature extraction from HD-maps
and interacting agents, they need huge model capacity, heavy parameterization, and extensive aug-
mentations or large amounts of data to converge to a general solution. Other works [5, 10, 24, 25]
build on them to incorporate prior knowledge in the form of predefined candidate trajectories ob-
tained from sampling or clustering strategies from training data. However the disadvantage of these
methods is that their performance is highly related to the quality of the trajectory proposals, which
becomes an extra dependency. End-to-end solutions for optimizing end-points of these candidates
trajectories are proposed by Dense-TNT [6] and HOME [26]. Dense-TNT has state-of-the-art accu-
racy with a reasonable parameter budget, but its online dense goal candidate optimization strategy is
computationally very expensive, which is unrealistic for real-time operations like autonomous driv-
ing. Lately, ensembling techniques like MultiPath++ [27] and DCMS [28] have been proposed and
while they have high forecasting performance, a major disadvantage is their high memory cost for
training and heavy computational cost at inference.

Self-supervised Learning: SSL is a rapidly emerging learning framework that generates additional
supervised signals to train deep learning models through carefully designed pretext tasks. In the
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Figure 2: Illustration of the overall SSL-Lanes framework for self-supervision on motion forecast-
ing through joint training. SSL-Lanes improves upon a standard-motion forecasting baseline, that
consists of an agent encoder, map encoder, interaction model and a trajectory decoder, trained using
a supervised loss Lsup. SSL-Lanes proposes four pretext tasks: (1) Lane Masking: which recovers
feature information from the perturbed lane graphs. (2) Distance to Intersection: which predicts
the distance (in terms of shortest path length) from all lane nodes to intersection nodes. (3) Ma-
neuver Classification: predicts the form of a ‘maneuver’ the agent-of-interest intends to execute (4)
Success/Failure Classification: which trains an agent specialized at achieving end-point goals.

image domain, various self-supervised learning techniques have been developed for learning high-
level image representations, including predicting the relative locations of image patches [29], jigsaw
puzzle [30], image rotation [31], image clustering [32], image inpainting [33], image colorization
[34] and segmentation prediction [35]. In the domain of graphs and graph neural networks, pretext
tasks include graph partitioning, node clustering, context prediction and graph completion [36, 37,
38, 39]. To the best of our knowledge, this is the first principled approach that explores motion
forecasting for autonomous driving with self-supervision.

3 Background

Problem Formulation: We are given the past motion of N actors. The i-th actor is denoted as a
set of center locations over the past L time-steps. We pre-process it to represent each trajectory as
a sequence of displacements Pi = {∆p−L+1

i , ...,∆p−1i ,∆p0
i }, where pl

i is the 2D displacement
from time step l − 1 to l. We are also given a high-definition (HD) map, which contains lanes and
semantic attributes. Each lane is composed of many consecutive lane nodes, with a total ofM nodes.
X ∈ RM×F denotes the lane node feature matrix, where xj = X[j, :]T is the F -dimensional lane
node vector. Following the connections between lane centerlines (i.e., predecessor, successor, left
neighbour and right neighbour), we represent the connectivity within the lane nodes with 4 adjacency
matrices {Af}f∈{pre,suc,left,right}, with Af ∈ RM×M . This implies that if Af,gh = 1, then node h is
an f -type neighbor of node g. Our goal is to forecast the future motions of all actors in the scene
O1:T

GT = {(x1i , y1i ), ..., (xTi , y
T
i )|i = 1, ..., N}, where T is our prediction horizon.

Standard Motion Forecasting Model: We briefly introduce a standard data-driven motion fore-
casting framework, consisting of a feature encoder, interaction-modeler and prediction header.

Feature Encoding: We first encode the agent and map inputs similar to Lane-GCN [2]. The agent
encoder includes a 1D convolution with a feature pyramid network, parameterized by genc, as given
by Eq. (1). For map-encoding, we adopt two Lane-Conv residual blocks, parameterized by Θ =
{W 0,W left,W right,W pre,k,W suc,k}, where k ∈ {1, 2, 4, 8, 16, 32}, as given by Eq. (2).

p̂i = genc(Pi) (1)

Y = XW 0 +
∑

j∈{left,right}

AjXW j +
∑
k

Ak
preXW pre,k + Ak

sucXW suc,k (2)

Modeling Interactions: Since the behavior of agents depends on map topology and social consis-
tency, each encoded agent i subsequently aggregates context from the surrounding map features and
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SSL Task Property Level Primary Assumption Type
Lane-Masking Map features Local map structure Aux. auto-encoder

Distance to Intersection Global map structure Aux. regression
Maneuver Classification Map-aware

agent features
Agent feature similarity Aux. classificationSuccess/Failure Classification Distance to success state

Table 1: Overview of our proposed self-supervised (SSL) tasks

its neighboring agent features, via spatial attention [40] as given by Eq. (3):

p̃i = p̂iWM2A +
∑
j

φ(concat(p̂i,∆i,j ,yj)W 1)W 2

ṕi = p̃iW A2A +
∑
j

φ(concat(p̃i,∆i,j , p̃j)W 3)W 4

(3)

Here, yj is the feature of the j-th node, p̂i is the feature of the i-th agent, φ the composition of layer
normalization and ReLU, and ∆ij = MLP(vj−vi), where v denotes the (x, y) 2-D bird’s-eye-view
(BEV) location of the agent or the lane node. The parameters for map and agent feature aggregation
is represented by Λ = {WM2A,W 1,W 2,W A2A,W 3,W 4}.
Trajectory Prediction: Finally, we decode the future trajectories from the features ṕi corresponding
to the agents of interest as given by: O1:T

pred = {gdec(ṕi)|i = 1, ..., N}, where gdec is the parameter-
ized trajectory decoder. The parameters for the motion forecasting model are learned by minimizing
the supervised loss (Lsup) calculated between the predicted output and the ground-truth future tra-
jectories (O1:T

GT ), as given by Eq. (4):

g?enc,Θ
?,Λ?, g?dec = arg min

genc,Θ,Λ,gdec

Lsup(O1:T
pred ,O1:T

GT ) (4)

4 SSL-Lanes

The goal of our proposed SSL-Lanes framework is to improve the performance of the primary
motion forecasting baseline by learning simultaneously with various self-supervised tasks. Fig. 2
shows the pipeline of our proposed approach, and Tab. 1 summarizes the self-supervised tasks.

Self-Supervision meets Motion Forecasting: Considering our motion forecasting task and a self-
supervised task, the output and the training process can be formulated as:

Ψ?,Ω?,Θ?
ss = arg min

Ψ,Ω,Θss

α1Lsup(Ψ,Ω) + α2Lss(Ψ,Θss) (5)

where, Lss(·, ·) is the loss function of the self-supervised task, Θss parameterizes the corresponding
task-specific layers, and α1, α2 ∈ R>0 are the weights for the supervised and self-supervised losses.
If the pretext task only focuses on the map encoder, then Ψ = {Θ} and Ω = {genc,Λ, gdec}. Other-
wise, Ψ = {genc,Θ,Λ} and Ω = {gdec}. Henceforth, we also define the following representations.
We will represent the primary task encoder as function fΨ, parameterized by Ψ. Furthermore, given
a pretext task, which we will design in the next section, the pretext decoder pΘss is a function that
predicts pseudo-labels and is parameterized by Θss.

4.1 Pretext tasks for Motion Forecasting

At the core of our SSL-Lanes approach is defining pretext tasks based upon self-supervised informa-
tion from the underlying map structure and the overall temporal prediction problem itself (Tab. 1).

4.1.1 Lane-Masking

The goal of the Lane-Masking pretext task is to encourage the map encoder Ψ = {Θ} to learn local
structure information in addition to the forecasting task that is being optimized. Specifically, we
randomly mask (i.e., set equal to zero) the features of ma percent of nodes per lane and then ask the
self-supervised decoder to reconstruct these features.

Ψ?,Θ?
ss = arg min

Ψ,Θss

1

ma

ma∑
i=1

Lmse

(
pΘss ([fΨ(X̃,Af )]vi),Xi

)
(6)
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Method minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

Baseline 1.42 3.18 51.35 0.73 1.12 11.07

Lane-Masking 1.36 2.96 49.45 0.70 1.02 8.82
Distance to Intersection 1.38 3.02 49.53 0.71 1.04 8.93
Maneuver Classification 1.33 2.90 49.26 0.72 1.05 9.36

Success/Failure Classification 1.35 2.93 48.54 0.70 1.01 8.59

Table 2: Motion forecasting performance on Argoverse validation with our proposed pretext tasks

Here, X̃ is the node feature matrix corrupted with random masking, i.e., some rows of X corre-
sponding to nodes vi are set to zero. pΘss is a fully connected network that maps the representations
to the reconstructed features. Lmse is the mean squared error (MSE) loss function penalizing the
distance between the reconstructed map features pΘss([fΨ(X̃,Af )]vi

) for node vi and its actual
features Xi.

4.1.2 Distance to Intersection

Distance-to-Intersection pretext task is proposed to guide the map-encoder, Ψ = {Θ}, to maintain
global topology information by predicting the distance (in terms of shortest path length) from all
lane nodes to intersection nodes. We aim to regress the distances from each lane node to pre-
labeled intersection nodes annotated as part of the dataset. Given K labeled intersection nodes
Vintersection = {vintersection,k|k = 1, ...K}, we first generate reliable pseudo labels using breadth-first
search (BFS). Specifically, BFS calculates the shortest distance di ∈ R for every lane node vi from
the given set Vintersection. The target of this task is to predict the pseudo-labeled distances using a
pretext decoder. If pΘss([fΨ(X,Af )]vi

) is the prediction of node vi, and Lmse is the mean-squared
error loss function for regression, then the loss formulation for this SSL pretext task is as follows:

Ψ?,Θ?
ss = arg min

Ψ,Θss

1

M

M∑
i=1

Lmse

(
pΘss ([fΨ(X,Af )]vi), di

)
(7)

4.1.3 Maneuver Classification

We propose Maneuver Classification, and we expect it to provide prior regularization to Ψ =
{genc,Θ,Λ}, based on driving modes of agents. We aim to construct pseudo label to di-
vide agents into different clusters according to their driving behavior and thus explore un-
supervised clustering algorithms to acquire the maneuver for each agent. We find that us-
ing naive k-Means (on agent end-points) or DBSCAN (on Hausdorff distance between entire
trajectories [41]) leads to noisy clustering. We find that constrained k-means [42] on agent
end-points works best to divide trajectory samples into C clusters equally. We define C =
{maintain-speed, accelerate, decelerate, turn-left, turn-right, lane-change} and the clustering func-
tion as ρ. If pΘss(fΨ(Pi,X,Af )) is the prediction of agent i’s intention and Ei = (xTi,GT, y

T
i,GT)

is its ground-truth end-point, then the learning objective is to classify each agent maneuver into its
corresponding cluster using cross-entropy loss Lce as:

Ψ?,Θ?
ss = arg min

Ψ,Θss

Lce

(
pΘss (fΨ(Pi,X,Af )), ρ(Ei)

)
(8)

4.1.4 Forecasting Success/Failure Classification

We propose a pretext task called Success/Failure Classification, which trains an agent specialized at
achieving end-point goals and thus links directly to the forecasting task. We expect this to constrain
Ψ = {genc,Θ,Λ} to predict trajectories ε distance away from the correct final end-point. Similar to
maneuver classification, we wish to create pseudo-labels for our data samples. We label trajectory
predictions as successful (c = 1) if the final prediction (xTi,pred, y

T
i,pred) is within ε < 2m of the

final end-point Ei, and as failure (c = 0) otherwise. We choose 2m as our ε threshold because it is
also used for miss-rate calculation (Sec. 5). If the pretext decoder predicts agent i’s final-endpoint
as pΘss(fΨ(Pi,X,Af )) and, given the ground-truth end-point Ei, its success or failure label is ci,
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Method minADE1 minFDE1 MR1 minADE6 minFDE6 MR6 b-FDE6

NN + Map [1] 3.65 8.12 94.0 2.08 4.02 58.0 -
Jean [4] 1.74 4.24 68.56 0.98 1.42 13.08 2.12

Lane-GCN [2] 1.71 3.78 58.77 0.87 1.36 16.20 2.05
LaneRCNN [11] 1.68 3.69 56.85 0.90 1.45 12.32 2.15

TNT [5] 1.77 3.91 59.70 0.94 1.54 13.30 2.14
DenseTNT [6] 1.68 3.63 58.43 0.88 1.28 12.58 1.97
PRIME [24] 1.91 3.82 58.67 1.22 1.55 11.50 2.09
WIMP [7] 1.82 4.03 62.88 0.90 1.42 16.69 2.11
TPCN [23] 1.66 3.69 58.80 0.87 1.38 15.80 1.92
HOME [26] 1.70 3.68 57.23 0.89 1.29 8.46 1.86

mmTransformer [9] 1.77 4.00 61.78 0.87 1.34 15.40 2.03
MultiModalTransformer [14] 1.74 3.90 60.23 0.84 1.29 14.29 1.94

LatentVariableTransformer [15] - - - 0.89 1.41 16.00 -
SceneTransformer [8] 1.81 4.06 59.21 0.80 1.23 12.55 1.88

Success/Failure
Classification (Ours) 1.63 3.56 56.71 0.84 1.25 13.26 1.94

Table 3: Comparison of our (best) proposed model and top approaches on the Argoverse Test. The
best results are in bold and underlined, and the second best is also underlined.

then the pretext loss can be formulated as:

Ψ?,Θ?
ss = arg min

Ψ,Θss

Lce

(
pΘss (fΨ(Pi,X,Af )), ci

)
(9)

4.2 Learning

As all the modules are differentiable, we can train the model in an end-to-end way. We use the sum
of classification, regression and self-supervised losses to train the model. Specifically, we use:

L = Lcls + Lreg + Lterminal + Lss (10)

For classification and regression loss design, we adopt the formulation proposed in [2]. Lterminal =
1
N

∑N
i=1 L2

(
(xTi,pred, y

T
i,pred), (xTi,GT, y

T
i,GT)

)
is a simple L2 loss that minimizes the distance between

predicted final-endpoints and the ground-truth. This is because Lreg is averaged across all time-
points 1 : T , and from a practical end user perspective, minimizing the endpoint loss is much more
important than weighting loss from all time-steps equally. Our proposed pretext tasks contribute to
Lss. During evaluation, we study each pretext task separately, and their corresponding loss formula-
tions defined in Eq. (6), Eq. (7), Eq. (8), Eq. (9) are used for joint training.

5 Experiments

Dataset: Argoverse provides a large-scale dataset, where the task is to forecast 3 seconds of future
motions, given 2 seconds of past observations. It has more than 300K real-world driving sequences
collected in Miami (MIA) and Pittsburgh (PIT). Those sequences are further split into train, val-
idation, and test sets, without any geographical overlap. Each of them has 205,942, 39,472, and
78,143 sequences respectively. In particular, each sequence contains the positions of all actors in
a scene within the past 2 seconds history, annotated at 10Hz. It also specifies one actor of interest
in the scene, with type ‘agent’, whose future 3 seconds of motion are used for the evaluation. The
train and validation splits additionally provide future locations of all actors within 3 second horizon
labeled at 10Hz, while annotations for test sequences are withheld from the public and used for the
leaderboard evaluation. HD map information is available for all sequences.

Experimental Details: To normalize the data, we translate and rotate the coordinate system of each
sequence so that the origin is at current position t = 0 of ‘agent’ actor and x-axis is aligned with its
current direction, i.e., orientation from the agent location at t = −1 to the agent location at t = 0
is the positive x axis. We use all actors and lanes whose distance from the agent is smaller than
100 meters as the input. We train the model on 4 TITAN-X GPUs using a batch size of 128 with
the Adam [43] optimizer with an initial learning rate of 1× 10−3, which is decayed to 1× 10−4 at
100,000 steps. The training process finishes at 128,000 steps and takes about 10 hours to complete.
We provide more implementation details in the supplementary.
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Figure 3: (a) min-FDE6 - Miss-Rate6 trade-off on Argoverse Validation. Lower-left is better. We
optimize both successfully in comparison to other popular approaches. (b) and (c) We plot min-FDE
on Argoverse Test against number of model parameters (in millions) and inference time (in milli-
seconds). We find that there is a trade-off between min-FDE performance, architectural complexity
(as measured by number of parameters) and computational efficiency (as measured by inference
time). Our work achieves the best trade-off (lower-left).

6 Results

6.1 Ablation Studies

We first examine the effect of incorporating our proposed pretext tasks (Sec. 4) with the standard
data-driven motion forecasting baseline (Sec. 3). While evaluating the importance of our proposed
pretext tasks, we wish to underline that motion prediction for autonomous driving is a safety-critical
task, especially at intersections where most of our data is collected, and most accidents also happen.
We thus posit that in this situation, even a small error in predicting final locations (FDE) for a given
agent can lead to dangerous potential collision scenarios. Results in Tab. 2 show that all proposed
pretext tasks improve motion forecasting performance for Argoverse. Specifically, the Lane Mask
pretext task improves min-FDE by 8.9% and MR@2m by 20.3%. Distance to Intersection improves
min-FDE by 7.1% and 19.3%. Maneuver classification improves min-FDE by 6.3% and MR@2m
by 15.4%. We expect that improving the quality of clustering for maneuvers and thus creating better
pseudo-labels will improve this further. Finally, Success/Failure classification improves min-FDE
by 9.8% and, perhaps expectedly, MR@2m by 22.4%. Moreover, since pretext tasks are not used for
inference and only for training, they also do not add any extra parameters or FLOPs to the baseline,
thereby increasing accuracy but at no cost to computational efficiency or architectural complexity.

6.2 Comparison with State-of-the-Art

Performance: We compare our approach with top entries on Argoverse [1] in Tab. 3. SSL-Lanes
improves the metrics for K = 1 convincingly and outperforms existing approaches w.r.t. min-
ADE1, min-FDE1 and MR1. We are strongly competitive w.r.t. min-ADE6, min-FDE6 and MR6.
with a relatively simple architecture.

Trade-off between min-FDE and Miss-Rate: min-FDE6 and MR6 are both important for au-
tonomous robots to optimize. Ideally we wish for both of these metrics to be low. However, there
exists a frequent trade-off between them. We compare this trade-off in Fig. 3(a) w.r.t 6 other pop-
ular motion forecasting models (in terms of citations and GitHub stars), namely: Lane-GCN [2],
Lane-RCNN [2], MultiPath [3], mm-Transformer [9], TNT [5] and Dense-TNT [6] on the Argov-
erse Validation Set. We are on the lowest-left of Fig. 3(a), meaning we optimize both min-FDE6 and
MR6 successfully in comparison to other top models.

Trade-off between accuracy, efficiency and complexity: We are the first to point out a trade-off
that exists for current state-of-the-art motion forecasting models between forecasting performance,
architectural complexity and inference speed, in this work. This is illustrated in Fig. 3(b, c). In
contrast to the popular models, our approach has high accuracy (min-FDE6: 1.25m, MR6: 13.3%),
while also having low architectural complexity (1.84M parameters) and high inference speed (3.3
ms). Thus it provides a great balance for application to real-time safety-critical autonomous robots.

7



Description Experimental Setup Method minADE6 minFDE6 MR6Training Validation
Effects of limited

training data 25% of train All Baseline 0.82 1.33 14.66
Ours 0.78 1.22 12.63

Effects of
new domain

100% PIT +
20% MIA MIA val Baseline 0.88 1.46 17.21

Ours 0.85 1.34 14.96
Performance on

difficult maneuvers All Turning &
lane changing

Baseline 0.90 1.53 19.90
Ours 0.84 1.34 14.93

Effects of
imbalanced data

2x straight
1x other maneuvers

Turning &
lane changing

Baseline 0.94 1.65 21.53
Ours 0.90 1.49 17.97

Effects of
noisy data All Gaussian noise (σ = 0.2)

with p = 0.25
Baseline 1.01 1.37 15.59

Ours 0.96 1.24 11.98
Effects of
noisy data All Gaussian noise (σ = 0.2)

with p = 0.5
Baseline 1.19 1.56 20.64

Ours 1.13 1.40 15.65

Table 4: Different experimental settings for SSL-based training

6.3 When does SSL help Motion Forecasting?

We design 6 different training and testing setups as shown in Tab. 4. We use Success/Failure classifi-
cation as the pretext task, and all models are trained for 50,000 steps. We initialize the map-encoder
with the parameters from a model trained with the lane-masking pretext task.
We hypothesize that training with SSL pretext tasks helps motion forecasting in the following ways:
(a) Topology-based context prediction assumes feature similarity or smoothness in small neighbor-
hoods of maps, and the resulting feature representation may improve prediction performance. This
is mainly expected to help in the first and second settings, which requires generalizing to new topolo-
gies. (b) Clustering and classification assumes that feature similarity implies target-label similarity
and can group distant nodes with similar features together, leading to better generalization. This is
mainly expected to help with dataset imbalance and performance on difficult maneuvers, which re-
quires generalizing to hard cases. (c) Supervised learning with imbalanced datasets sees significant
degradation in performance. Although most of the data samples in Argoverse are at an intersection,
a significantly large number involve driving straight while maintaining speed. Recent studies [44]
have shown that SSL tends to learn richer features from more frequent classes, which also allows it
to generalize to other classes better. We expect this to help with imbalanced data, limited training
data and noisy data.

SSL leads to better generalization compared to pure supervised learning: To provide evidence
for our hypotheses, we design 6 different training and testing setups as shown in Tab. 4. We use
Success/Failure classification as the pretext task, and all models are trained for 500,000 steps. We
initialize the map-encoder with the parameters from a model trained with the lane mask pretext task.
There is strong evidence from our experiments that SSL-based tasks provide better generalization
and can thus be more effective than pure supervised training.

7 Conclusion
We propose SSL-Lanes to leverage supervisory signals generated from data for free in the form of
pseudo-labels and integrate it with a standard motion forecasting model. We validate our proposed
approach by achieving competitive results on the challenging large-scale Argoverse benchmark. We
further demonstrate that each proposed SSL pretext task improves upon the baseline, especially in
difficult cases like left/right turns and acceleration/deceleration. We also provide hypotheses and
experiments on why SSL-Lanes can improve motion forecasting.

Limitations: The different losses for are only used in a 1:1 ratio without tuning them. We also use
only one pretext task at a time and do not explore the combination of these different tasks. For our
future work, we plan to incorporate meta-learning [45] to identify an effective combination of pretext
tasks and automatically balance them. Another limitation is that we report improvements with SSL-
pretext tasks in scenarios without specifically considering multiple heavily interacting agents. In the
future we would like to explore how the interactions between road agents can influence our SSL
losses on the interaction split of the Waymo Open Motion dataset (WOMD) [46]. We would also
like to study the generalization of our work to other datasets without re-training.
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ground knowledge. In C. E. Brodley and A. P. Danyluk, editors, Proceedings of the Eighteenth
International Conference on Machine Learning (ICML 2001), Williams College, Williamstown,
MA, USA, June 28 - July 1, 2001, pages 577–584. Morgan Kaufmann, 2001. 5

12

https://openreview.net/forum?id=S1v4N2l0-
http://dx.doi.org/10.1007/978-3-030-01264-9_9
https://doi.org/10.1007/978-3-030-01264-9_9
https://doi.org/10.1007/978-3-030-01264-9_9
http://dx.doi.org/10.1109/CVPR.2016.278
https://doi.org/10.1109/CVPR.2016.278
https://doi.org/10.1109/CVPR.2016.278
http://dx.doi.org/10.1007/978-3-319-46487-9_40
http://dx.doi.org/10.1007/978-3-319-46487-9_40
https://doi.org/10.1007/978-3-319-46487-9_40
http://dx.doi.org/10.1109/CVPR.2017.638
https://doi.org/10.1109/CVPR.2017.638
http://proceedings.mlr.press/v119/you20a.html
http://proceedings.mlr.press/v119/you20a.html
https://arxiv.org/abs/2006.10141
https://arxiv.org/abs/2006.10141
https://arxiv.org/abs/2103.00111
https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=HJlWWJSFDH
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openaccess.thecvf.com/content/CVPR2021/html/Amirloo_Self-Supervised_Simultaneous_Multi-Step_Prediction_of_Road_Dynamics_and_Cost_Map_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Amirloo_Self-Supervised_Simultaneous_Multi-Step_Prediction_of_Road_Dynamics_and_Cost_Map_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Amirloo_Self-Supervised_Simultaneous_Multi-Step_Prediction_of_Road_Dynamics_and_Cost_Map_CVPR_2021_paper.html


[43] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and
Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980. 6

[44] H. Liu, J. Z. HaoChen, A. Gaidon, and T. Ma. Self-supervised learning is more robust to dataset
imbalance. CoRR, abs/2110.05025, 2021. URL https://arxiv.org/abs/2110.05025. 8

[45] D. Hwang, J. Park, S. Kwon, K. Kim, J. Ha, and H. J. Kim. Self-supervised auxiliary learn-
ing with meta-paths for heterogeneous graphs. In H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
74de5f915765ea59816e770a8e686f38-Abstract.html. 8

[46] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. R. Qi,
Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. McCauley, J. Shlens, and
D. Anguelov. Large scale interactive motion forecasting for autonomous driving : The waymo
open motion dataset. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV
2021, Montreal, QC, Canada, October 10-17, 2021, pages 9690–9699. IEEE, 2021. doi:
10.1109/ICCV48922.2021.00957. URL https://doi.org/10.1109/ICCV48922.2021.
00957. 8

13

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2110.05025
https://proceedings.neurips.cc/paper/2020/hash/74de5f915765ea59816e770a8e686f38-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/74de5f915765ea59816e770a8e686f38-Abstract.html
http://dx.doi.org/10.1109/ICCV48922.2021.00957
http://dx.doi.org/10.1109/ICCV48922.2021.00957
https://doi.org/10.1109/ICCV48922.2021.00957
https://doi.org/10.1109/ICCV48922.2021.00957

	Introduction
	Related Work
	Background
	SSL-Lanes
	Pretext tasks for Motion Forecasting
	Lane-Masking
	Distance to Intersection
	Maneuver Classification
	Forecasting Success/Failure Classification

	Learning

	Experiments
	Results
	Ablation Studies
	Comparison with State-of-the-Art
	When does SSL help Motion Forecasting?

	Conclusion

