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Abstract

In simultaneous translation (SimulMT), the001
most widely used strategy is the wait-k pol-002
icy thanks to its simplicity and effectiveness003
in balancing translation quality and latency.004
However, wait-k suffers from two major lim-005
itations: (a) it is a fixed policy that can006
not adaptively adjust latency given context,007
and (b) its training is much slower than full-008
sentence translation. To alleviate these is-009
sues, we propose a novel and efficient train-010
ing scheme for adaptive SimulMT by augment-011
ing the training corpus with adaptive prefix-to-012
prefix pairs, while the training complexity re-013
mains the same as that of training full-sentence014
translation models. Experiments on two lan-015
guage pairs show that our method outperforms016
all strong baselines in terms of translation qual-017
ity and latency.018

1 Introduction019

Simultaneous Machine Translation (SimulMT)020

which starts translation before the source sentence021

finishes, is broadly used in many scenarios which022

require much shorter translation latency for spon-023

taneous communication such as international con-024

ferences, traveling and negotiations. Most existing025

SimulMT models (Ma et al., 2019a,b; Arivazhagan026

et al., 2019, 2020; Ma et al., 2020; Ren et al., 2020)027

exploit the wait-k policy (Ma et al., 2019a) as a028

fundamental design of their framework due to the029

simplicity and effectiveness of the wait-k policy.030

However, there are two major drawbacks of031

wait-k policy. Firstly, the wait-k policy is compu-032

tationally expensive and requires substantial GPU033

memory. Given a certain value of k, the wait-k pol-034

icy iterates over all possible prefix pairs between035

source and target sentences to enforce the model to036

learn to anticipate future information of the source037

sentence. This process escalates the original time038

complexity from quadratic in full-sentence trans-039

lation to cubic in SimulMT. Secondly, the wait-k040

Figure 1: Attention map generated by AdaData for a
Zh→En full-sentence pair. The dashed boxes illustrate
two pairs of self-translatable prefixes. Given a source
prefix, a target prefix is translatable if the dashed atten-
tion block contains enough information for translation.

policy is a fixed decoding strategy which can not 041

adjust the latency given difference circumstances. 042

Some researchers adapted the wait-k policy into 043

adaptive policies (Zheng et al., 2019, 2020). But 044

those methods need to train multiple wait-k mod- 045

els with different k, which escalate the training 046

complexity even further. 047

To perform adaptive SimulMT training with- 048

out escalating the training time and computa- 049

tion resource, we propose a data-driven adaptive 050

SimulMT system, named AdaData. Our AdaData 051

system automatically generates self-translatable 052

prefix pairs. We define a self-translatable prefix 053

pair if the source prefix reaches a certain infor- 054

mation threshold to obtain the target translation 055

prefix. Then those generated prefix pairs enable us 056

to train an adaptive SimulMT model in the fash- 057

ion of full-sentence training. The advantages are 058

twofold: first, the SimulMT knowledge resides in 059

the training data instead of in the model and hence 060
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not necessary for model modifications; second, by061

sampling over the generated prefix pairs, the train-062

ing complexity remains the same as full-sentence063

translation training. Figure 1 illustrates how to gen-064

erate two pairs of self-translatable prefixes based065

on the source-target attention map. Moreover, the066

generated data allows us to fine-tune a pre-trained067

full-sentence model and dramatically improves the068

training efficiency. Experiments on De→En and069

Zh→En simultaneous translation show substantial070

improvements for both AdaData and AdaData fine-071

tuning over strong baselines.072

2 Adaptive Prefix Pair Generation073

SimulMT consists of two subtasks: the partial074

translation task when the source sentence is incom-075

plete and the full-sentence translation task when076

the source sentence is fully observed. This inspires077

us to treat SimulMT as a multi-task learning prob-078

lem, where the learned model is able to perform079

both partial and full-sentence translation depending080

on the completeness of the source sentence.081

In order to learn partial translation, we need to082

generate artificial prefix pairs from full-sentence083

pairs to train the model. The major challenge in pre-084

fix pair generation is to determine the lengths of the085

source prefix and the target prefix. As both transla-086

tion quality and latency are required by SimulMT087

systems, the generated prefix pairs should meet088

two basic rules. First, the source prefix should089

carry necessary information to generate the target090

prefix for translation quality. Second, the target091

prefix should contain as many words as possible to092

minimize translation latency.093

To fulfill the two requirements, one key point is094

to measure the information carried by each source095

word to predict a target word. The idea of weighted096

information is similar to the attention mechanism097

where each word is assigned an attention weight.098

Therefore, we utilize the Long Short-Term Memory099

(LSTM) (Hochreiter and Schmidhuber, 1997) ar-100

chitecture with the attention mechanism (Bahdanau101

et al., 2014) to help us generate prefix pairs. In this102

way, the cumulative information of a source prefix103

to predict a specific target word can be measured104

by the sum of its attention weights. In order to105

obtain accurate cumulative information of a source106

prefix, we propose the Monotonic LSTM model107

(MonoLSTM). Compared with the regular attention108

LSTM model, MonoLSTM utilizes a unidirectional109

encoder and cut off the connection between the last110

Algorithm 1: Prefix pair generation
Input: Full-sentence pairs, threshold e and

MonoLSTM
Output: Adaptive prefix pairs
for each full pair ({x1:S}, {y1:T }) do

generate source-target attention matrix A
using MonoLSTM;

for s ∈ {1, ..., S} do
for t ∈ {1, ..., T} do

if σt,1:s < e then
break;

add ({x1:s}, {y1:t−1}) to prefix pairs;
return prefix pairs

encoder hidden state and the initial decoder hidden 111

state. By doing so, MonoLSTM prevents source 112

word information from flowing backward and from 113

directly flowing into the decoder. Consequently, 114

the attention module is the only information path- 115

way from the source side to the target side, enabling 116

us to generate self-translatable prefix pairs based 117

on the attention weights. 118

Specifically, given a full sentence pair of a source 119

sentence {x1:S} and a target sentence {y1:T }, 120

MonoLSTM can generate a T ×S attention matrix 121

A where each attention score αts is only affected by 122

prefixes {x1:s} and {y1:t}. For more details about 123

MonoLSTM, refer to Appendix. So the cumula- 124

tive information a source prefix {x1:s} provides to 125

generate the target word yt can be measured by the 126

sum of attention weights: 127

σt,1:s =

s∑
i=1

αti. (1) 128

Given a hyperparameter threshold e, we mathe- 129

matically define that a target prefix {y1:t} is trans- 130

latable from a prefix {x1:s} if all words in the target 131

prefix are translatable from the source prefix, i.e., 132

∀j ≤ t, we have σj,1:s ≥ e. Hence, we can gener- 133

ate adaptive prefix pairs based on this cumulative 134

information. The data generation process is illus- 135

trated in Algorithm 1. In addition, we can also 136

adjust the latency trade-off by changing the thresh- 137

old e. 138

3 Data-driven Adaptive Prefix Training 139

3.1 Adaptive Training 140

In order to balance the performance on both par- 141

tial translation and full-sentence translation, we 142
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subsample the generated prefix pairs and train the143

model on a 1:1 mix of prefix pairs and full-sentence144

pairs for each training epoch. Since prefix pairs are145

shorter than full-sentence pairs, the multi-tasking146

training is more efficient than training two full-147

sentence translation models.148

3.2 Adaptive Inference149

Since the simultaneous translation model is jointly150

trained for partial translation and full-sentence151

translation, it is able to adaptively generate the152

translation at each decoding step. To be more spe-153

cific, when a new source word arrives, the system154

starts to decode until the ‘<eos>’ token is gener-155

ated. This adaptive inference not only closes the156

gap between training and inference, but also al-157

lows the model to adaptively tune the simultaneous158

translation latency based on the source sequence.159

3.3 Adaptive Fine-tuning160

Another advantage of data-driven adaptive training161

is that we can significantly improve the training162

efficiency by fine-tuning a full-sentence translation163

model using the generated adaptive prefix pairs. In164

our experiments, we found that 1 epoch of fine-165

tuning on the 1:1 mixed data is able to achieve166

comparable performances as the models trained167

from scratch.168

4 Experiments169

4.1 Datasets and Evaluation Metrics170

We conduct experiments on the WMT15 German-171

to-English dataset (De→ En, 4.5M sentence pairs)172

and the NIST Chinese-to-English dataset (Zh →173

En, 2M sentence pairs). For De → En, we use174

newstest-2013 for validation and use newstest-2015175

for test. For Zh→ En, we use NIST 2006 for vali-176

dation and use NIST 2008 for test. Both datasets177

are tokenized using BPE (Sennrich et al., 2015).178

We use BLEU (Papineni et al., 2002) to evaluate179

the translation quality and use Average Lagging180

(AL) (Ma et al., 2019a) to measure the translation181

latency. Since each Chinese sentence in the Zh182

→ En dataset has 4 English references, we report183

4-reference BLEU scores for this dataset.184

4.2 Baselines and Model Configurations185

The baseline models we include in the experiments186

are Wait-k (Ma et al., 2019a), MILk (Arivazha-187

gan et al., 2019), MMA-H, MMA-IL (Ma et al.,188

2019b), Proportional re-translation (Niehues et al.,189

Figure 2: Training efficiency comparison of Wait-k,
AdaData and AdaData fine-tuning on the De→En
dataset using 10 × 1080Ti GPUs.

2018; Arivazhagan et al., 2020), and a policy-based 190

adaptive model (Zheng et al., 2020). All baseline 191

results are copied from their original papers except 192

for Proportional re-translation. Since the Propor- 193

tional re-translation paper reports DAL (Cherry and 194

Foster, 2019) instead of AL as their latency metric, 195

we replicate the model and report results in AL. 196

To be consistent with the baseline models, we 197

adopt the Transformer-base (Vaswani et al., 2017) 198

architecture as our simultaneous translation model. 199

It consists of a 6-layer encoder and a 6-layer de- 200

coder. The model dimension is set to 512 and the 201

number of attention heads is 8. Since the MMA-H 202

model and the MMA-IL model are based on 1024- 203

dimensional Transformers, we also carry out exper- 204

iments with a wider configuration of our model to 205

make a fair comparison with MMA-H and MMA- 206

IL. Specifically, as with MMA-H and MMA-IL, the 207

wider version of our model has 1024 dimensions 208

and the number of attention heads is set 16. The 209

number of layers remains to be 6. 210

For the adaptive prefix generation part, our pro- 211

posed MonoLSTM is based on a 2-layer, 512- 212

dimensional unidirectional LSTM. Please find 213

more training details in Appendix. 214

4.3 Training Efficiency 215

Figure 2 illustrates the training efficiency of Wait-k, 216

(Zheng et al., 2020) and our methods. Note that, 217

the hatched bars represent “run only once". For 218

example, we can pre-train a full-sentence model 219

once and fine-tune multiple times with different in- 220
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Figure 3: Translation quality against latency curves for
De→ En test sets with the basic 512 dimension config-
uration.

Figure 4: Translation quality against latency curves for
De → En test sets with the wide 1024 dimension con-
figuration.

formation threshold e for different quality-latency221

trade-offs. The fine-tuned models are only fine-222

tuned for 1 epoch. We can see that our methods223

achieve significantly better training efficiency, es-224

pecially AdaData fine-tuning.225

4.4 Performance Comparison226

In order for our model to obtain different quality-227

latency trade-offs, we set the cumulative informa-228

tion threshold e ranging from 0.1 to 0.7 with a229

step size of 0.1. The 512-dimensional model com-230

parison results and the 1024-dimensional model231

comparison results on the De → En test sets are232

reported in Figure 3 and Figure 4 respectively.233

MILk is based on LSTMs, resulting in a lower full-234

sentence BLEU score compared with other Trans-235

former based models. The erasure rate of Propor-236

tional re-translation is set to 0 to match other mod-237

Figure 5: Translation quality against latency curves for
Zh→ En test sets with the basic 512 dimension config-
uration.

els. Proportional re-translation is also a data-driven 238

method. In their papers, they discussed two ways 239

to generate prefix pairs: proportion and word align- 240

ments. They also found that both methods achieve 241

similar performances. So we report the proportion 242

method here for simplicity. Since neither ways can 243

accurately measure the cumulative information in 244

prefixes, their performances are worse than ours. 245

To sum up, compared with the baseline models, 246

our proposed model achieves better quality-latency 247

trade-offs and larger areas under curves. 248

The comparison results on the Zh → En test 249

sets are presented in Figure 5. We can see that 250

our proposed model is still able to outperform the 251

baseline models. 252

It is noteworthy that our fine-tuned models are 253

also able to achieve better performances than the 254

baseline models. Considering the models are fine- 255

tuned for only 1 epoch, this demonstrates that the 256

generated adaptive data can help us greatly improve 257

the training efficiency without significantly hurting 258

the model performance. 259

5 Conclusions 260

We have designed an efficient data-driven algo- 261

rithm for adaptive SimulMT. The proposed method 262

is able to measure the information requirement for 263

each decoding step and generate self-translatable 264

prefix pairs for partial translation. Experiments val- 265

idate the effectiveness of the proposed data-driven 266

adaptive SimulMT system. Moreover, the gener- 267

ated prefix pairs enable us to fine-tune pre-trained 268

full-sentence translation models and dramatically 269

improve the training efficiency. 270
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Figure 6: MonoLSTM.

A Example Appendix341

B Details of MonoLSTM342

The framework of MonoLSTM is shown in Fig-343

ure 6. Compared with the regular attention LSTM344

model, MonoLSTM utilizes a unidirectional en-345

coder and cut off the connection between the last346

encoder hidden state and the initial decoder hidden347

state. By doing so, MonoLSTM prevents source348

word information from flowing backward and from349

directly flowing into the decoder. Thus, the atten-350

tion module is the only information pathway from351

the source side to the target side, ensuring that352

at each decoding step, the attention score of each353

source word is only affected by the current word354

and the previous words.355

More specifically, given a full sentence pair of356

a source sentence {x1:S} and a target sentence357

{y1:T }, at each decoding time step t, target word358

yt is predicted as:359

p(yt|y<t, x) = softmax(Wh̃t), (2)360

where h̃t is the concatenation of the target hidden361

state ht and the source-side context vector ct. The362

context vector ct represents the summary of the363

source sentence at time step t, which is computed364

as the weighted sum of the source hidden states365

based on their attention scores:366

ct =
∑
s

αtsh̄s, (3)367

where h̄s is the source hidden state and αts de-368

notes the attention score between target word yt369

and source word xs:370

αts =
exp(hᵀ

t h̄s)∑S
i=1 exp(hᵀ

t h̄i)
. (4)371

The attention scores are normalized and sum up 372

to 1. We can see that, in MonoLSTM h̄s does not 373

contain information for the source words after xs 374

by removing the backward LSTM and ht does not 375

contain information for the source sentence by cut- 376

ting of the connection between source hidden states 377

and target hidden initialization. Therefore, the un- 378

normalized attention score, i.e., the numerator of 379

αts is only affected by the source prefix {x1:s} and 380

the target prefix {y1:t}. Then we can use the at- 381

tention scores to measure the information a source 382

prefix provides to produce a target prefix. 383

C Details of Training Configurations 384

For the 512-dimensional models on De→ En, they 385

are trained on 10 × 1080Ti GPUs. It consists of a 386

6-layer encoder and a 6-layer decoder. The model 387

dimension is set to 512, the intermediate dimension 388

is 2048 and the number of attention heads is 8. The 389

number of max tokens is 6144. The optimizer is 390

Adam with betas set to (0.9, 0.98). The learning 391

rate is 0.00015 and the warm-up steps are 2000. 392

We also reduce the learning rate on plateaus with 393

a patience of 4. Weight decay is 0.000001. Label 394

smoothing is 0.1 and dropout rate is 0.3. 395

For the 1024-dimensional models on De→ En, 396

they are trained on 8 × TitanX GPUs. It consists 397

of a 6-layer encoder and a 6-layer decoder. The 398

model dimension is set to 1024, the intermediate 399

dimension is 4096 and the number of attention 400

heads is 16. The training configurations follow 401

(Ma et al., 2019b). The number of max tokens is 402

3584. The optimizer is Adam with betas set to (0.9, 403

0.98). The learning rate is 0.0005 and the warm- 404

up steps are 6000. The learning rate scheduler is 405

inverse_sqrt. The warm-up initial learning rate is 406

1e-7. Label smoothing is 0.1 and dropout rate is 407

0.3. 408

For the 512-dimensional models on Zh → En, 409

they are trained on 10 × 1080Ti GPUs. It consists 410

of a 6-layer encoder and a 6-layer decoder. The 411

model dimension is set to 512, the intermediate di- 412

mension is 2048 and the number of attention heads 413

is 8. The number of max tokens is 10240. The op- 414

timizer is Adam with betas set to (0.9, 0.98). The 415

learning rate is 0.00025 and the warm-up steps are 416

500. We also reduce the learning rate on plateaus 417

with a patience of 4. Weight decay is 0.000001. 418

Label smoothing is 0.1 and dropout rate is 0.3. 419

For the adaptive prefix generation part, our pro- 420

posed MonoLSTM is based on a 2-layer, 512- 421
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dimensional unidirectional LSTM. It is also trained422

on 10 × 1080Ti GPUs. The number of max tokens423

is 20480. The optimizer is Adam with betas set to424

(0.9, 0.997) and epsilon set to 1e-9. The learning425

rate is 0.005 and the warm-up steps are 4000. We426

also reduce the learning rate on plateaus with a427

patience of 4. Weight decay is 0.000001. Label428

smoothing is 0.1 and dropout rate is 0.2.429

For De→ En, the BPE vocabulary for De and430

En are 16k and 16k, respectively. For Zh → En,431

the BPE vocabulary for Zh and En are 20k and 10k,432

respectively.433

For fine-tuning, all training configuration remain434

the same except that learning rate is multiplied by435

0.1.436
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