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ABSTRACT

Existing certified training methods can only train models to be robust against a
certain perturbation type (e.g. l∞ or l2). However, an l∞ certifiably robust model
may not be certifiably robust against l2 perturbation (and vice versa) and also has
low robustness against other perturbations (e.g. geometric transformation). To this
end, we propose the first multi-norm certified training framework CURE, consisting
of a new l2 deterministic certified training defense and several multi-norm certified
training methods, to attain better union robustness when training from scratch
or fine-tuning a pre-trained certified model. Further, we devise bound alignment
and connect natural training with certified training for better union robustness.
Compared with SOTA certified training, CURE improves union robustness up to
22.8% on MNIST, 23.9% on CIFAR-10, and 8.0% on TinyImagenet. Further, it
leads to better generalization on a diverse set of challenging unseen geometric
perturbations, up to 6.8% on CIFAR-10. Overall, our contributions pave a path
towards universal certified robustness.

1 INTRODUCTION

Though deep neural networks (DNNs) are widely deployed in various vision applications, they
remain vulnerable to adversarial attacks (Goodfellow et al., 2014; Kurakin et al., 2018). Though many
empirical defenses (Madry et al., 2017; Zhang et al., 2019a; Wang et al., 2023) against adversarial
attacks have been proposed, they do not provide provable guarantees and remain vulnerable to
stronger attacks. Therefore, it is important to train DNNs to be formally robust against adversarial
perturbations. Various works (Mirman et al., 2018; Gowal et al., 2018; Zhang et al., 2019b; Balunović
& Vechev, 2020; Shi et al., 2021; Müller et al., 2022a; Hu et al., 2023; 2024; Mao et al., 2024)
on deterministic certified training against l∞ and l2 perturbations have been proposed. However,
those defenses are mostly limited to a certain type of perturbation and cannot easily be generalized
to other perturbation types (Yang et al., 2022). Certified robustness against multiple perturbation
types is essential because this better reflects real-world scenarios where adversaries can use multiple
lp perturbations. Also, Mangal et al. (2023) argue that lp robustness is the bedrock for non-lp
robustness. In this work, we also show that training with multi-norm robustness can lead to stronger
universal certified robustness by generalizing better to other perturbation types such as geometric
transformations (Section 5.1).

To this end, we propose the first multi-norm Certified training for Union RobustnEss (CURE)
framework, consisting of a new l2 deterministic certified training defense and several multi-norm
certified training methods. Inspired by SABR (Müller et al., 2022a), our l2 defense first finds the l2
adversarial examples in a slightly truncated l2 region and then propagates the smaller l∞ box using
the IBP loss (Gowal et al., 2018). For multi-norm certified training, we propose several methods
based on multi-norm empirical defenses (Tramer & Boneh, 2019; Madaan et al., 2021; Croce & Hein,
2022). Our proposed methods successfully improve both the union and universal certified robustness,
as illustrated in Table 1, 2, and 2.

However, the aforementioned methods achieve sub-optimal union robustness since they do not exploit
the connections between certified training for different lp perturbations as well as natural training.
In Figure 1a, we show that an l∞ certified robust model may lack l2 certified robustness and vice
versa: l∞ model only has 5.4% l2 robustness and l2 model has 0% l∞ robustness. Thus, mitigating
the tradeoff between l2 and l∞ certified training is crucial. For given values of ϵq and ϵr, we compare
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(b) Bound alignment during training.

Figure 1: (a) l∞ − l2 tradeoff: an l∞ certified robust model may lack l2 certified robustness and vice
versa. CURE-Scratch (yellow) and CURE-Finetune (green) improve union robustness significantly.
(b) We align the output bound differences for lq, lr perturbations on the correctly certified lq subset γ
to mitigate lq − lr tradeoff for better union robustness.

lq and lr robustness, where lq trained model has lower robustness against its own perturbation lq
(e.g. l∞ certifiably trained model (blue) in Figure 1a). We observe that the lq robustness is the
bottleneck for attaining better union accuracy when training a model from scratch. Thus, as shown in
Figure 1b, at a certain epoch during training, we find the subset of input samples γ that IBP (Gowal
et al., 2018) proves robustly classified with respect to the lq perturbations. We then propose a new
bound alignment method to regularize the distributions of output bound differences, computed with
IBP, for lq, lr perturbations on the correctly certified subset γ. In this way, we encourage the model
emphasize optimizing the samples that can potentially become certifiably robust against multi-norm
perturbations. Specifically, we use a KL loss to encourage the distributions of the lq, lr output
bound differences on subset γ to be close to each other for better union accuracy. Also, we find
that there exist some useful components in natural training that can be extracted and leveraged
to improve certified robustness (Jiang & Singh, 2024). To achieve this, we find and incorporate
the layer-wise useful natural training components by comparing the similarity of the certified and
natural training model updates. Last but not least, we show it is possible to quickly fine-tune an lp
robust model to have superior multi-norm certified robustness using bound alignment. Due to the
lq − lr tradeoff, bound alignment effectively preserves more lq robustness when fine-tuning with lr
perturbations, by focusing on the correctly certified subset. Additionally, this technique is useful for
quickly attaining multi-norm robustness using wider and diverse model architectures pre-trained with
single lp certified robustness. In Figure 1a, we show that training from scratch (CURE-Scratch) and
fine-tuning (CURE-Finetune) significantly improves union robustness compared with single norm
training.

Main Contributions: Our main contributions are as follows:

• We propose a new l2 deterministic certified training defense without relying on specific model
architecture choices, as well as propose multiple methods (CURE-Joint, CURE-Max, CURE-
Random) for multi-norm certified training with better union and geometric certified robustness.

• We devise techniques including bound alignment, connecting natural training with certified training,
and certified fine-tuning for better union robustness. CURE-Scratch and CURE-Finetune further
facilitate the multi-norm certified training procedure and advance multi-norm robustness.

• Compared with SOTA single-norm training method (Müller et al., 2022a), CURE improves union
robustness up to 22.8% on MNIST, 23.9% on CIFAR-10, and 8.0% on TinyImagenet. Further, it
improves robustness against diverse unseen geometric perturbations up to 0.6% on MNIST and
6.8% on CIFAR-10, paving the way to universal certified robustness.

We will publicly release our code upon acceptance of this work.
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2 RELATED WORK

Neural network verification. We consider deterministic verification methods that analyze a neural
network by abstract interpretation (Gehr et al., 2018; Singh et al., 2018; 2019a), optimization via linear
programming (LP) (De Palma et al., 2021; Wang et al., 2021; Müller et al., 2022b), mixed integer
linear programming (MILP) (Tjeng et al., 2017; Singh et al., 2019b), and semidefinite programming
(SDP) (Raghunathan et al., 2018; Dathathri et al., 2020). Many of them are incomplete methods,
sacrificing some precision for better scalability since the neural network verification problem is
generally NP-complete (Katz et al., 2017). In our work, we analyze multi-norm certified training
using deterministic and incomplete verification methods.

Certified training. For l∞ certified training, a widely-used method IBP (Mirman et al., 2018; Gowal
et al., 2018) minimizes a sound over-approximation of the worst-case loss, calculated using the Box
relaxation method. Wong et al. (2018) applies DeepZ (Singh et al., 2018) relaxations, estimating
using Cauchy random projections. CROWN-IBP (Zhang et al., 2019b) integrates efficient Box
propagation with precise linear relaxation-based bounds during the backward pass to estimate the
worst-case loss. Balunović & Vechev (2020) consists of a verifier that aims to certify the network
using convex relaxation and an adversary that tries to find inputs causing verification to fail. Shi
et al. (2021) proposes a new weight initialization method for IBP, adds Batch Normalization (BN) to
each layer and designs regularization with a short warmup schedule. Besides this, SABR (Müller
et al., 2022a) and TAPS (Mao et al., 2024) are unsound improvements over IBP by connecting
IBP to adversarial attacks and adversarial training. For l2 deterministic certified training, recent
works (Xu et al., 2022; Hu et al., 2023; 2024) are based on Lipschitz-based certification methods.
They design specialized architectures for l2 certified robustness, which is not naturally robust against
l∞ perturbations. In Table 5, we show our l2 certified defense has better l2 robustness compared
with Hu et al. (2023) on CIFAR-10. To the best of our knowledge, CURE is the first deterministic
framework for multi-norm certified robustness, compatible with diverse model architectures.

Robustness against multiple perturbations. Adversarial Training (AT) usually employs gradient
descent to discover adversarial examples and incorporates them into training for enhanced adversarial
robustness (Tramèr et al., 2017; Madry et al., 2017). Numerous works focus on improving robustness
(Zhang et al., 2019a; Carmon et al., 2019; Raghunathan et al., 2020; Wang et al., 2020; Wu et al.,
2020; Gowal et al., 2020; Zhang et al., 2021; Debenedetti & Troncoso—EPFL, 2022; Peng et al.,
2023; Wang et al., 2023) against a single perturbation type while remaining vulnerable to other
types. Tramer & Boneh (2019); Kang et al. (2019) observe that robustness against lp attacks does not
necessarily transfer to other lq attacks (q ̸= p). Previous studies (Tramer & Boneh, 2019; Maini et al.,
2020; Madaan et al., 2021; Croce & Hein, 2022; Jiang & Singh, 2024) modified Adversarial Training
(AT) to enhance robustness against multiple lp attacks, employing average-case (Tramer & Boneh,
2019), worst-case (Tramer & Boneh, 2019; Maini et al., 2020; Jiang & Singh, 2024), and random-
sampled (Madaan et al., 2021; Croce & Hein, 2022) defenses. There are also works (Nandy et al.,
2020; Liu et al., 2020; Xu et al., 2021; Xiao et al., 2022; Maini et al., 2022) that use preprocessing,
ensemble methods, mixture of experts, and stability analysis to solve this problem. For multi-norm
certified robustness, Nandi et al. (2023) study the certified multi-norm robustness with probabilistic
guarantees. They apply randomized smoothing, which is expensive to compute in nature, making
it impractical for real-world applications. Our work in contrast to these works, proposes the first
deterministic certified multi-norm training for better multi-norm and universal certified robustness.

3 BACKGROUND

In this section, we provide the necessary background for CURE. We consider a standard classification
task with samples {(xi, yi)}Ni=0 drawn from a data distribution D. The input consists of images
x ∈ Rd with corresponding labels y ∈ Rk. The objective of standard training is to obtain a classifier
f parameterized by θ that minimizes a loss function L : Rk × Rk → R over D.

3.1 NEURAL NETWORK VERIFICATION

Neural network verification is used to formally prove the robustness of a neural network. The
portion of the samples that can be proved robust is called certified accuracy. Box or interval
bounded propagation (Gowal et al., 2018; Mirman et al., 2018) (IBP) is a simple yet effective
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verification method. Essentially, IBP calculates an over-approximation of the network’s reachable set
by propagating an over-approximation of the input region Bp(x, ϵp), p ∈ {2,∞} through the network,
and then verifies whether all reachable outputs result in the correct classification. For instance, we
consider a network f = Lj ◦σ ◦Lj−2 ◦ . . . ◦L1, with linear layers Li and ReLU activation functions
σ. We then propagate Bp(x, ϵp) layer by layer (see Gowal et al. (2018); Mirman et al. (2018) for
more details). For the output o = {oi, oi}i<k

i=0 , the lower bound of the correct class should be higher
than the upper bounds of other classes (∀i ∈ [0, k), i ̸= y, oi − oy < 0) to be provably robust.

3.2 TRAINING FOR ROBUSTNESS

A classifier is adversarially robust on an lp-norm ball Bp(x, ϵp) = {x′ ∈ Rd : ∥x′ − x∥p ≤ ϵp} if
it classifies all points within the adversarial region as the correct class. That is, f(x′) = y for all
perturbed inputs x′ ∈ Bp(x, ϵp). Training for robustness is formulated as a min-max optimization
problem. Formally, the optimization problem against a specific lp attack can be expressed as follows:

min
θ

E(x,y)∼D

[
max

x′∈Bp(x,ϵp)
L(f(x′), y)

]
(1)

The inner maximization problem is impossible to solve exactly. Thus, it is often under or over-
approximated, referred to as adversarial training (Madry et al., 2017; Tramèr et al., 2017) and certified
training (Gowal et al., 2018; Müller et al., 2022a), respectively. Further, the optimization described
above is specific to certain p values and tends to be vulnerable to other perturbation types. To address
this, previous research has introduced various methods to train networks adversarially robust against
multiple perturbations (l1, l2, and l∞) simultaneously. In our work, we concentrate on how to train
networks to be certifiably robust against multiple lp (l2, l∞) perturbations.

3.3 CERTIFIED TRAINING

There are two main categories of methods to train certifiably robust models: unsound and sound
methods. On the one hand, IBP, a sound method, optimizes the following loss function based on logit
differences:

LIBP(x, y, ϵ∞) = ln(1 +
∑
i ̸=y

eoi−oy )

On the other hand, the state-of-the-art certified training methods SABR (Müller et al., 2022a) and
TAPs (Mao et al., 2024), sacrifice some soundness to get a more precise approximation, resulting
in better standard and certified accuracy. To achieve this, SABR finds an adversarial example
x′ ∈ B∞(x, ϵ∞ − τ∞) and propagates a smaller box region B∞(x′, τ∞) using the IBP loss, which
can be expressed as follows:

Ll∞(x, y, ϵ∞, τ∞) = max
x′∈B∞(x,ϵ∞−τ∞)

LIBP(x
′, y, τ∞)

Our extensions of multi-norm certified training are based on SABR.

3.4 UNION CERTIFIED ACCURACY AND UNIVERSAL CERTIFIED ROBUSTNESS

Union certified accuracy. We focus on the union threat model ∆ = B2(x, ϵ2) ∪B∞(x, ϵ∞) which
requires the DNN to be certifiably robust within the l2 and l∞ adversarial regions simultaneously.
Union accuracy is then defined as the robustness against ∆(i) for each xi sampled from D. In this
paper, similar to the prior works (Croce & Hein, 2022), we use union accuracy as the main metric to
evaluate the multi-norm certified robustness.

Universal certified robustness. We measure the generalization ability of multi-norm certified
training to other perturbation types, including rotation, translation, scaling, shearing, contrast, and
brightness change of geometric transformations (Balunovic et al., 2019; Yang et al., 2022). We define
the average certified robustness across these adversaries as universal certified robustness.
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4 CURE: MULTI-NORM CERTIFIED TRAINING FOR UNIVERSAL ROBUSTNESS

In this section, we present our multi-norm certified training framework CURE. First, we introduce
a new deterministic l2 certified training defense. Building on this, we propose several methods for
multi-norm certified training against l2, l∞ perturbations, which serve as the base instantiations of
our framework. After that, we design new techniques to improve union-certified accuracy. We note
that the techniques inside CURE are applicable to l1 perturbations as well.

4.1 CERTIFIED TRAINING FOR MULTIPLE NORMS

Certified training for l2 robustness. We propose a new deterministic certified training method
against l2 adversarial perturbations, inspired by SABR Müller et al. (2022a). For the specified ϵ2
and τ2 values for l2 certified training, we first search for the l2 adversarial examples using standard
l2 adversarial attacks (Kim, 2020) x′ ∈ B2(x, ϵ2 − τ2) in the slightly truncated l2 ball. After that,
we propagate a smaller box region B∞(x′, τ2) using the IBP loss. The loss we optimize can be
formulated as follows:

Ll2(x, y, ϵ2, τ2) = max
x′∈B2(x,ϵ2−τ2)

LIBP(x
′, y, τ2)

Certified training for multi-norm (l2 and l∞) robustness. Based on the work (Tramer & Boneh,
2019; Madaan et al., 2021; Croce & Hein, 2022) on adversarial training for multiple norms, to
combine the optimization of l2 and l∞ certified training, we propose the following methods:

1. CURE-Joint: optimizes Ll∞ and Ll2 together:

LJoint = (1− α) · Ll∞(x, y, ϵ∞, τ∞) + α · Ll2(x, y, ϵ2, τ2)

From the adversarial example perspective, it takes the sum of two worst-case IBP losses with l∞ and
l2 examples using a convex combination of weights with hyperparameter α ∈ [0, 1].

2. CURE-Max: compares the values of Ll2 and Ll∞ and takes the one with a worse (higher) IBP
loss. It can be viewed as a worst-case defense since it considers the worst-case adversarial examples
with higher IBP losses generated by the multiple perturbation types. The max loss LMax is shown as:

LMax = max
p∈{2,∞}

max
x′∈Bp(x,ϵp−τp)

LIBP(x, y, ϵp, τp)

3. CURE-Random: randomly partitions a batch of data (x,y) ∼ D into equal sized blocks (x1,y1)
and (x2,y2). For (x1,y1), we calculate the l∞ worst-case IBP loss Ll∞ with l∞ perturbations. For
the other half (x2,y2), similarly, we get the l2 worst-case IBP loss by applying l2 perturbations.
After that, we optimize the Joint loss of these two with equal weights, as shown below. In this way,
we reduce the time cost of propagating the bounds and generating the adversarial examples by 1

2 .

LRandom = Ll∞(x1,y2, ϵ∞, τ∞) + Ll2(x2,y2, ϵ2, τ2),where x = x1 ∪ x2,y = y1 ∪ y2

4.2 IMPROVED MULTI-NORM CERTIFIED TRAINING

The methods proposed above are suboptimal as they fail to fully explore the relationship between
worst-case IBP losses across different perturbations, certified training (CT), and natural training (NT).
To address this, we introduce the following improvements to enhance the union robustness of CURE:
(1) We identify a tradeoff between l2 and l∞ perturbations and propose a bound alignment technique
to mitigate this, improving multi-norm robustness. (2) We analyze and connect certified and natural
training to attain better union accuracy. (3) To facilitate the procedure for multi-norm robustness with
pre-trained single norm models, we propose the first certified fine-tuning method, demonstrating its
ability to quickly improve union accuracy using CURE (Table 1).

Bound alignment (BA) for better union robustness. As shown in Figure 1a and Table 1, an l∞
certifiably robust model usually has low l2 certified robustness and vice versa, which reveals that there
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exists a tradeoff between l2 and l∞ certified robustness. To this end, we investigate the lq− lr tradeoff,
which provides important intuitions for the design of bound alignment. For given values of ϵ∞ and
ϵ2, we aim to achieve good union robustness when performing multi-norm training from scratch on a
model f . We denote Au as the optimal union accuracy we can get with multi-norm training. Further,
we define and compare the best possible lq, lr robustness (Aq and Ar with Definition 4.1) with lq and
lr certified defenses. In practice, we use our l∞ and l2 certified defenses to approximate Aq and Ar.
Definition 4.1 (lp robustness Ap). Given an ϵp ∈ R value, we define lp robustness, denoted as Ap,
which is the final certified robustness against lp perturbations for a model that is fully trained using
the best lp certified training strategy.

Without the loss of generality, we assume Aq ≤ Ar. In other words, we select q and r values
∈ {∞, 2} based on the empirical values we get for Aq and Ar using our l∞ and l2 certified defenses.
Au is upper bounded by Aq since in the most ideal case, the model is robust against lq and lr
perturbations on the same set of images with union accuracy Au = Aq . Thus, to obtain better union
accuracy, the goal is to have Au → Aq. How do we achieve this? Generally speaking, given a
randomly initialized model f , we want it to focus on optimizing the samples which can potentially be
robust towards both when training from scratch. Here, we take a closer look at a single training step
of f ’s optimization. During this step, we find the correctly certified lq subset γ of f (Definition 4.2),
meaning the subset γ for which the lower bound computed with IBP of the correct class is higher
than the upper bounds of other classes.
Definition 4.2 (Correctly Certified lq Subset). At epoch e, given the perturbation size ϵq ∈ R
and model f , for a batch of data (x,y) ∼ D with size n, we have the output upper and lower
bounds computed by IBP for lq perturbations. We define a function h for this procedure as h(x) =
{oj ,oj}

j<n
j=0 , where o = {oi}i<k

i=0 is a vector of bounds for all classes. Then, the correctly certified
subset γ at the current step is defined as:

∀j ∈ γ with (xj ,yj) and bounds {oj = {oi}i<k
i=0 ,oj = {oi}i<k

i=0}, we have ∀i ̸= yj , oi ≤ oyj
.

Since Aq serves as the upper bound of Au, similarly, γ can be regarded as the subset of inputs that
are more likely to be optimized for both lq and lr robustness. For certified training, people usually
optimize the model using bound differences {oi−oy}i<k

i=0 (y is the correct class). Therefore, for better
union robustness Au, we align the bound differences {{oi − oy}i<k

i=0,i̸=y}
j<n
j=0 of lr and lq certified

training outputs, specifically on the correctly certified lq subset γ. Specifically, for each batch of data
(x,y) ∼ D, we generate predicted bounds h(x, q) = {oqj ,oqj}

j<n
j=0 and h(x, r) = {orj ,orj}

j<n
j=0 .

We denote their bounds differences after softmax normalization as dq = {{oqi − oqy}i<k
i=0,i̸=y}

j<n
j=0

and dr = {{ori − ory}i<k
i=0,i̸=y}

j<n
j=0 . Then, we select indices γ, according to Definition 4.2. We

denote the size of the indices as nc. We compute a KL-divergence loss over this set of samples using
KL(dq[γ]∥dr[γ]) (Eq. 2). Intuitively, we want to make dr[γ] and dq[γ] distributions close to each
other, such that we gain more union robustness by regularizing the model to optimize more on the
subset of examples which potentially brings Au → Aq .

LKL =
1

nc
·

nc∑
i=1

k∑
j=0

dq[γ[i]][j] · log
(
dq[γ[i]][j]

dr[γ[i]][j]

)
(2)

Apart from the KL loss, we add another loss term using a Max-style approach in Eq. 3, since Max has
relatively good performance and small computational cost, as shown in Table 1 and Table 6. LMax is
the worst-case loss between lr, lq certified training with IBP. Our final loss LScratch combines LKL

and LMax, via a hyper-parameter η in Eq. 4.

LMax = max
p∈{2,∞}

max
x′∈Bp(x,ϵp−τp)

LIBP(x, y, ϵp, τp) (3) LScratch = LMax + η · LKL (4)

Integrate natural training (NT) into certified training (CT). In the context of adversarial robustness,
Jiang & Singh (2024) shows that there exist some useful components in natural training, which can
be extracted and properly integrated into adversarial training to get better adversarial robustness. We
propose a technique to integrate NT into certified training (CT), to enhance union-certified robustness.
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To effectively connect NT with CT, we analyze the training procedures of the two. Specifically, for
model f (r) at any epoch r, we examine the model updates of NT and CT over all samples from D.
The models f (r)

n and f
(r)
c represent the results after one epoch of natural training and certified training

using LScratch, respectively, both beginning from the same initial model f (r). Then we compare the
natural updates gn = f

(r)
n − f (r) and certified updates gc = f

(r)
c − f (r). Our goal is to identify

useful components from gn and incorporate them into gc for better certified robustness. For a specific
layer l, comparing gln and glc, we retain a portion of gln according to their cosine similarity score
(Eq.5). Negative scores indicate that gln does not contribute to certified robustness, so we discard
components with similarity scores ≤ 0. The GP (Gradient Projection) operation, defined in Eq.6,
projects glc towards gln.

cos(gln, g
l
c) =

gln · glc
∥gln∥∥glc∥

(5) GP(gln, g
l
c) =

{
cos(gln, g

l
c) · gln, cos(gln, g

l
c) > 0

0, cos(gln, g
l
c) ≤ 0

(6)

Therefore, the total projected (useful) model updates gp coming from gn could be computed as Eq. 7.
We useM to represent all layers of the current model update. The expression

⋃
l∈M concatenates

the useful natural model update components from all layers. A hyper-parameter β is introduced to
balance the contributions of gGP and gc, as outlined in Eq.8. It is important to note that this projection
procedure is applied only after certified training with the full epsilon value.

gp =
⋃
l∈M

GP(gln, g
l
c) (7)

f (r+1) = f (r) + β · gp + (1− β) · gc (8)

Quick certified fine-tuning of single-norm pre-trained classifiers for multi-norm robustness. In
practice, as the model architectures and datasets become larger, multi-norm certified training from
scratch becomes more expensive. Also, there are many pre-trained models available with single norm
certified training. In adversarial robustness, Croce & Hein (2022) shows it is possible to obtain
state-of-the-art multi-norm robustness by fine-tuning a pre-trained model for a few epochs, which
reduces the computational cost significantly. In this work, we propose the first fine-tuning certified
multi-norm robustness scheme CURE-Finetune. Starting from a single norm pre-trained model,
we perform the bound alignment technique by optimizing LScratch for a few epochs. Because of the
lq − lr tradeoff, certifiably finetuning a lq pre-trained model on lr perturbations reduces lq robustness.
Thus, we want to preserve more lq robustness when doing certified fine-tuning, which makes bound
alignment useful here. By regularizing on the correctly certified lq subset with LScratch, we can prevent
losing more lq robustness when boosting lr robustness, which leads to better union accuracy. We note
that CURE-Finetune can be adapted to any single-norm certifiably pre-trained models. As shown
in Table 1, compared with other methods, we can quickly obtain a superior multi-norm certified
robustness by performing fine-tuning on pre-trained l∞ models for a few epochs.

5 EXPERIMENT

In this section, we present and discuss the results of union robustness, geometric robustness, and
ablation studies on hyper-parameters for MNIST, CIFAR-10, and TinyImagenet experiments. Other
ablation studies, visualizations, and algorithms of CURE can be found in Appendix B and D.

Experimental Setup. For datasets, we use MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky
et al., 2009) which both include 60K images with 50K and 10K images for training and testing, as
well as TinyImageNet (Le & Yang, 2015) which consists of 200 object classes with 500 training
images, 50 validation images, and 50 test images per class. We compare the following methods: 1.
l∞: SOTA l∞ certified defense SABR (Müller et al., 2022a), 2. l2: our proposed l2 certified defense,
3. CURE-Joint: take a weighted sum of l2, l∞ IBP losses. 4. CURE-Max: take the worst of l2, l∞
IBP losses. 5. CURE-Random: randomly partitions the samples into two blocks, then applies the
Joint loss with equal weights. 6. CURE-Scratch: training from scratch with bound alignment and
gradient projection techniques. 7. CURE-Finetune: robust fine-tuning with the bound alignment
technique using l∞ pre-trained models. We use a 7-layer convolutional architecture CNN7 similar
to prior work (Müller et al., 2022a) for models. In Table 5, we compare our proposed l2 defense
with Hu et al. (2023), where we show our method outperforms the SOTA l2 deterministic certified
defense on CIFAR-10. We choose similar hyperparameters and training setup as Müller et al. (2022a)
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for l∞ certified training. We select α = 0.5, l2 subselection ratio λ2 = 1e−5, β = 0.8, and η = 2.0
according to our ablation study results in Section 5.2 and Appendix B. For robust fine-tuning, we
finetune 20% of the original epochs from scratch. More implementation details are in Appendix A.

Evaluation. We choose the common ϵ∞, ϵ2 values used in the literature (Müller et al., 2022a; Hu et al.,
2023) to construct multi-norm regions. These include (ϵ2 = 0.5, ϵ∞ = 0.1), (ϵ2 = 1.0, ϵ∞ = 0.3)
for MNIST, (ϵ2 = 0.25, ϵ∞ = 2

255 ), (ϵ2 = 0.5, ϵ∞ = 8
255 ) for CIFAR-10 and (ϵ2 = 36

255 , ϵ∞ = 1
255 )

for TinyImageNet. We make sure the adversarial regions with sizes ϵ∞ and ϵ2 do not include each
other. We report the clean accuracy, certified accuracy against l2, l∞ perturbations, union accuracy,
and individual/average certified robustness against geometric transformations. Further, we use alpha-
beta crown (Zhang et al., 2018) for certification on l2, l∞ perturbations and FGV (Yang et al., 2022)
for efficient certification of geometric transformations.

5.1 MAIN RESULTS

Dataset (ϵ∞, ϵ2) Methods Clean l∞ l2 Union
l∞ 99.2 97.7 96.9 96.9
l2 99.5 2.0 98.7 2.0

(0.1, 0.5) CURE-Joint 99.3 97.5 97.4 97.1
CURE-Max 99.3 97.5 97.5 97.4

CURE-Random 99.2 96.9 96.7 96.6
CURE-Scratch 99.0 97.3 97.5 97.2

CURE-Finetune 99.1 96.9 97.5 96.9
MNIST l∞ 99.0 91.0 64.5 62.9

l2 99.4 0.0 63.0 0.0
(0.3, 1.0) CURE-Joint 98.7 89.8 78.3 75.7

CURE-Max 98.7 91.1 76.2 74.8
CURE-Random 98.6 90.2 78.9 77.0
CURE-Scratch 98.0 89.4 85.9 83.9

CURE-Finetune 98.6 90.0 90.0 85.7
l∞ 79.4 59.7 67.8 59.7
l2 82.3 5.6 71.2 5.6

( 2
255

, 0.25) CURE-Joint 80.2 57.3 69.7 57.3
CURE-Max 77.7 59.6 68.2 59.6

CURE-Random 78.9 57.5 68.3 57.5
CURE-Scratch 76.9 60.9 67.8 60.9

CURE-Finetune 78.0 59.7 68.2 59.7
CIFAR-10 l∞ 51.0 36.1 5.4 5.4

l2 73.3 0.0 56.6 0.0
( 8
255

, 0.5) CURE-Joint 52.1 22.1 30.5 20.0
CURE-Max 51.5 33.9 19.5 18.8

CURE-Random 52.4 28.4 30.5 24.3
CURE-Scratch 49.5 34.2 28.1 27.3

CURE-Finetune 40.2 30.2 30.8 29.3
l∞ 28.3 20.1 24.6 16.1
l2 36.1 2.5 29.7 2.5

TinyImagnet ( 1
255

, 36
255

) CURE-Joint 29.4 22.6 24.6 22.6
CURE-Max 28.8 22.1 24.6 22.1

CURE-Random 30.1 22.1 24.6 22.1
CURE-Scratch 28.1 24.1 25.1 24.1
CURE-Fintune 27.9 19.1 23.1 19.1

Table 1: Comparison of the clean accuracy, as well as individual, and union certified accuracy (%)
for different multi-norm certified training methods. CURE consistently improves union accuracy
compared with single-norm training with significant margins on all datasets. CURE-Scratch and
CURE-Finetune outperform other methods in most cases.

Union accuracy on MNIST, CIFAR-10, and TinyImagenet with CURE framework. In Table 1,
we show the results of clean accuracy and certified robustness against single and multi-norm with
CURE on MNIST, CIFAR-10, and TinyImagenet. We observe that CURE-Joint, CURE-Max,
and CURE-Random usually result in better union robustness compared with l2 and l∞ certified
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training. Further, CURE-Scratch and CURE-Finetune consistently improve the union accuracy
compared with other multi-norm methods with significant margins in most cases (10% for MNIST
(ϵ∞ = 0.3, ϵ2 = 1.0), 3 − 10% for CIFAR-10 (ϵ∞ = 8

255 , ϵ2 = 0.5), and 2% for TinyImagenet
experiments), showing the effectiveness of bound alignment and gradient projection techniques. Also,
for quick fine-tuning, we show it is possible to quickly fine-tune a l∞ robust model with good union
robustness using bound alignment, achieving SOTA union accuracy on MNIST (ϵ∞ = 0.3, ϵ2 = 1.0)
and CIFAR-10 (ϵ∞ = 8

255 , ϵ2 = 0.5) experiments.

Robustness against geometric transformations. Table 2 and Figure 2 compare CURE with single
norm training against various geometric perturbations on MNIST and CIFAR-10 datasets. For both
experiments, CURE outperforms single norm training on diverse geometric transformations (0.6%
for MNIST and 6% for CIFAR-10 on average), leading to better universal certified robustness. Also,
CURE-Scratch has better geometric robustness than CURE-Max on both datasets, which reveals
that bound alignment and gradient projection lead to better universal certified robustness.

Configs R(30) Tu(2),Tv(2) Sc(5),R(5),
C(5),B(0.01)

Sh(2),R(2),Sc(2),
C(2),B(0.001) Avg

l∞ 54.6 20.9 82.5 95.6 63.4
l2 0.0 0.0 0.0 0.0 0.0
CURE-Joint 55.9 21.3 82.3 95.7 63.8
CURE-Max 50.1 20.7 80.2 94.8 61.5
CURE-Random 54.8 18.8 83.5 95.6 63.2
CURE-Scratch 51.0 24.3 85.5 95.1 64.0

Table 2: Comparison on CURE against geometric transformations for MNIST experiment. We
denote R(φ) a rotation of ±φ degrees; Tu(∆u) and Tv(∆v) a translation of ±∆u pixels horizontally
and ±∆v pixels vertically, respectively; Sc(λ) a scaling of ±λ%; Sh(γ) a shearing of ±γ%; C(α)
a contrast change of ±α%; and B(β) a brightness change of ±β. CURE improves the average
robustness compared with single norm training with better geometric certified robustness. Also,
CURE-Scratch achieves the best average geometric transformation robustness.

Configs R(10) R(2),Sh(2) Sc(1),R(1),
C(1),B(0.001) Avg

l∞ 27.8 33.2 23.3 28.1
l2 36.6 0.0 0.0 12.2
Joint 35.0 41.4 28.2 34.9
Max 33.7 39.0 23.3 32.0
Random 35.1 40.9 26.2 34.1
Scratch 34.2 39.6 24.9 32.9

Figure 2: Comparison on CURE against geometric
transformations for CIFAR-10 experiment. CURE im-
proves the universal certified robustness significantly
compared with single norm training.
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Figure 3: CURE-Max and CURE-Scratch
bound difference visualization.
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Figure 4: Alabtion studies on λ2, η and β hyper-parameters.
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5.2 ABLATION STUDY

Subselection ratio λ. For l∞ certified training, we use the same λ∞ as in Müller et al. (2022a).
For l2 subselection ratio λ2, in Figure 4a, we show the l2 certified robustness using varying λ2 ∈
[1e−5, 5e−5, 5e−3, 1e−2] with ϵ2 = 0.5. Both clean and l2 accuracy improves when we have smaller
τ2 values. Based on the results, we choose τ2 = 1e−5 for our experiments.

Bound alignment (BA) hyper-parameter η. We perform CIFAR-10 (ϵ∞ = 8
255 , ϵ2 = 0.5) ex-

periments with different η values in [0.5, 1.0, 1.5, 2.0, 4.0]. In Figure 4b, we observe that the clean
accuracy generally drops as we have larger η values, with union accuracy improving then dropping.
We pick η = 2.0 with the best union accuracy for the experiments.

Gradient projection (GP) hyper-parameter β. Figure 4c displays the sensitivity of clean and
union accuracy with different choices of β values on CIFAR-10 (ϵ∞ = 2

255 , ϵ2 = 0.25) experiments.
CURE-Scratch is generally insensitive to varying β values. We choose β = 0.8 for the experiments
to be relatively the best.

Ablation study on BA and GP. In Table 3, we show the ablation study of BA and GP techniques on
the MNIST (ϵ∞ = 0.3, ϵ2 = 1.0) experiment. BA and GP improve union accuracy by 2% and 7%
respectively, demonstrating the individual effectiveness of our proposed techniques.

Clean l∞ l2 Union
CURE-Max 98.7 91.1 76.2 74.8
+BA 98.6 91.0 78.2 76.5
+BA + GP 98.0 89.4 85.9 83.9

Table 3: Ablations on BA and GP.

Visualization of bound differences. Figure 3 dis-
plays the bound differences {oy − oi}i<k

i=0,i̸=y of one
example that is improved by CURE-Scratch (sec-
ond row), compared with the CURE-Max (first row),
from the CIFAR-10 (ϵ∞ = 8

255 , ϵ2 = 0.5) experi-
ment with q = ∞, r = 2. We use the outputs from
alpha-beta-crown. For l2 perturbations (blue diagrams), we demonstrate that CURE-Scratch exhibits
all positive bound differences, whereas CURE-Max shows several negative bound differences (high-
lighted in red), leading to a robust union prediction. Additionally, we observe that the distributions
in the second row are more aligned than those in the first row. CURE-Scratch effectively aligns
the bound difference distributions when the model is robust against lq perturbations, bringing the
distributions closer together. This demonstrates the effectiveness of the bound alignment method.
Additional visualizations are available in Appendix B.

5.3 DISCUSSIONS

Time cost of CURE. The extra training costs of GP are small, taking 6, 24, 82 seconds using a
single NVIDIA A40 GPU on MNIST, CIFAR-10, and TinyImageNet datasets (Table 7), respectively.
Compared with the total training cost of CURE-Scratch, it only accounts for ∼ 6% of the total
cost. For runtime comparison of different methods, we have a complete runtime analysis (Table 6) in
Appendix C for the MNIST experiment. We observe that CURE-Joint has around two times the cost
of other methods. CURE-Finetune has the smallest time cost per epoch, which shows the efficiency
of our proposed techniques.

Limitations. For l2 certified training, we use a l∞ box instead of l2 ball for bound propagation,
which leads to more over-approximation and the potential loss of precision. Also, we notice drops in
clean accuracy in both training from scratch and fine-tuning with CURE methods. In some cases,
union accuracy improves slightly but clean accuracy and single lp robustness reduce. Both BA and
GP techniques lead to a slight decrease in clean accuracy on experiments of three datasets. There is
no negative societal impact of this work.

6 CONCLUSION

We propose the first framework CURE with a new l2 deterministic certified defense and multi-norm
training methods for better union robustness. Further, we devise bound alignment, gradient projection,
and robust certified fine-tuning techniques, to enhance and facilitate the union-certified robustness.
Extensive experiments on MNIST, CIFAR-10, and TinyImagenet show that CURE significantly
improves both union accuracy and robustness against geometric transformations, paving the path to
universal certified robustness.
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7 REPRODUCIBILITY STATEMENT

We provide the source code of CURE as part of the supplementary material that can be used to
reproduce our results. We provide the details of our hyper-parameters, training scheme, and model
architecture in Section 5. We also provide additional details including other training details, further
evaluation, and pseudocode not covered in the main text in the appendix.
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Mislav Balunović and Martin Vechev. Adversarial training and provable defenses: Bridging the gap.
In 8th International Conference on Learning Representations (ICLR 2020)(virtual). International
Conference on Learning Representations, 2020.

Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, and Martin Vechev. Certifying
geometric robustness of neural networks. Advances in Neural Information Processing Systems, 32,
2019.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Unlabeled
data improves adversarial robustness. Advances in neural information processing systems, 32,
2019.

Francesco Croce and Matthias Hein. Adversarial robustness against multiple and single l_p-threat
models via quick fine-tuning of robust classifiers. In International Conference on Machine
Learning, pp. 4436–4454. PMLR, 2022.

Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan Uesato,
Rudy R Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy S Liang, et al. Enabling
certification of verification-agnostic networks via memory-efficient semidefinite programming.
Advances in Neural Information Processing Systems, 33:5318–5331, 2020.

Alessandro De Palma, Harkirat S Behl, Rudy Bunel, Philip Torr, and M Pawan Kumar. Scaling the
convex barrier with active sets. In Proceedings of the ICLR 2021 Conference. Open Review, 2021.

Edoardo Debenedetti and Carmela Troncoso—EPFL. Adversarially robust vision transformers, 2022.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin
Vechev. Ai2: Safety and robustness certification of neural networks with abstract interpretation. In
2018 IEEE symposium on security and privacy (SP), pp. 3–18. IEEE, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval
bound propagation for training verifiably robust models. arXiv preprint arXiv:1810.12715, 2018.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering
the limits of adversarial training against norm-bounded adversarial examples. arXiv preprint
arXiv:2010.03593, 2020.

Kai Hu, Klas Leino, Zifan Wang, and Matt Fredrikson. A recipe for improved certifiable robustness:
Capacity and data. arXiv preprint arXiv:2310.02513, 2023.

Kai Hu, Andy Zou, Zifan Wang, Klas Leino, and Matt Fredrikson. Unlocking deterministic robustness
certification on imagenet. Advances in Neural Information Processing Systems, 36, 2024.

Enyi Jiang and Gagandeep Singh. Ramp: Boosting adversarial robustness against multiple l_p
perturbations. arXiv preprint arXiv:2402.06827, 2024.

Daniel Kang, Yi Sun, Tom Brown, Dan Hendrycks, and Jacob Steinhardt. Transfer of adversarial
robustness between perturbation types. arXiv preprint arXiv:1905.01034, 2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Computer Aided Verification: 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I
30, pp. 97–117. Springer, 2017.

Hoki Kim. Torchattacks: A pytorch repository for adversarial attacks. arXiv preprint
arXiv:2010.01950, 2020.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In Artificial intelligence safety and security, pp. 99–112. Chapman and Hall/CRC, 2018.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. URL https:
//api.semanticscholar.org/CorpusID:16664790.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Aishan Liu, Shiyu Tang, Xianglong Liu, Xinyun Chen, Lei Huang, Zhuozhuo Tu, Dawn Song, and
Dacheng Tao. Towards defending multiple adversarial perturbations via gated batch normalization.
arXiv preprint arXiv:2012.01654, 2020.

Divyam Madaan, Jinwoo Shin, and Sung Ju Hwang. Learning to generate noise for multi-attack
robustness. In International Conference on Machine Learning, pp. 7279–7289. PMLR, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Pratyush Maini, Eric Wong, and Zico Kolter. Adversarial robustness against the union of multiple
perturbation models. In International Conference on Machine Learning, pp. 6640–6650. PMLR,
2020.

Pratyush Maini, Xinyun Chen, Bo Li, and Dawn Song. Perturbation type categorization for multiple
adversarial perturbation robustness. In Uncertainty in Artificial Intelligence, pp. 1317–1327.
PMLR, 2022.

Ravi Mangal, Klas Leino, Zifan Wang, Kai Hu, Weicheng Yu, Corina Pasareanu, Anupam Datta, and
Matt Fredrikson. Is certifying lp robustness still worthwhile? arXiv preprint arXiv:2310.09361,
2023.

Yuhao Mao, Mark Müller, Marc Fischer, and Martin Vechev. Connecting certified and adversarial
training. Advances in Neural Information Processing Systems, 36, 2024.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for provably
robust neural networks. In International Conference on Machine Learning, pp. 3578–3586. PMLR,
2018.

Mark Niklas Müller, Franziska Eckert, Marc Fischer, and Martin Vechev. Certified training: Small
boxes are all you need. arXiv preprint arXiv:2210.04871, 2022a.

Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev.
Prima: general and precise neural network certification via scalable convex hull approximations.
Proceedings of the ACM on Programming Languages, 6(POPL):1–33, 2022b.

Soumalya Nandi, Sravanti Addepalli, Harsh Rangwani, and R Venkatesh Babu. Certified adversarial
robustness within multiple perturbation bounds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2298–2305, 2023.

12

https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jay Nandy, Wynne Hsu, and Mong Li Lee. Approximate manifold defense against multiple adversarial
perturbations. In 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE,
2020.

ShengYun Peng, Weilin Xu, Cory Cornelius, Matthew Hull, Kevin Li, Rahul Duggal, Mansi Phute,
Jason Martin, and Duen Horng Chau. Robust principles: Architectural design principles for
adversarially robust cnns. arXiv preprint arXiv:2308.16258, 2023.

Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. Advances in neural information processing systems, 31, 2018.

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John Duchi, and Percy Liang. Understanding
and mitigating the tradeoff between robustness and accuracy. arXiv preprint arXiv:2002.10716,
2020.

Zhouxing Shi, Yihan Wang, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Fast certified robust training
with short warmup. Advances in Neural Information Processing Systems, 34:18335–18349, 2021.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast and
effective robustness certification. Advances in neural information processing systems, 31, 2018.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for
certifying neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):1–30,
2019a.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. Boosting robustness certification
of neural networks. In International conference on learning representations, 2019b.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. arXiv preprint arXiv:1711.07356, 2017.

Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple perturbations.
Advances in neural information processing systems, 32, 2019.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. Beta-
crown: Efficient bound propagation with per-neuron split constraints for neural network robustness
verification. Advances in Neural Information Processing Systems, 34:29909–29921, 2021.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In ICLR, 2020.

Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion
models further improve adversarial training. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 36246–36263. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/wang23ad.html.

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable adversarial
defenses. Advances in Neural Information Processing Systems, 31, 2018.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust general-
ization. Advances in Neural Information Processing Systems, 33:2958–2969, 2020.

Jiancong Xiao, Zeyu Qin, Yanbo Fan, Baoyuan Wu, Jue Wang, and Zhi-Quan Luo. Adaptive
smoothness-weighted adversarial training for multiple perturbations with its stability analysis.
arXiv preprint arXiv:2210.00557, 2022.

Kaidi Xu, Chenan Wang, Hao Cheng, Bhavya Kailkhura, Xue Lin, and Ryan Goldhahn. Mixture of
robust experts (more): A robust denoising method towards multiple perturbations. arXiv preprint
arXiv:2104.10586, 2021.

13

https://proceedings.mlr.press/v202/wang23ad.html
https://proceedings.mlr.press/v202/wang23ad.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xiaojun Xu, Linyi Li, and Bo Li. Lot: Layer-wise orthogonal training on improving l2 certified
robustness. Advances in Neural Information Processing Systems, 35:18904–18915, 2022.

Rem Yang, Jacob Laurel, Sasa Misailovic, and Gagandeep Singh. Provable defense against geometric
transformations. arXiv preprint arXiv:2207.11177, 2022.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference on
machine learning, pp. 7472–7482. PMLR, 2019a.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. Advances in Neural Information
Processing Systems, 31:4939–4948, 2018. URL https://arxiv.org/pdf/1811.00866.
pdf.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane Boning,
and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural networks.
arXiv preprint arXiv:1906.06316, 2019b.

Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama, and Mohan Kankanhalli.
Geometry-aware instance-reweighted adversarial training. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=iAX0l6Cz8ub.

14

https://arxiv.org/pdf/1811.00866.pdf
https://arxiv.org/pdf/1811.00866.pdf
https://openreview.net/forum?id=iAX0l6Cz8ub


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A MORE TRAINING DETAILS

We mostly follow the hyper-parameter choices from Müller et al. (2022a) for CURE. We in-
clude weight initialization and warm-up regularization from Shi et al. (2021). Further, we use
ADAM (Kingma, 2014) with an initial learning rate of 1e−4, decayed twice with a factor of 0.2.
For CIFAR-10, we train 160 and 180 epochs for (ϵ∞ = 2

255 , ϵ2 = 0.25) and (ϵ∞ = 8
255 , ϵ2 = 0.5),

respectively. We decay the learning rate after 120 and 140, 140 and 160 epochs, respectively. For
the TinyImagenet experiment, we use the same setting as (ϵ∞ = 8

255 , ϵ2 = 0.5). For the MNIST
dataset, we train 70 epochs, decaying the learning rate after 50 and 60 epochs. For batch size, we set
128 for CIFAR-10 and TinyImagenet and 256 for MNIST. For all experiments, we first perform one
epoch of standard training. Also, we anneal ϵ∞, ϵ2 from 0 to their final values with 80 epochs for
CIFAR-10 and TinyImagenet and 20 epochs for MNIST. We only apply GP after training with the
final epsilon values. For certification, we verify 1000 examples on MNIST and CIFAR-10, as well as
199 examples on TinyImagenet.

B OTHER ABLATION STUDIES

Hyper-parameter α for Joint certified training. As shown in Table 4, we test the changing of l∞, l2,
and union accuracy with different α values in [0, 0.25, 0.5, 0.75, 1.0] on MNIST (ϵ∞ = 0.1, ϵ2 = 0.5)
experiments. We observe that α = 0.5 has the best union accuracy and is generally a good choice for
our experiments by balancing the two losses.

α 0.0 0.25 0.5 0.75 1.0
Clean 99.2 99.2 99.3 99.2 99.5
l∞ 97.7 97.7 97.5 97.2 2.0
l2 96.9 95.6 97.4 95.9 98.7
Union 96.9 95.6 97.1 95.8 2.0

Table 4: Ablation study on Joint training hyper-parameter α.

Comparison of l2 certified robustness on l2 deterministic certified training methods. In Table 5,
we compare our proposed l2 certified defense with SOTA l2 certified defense Hu et al. (2023) on
CIFAR-10 with ϵ2 = 0.25 and 0.5. The results show that our proposed l2 deterministic certified
training method improves over l2 robustness by 2 ∼ 4% compared with the SOTA method.

ϵ2 0.25 0.5
Hu et al. (2023) 69.5 52.2

Ours 71.2 56.6

Table 5: Comparison of l2 certified accuracy: our proposed l2 certified training consistently outper-
forms Hu et al. (2023) by 2 ∼ 4%.

More visualizations on bound differences. We plot the bound difference examples from alpha-
beta-crown on MNIST, CIFAR-10, and TinyImagenet datasets, where the negative bound differences
are colored in red. As shown in Figure 5, 6, 7, 8, 9, we compare CURE-Scratch (second row) with
CURE-Max (first row), with bound differences against l∞ and l2 perturbations colored in blue and
green, respectively. CURE-Scratch produces all positive bound differences, leading to unionly robust
predictions; CURE-Max is not unionly robust due to some negative bound differences. Also, we
observe that CURE-Scratch successfully brings lq, lr bound difference distributions close to each
other compared with CURE-Max in many cases, which confirms the effectiveness of our bound
alignment technique.

C RUNTIME ANALYSIS

This section provides the runtime per training epoch for all methods on MNIST (ϵ∞ = 0.1, ϵ2 = 0.75)
experiments and runtime per training epoch of CURE-Scratch with ablation studies on GP for MNIST,
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Figure 5: Bound difference visualizations on MNIST (ϵ∞ = 0.3, ϵ2 = 1.0) experiments.
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Figure 6: Bound difference visualizations on CIFAR-10 (ϵ∞ = 2
255 , ϵ2 = 0.25) experiments.
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Figure 7: Bound difference visualizations on CIFAR-10 (ϵ∞ = 8
255 , ϵ2 = 0.5) experiments.

CIFAR10, and TinyImagenet experiments. We evaluate all the methods on a single A40 Nvidia GPU
with 40GB memory and the runtime is reported in seconds (s).

Runtime for different methods on MNIST experiments. In Table 6, we show the time in seconds
(s) per training epoch for single norm training (l∞ and l2), CURE-Joint, CURE-Max, CURE-
Random, CURE-Scratch, and CURE-Finetune methods. CURE-Finetune has the smallest training
cost compared with other methods and CURE-Joint has the highest time cost (around two times of
other methods) per epoch. The results indicate the efficiency of training with CURE-Scratch/Finetune.
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Figure 8: Bound difference visualization on TinyImagenet (ϵ∞ = 1
255 , ϵ2 = 36

255 ) experiments.
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Figure 9: Bound difference visualization on TinyImagenet (ϵ∞ = 1
255 , ϵ2 = 36

255 ) experiments.

Methods Runtime (s)
l∞ 182
l2 165
CURE-Joint 320
CURE-Max 155
CURE-Random 190
CURE-Finetune 148
CURE-Scratch 154

Table 6: Runtime for all methods on MNIST (ϵ∞ = 0.1, ϵ2 = 0.5) experiment per epoch in seconds.

Runtime for CURE-Scratch on MNIST, CIFAR10, and TinyImagenet datasets. In Table 7, we
show the runtime per training epoch using CURE-Scratch on MNIST, CIFAR10, and TinyImagenet
datasets with and without GP operations. We see that the GP operation’s cost is small compared with
the whole training procedure, accounting for around 6% of the whole training time.

MNIST CIFAR-10 TinyImagenet
w/o GP 148 390 952
with GP 154 414 1036

Table 7: Runtime for CURE-Scratch on MNIST, CIFAR10, and TinyImagenet datasets.

D ALGORITHMS

In this section, we present the algorithms of CURE framework. Algorithm 1 illustrates how to get
propagation region for both l2 and l∞ perturbations. Algorithm 2, 3, 4, 5 refer to algorithms of
CURE-Joint, CURE-Max, CURE-Random, and CURE-Scratch/Finetune, respectively. Algorithm 6
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is the procedure of performing GP after one epoch of natural and certified training (could be any of
Algorithm 2, 3, 4, 5).

Algorithm 1 get_propagation_region for l∞ and l2 perturbations

Input: Neural network f , input x, label t, perturbation radius ϵ, subselection ratio λ, step size α,
step number n, attack types ∈ {l∞, l2}

Output: Center x′ and radius τ of propagation region Bτ (x′)
(x,x)← clamp((x− ϵ,x+ ϵ), 0, 1) // Get bounds of input region
τ ← λ/2 · (x− x) // Compute propagation region size τ
x∗
0 ← Uniform(x,x) // Sample PGD initialization

for i = 0 . . . n− 1 do // Do n PGD steps
if attack = l∞ then // PGD-l∞

x∗
i+1 ← x∗

i + α · ϵ · sign(∇x∗
i
LCE(f(x

∗
i ), t))

x∗
i+1 ← clamp(x∗

i+1,x,x)
end if
if attack = l2 then // PGD-l2

x∗
i+1 ← x∗

i + α ·
∇x∗

i
LCE(f(x

∗
i ),y)

∥∇x∗
i
LCE(f(x∗

i ),y)∥2

δ ← ϵ
∥x∗

i+1−x∥2
· (x∗

i+1 − x)

x∗
i+1 ← clamp(x+ δ,x,x)

end if
end for
x′ ← clamp(x∗

n,x+ τ,x− τ) // Ensure that Bτ (x′) will lie fully in Bϵ(x)
return x′, τ

Algorithm 2 CURE-Joint Training Epoch

Input: Neural network fθ, training set (X,T ), perturbation radius ϵ2 and ϵ∞, subselection ratio
λ∞ and λ2, learning rate η, ℓ1 regularization weight ℓ1, loss balance factor α
for (x, t) = (x0, t0) . . . (xb, tb) do // Sample batches ∼ (X,T )
(x′

∞, τ∞)← get_propagation_region (attack = l∞) // Refer to Algorithm 1
(x′

2, τ2)← get_propagation_region (attack = l2)
Bτ∞(x′

∞)← BOX(x′
∞, τ∞) // Get box with midpoint x′

∞,x′
2 and radius τ∞, τ2

Bτ2(x′
2)← BOX(x′

2, τ2)
uy∆

∞
← get_upper_bound(fθ,Bτ∞(x′

∞)) // Get upper bound uy∆
∞
,uy∆

2
on logit differences

uy∆
2
← get_upper_bound(fθ,Bτ2(x′

2)) // based on IBP
lossl∞ ← LCE(uy∆

∞
, t)

lossl2 ← LCE(uy∆
2
, t)

lossℓ1 ← ℓ1 · get_ℓ1_norm(fθ)
losstot ← (1− α) · lossl∞ + α · lossl2 + lossℓ1
θ ← θ − η · ∇θlosstot // Update model parameters θ

end for
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Algorithm 3 CURE-Max Training Epoch

Input: Neural network fθ, training set (X,T ), perturbation radius ϵ2 and ϵ∞, subselection ratio
λ∞ and λ2, learning rate η, ℓ1 regularization weight ℓ1
for (x, t) = (x0, t0) . . . (xb, tb) do // Sample batches ∼ (X,T )
(x′

∞, τ∞)← get_propagation_region (attack = l∞) // Refer to Algorithm 1
(x′

2, τ2)← get_propagation_region (attack = l2)
Bτ∞(x′

∞)← BOX(x′
∞, τ∞) // Get box with midpoint x′

∞,x′
2 and radius τ∞, τ2

Bτ2(x′
2)← BOX(x′

2, τ2)
uy∆

∞
← get_upper_bound(fθ,Bτ∞(x′

∞)) // Get upper bound uy∆
∞
,uy∆

2
on logit differences

uy∆
2
← get_upper_bound(fθ,Bτ2(x′

2)) // based on IBP
lossl∞ ← LCE(uy∆

∞
, t)

lossl2 ← LCE(uy∆
2
, t)

lossMax ← max(lossl∞ , lossl2) // We select the largest lp∈[2,∞] loss for each sample
lossℓ1 ← ℓ1 · get_ℓ1_norm(fθ)
losstot ← lossMax + lossℓ1
θ ← θ − η · ∇θlosstot // Update model parameters θ

end for

Algorithm 4 CURE-Random Training Epoch

Input: Neural network fθ, training set (X,T ), perturbation radius ϵ2 and ϵ∞, subselection ratio
λ∞ and λ2, learning rate η, ℓ1 regularization weight ℓ1
for (x, t) = (x0, t0) . . . (xb, tb) do // Sample batches ∼ (X,T )
(x1,x2), (t1, t2)← partition(x, t) // Randomly partition inputs into two blocks

// Apply Algorithm 1
(x′

∞, τ∞)← get_propagation_region (x1, t1, attack = l∞)
(x′

2, τ2)← get_propagation_region (x2, t2, attack = l2)
Bτ∞(x′

∞)← BOX(x′
∞, τ∞) // Get box with midpoint x′

∞,x′
2 and radius τ∞, τ2

Bτ2(x′
2)← BOX(x′

2, τ2)
uy∆

∞
← get_upper_bound(fθ,Bτ∞(x′

∞)) // Get upper bound uy∆
∞
,uy∆

2
on logit differences

uy∆
2
← get_upper_bound(fθ,Bτ2(x′

2)) // based on IBP
lossl∞ ← LCE(uy∆

∞
, t)

lossl2 ← LCE(uy∆
2
, t)

lossℓ1 ← ℓ1 · get_ℓ1_norm(fθ)
losstot ← lossl∞ + lossl2 + lossℓ1
θ ← θ − η · ∇θlosstot // Update model parameters θ

end for
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Algorithm 5 CURE-Scratch/Finetune Training Epoch

Input: Neural network fθ, training set (X,T ), perturbation radius ϵ2 and ϵ∞, subselection ratio
λ∞ and λ2, learning rate η, ℓ1 regularization weight ℓ1, KL loss balance factor η, mode ∈
[Scratch, Finetune]
for (x, t) = (x0, t0) . . . (xb, tb) do // Sample batches ∼ (X,T )
(x′

∞, τ∞)← get_propagation_region (attack = l∞) // Refer to Algorithm 1
(x′

2, τ2)← get_propagation_region (attack = l2)
Bτ∞(x′

∞)← BOX(x′
∞, τ∞) // Get box with midpoint x′

∞,x′
2 and radius τ∞, τ2

Bτ2(x′
2)← BOX(x′

2, τ2)
uy∆

∞
← get_upper_bound(fθ,Bτ∞(x′

∞)) // Get upper bound uy∆
∞
,uy∆

2
on logit differences

uy∆
2
← get_upper_bound(fθ,Bτ2(x′

2)) // based on IBP
lossl∞ ← LCE(uy∆

∞
, t)

lossl2 ← LCE(uy∆
2
, t)

lossMax ← max(lossl∞ , lossl2) // We select the largest lp∈[2,∞] loss for each sample
lossℓ1 ← ℓ1 · get_ℓ1_norm(fθ)
find correctly certified lq subset γ using Definition 4.2
lossKL ← KL(dq[γ]∥dr[γ]) // Eq. 2
losstot ← lossMax + η · lossKL + lossℓ1
θ ← θ − η · ∇θlosstot // Update model parameters θ

end for

Algorithm 6 GP: Connect CT with NT

1: Input: model fθ, input images with distribution D, training rounds R, β, natural training NT
and certified training CT algorithms, perturbation radius ϵ∞ and ϵ2, subselection ratio λ∞ and
λ2, learning rate η, ℓ1 regularization weight ℓ1.

2:
3: for r = 1, 2, ..., R do
4: fn ← NT(f (r)

θ ,D)
5: fc ← CT(f (r)

θ , ϵ∞, ϵ2, λ∞, λ2, η, ℓ1,D) // Can be single-norm or any CURE training
6: compute gn ← fn − f

(r)
θ , gc ← fc − f

(r)
θ

7: compute gp using Eq. 7
8: update f

(r+1)
θ using Eq. 8 with β and gc

9: end for
10: Output: model fθ.

20


	Introduction
	Related Work
	Background
	Neural network verification
	Training for robustness
	Certified training
	Union certified accuracy and universal certified robustness

	CURE: multi-norm Certified training for Universal RobustnEss
	Certified training for multiple norms
	Improved multi-norm certified training

	Experiment
	Main Results
	Ablation Study
	Discussions

	Conclusion
	Reproducibility Statement
	More training details
	Other ablation studies
	Runtime Analysis
	Algorithms

