
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENABLING REALTIME REINFORCEMENT LEARNING AT
SCALE WITH STAGGERED ASYNCHRONOUS INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Realtime environments change even as agents perform action inference and learn-
ing, thus requiring high interaction frequencies to effectively minimize regret.
However, recent advances in machine learning involve larger neural networks
with longer inference times, raising questions about their applicability in realtime
systems where reaction time is crucial. We present an analysis of lower bounds on
regret in realtime environments to show that minimizing long-term regret is gener-
ally impossible within the typical sequential interaction and learning paradigm, but
often becomes possible when sufficient asynchronous compute is available. We
propose novel algorithms for staggering asynchronous inference processes to en-
sure that actions are taken at consistent time intervals, and demonstrate that use of
models with high action inference times is only constrained by the environment’s
effective stochasticity over the inference horizon, and not by action frequency.
Our analysis shows that the number of inference processes needed scales linearly
with increasing inference times while enabling use of models that are multiple
orders of magnitude larger than existing approaches when learning from a realtime
simulation of Game Boy games such as Pokémon and Tetris.

1 INTRODUCTION

An often ignored discrepancy between the discrete-time RL framework and the real-world is the
fact that the world continues to evolve even while agents are computing their actions. As a result,
agents are limited in the types of problems that they can solve because the speed at which they can
compute actions dictates a particular stochastic or deterministic time discretization rate. Agents
that take infrequent actions require some lower-level program to manage behavior between actions,
often through simple policies like remaining still or repeating the last action. Ideally, intelligent
agents would exert more control over their environment, but this conflicts with the trend of using
larger models, which have high action inference and learning times. Consequently, as typically
deployed with sequential interaction, large models, which are often found to be essential for complex
tasks, increasingly rely on low-level automation, reducing their control over realtime environments.
This paper examines this discrepancy and explores alternative asynchronous interaction paradigms,
enabling large models to act quickly and maintain greater control in high-frequency environments.

Figure 1a shows the standard sequential interaction paradigm of RL. In this setup, the agent receives
a state from the environment, learns from the state transition, and then infers an action. Each process
must be completed before the agent can process a new state, limiting the action frequency and
increasing reliance on low-level automation as the model size grows. In contrast, Figure 1b illustrates
the asynchronous multi-process interaction paradigm we propose. Our key insight is that even models
with high inference times can act at every step using sufficiently many staggered inference processes.
Similarly, sufficiently many asynchronous learning processes can maintain rapid updates without
blocking progress, despite high learning times. This work formalizes and empirically tests the benefits
and limitations of this approach, making the following contributions:

1. We formalize how the choice of a particular time discretization induces a new learning
problem and how that problem relates to the original problem in Definition 1.

2. We derive worst-case lower bounds on regret for solving the new problem rather than the
original in Theorem 1, leading us to conclude in Remark 1 that typical sequential interaction
(Figure 1a) scales poorly with model size.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Agent Learning

Parameters

Environment

Action

State, Reward

(a) Sequential Interaction and Learning

Learning

Learning

State, Reward

Action

Agent Environment

State
Parameters

!ℳ

!"

!"

!ℒ

!ℒ

!ℒ
Learning

(b) Asynchronous Multi-process Interaction and Learning

Figure 1: Frameworks for Environment Interaction in RL. a) The typical sequential interaction
paradigm where both learning and action inference block the environment from moving forward.
b) The more realistic setting considered in this work where the environment, the agent’s inference
process, and agent’s learning process all proceed at their own rate and interact asynchronously.
Multiple self-loops are depicted to denote multiple asynchronous processes. τM denotes the frequency
of the environment, τθ denotes the frequency of each inference process, and τL denotes the frequency
of each learning process. Sequential interaction and learning has a frequency of τM + τθ + τL.

3. We propose novel methods for staggering asynchronous inference in Algorithms 1 and 2,
addressing the poor scaling properties of sequential interaction (Remark 2).

4. We conduct comprehensive experiments to verify our theory, demonstrating the use of
models that are orders of magnitude larger for realtime games like Pokémon and Tetris.

2 REGRET DECOMPOSITION IN REALTIME REINFORCEMENT LEARNING

Background - Sequential Interaction: Most RL research focuses on agents interacting sequentially
with a Markov Decision Process (MDP) [49; 65]Mseq = ⟨S,A, p, r⟩, where S is a set of states, A
is a set of actions, r(s, a) is a reward function with outputs bounded by rmax, and p(s′|s, a) is a state
transition probability function. Agents take actions based on a policy πθ(a|s) that maps states to
action probabilities parameterized by θ. An unrealistic implicit assumption of this setting is that the
time between decisions is fixed and only depends on the MDP. It is also unrealistically assumed that
the environment can be paused while the policy generates an action a from state s.

Asynchronous Interaction Environments: The standard MDP formalism lacks a crucial element
for realtime settings where the environment cannot be "paused," and the agent interacts with it
asynchronously, as described by Travnik et al. [71]. In this case, it is necessary to define the
environment’s behavior when the agent has not selected an action. We believe the most general
solution is to use a preset default behavior if there is no available action at by the agent π at time-
step t. This behavior follows a ∼ β(s), where a ∈ Aβ is possibly from a different action space
than A, requiring p and r to be defined over A ∪ Aβ . Now we can define an asynchronous MDP
Masync = ⟨S,A, p, r, β⟩ as an extension of a sequential MDPMseq with the addition of the default
behavior policy β. Note that β does not need to be non-Markovian, because the state space should
be defined to include any intermediate computations needed to generate the actions of β. Defining
the default behavior as a policy is no more than a useful interpretation of what happens and is
equivalent to saying the environment follows a Markov chain pβ(s′|s) when no action is available
where pβ(s′|s) :=

∑
a∈Aβ

p(s′|s, a)β(a|s) with expected reward rβ(s) =
∑

a∈Aβ
β(a|s)r(s, a).

Time Discretization Rates: The real environment evolves in continuous time, so we must define
time discretization rates to describe each component of the agent-environment interface in discrete
steps.1 We treat the environment step time as a random variable TM with sampled values τM ∼ TM
and expected value τ̄M := E[TM]. Similarly, the inference time of the policy for a single action2 is
another random variable Tθ with sampled values τθ ∼ Tθ and expected value τ̄θ := E[Tθ].3 We can
now introduce yet another random variable TI with sampled values τI ∼ TI and expected value
τ̄I := E[TI] that is of particular importance to our work, representing the time elapsed between

1Recent work by Treven et al. [72] has shown the potential regret benefits of adaptive data-driven measurement
selection, but current state of the art RL algorithms are not applicable to this setting.

2See Appendix B.5 for a comparison with action chunking methods that produce multiple actions at a time.
3While policies in general could have adaptive computation times based on the state, this is relatively

uncommon in the literature and will be left to future work for simplicity of the discourse.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

actions taken by the agent πθ (rather than β) inMasync. This has been called a variety of names in
the literature including the interaction time, the action cycle time, and the inverse of the interaction
frequency. What is very important to note for our purposes is that TI need not be equal to TM nor
Tθ, with the precise relation between these variables depending on the particular method of agent
deployment. Establishing these three random variables now allows us to define the decision problem
induced by these choices related to the agent-environment boundary (see Figure 2 for an illustration).

Definition 1 (Induced Delayed Semi-MDP) Any choice of random variables TM, TI , and
Tθ applied to an asynchronous MDP Masync induces a delayed semi-MDP M̃delay :=
⟨S,A, p, r, β,TM,TI ,Tθ⟩ where the semi-MDP decision making steps t̃ associated with the
actual decisions of the agent π happen after ⌈τI/τM⌉ steps t in the ground asynchronous MDP
Masync. The semi-MDP is delayed with respect toMasync because semi-MDP actions ãt̃ ∈ A
generated by π are equivalent to actions that are delayed by ⌈τθ/τM⌉ in Masync such that
πθ(ãt̃|st̃) = πθ(at+⌈τθ/τM⌉|st) where st̃ = st. If ⌈τθ/τM⌉ > 1 the transition dynamics are pβ

and reward dynamics are rβ for ⌈τθ/τM⌉ − 1 steps inMasync until at+⌈τθ/τM⌉ is applied.

MDP

Time

State

Delayed
Semi-MDP

! !
!

!

!
!

!
!

!
!

!
"

"

"
"

Figure 2: Induced Delayed Semi-MDP. We il-
lustrate the semi-MDP described in Definition 1
following the style of Figure 1 from Sutton et al.
[66]. Masync is depicted in purple and M̃delay is
depicted in blue. Actions are delayed by the infer-
ence time of the policy π and the default policy β
is followed between selections.

In general, the optimal policy and optimal re-
ward rate will not be the same forMasync and
M̃delay, with M̃delay incurring additional sub-
optimality because of the coarse nature of the
decision problem. That said, we have direct
control over TI and Tθ, so it is of interest to
understand how our design decisions relate to
the sub-optimality experienced. Chiefly, we are
interested in understanding under what scenar-
ios the optimal reward rate ofMasync can still
be achieved even when τ̄θ >> τ̄M. To do this,
we focus on worst case lower bounds on regret
i.e. the unavoidable regret incurred because of
the interaction defined by M̃delay in the worst
case scenario where β is always a suboptimal
choice. The realtime regret ∆realtime(τ) is the
accumulated suboptimality in τ seconds relative
to following the optimal policy at every discrete
steps t occurring after τM seconds inMasync.

Theorem 1 (Realtime Regret Decomposition) The accumulated realtime regret ∆realtime(τ)

over time τ of a delayed semi-MDP M̃delay relative to the oracle policy in the underlying
asynchronous MDPMasync can be decomposed into three independent terms.

∆realtime(τ) = ∆learn(τ) + ∆inaction(τ) + ∆delay(τ) (1)

∆learn(τ) is the regret experienced even in sequential environments as a result of learning and
exploration. The lower bound in the worst case is:4

∆learn(τ) ∈ Ω(
√
τ/τ̄I) (2)

∆inaction(τ) expresses the regret as a result of following β rather than optimal actions inMasync.
The lower bound and upper bound in the worst case is:

∆inaction(τ) ∈ Θ((τ/τ̄I)× (τ̄I − τ̄M)/τ̄M) (3)

∆delay(τ) expresses the regret as a result of the delay of actions by π in the underlying asyn-
chronousMasync. The lower bound in the worst case is:

∆delay(τ) ∈ Ω((τ/τ̄I)× E[1− (pminimax)
⌈τθ/τM⌉]) (4)

where pminimax := mins∈S,a∈A maxs′∈S p(s′|s, a) is a measure of environment stochastic-
ity5and τθ/τM is the number of steps elapsed during action inference.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

See Appendix B for a formal proof of Theorem 1 and our other findings. We believe this work is the
first to formally state the regret decomposition in Equation 1. Note though that previous studies on
real-world RL have highlighted the challenges of learning from limited samples, realtime inference,
and managing system delays in scaling methods to realtime settings [14]. Equation 2 extends known
lower bounds on learning time [24], using the notation from Definition 1 to explicitly connect with
continuous time. Notably, this bound depends on τ̄I (not τ̄θ) and assumes learning can keep pace
with the environment to learn from every interaction. Equation 3 provides a novel regret bound,
formalizing the known suboptimality of interacting with realtime environments at a slower pace
[71; 21; 51; 77; 76; 16]. This result highlights the limitations of the sequential interaction paradigm.

Remark 1 (Inaction of Sequential Interaction) When π and Masync interact sequentially,
τI = τθ such that in the worst case ∆inaction(τ) ∈ Ω(τ/τ̄θ × (τ̄θ − τ̄M)/τ̄M). This implies that
even as τ →∞, in the worst case ∆realtime(τ)/τ ∈ Ω(∆inaction(τ)/τ) ∈ Ω((τ̄θ − τ̄M)/τ̄Mτ̄θ).

This means a realtime framework with sequential interaction cannot ensure that regret will eventually
dissipate. Thus, we explore asynchronous alternatives in the next section. Finally, Equation 4
highlights the key limitation in minimizing regret using asynchronous compute. Previous work
established that suboptimality from delay in MDPs relates to the stochasticity in the underlying
undelayed MDP [13; 45], focusing on communication delays inherent to the environment. Our focus,
however, is on delays caused by the agent’s computations, which we can control. Thus, the emphasis
on regret associated with the decision that leads to a particular value of τθ is novel. Since this term
is the only part of regret that depends on τθ, it helps identify which environments are manageable
when τθ >> τM. In deterministic environments, there is no regret due to τθ as pminimax = 1, but
in stochastic environments, the degree and temporal horizon of stochasticity determine what values
of τθ are tolerable. For simplicity, we present a looser bound here; a tighter bound is available in
Appendix B. In summary, stochasticity with respect to actual rewards is what really matters.

3 ASYNCHRONOUS INTERACTION & LEARNING METHODS

Figure 3 highlights key differences between the standard sequential RL framework and the asyn-
chronous multi-process framework we propose. In the sequential framework, interaction and learning
delay each other. In contrast, in the asynchronous framework that we propose, actions and learning
can occur at every step with enough processes. However, actions are delayed and reflect past states,
which may limit performance in some environments. Note that staggering processes to maintain
regular intervals is essential. For example, if all inference processes took a deterministic amount of
time with no offset between them, all additional actions in the environment would be overwritten with
no benefit from increasing compute. Meanwhile, with staggering we can experience linear speedups.

3.1 BACKGROUND: STAGGERED ASYNCHRONOUS LEARNING

Parallel vs. Asynchronous Updates: Learning from a transition, i.e., computing gradients, usually
takes longer than inference. Thus, performing learning in separate processes is crucial to avoid
blocking inference [76], especially for models with a large number of parameters. For this use case,
one might be tempted to consider parallel learning processes to increase the effective batch size
without increasing wall-clock time per batch as this avoids wasted computation. Indeed, parallel
updates are better for training large language models when final performance and compute efficiency
are most important. In contrast, asynchronous learning can produce updates even faster than learning
from a single transition, making the model more responsive to exploration. However, lock-free
asynchronous approaches risk overwriting updates, potentially wasting computation that does not
contribute to final performance. Our focus is on maximizing responsiveness in large models, not
necessarily compute efficiency. So even overwritten updates are not wasted with respect to regret.

Round-Robin Asynchronous Learning: Langford et al. [37] laid the foundation for addressing
asynchronous update staggering for large neural network models using variants of stochastic gradient
descent (SGD). They showed that applying updates in a delayed, orderly fashion avoids wasted

4Known algorithms achieve regret upper bounds within a logarithmic factor of this lower bound [47].
5When the environment is deterministic, pminimax = 1 and ∆delay(τ) = 0. When the environment is uniformly

random, pminimax = 1/|S| and as |S| → ∞, ∆delay(τ) ∈ Ω(τ).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Staggered Asynchronous Learning

Staggered Asynchronous Inference

Sequential Inference and Learning

Environment

Figure 3: Realtime Interaction Frequency. We illustrate the comparative interaction frequency of
methods that sequence learning and inference and those that maintain multiple staggered asynchronous
processes. Even when inference times are greater than the environment step time, it is possible to use
asynchronous compute to eliminate inaction and learn from every step.

compute on overwritten gradients. Their approach demonstrated convergence for delayed SGD, with
linear scaling limited only by the time taken to update parameters relative to computing gradients.
This method allows significant linear scaling with minimal compute waste for large models and the
delay in the updates will not be a significant source of regret in Theorem 1. While not our novel
contribution, this strategy is underexplored. We investigate its scaling properties in our experiments.

3.2 OUR NOVELTY: STAGGERED ASYNCHRONOUS INFERENCE

In Remark 1 we highlighted that τ̄I is fundamentally limited by τ̄θ for sequential interaction, which
results in persistent regret even as time goes on when τ̄θ > τ̄M. We will now highlight two novel
algorithms for staggering inference processes that can lead to a reduction in τ̄I when the number of
inference processes NI are increased. Algorithm 1 is capable of scaling the expected interaction time
with the number of processes by τ̄I ≤ min(τmax

θ /NI , τ̄M) where τmax
θ is the maximum encountered

value of τθ. Meanwhile, Algorithm 2 is capable of scaling the expected interaction time with the
number of processes by τ̄I = min(τ̄θ/NI , τ̄M). Both algorithms can eliminate inaction.6

Remark 2 (Inaction of Asynchronous Interaction) For any τ̄θ when π andMasync interact
asynchronously with staggering algorithms 1 or 2, there is a value of the number of inference
processes N∗

I such that for all NI ≥ N∗
I , ∆inaction(τ)/τ → 0 as time goes to τ →∞.

Algorithm 1 always ensures each processes waits for the current estimate of τmax
θ amount of seconds

before an action is taken by that process to preserve the spacing between actions. Adjustments are
made to the waiting time in each process considering dist(x,y), the distance process x is behind
process y in the cycle of processes, until the estimate converges to the true τmax

θ value. The benefit of
this algorithm is that the spacing between actions stays very consistent with no variance once the
maximum value estimate has stabilized. This makes M̃delay easier to learn from. The downside is
that the amount of necessary compute to eliminate inaction may be relatively high.

On the other hand, Algorithm 2 stops all waiting in all processes as time goes on, so that the expected
interaction time of each process is τ̄θ. An estimate of τ̄θ is maintained and when the estimate changes
after an action is taken, processes wait for an amount of time designed to adjust the average spacing
between processes to τ̄θ/NI . The law of large numbers ensures that the estimate converges to τ̄θ in
the limit as τ →∞ and that the waiting time diminishes to zero. Algorithm 2 has a strictly smaller
compute requirement than Algorithm 1, but experiences variance in TI driven by the variance in
Tθ, which makes M̃delay harder to learn from. The compute advantage becomes more significant for
distributions that have variance in Tθ such that τmax

θ − τ̄θ is large. In our experiments, we consider
Algorithm 1 because we found the variance in Tθ is small for the models we consider.

6Appendix B.6 describes how this can lead to achieving sublinear regret in deterministic environments.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Maximum Time Inference Staggering

Initialize: τ̂max
θ = 0 and delay[processnum] = ϵ(processnum− 1)/NI ∀ processnum ∈ [1, ..., NI]

Run: INFERENCE[processnum] ∀ processnum ∈ [1, ..., NI]
function INFERENCE(processnum)

while alive do
sleep(delay[processnum]) ▷ Sleep for any delays accumulated by other processes
delay[processnum]← 0
a, τθ ∼ πθ(st) ▷ Have the policy sample an action and inference time
if τθ ≥ τ̂max

θ then
δτ ← τθ − τ̂max

θ ▷ Other processes sleep for the difference with the maximum
for num ̸= processnum ∈ [1, ..., NI] do

delay[num]← delay[num] + dist(num,processnum) ×δτ/NI

τ̂max
θ ← τθ ▷ Set new global maximum

else
sleep(τ̂max

θ − τθ) ▷ Sleep for the remaining time
at+⌈τ̂max

θ /τM⌉ ← a ▷ Register action in environment

Hardware Optimization: In this paper, our focus is on the possibility of achieving speedups when
adequate hardware is available to facilitate it. As such, we focus on what can be achieved with an
ideal set of hardware rather than the most efficient way to utilize a given constrained set of hardware.
In our experiments, we run each process on its own dedicated CPU such that resource constraints like
memory capacity, and memory bandwidth do not present significant issues. However, if, for example,
we aimed to implement multiple simultaneous processes on a single GPU, we would have to consider
tradeoffs between memory capacity, memory bandwidth, and latency that will jointly serve to limit
the possible speedups. We leave analysis of these practical tradeoffs to future work.

4 RELATED WORK

Realtime interaction: Previous work such as Travnik et al. [71] has considered the asynchronous
nature of realtime environments. However, we are not aware of any prior paper that has formalized
the connection between asynchronous and sequential versions of the same environment as we have.
Travnik et al. [71] highlight the reaction time benefit of acting before you learn, and Ramstedt &
Pal [51] highlight the reaction time benefit of interacting based on a one-step lag. Meanwhile, the
interaction frequency of both of these approaches are limited by sequential interaction and thus the
drawback highlighted in Remark 1 also applies to them.

Designing the interaction rate: Farrahi & Mahmood [16] examined how the choice of τI affects
the learning performance of deep RL algorithms in robotics. They found that low τI complicates
credit assignment, while high τI complicates learning reactive policies. Karimi et al. [28] proposed
a policy that executes multi-step actions with a learned τI within the options framework, which
may aid in slow problems where credit assignment is challenging. However, this approach does not
address the action delay issue we focus on and may worsen it by committing to multiple actions
based on a delayed state. Our policy, defined in the semi-MDP framework (Definition 1), relies on
a low-level policy β, similar to the options framework [66]. The key difference is that β cannot be
modified, preventing intra-option learning and thus making it impossible to improve β even when it
is sub-optimal. Thus we would rather minimize the use of β i.e. minimize inaction.

Reinforcement learning with delays: Reinforcement learning in environments with delayed states,
observations, and actions is well-studied. Typically, delays are treated as communication delays
inherent to the environment [73; 6]. In contrast, we focus on delays resulting from our computations,
which are under our control and part of agent design. Our formulation of delay as part of regret is
novel due to this unique focus. Common methods address delay by augmenting the state space with
all actions taken since the delayed state or observation [5; 29; 44], but this is infeasible for us since
these actions are not available when computation begins. Instead, our approach aligns more with
methods addressing delay without state augmentation [60; 6; 12; 2; 27]. However, these methods are
limited by the environment’s stochasticity [13; 45], as highlighted by Equation 4 of Theorem 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Asynchronous learning: Most work on asynchronous RL involves multiple environment simulators
learned from asynchronously or in parallel [43; 15; 61]. We explore a more challenging real-world
setup with a single environment, limiting exploration opportunities. Unlike typical asynchronous
setups where each process interacts sequentially with the environment and then learn from that
interaction [43], our setting benefits from making interaction and learning asynchronous (Remark
2). Indeed, our paper introduces the concept of staggering asynchronous interaction, which is an
innovation with benefits unique to the non-pausing environment setting we explore. Similarly to ours,
some prior work has considered asynchronous learning to avoid blocking inference [76], focusing
on model-based learning [21; 22; 20; 77] and auxiliary value functions [67; 11]. The novelty of our
approach is in its use of multiple asynchronous staggered inference processes instead of a single
process, a critical contribution for deploying large models (see Remark 1 and Remark 2).

5 EMPIRICAL RESULTS

To show that our proposed method does indeed provide practical benefits for minimizing regret per
second with large neural networks in realtime environments, we perform a suite of experiments to
validate the theoretical claims made in the previous sections. Our experiments include:

• Question 1: an evaluation of the speed of progress through a realtime game strategy game
where constant learning is necessary to move forward when action inference times are large.

• Question 2: an evaluation of episodic reward in games where reaction time must be fast to
demonstrate that asynchronous interaction can maintain performance with models that are
multiple orders of magnitude larger than those using sequential interaction.

• Question 3: an evaluation of the scaling properties of Algorithms 1 and 2 to demonstrate that
the needed number of processes to eliminate inaction, N∗

I , scales linearly with increasing
inference times τ̄θ and parameter counts |θ|.

• Question 4: an evaluation of the scaling properties of round-robin asynchronous learning
[37] to demonstrate that the number of processes needed to learn from every transition also
scales linearly with increasing learning times and parameter counts |θ|.

Implementation Details: In all our experiments, we implemented the Deep Q-Network (DQN)
learning algorithm [42] within our asynchronous multi-process framework, using a discount factor
of γ = 0.99, a learning rate of 0.001 with the Adam optimizer, and a batch size of 16. A shared
experience replay buffer stores the 1 million most recent environment transitions. For preprocessing,
we down-sampled monochromatic Game Boy images to 84x84x1, similar to Atari preprocessing [42].
Following the scaling procedure previously established by [10] and [62], we used a 15-layer ResNet
model [15] while scaling the number of filters by a factor k to grow the network. The model sizes
correspond to: k = 1 (1M parameters), k = 7 (10M), k = 29 (100M), and k = 98 (1B). Models
were deployed on multi-process CPUs using Pytorch multiprocessing library on Intel Gold 6148
Skylake cores at 2.4GHz, with one core per process and multiple machines for models using > 40
processes. See Appendix A for further detail regarding our experimental setup and a discussion of
limitations. As large models are known to be difficult to optimize in an online RL context, we also
tried training common 1M models with an equivalent amount of added delay as the larger models to
perform a sanity check. Our initial experiments indicated performance was similar.

Realtime Environment Simulation: To run a comprehensive set of scaling experiments that would
not be feasible with real-world deployment, we need a simulation of a realistic realtime scenario.
Towards this end, we considered two games from the Game Boy that are made available for simulation
as RL environments through the Gymnasium Retro project [46]. We implemented a realtime version
of the Game Boy where it is run at 59.7275 frames per second such that τM = 1/59.7275 and with
"noop" actions executed as the default behavior β. This exactly mimics the way that humans would
interact with the Game Boy as a handheld console [74] and matches the setting in which humans
compete over speed runs for these games. We also leveraged three Atari environments [4] run at 60
frames per second with "noop" actions executed as β to mimic the way that humans interact with the
Atari console in the real-world. These are ideal settings for addressing our core empirical questions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) 100M: Pokémon Battles Won vs. Time τ (b) 100M: Wild Pokémon Caught vs. Time τ

Figure 4: Realtime Pokémon Performance. a) Battles won in Pokémon Blue over time for
|θ| = 100M . b) Wild Pokémon caught in Pokémon Blue over time for |θ| = 100M . The parallel
learning baseline considers an effective batch size that is 33 times larger with 33 times fewer updates.

5.1 FASTER PROGRESS THROUGH A REALTIME GAME WITH CONSTANT NOVELTY

Pokémon Blue: Pokémon Blue is a valuable environment for our study due to its long play through
time and constant novelty over many hours of play. Acting quickly is not a necessity to complete
this game as it lets the agent dictate the pace of play, but better players are still differentiated based
on their speed of completing the game. Indeed, the game has a large community of "speed runners"
aiming to complete milestones in record times, with even the fastest milestones taking multiple hours
[64]. It is an interesting domain for our study because acting quickly is only beneficial to the extent
that the agent displays competent behavior, so action throughput alone will not lead to better results
when the quality of play correspondingly suffers. Because Pokémon Blue is known as a challenging
exploration problem that perhaps even exceeds the scope of previous deep RL achievements [23], we
divided the game into two settings based on expert human play: 295 battle encounters (Figure 9a)
and 93 catching encounters (Figure 9b). Agents are deployed in these settings and must complete
each encounter (by winning a battle or catching a Pokémon) before progressing.

Question 1: Can asynchronous approaches achieve faster progress in a realtime strategy game where
constant learning is necessary to move forward even when action inference times are large?

Figure 5: Realtime Tetris Performance
vs. |θ|. The average episodic return over
2,000 episodes of learning. We compare
models with a single inference process to
those that perform staggered asynchronous
inference following Algorithm 1.

Figure 4: For Pokémon Blue we leverage NI = N∗
I and

enough learning threads to learn every 5 environment
steps. We did not find benefit from learning every step
given that the underlying game is not responsive to every
action taken at the frame level. For all models, the explo-
ration rate is annealed from 1.0 to 0.05 over the course
of the first 100,000 steps of learning. We compare to
the standard RL interaction paradigm where inference
and learning are performed sequentially [65] and when
the order is flipped for realtime settings [71]. Our re-
sults in Figures 4a and 4b showcase that asynchronous
inference and learning combine for superior scaling of
realtime performance as models grow. See Appendix A
for results for the 1M and 10M models. The improve-
ment over sequential interaction corresponds with our
expectations given Remarks 1 and 2.

5.2 MAINTAINING PERFORMANCE IN GAMES THAT PRIORITIZE REACTION TIME

Tetris: We also explore the game Tetris (Figure 9c) that presents a different kind of challenge for our
agents where even more of a premium is put on reaction time. In Tetris, the player will lose the game
if they wait indefinitely and do not act in time. While a slow policy can eventually win in Pokémon,
despite taking longer than necessary, a policy that does not act timely cannot progress in Tetris as
new pieces must be moved correctly before they fall on existing pieces.

Question 2: Can asynchronous interaction help for games that prioritize reaction time as |θ| grows?

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: To aid with exploration and jump-start learning, a single episode of human play is provided
to each agent to learn from. The agent continues to learn from a total of 2,000 episodes with an
exploration rate of 0.05. We see that sequential interaction scales quite poorly for games that prioritize
a high frequency of actions and cannot surpass random performance for |θ| ≥1M as we would expect
based on Remark 1. Meanwhile, staggered asynchronous inference following Algorithm 1 can
achieve a much higher reward rate for |θ| >1B as we would anticipate based on Remark 2.

Figure 6: We also provide results for three Atari games with agents trained for 2,000 episodes in
the same setting (see Figure 10), demonstrating superior performance as the model size scales up.
Here we also compare to a deeper ResNet architecture with 30 convolutional layers rather than 15.
The deeper architecture brings up inference times at the same number of total parameters and thus
leads to an even bigger gap between staggered asynchronous and sequential approaches. We find that
the ability for performance to be maintained with asynchronous methods as the model size grows
depends on the game. For example, Boxing includes a very stochastic opponent policy, making it
very hard to maintain human-level performance in the presence of delay, while the Krull environment
is predictable enough for agents to surpass human performance even when delay is significant.

5.3 COMPUTATIONAL SCALING OF ASYNCHRONOUS INTERACTION AND LEARNING

Question 3: How does N∗
I from Remark 2 scale with τ̄θ and the number of parameters |θ|?

Figure 7: We measure N∗
I for Algorithms 1 and 2 when the Game Boy is run at the standard

frequency using an ϵ-greedy DQN policy at ϵ = 0 and ϵ = 0.5. Figure 7a shows that N∗
I scales

roughly linearly with τ̄θ in all cases, as expected for effective staggering (Remark 2). Figure 7b also
demonstrates that N∗

I scales roughly linearly with |θ|. When ϵ = 0, the variance in Tθ is very small
and Algorithms 1 and 2 thus perform the same. When ϵ = 0.5, the variance in Tθ is high because
sampling random actions is very fast, showcasing predictably superior performance for Algorithm 2.
The performance of Algorithm 1 is unaffected by stochasticity in Tθ, but the values of τ̄θ are.

Notation for Asynchronous Learning: We also would like to consider the compute scaling properties
of round-robin asynchronous learning [37]. We now assume that the time to learn from an environment
transition can be treated as a random variable TL with sampled values τL ∼ TL and expected value
τ̄L := E[TL]. N∗

L will denote the number of learning processes such that all NL ≥ N∗
L include at

least one transition learned from for each environment transition.

Question 4: How does N∗
L scale with τ̄L and the number of parameters |θ|?

Figure 8: In Figure 8a we demonstrate that N∗
L grows approximately linearly with τ̄L. This

scaling is in line with what we would expect for the round-robin algorithm with large networks [37].
Additionally, our results in Figure 8b appear to also showcase linear scaling of N∗

L ≥ 1 with |θ|. We
plot three different batch sizes per learning process in each figure to highlight the tradeoff between
efficiency in achieving a particular amortized learning throughput and the number of changes made to

(a) Boxing (b) Krull (c) Name This Game

Figure 6: Realtime Atari Performance vs. |θ|. The average episodic return over 2,000 episodes
of learning. We compare models with a single inference process to those that perform staggered
asynchronous inference following Algorithm 1 in a) Boxing, b) Krull, and c) Name This Game (see
Figure 10). Human performance was reported by [42]. When shading is hard to see, variance is small.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) N∗
I vs. τ̄θ for Algorithms 1 and 2 (b) N∗

I vs. |θ| for Algorithms 1 and 2
Figure 7: a) We plot the scaling behavior of the inference compute requirement N∗

I as the expected
action inference time τ̄θ increases for ResNet polices across CPUs in the Game Boy environment. b)
We plot the scaling behavior of N∗

I instead as a function of the model size |θ|.

(a) N∗
L vs. τ̄L for Round-Robin Learning (b) N∗

L vs. |θ| for Round-Robin Learning

Figure 8: a) We plot the scaling behavior of the learning compute requirement N∗
L ≥ 1 as the

expected transition learning time τ̄L increases for ResNet polices across CPUs in the Game Boy
environment. b) We plot the scaling behavior of N∗

L instead as a function of the model size |θ|.
the parameters in the inference process. Higher batch sizes result in longer and increasingly parallel
updates with better amortized learning throughput using the same number of processes and fewer
changes to the parameters used for inference (as highlighted by τ̄L). Meanwhile, smaller batch size
result in shorter and increasingly sequential updates that lead to worse amortized learning throughput
using the same number of processes and more changes to the parameters used for inference.

6 DISCUSSION

Implications for Software: One difficulty in deploying RL environments within realtime settings is
limitations in current APIs such as Open AI gym [7]. In realtime settings, the environment needs to
run in its own separate process so that it is not blocked by the agent (just like the real world). We hope
that the contribution of our code and environments can thus help jump-start the community’s ability
to conduct research on this important setting. A new paradigm of agent-environment interaction is
needed where 1 process is used for the environment with NI processes dedicated for inference and
NL processes dedicated for learning, depending on specific resource constraints.

Implications for Hardware: Our paper demonstrates the benefits of asynchronous computation
within realtime settings and thus advances in hardware that enable this will serve to amplify the impact
of our findings. Memory bandwidth is a primary bottleneck in allowing for asynchronous computation
with current hardware. So any improvements i.e. in GPU memory bandwidth, in bandwidth across
nodes, or the number of GPUs or CPUs per node will make the scalability of asynchronous approaches
increasingly viable. Taking a longer-term perspective, hardware architectures that move beyond the
von Neumann seperation of memory and compute, such as so called "neuromorphic" computing, will
also serve to enable larger scale asynchronous computation like we see in the brain.

Bigger Models: In this paper, we have taken a deeper look at RL in realtime settings and the viability
of increasing the neural network model size in these environments. Our theoretical analysis of regret
bounds has demonstrated the downfall of models that implement a single action inference process as
model sizes grow (Remark 1) and we have proposed staggering algorithms that address this limitation
for environments that are sufficiently deterministic (Remark 2). Our empirical results playing realtime
games corroborate these findings and demonstrate the ability to perform well with models that are
orders of magnitude larger. While conventional wisdom often leads researchers to think that smaller
models are necessary for realtime settings, our work indicates that this is not necessarily the case and
takes a step towards making realtime foundation model deployment realistic.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

In this paper, we fully disclose all the necessary information to reproduce the main experimental
results, as detailed in both Section 5 and Appendix A. We will release all the necessary code along
with detailed instructions to reproduce our results in a comment directed to reviewers once discussion
forums are open following option 3 for releasing anonymous code outlined on the ICLR official
website. We take this approach because we are not authorized to distribute the ROM files for the
Game Boy games publicly. Experimental settings, including hyperparameters needed to reproduce
our results are clearly outlined in the paper and further elaborated on in the appendix. Moreover, we
provide appropriate statistical significance measures in our plots when applicable, such as shading in
Figures 4 and 5 to communicate run-to-run variance. We also include comprehensive information on
the compute resources, such as the type of hardware, memory, and time required for execution, as
outlined in the "Implementation Details" paragraph of Section 5. This ensures that our results are
reproducible, and necessary computational resources are well-specified for accurate replication.

REFERENCES

[1] Marwa Abdulhai, Dong-Ki Kim, Matthew Riemer, Miao Liu, Gerald Tesauro, and Jonathan P
How. Context-specific representation abstraction for deep option learning. arXiv preprint
arXiv:2109.09876, 2021.

[2] Mridul Agarwal and Vaneet Aggarwal. Blind decision making: Reinforcement learning with
delayed observations. Pattern Recognition Letters, 150:176–182, 2021.

[3] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[4] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[5] Dimitri P Bertsekas. Dynamic programming and optimal control. Journal of the Operational
Research Society, 47(6):833–833, 1996.

[6] Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas.
Reinforcement learning with random delays. In International conference on learning represen-
tations, 2020.

[7] G Brockman. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[8] Ignacio Cases, Clemens Rosenbaum, Matthew Riemer, Atticus Geiger, Tim Klinger, Alex
Tamkin, Olivia Li, Sandhini Agarwal, Joshua D Greene, Dan Jurafsky, et al. Recursive routing
networks: Learning to compose modules for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 3631–3648, 2019.

[9] Michael B Chang, Abhishek Gupta, Sergey Levine, and Thomas L Griffiths. Automatically
composing representation transformations as a means for generalization. 2019.

[10] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.
2048–2056. PMLR, 2020.

[11] Gheorghe Comanici, Amelia Glaese, Anita Gergely, Daniel Toyama, Zafarali Ahmed, Tyler
Jackson, Philippe Hamel, and Doina Precup. Learning how to interact with a complex interface
using hierarchical reinforcement learning. arXiv preprint arXiv:2204.10374, 2022.

[12] Esther Derman, Gal Dalal, and Shie Mannor. Acting in delayed environments with non-
stationary markov policies. In International Conference on Learning Representations, 2021.

[13] Esther Derman, Gal Dalal, and Shie Mannor. Acting in delayed environments with non-
stationary markov policies. arXiv preprint arXiv:2101.11992, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[14] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforce-
ment learning. arXiv preprint arXiv:1904.12901, 2019.

[15] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In International conference on machine
learning, pp. 1407–1416. PMLR, 2018.

[16] Homayoon Farrahi and A Rupam Mahmood. Reducing the cost of cycle-time tuning for real-
world policy optimization. In 2023 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8. IEEE, 2023.

[17] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and
Igor Mordatch. Learning with opponent-learning awareness. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, pp. 122–130. International
Foundation for Autonomous Agents and Multiagent Systems, 2018.

[18] Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktäschel, Eric Xing, and
Shimon Whiteson. Dice: The infinitely differentiable monte carlo estimator. In International
Conference on Machine Learning, pp. 1529–1538. PMLR, 2018.

[19] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan
Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, September
2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

[20] Todd Hester and Peter Stone. Texplore: real-time sample-efficient reinforcement learning for
robots. Machine learning, 90:385–429, 2013.

[21] Todd Hester, Michael Quinlan, and Peter Stone. A real-time model-based reinforcement learning
architecture for robot control. arXiv preprint arXiv:1105.1749, 2011.

[22] Todd Hester, Michael Quinlan, and Peter Stone. Rtmba: A real-time model-based reinforcement
learning architecture for robot control. In 2012 IEEE International Conference on Robotics and
Automation, pp. 85–90. IEEE, 2012.

[23] Shayaan Jagtap. Why can a machine beat mario but not pokemon?, 2018. URL https://
towardsdatascience.com/why-can-a-machine-beat-mario-but-not-pokemon-ff61313187e1.

[24] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(4), 2010.

[25] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably
efficient? Advances in neural information processing systems, 31, 2018.

[26] Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

[27] Armin Karamzade, Kyungmin Kim, Montek Kalsi, and Roy Fox. Reinforcement learning from
delayed observations via world models. arXiv preprint arXiv:2403.12309, 2024.

[28] Amirmohammad Karimi, Jun Jin, Jun Luo, A Rupam Mahmood, Martin Jagersand, and Samuele
Tosatto. Dynamic decision frequency with continuous options. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7545–7552. IEEE, 2023.

[29] Konstantinos V Katsikopoulos and Sascha E Engelbrecht. Markov decision processes with
delays and asynchronous cost collection. IEEE transactions on automatic control, 48(4):
568–574, 2003.

[30] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual rein-
forcement learning: A review and perspectives. arXiv preprint arXiv:2012.13490, 2020.

12

https://doi.org/10.1038/s41586-020-2649-2
https://towardsdatascience.com/why-can-a-machine-beat-mario-but-not-pokemon-ff61313187e1
https://towardsdatascience.com/why-can-a-machine-beat-mario-but-not-pokemon-ff61313187e1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[31] Dong Ki Kim, Miao Liu, Matthew D Riemer, Chuangchuang Sun, Marwa Abdulhai, Golnaz
Habibi, Sebastian Lopez-Cot, Gerald Tesauro, and Jonathan How. A policy gradient algorithm
for learning to learn in multiagent reinforcement learning. In International Conference on
Machine Learning, pp. 5541–5550. PMLR, 2021.

[32] Dong-Ki Kim, Matthew Riemer, Miao Liu, Jakob Foerster, Michael Everett, Chuangchuang
Sun, Gerald Tesauro, and Jonathan P How. Influencing long-term behavior in multiagent
reinforcement learning. Advances in Neural Information Processing Systems, 35:18808–18821,
2022.

[33] Dong-Ki Kim, Matthew Riemer, Miao Liu, Jakob N Foerster, Gerald Tesauro, and Jonathan P
How. Game-theoretical perspectives on active equilibria: A preferred solution concept over
nash equilibria. arXiv preprint arXiv:2210.16175, 2022.

[34] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[35] James Kostas, Chris Nota, and Philip Thomas. Asynchronous coagent networks. In Hal Daumé
III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 5426–5435. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.press/v119/kostas20a.html.

[36] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

[37] John Langford, Alexander J Smola, and Martin Zinkevich. Slow learners are fast. In Proceedings
of the 22nd International Conference on Neural Information Processing Systems, pp. 2331–2339,
2009.

[38] Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction
for mdps.

[39] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[40] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in neural
information processing systems, 30, 2017.

[41] Amin Memarian, Maximilian Puelma Touzel, Matthew Riemer, Rupali Bhati, and Irina Rish.
Summarizing societies: Agent abstraction in multi-agent reinforcement learning. In From Cells
to Societies: Collective Learning across Scales, 2022.

[42] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[43] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning. In International conference on machine learning, pp. 1928–1937. PMLR,
2016.

[44] Somjit Nath, Mayank Baranwal, and Harshad Khadilkar. Revisiting state augmentation methods
for reinforcement learning with stochastic delays. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 1346–1355, 2021.

[45] Somjit Nath, Mayank Baranwal, and Harshad Khadilkar. Revisiting state augmentation methods
for reinforcement learning with stochastic delays. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 1346–1355, 2021.

13

https://proceedings.mlr.press/v119/kostas20a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

[46] Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast:
A new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.

[47] Ronald Ortner. Regret bounds for reinforcement learning via markov chain concentration.
Journal of Artificial Intelligence Research, 67:115–128, 2020.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Sys-
tems 32, pp. 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[49] ML Puterman. Markov decision processes. 1994. Jhon Wiley & Sons, New Jersey, 1994.

[50] Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew
Botvinick. Machine theory of mind. In International conference on machine learning, pp.
4218–4227. PMLR, 2018.

[51] Simon Ramstedt and Chris Pal. Real-time reinforcement learning. Advances in neural informa-
tion processing systems, 32, 2019.

[52] Matthew Riemer, Elham Khabiri, and Richard Goodwin. Representation stability as a regularizer
for improved text analytics transfer learning. arXiv preprint arXiv:1704.03617, 2017.

[53] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Ger-
ald Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing
interference. arXiv preprint arXiv:1810.11910, 2018.

[54] Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. NIPS, 2018.

[55] Matthew Riemer, Tim Klinger, Djallel Bouneffouf, and Michele Franceschini. Scalable recol-
lections for continual lifelong learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 1352–1359, 2019.

[56] Matthew Riemer, Ignacio Cases, Clemens Rosenbaum, Miao Liu, and Gerald Tesauro. On the
role of weight sharing during deep option learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 5519–5526, 2020.

[57] Matthew Riemer, Khimya Khetarpal, Janarthanan Rajendran, and Sarath Chandar. Balancing
context length and mixing times for reinforcement learning at scale. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

[58] Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection
of non-linear functions for multi-task learning. In International Conference on Learning
Representations. International Conference on Learning Representations, ICLR, 2018.

[59] Clemens Rosenbaum, Ignacio Cases, Matthew Riemer, and Tim Klinger. Routing networks and
the challenges of modular and compositional computation. arXiv preprint arXiv:1904.12774,
2019.

[60] Erik Schuitema, Lucian Buşoniu, Robert Babuška, and Pieter Jonker. Control delay in rein-
forcement learning for real-time dynamic systems: A memoryless approach. In 2010 IEEE/RSJ
international conference on intelligent robots and systems, pp. 3226–3231. IEEE, 2010.

[61] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[62] Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh
Agarwal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level
efficiency. In International Conference on Machine Learning, pp. 30365–30380. PMLR, 2023.

14

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

[63] speedrun.com. Pokémon red/blue/rng manipulation faq, 2020. URL http://http:
//wiki.pokemonspeedruns.com/index.php?title=Pok%C3%A9mon_Red/Blue/RNG_
Manipulation_FAQ.

[64] speedrun.com. Pokemon red/blue leaderboard, 2024. URL https://www.speedrun.com/
pkmnredblue.

[65] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

[66] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

[67] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam
White, and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from
unsupervised sensorimotor interaction. In The 10th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pp. 761–768, 2011.

[68] Philip S. Thomas. Policy gradient coagent networks. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems,
volume 24. Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/
paper/2011/file/1e6e0a04d20f50967c64dac2d639a577-Paper.pdf.

[69] Maximilian Puelma Touzel, Amin Memarian, Matthew Riemer, Andrei Mircea, Andrew Robert
Williams, Elin Ahlstrand, Lucas Lehnert, Rupali Bhati, Guillaume Dumas, and Irina Rish.
Scalable approaches for a theory of many minds. In Agentic Markets Workshop at ICML 2024,
2024.

[70] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A
standard interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032,
2024.

[71] Jaden B Travnik, Kory W Mathewson, Richard S Sutton, and Patrick M Pilarski. Reactive
reinforcement learning in asynchronous environments. Frontiers in Robotics and AI, 5:79, 2018.

[72] Lenart Treven, Jonas Hübotter, Florian Dorfler, and Andreas Krause. Efficient exploration
in continuous-time model-based reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2023.

[73] Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L Littman. Learning and planning in
environments with delayed feedback. Autonomous Agents and Multi-Agent Systems, 18:83–105,
2009.

[74] Wikipedia. Game Boy — Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.
php?title=Game%20Boy&oldid=1224667625, 2024. [Online; accessed 20-May-2024].

[75] Annie Xie, Dylan Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. Learning latent
representations to influence multi-agent interaction. In Conference on robot learning, pp.
575–588. PMLR, 2021.

[76] Yufeng Yuan and A Rupam Mahmood. Asynchronous reinforcement learning for real-time
control of physical robots. In 2022 International Conference on Robotics and Automation
(ICRA), pp. 5546–5552. IEEE, 2022.

[77] Yunzhi Zhang, Ignasi Clavera, Boren Tsai, and Pieter Abbeel. Asynchronous methods for
model-based reinforcement learning. arXiv preprint arXiv:1910.12453, 2019.

[78] Modjtaba Shokrian Zini, Mohammad Pedramfar, Matthew Riemer, Ahmadreza Moradipari, and
Miao Liu. Coagent networks revisited. arXiv preprint arXiv:2001.10474, 2020.

15

http://http://wiki.pokemonspeedruns.com/index.php?title=Pok%C3%A9mon_Red/Blue/RNG_Manipulation_FAQ
http://http://wiki.pokemonspeedruns.com/index.php?title=Pok%C3%A9mon_Red/Blue/RNG_Manipulation_FAQ
http://http://wiki.pokemonspeedruns.com/index.php?title=Pok%C3%A9mon_Red/Blue/RNG_Manipulation_FAQ
https://www.speedrun.com/pkmnredblue
https://www.speedrun.com/pkmnredblue
https://proceedings.neurips.cc/paper_files/paper/2011/file/1e6e0a04d20f50967c64dac2d639a577-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/1e6e0a04d20f50967c64dac2d639a577-Paper.pdf
http://en.wikipedia.org/w/index.php?title=Game%20Boy&oldid=1224667625
http://en.wikipedia.org/w/index.php?title=Game%20Boy&oldid=1224667625

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Pokémon Battling (b) Pokémon Catching (c) Tetris

Figure 9: a) A frame from the final battle of Pokémon Blue when the agent is deciding on the next
move. b) A frame from the final catching encounter of Pokémon Blue when the agent has just
successfully caught Mewtwo. C) A frame from Tetris right before the agent completes its first line.

A FURTHER DETAILS SUPPORTING THE MAIN TEXT

Software Libraries: Our experiments leverage Numpy [19], which is publicly available following a
BSD license. Neural network models were developed using Pytorch [48], which is publicly available
following a modified BSD license. The Gym Retro project [46] used to simulate the Game Boy in a
RL environment is made available following a MIT license. We are not at liberty to distribute the
proprietary ROMs associated with Pokémon or Tetris and each person that deploys our provided code
must separately obtain their own copy.

Environment Details: We depict the environments considered in our paper in Figure 9. We consider
six discrete actions for both Pokémon Blue and Tetris including the A button, the B button, the left
directional button, the up directional button, the right directional button, and the down directional
button. In the Battling Environment when the opponent Pokémon is knocked out by the agent’s
Pokémon a reward of 1 is received and a reward of −1 is received when a users Pokémon is knocked
out. Battles include 1-6 Pokémon for the agent and 1-6 Pokémon for the opponent AI. In the Catching
Environment a reward of 1 is received by the agent when a wild Pokémon is captured and −1 when
the encounter is terminated unsuccessfully. In Tetris we provide changes in the in-game score as
a reward for the agent to learn from. We leverage Atari environments as provided by Gymnasium
[70], specifically using the "NoFrameSkip-v4" variants with action 0 taken for "noops" to simulate
real-world play on a console.

Training Procedure for Tetris: The one episode of human play provided for Tetris included 16,000
steps where non-noop actions were taken. We used our experiments from Figure 7 to calculate
the amount of action delay per step for each model and populated the replay buffer with 16,000
transitions corresponding to these actions with observations delayed by the expected amount for each
model. We the trained the model for 16,000 steps before tuning the model in a simulation of the
environment with the corresponding amount of delay 2,000 for episodes. The episodic reward from
Figure 5 corresponds to the average episodic reward achieved during that training period.

Training Procedure for Atari: We used our experiments from Figure 7 to calculate the amount of
action delay per step for each model. The episodic reward from Figure 6 corresponds to the average
episodic reward achieved during that training period. For the 2xDeep architecture we leveraged a
ResNet model with 6 blocks rather than 3 blocks, which corresponds to 30 convolutional layers rather
than 15 convolutional layers. In the final three blocks each layers has 32k filters where k = 0.0625
corresponds to 70k parameters, k = 0.75 corresponds to 1M parameters, k = 4.75 corresponds
to 10M parameters, k = 18.5 corresponds to 100M parameters, and k = 63 corresponds to 1B
parameters.

Statistical Significance: We also note that error bar shading throughout our paper reflects 95%
confidence intervals computed with three random seeds: 0, 1, and 2.

Notation for Asynchronous Learning: We also would like to consider the compute scaling properties
of round-robin asynchronous learning [37]. We now assume that the time to learn from an environment
transition can be treated as a random variable TL with sampled values τL ∼ TL and expected value

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Boxing (b) Krull (c) Name This Game

Figure 10: Realtime Atari Environments. Frames from the Atari environments a) Boxing, b) Krull,
and c) Name This Game. These particular games were selected because DQN learning is known to
achieve comparable performance to humans within 2,000 episodes when trained without delay.

τ̄L := E[TL]. N∗
L will denote the number of learning processes such that all NL ≥ N∗

L include at
least one transition learned from for each transition in the environment in the long-run. This quantity
is of significant interest because it expresses the number of learning processes needed to learn from
each transition in the environment at least once given the frequency of the environment.

Limitations: In both our experiments on Pokémon Blue and Tetris, performance is well below
human-level. This is because both of these games pose significant exploration problems and we
train our models from scratch for a limited amount of time. We believe that these experiments are
more than sufficient to showcase the benefits of staggered asynchronous inference in comparison
to the sequential interaction framework by showcasing when the latter framework breaks down in
realtime settings. However, we speculate that the results showing that game play does not suffer
despite significant action delay will likely not generalize to more intricate human-level policies.

Algorithm Pseudocode: We provide detailed pseudocode for Algorithm 2, which could not be
included in the main text due to space constraints.

A.1 POKÉMON RESULTS WITH SMALLER MODEL SIZES

Due to space restrictions we were not able to include our experiments for the Pokémon battling and
catching domains with |θ| < 100M in the main text. We provide these results for |θ| = 1M in Figure
11 and |θ| = 10M in Figure 13. As expected by our theory, the difference between asynchronous
interaction and sequential interaction is expected to be less when the action inference time is low. In
this experiment, the sequential interaction baseline acts every 5 steps at 1M parameters, 8 steps at
10M parameters, and 70 steps at 100M parameters. For the Pokemon game it is expected that there
is not much improvement acting at every step as it is well known to speed runners that in common
circumstances the game could take as many as 17 frames to respond to non-noop actions in which
time intermediate actions are "buffered" and not yet registered in the environment [63]. This is a fact
commonly exploited by speed-runners to allow for them to manipulate the RNG of the game and
execute actions in a "frame perfect" manner despite natural human imprecision when it comes to
action timing. As a result, the overall results in this domain are in line with expectations as differences
are most significant when inference times are greater than this 17 environment step threshold.

A.2 PERFORMANCE AS A FUNCTION OF NON-NOOP ACTIONS

In Figures 13a and 13b we observe that the difference between progress through the game for
sequential and asynchronous algorithms per non-noop action is not statistically significant in the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 2 Expected Time Inference Staggering

Initialize: ˆ̄τθ = 0, τtot = 0, and atot = 0
Initialize: delay[processnum] = ϵ(processnum− 1)/NI ∀ processnum ∈ [1, ..., NI]
Run: INFERENCE[processnum] ∀ processnum ∈ [1, ..., NI]

function INFERENCE(processnum)
while alive do

sleep(delay[processnum]) ▷ Sleep for any delays accumulated by other processes
delay[processnum]← 0
a, τθ ∼ πθ(st) ▷ Have the policy sample an action and inference time
atot ← atot + 1
τtot ← τtot + τθ
ˆ̄τ
′

θ ← τtot/atot

δτ ← ˆ̄τ
′

θ − ˆ̄τθ
if δτ ≥ 0 then ▷ Wait more further from the current process

for num ̸= processnum ∈ [1, ..., NI] do
delay[num]← delay[num] + dist(num, processnum) abs(δτ)/NI

else ▷ Wait more closer to the current process
for num ̸= processnum ∈ [1, ..., NI] do

delay[num]← delay[num] + (NI − 1)dist(num,processnum) abs(δτ)/NI

at+⌈τθ/τM⌉ ← a ▷ Register action in environment

(a) 1M: Pokémon Battles Won vs. Time τ (b) 1M: Wild Pokémon Caught vs. Time τ

Figure 11: Realtime Pokémon Performance for Staggered Asynchronous Interaction & Learning.
a) Battles won in Pokémon Blue as a function of time for |θ| = 1M . b) Wild Pokémon caught in
Pokémon Blue as a function of time for |θ| = 1M .

(a) 10M: Pokémon Battles Won vs. Time τ (b) 10M: Wild Pokémon Caught vs. Time τ

Figure 12: Realtime Pokémon Performance for Staggered Asynchronous Interaction & Learning.
a) Battles won in Pokémon Blue as a function of time for |θ| = 10M . b) Wild Pokémon caught in
Pokémon Blue as a function of time for |θ| = 10M .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) 100M: Pokémon Battles Won vs. Number of
Non-Noop Actions

(b) 100M: Wild Pokémon Caught vs. Number of
Non-Noop Actions

Figure 13: Realtime Pokémon Performance for Staggered Asynchronous Interaction & Learning.
a) Battles won in Pokémon Blue as a function of non-noop actions taken in the environment for
|θ| = 100M . b) Wild Pokémon caught in Pokémon Blue as a function of non-noop actions taken in
the environment for |θ| = 100M .

Pokémon battling and catching environments. As such, our asynchronous algorithm takes full
advantage of the increased throughput of non-noop actions taken in the environment.

B PROOFS FOR EACH THEORETICAL STATEMENT

Our proofs rely on the following core assumptions, restated from the main text:

1. The environment step time can be treated as an independent random variable TM with
sampled values τM ∼ TM and expected value τ̄M := E[TM].

2. The environment interaction time can be treated as an independent random variable TI with
sampled values τI ∼ TI and expected value τ̄I := E[TI].

3. The action inference time of the policy can be treated as an independent random variable Tθ

with sampled values τθ ∼ Tθ and expected value τ̄θ := E[Tθ].

4. Asynchronous learning can learn from every interaction with M̃delay.

B.1 DEFINITION 1

Most of Definition 1 just recaps the dynamics of how the agent interacts with an asynchronous ground
MDP following assumptions 1-3 about the nature of that interaction. All that is left to show is that this
can be viewed as a delayed MDP and that it can be viewed as a semi-MDP. The interaction process
highlighted in Definition 1 matches that of a Random Delay Markov Decision Process (RDMDP)
[6] where the action delay distribution is defined by the random variable ⌈τθ/τM⌉. To show it is a
semi-MDP as well, we consider the same proof style of Theorem 1 in Sutton et al. [66]:

A semi-MDP consists of (1) a set of states, (2) a set of actions, (3) for each pair of state and action,
an expected cumulative discounted reward, and (4) a well-defined joint distribution of the next state
and transit time. We now demonstrate each of these properties. The set of states is S and the set of
actions is A. The expected reward and the next-state and transit-time distributions are well defined
for every state and delayed action. These expectations and distributions are well defined because
Masync is Markov, thus the next state, reward, and time are dependent only on the delayed action
chosen and the state in which it was initiated. Transit times with arbitrary real intervals are permitted
in semi-MDPs.

B.2 THEOREM 1

To prove Theorem 1 we will demonstrate the validity of each equation of the theorem following the
order of presentation in the main text.

Equation 1: By definition ∆learn(τ) and ∆inaction(τ) must be independent contribution to the total
regret because learning regret is only incurred when acting in the environment following π and

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

inaction regret is only incurred when not acting in the environment and thus following the default
behavior policy β. The interaction frequency does not depend on the parameter values of π as they
change following from the independent random variable assumption. Even when regret from learning
is eliminated and regret from inaction is eliminated there is still another independent source of regret
that persists ∆delay(τ) reflecting the lower reward rate of the best possible policy in acting over M̃delay
in comparison to the best possible policy acting overMasync.

Equation 2: The worst case lower bound for the standard notion of regret arising from the need for
learning and exploration has been established as ∆learn(T) ∈ Ω(

√
T) where T denotes the number

of discrete learning steps taken in the environment. Given that we learn from every asynchronous
interaction with the environment following assumption 4, then the regret as a function of τ scales
with the expected number of discrete environment steps as a function of T i.e. E[T (τ)] = τ/τ̄I
because TM and TI are independent. Therefor, ∆learn(τ) ∈ Ω(

√
τ/τ̄I). As noted in the footnote in

the main text, this analysis equally applies to the known ∆learn(T) ∈ Õ(
√
T) minimum upper bound

[47].

Equation 3: The worst case lower bound on ∆inaction(τ) is derived by considering a worst case
environment with two actions a1 and a2 and two states s1 and s2 where the default behavior β
takes its own action a3 at every state. The reward provided is 1 at s1 and 0 at s2. The next state
is s1 regardless of the state if either a1 or a2 is taken and s2 if a3 is taken. In this environment
the optimal reward rate is 1 and the reward rate when following β is 0.0. The expected number of
times a3 is taken during τ seconds inMasync is then τ/τ̄I × (τ̄I − τ̄M)/τ̄M because β is used for
(τ̄I − τ̄M)/τ̄I percent of ground MDP actions and the expected number of actions taken over τ is
τ/τ̄M when TM and TI are independent. Therefor, ∆inaction(τ) ∈ Ω((τ/τ̄I) × (τ̄I − τ̄M)/τ̄M)
for this particular environment. Meanwhile, the expected inaction regret is also upper bounded by
∆inaction(τ) ≤ rmax × (τ/τ̄I)× (τ̄I − τ̄M)/τ̄M where rmax is the maximum possible reward per step
because by definition the agent cannot incur regret from inaction when it is acting in the environment.
Therefor, we have demonstrated that Equation 3 holds.

Equation 4: The worst case lower bound on ∆delay(τ) is derived by considering a worst case
environment with n states S = {s1, ..., sn} and n actions A = {a1, ..., an} where the default
behavior β takes its own action a0 at every state. If the agent takes the action ai corresponding to
the state si for any i ∈ {1, ..., n} the agent receives a reward of 1, otherwise it receives a reward
of 0. The agent stays in the current state si regardless of the action with probability pminimax and
goes to the next state in the cycle si+1 with probability 1− pminimax where pminimax ≥ 1/n because
the sum over next state probabilities must equal 1. After state sn the agent returns to state s1. The
probability of staying in the current state for k consecutive environment steps is (pminimax)

k and in
the limit as n→∞ this is also the probability that the agent is in the current state k steps later. If
the agent is not in the current state k steps later, the agent will apply a sub-optimal action based on
the old state because no state will overtake the current state as more likely than the current state
with the state likelihoods converging to uniform in the limit as k →∞ when the Markov chain fully
mixes. So the regret per ground environment step incurred by the optimal policy that acts with k step
lag is 1− (pminimax)

k. Thus, the best expected regret rate per step that can be ensured with actions
delayed by k = ⌈τθ/τM⌉ is ≥ E[1 − (pminimax)

⌈τθ/τM⌉]. Moreover, the expected number of steps
taken in the asynchronous MDP over τ seconds is τ/τ̄I , so we can lower bound the expected regret
as ∆delay(τ) ≥ (τ/τ̄I)× E[1− (pminimax)

⌈τθ/τM⌉]. This then leads us to the conclusion of Equation
4 from the main text that ∆delay(τ) ∈ Ω((τ/τ̄I)× E[1− (pminimax)

⌈τθ/τM⌉]).

Tighter Version of Equation 4: While the definition of pminimax in the main text holds for the counter
example above, this example relies on the fact that transitioning states actually has an impact on the
reward of a policy and its value function. In general, it does not matter if the state changes if the
change does not impact the optimal policy. So a tighter version of pminimax would be defined over a
π∗-irrelevance state abstraction ϕπ∗ of the state space rather than the ground state space, following
the terminology of [38]. In a ϕπ∗ abstraction every abstract state in ϕπ∗(S) has an action a∗ that is
optimal for all the ground states i and j in that abstract state. As a result, ϕπ∗(si) = ϕπ∗(sj) implies
that maxa∈A Qπ∗

(si, a) = maxa∈A Qπ∗
(sj , a) For example, a tighter version of Equation 4 could

be written with pminimax := mins∈S,a∈A maxϕπ∗ (si)∈ϕπ∗ (S)

∑
ϕπ∗ (sj)=ϕπ∗ (si)

p(sj |s, a).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.3 REMARK 1

We restate the derivation of the remark from the main text, filling in a bit more detail for clarity.
When π andMasync interact sequentially, we must have τI ≥ τθ, so ∆inaction(τ) ∈ Ω(τ/τ̄I × (τ̄I −
τ̄M)/τ̄M) ∈ Ω(τ/τ̄θ × (τ̄θ − τ̄M)/τ̄M). This implies that even as τ → ∞, the worst case regret
rate ∆realtime(τ)/τ ∈ Ω(∆inaction(τ)/τ) ∈ Ω((τ̄θ − τ̄M)/τ̄Mτ̄θ) following from Theorem 1.

B.4 REMARK 2

Interaction Time of Algorithm 1: At any point in time, by definition τ̂max
θ ≤ τmax

θ as the estimated
maximum must be less than or equal the current maximum. Therefore, with NI equally spaced
processes, the interaction time must be τI = ⌈τ̂max

θ /NI/τM⌉ × τM and Algorithm 1 ensures equal
spacing between processes whenever τ̂max

θ does not change. Regardless of the changing value of
τ̂max
θ , we can also bound the individual interaction time steps τI ≤ ⌈τmax

θ /NI/τM⌉ × τM and
correspondingly the global average τ̄I ≤ τmax

θ /NI when τ̄I > τ̄M and τ̄I = τ̄M otherwise.

Interaction Time of Algorithm 2: As τ →∞, τ̂θ → τ̄θ due to the law of large numbers and thus
δτ → 0, which implies that additional waiting times become zero in the limit. Therefore, with NI
equally spaced processes, the interaction time must be τI = ⌈τ̄θ/NI/τM⌉ × τM and Algorithm 2
ensures equal spacing between processes whenever τ̂θ does not change and δτ = 0. Thus, as τ →∞
the global average is τ̄I = τ̄θ/NI when τ̄I > τ̄M and τ̄I = τ̄M otherwise.

Bringing it Together: Algorithm 1 is capable of scaling the expected interaction time with the
number of processes by τ̄I ≤ min(τmax

θ /NI , τ̄M) where τmax
θ is the maximum encountered value of

τθ as τ →∞. This then implies that for NI ≥ N∗
I = ⌈τmax

θ /τ̄M⌉, τ̄I = τ̄M. Algorithm 2 is capable
of scaling the expected interaction time with the number of processes by τ̄I = min(τ̄θ/NI , τ̄M) as
τ →∞ following the law of large numbers. This then correspondingly implies that for NI ≥ N∗

I =
⌈τ̄θ/τ̄M⌉, τ̄I = τ̄M.

B.5 COMPARISON WITH ACTION CHUNKING APPROACHES

The action chunking approach learns a policy that produces multiple actions at a time with a single
inference step i.e. a policy πθ(at, ..., at+k|st) that produces k actions at a time. Clearly action
chunking does not address the root cause of regret from delay ∆delay(τ) that our asynchronous
inference framework also suffers from as k steps of delay is built directly into the policy. However, it
is less clear on the surface how the action chunking approach relates to ∆learn(τ) and ∆inaction(τ).

Does action chunking eliminate ∆inaction(τ)? Action chunking could eliminate regret from inaction
if τmax

θ /k = τM. But this is not possible for any value of τmax
θ with sufficiently large k because τmax

θ
must depend on k as the size of the outputs produced scales linearly with k. So action chunking can
eliminate inaction for some policy classes, but not in general as policy inference times become large.
Our asynchronous inference approach provides a more general result in this regard (see Remark 2).

Does action chunking impact ∆learn(τ)? A hidden term excluded from our bound of ∆learn(τ) in
the main text is a dependence on the size of the action space |A| such that ∆learn(τ) ∈ Ω(

√
τ |A|/τ̄I)

[24]. We suppressed this dependence for clarity in the main text, but it is important to keep in mind
when considering action chunking approaches as this implies that the regret lower bound scales with√
|A|k and thus can lead to an exponentially worse regret from learning ∆learn(τ) even in cases

where ∆inaction(τ) is eliminated with sufficiently large k.

B.6 ACHIEVING SUBLINEAR REGRET WITH STAGGERED ASYNCHRONOUS INFERENCE

As we have demonstrated in Remark 2, when enough asynchronous threads are provided, a model of
any size can eliminate regret from inaction. Regret from delay is not addressed by this approach, but
goes to zero in deterministic environments. As a result, to demonstrate that total regret is sublinear
for deterministic environments following Equation 1, we must only show that ∆learn(τ) can be upper
bounded by a quantity sublinear in τ . For example, if we use Q-Learning as we do in our experiments,
there are known upper bounds for the case of utilizing optimistic exploration with a carefully designed
learning rate of ∆learn(T) ∈ Õ(

√
T) where T is the number of steps in the environment [25]. In

expectation E[T] = τ/τ̄M, so the upper bound on the expected regret will be ∆learn(T) ∈ Õ(
√
τ)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

as τ̄M is a constant. As a result, our approach can achieve sublinear regret whenever ∆delay(τ) is
sublinear, which includes but is not limited to all deterministic environments.

C TOWARDS ENABLING REAL-WORLD DEPLOYMENT OF AGENTS IN EVEN
MORE COMPLEX SCENARIOS

Designing Safe Default Policies β: In our work, we assume β performs poorly such that it is unsafe
and thus our goal with asynchronous interaction is to avoid using it altogether. However, an alternate
research direction motivated by our formulation in Definition 1 would be to work on refining the β
function itself such that relying on it is guaranteed to be safe and not lead to irrevertible consequences.
This is, for example, a major difference between the implementation of β in the games Pokémon
and Tetris. In Pokémon inaction does not prohibit the agent from eventually achieving success
in the game, whereas in Tetris inaction leads to missed opportunities that can never be overcome.
This materializes in our empirical results as we see a slower degradation of performance for the
sequential interaction baseline as the model size grows for Pokémon. That said, the limitation of our
asynchronous inference approach is that policies are based on previous states, which can itself be
unsafe in stochastic environments. In this case, it would be logical to also consider beneficial and safe
ways to modify β itself, which can then just be viewed as another model that happens to have a faster
inference time that should also be provided resources for asynchronous learning. This case closely
mirrors the options framework [66; 3] and variants of it that consider deep hierarchies of policies
[54; 56; 1]. As we do not want β itself to lead the agent to OOD states, it probably would make sense
to train this policy with a pessimism bias [36; 26] or with a monitor for change points.

Broader Domains with Diverse Subtasks or Nonstationarity: When it comes to both learning a
policy over the delayed semi-MDP and learning a default behavior policy, a key challenge is to adapt
these policies to changing environment dynamics and new scenarios. Broadly, this is referred to as
Continual RL (see [30] for a comprehensive survey). On the optimization end, these settings require
consideration of the stability-plasticity dilemma. For example, we used recency based replay buffers
in this work that have been standard in the RL literature since [42]. However, this recency based
buffer maintenance strategy only makes sense when we are purely focused on plasticity. A reasonable
alternative for continual learning would be buffers based on reservoir sampling [53] to emphasize
stability or scalable memory efficient approximate buffers [55]. Another way to promote stability
during learning is with regularization based approaches. For example, approaches that leverage
knowledge distillation from old versions of models [39; 52] or approaches that penalize movement
in parameter space [34]. In settings where subtasks are diverse it is also important to consider that
the optimal interaction frequency may depend on the context. In this case, it may be beneficial to
consider algorithms that adaptively select which layers to process at inference time [58; 8; 9], see [59]
for a survey of approaches. More generally, this adaptive computation problem can be formalized
within the coagent networks framework [68; 35; 78]. Moreover, in the case of POMDPs, it may make
sense to adaptively change the interaction history context length sent to our policy to tradeoff the
extent of modeling non-Markovian dependencies with inference and evaluation times [57].

Interacting in Multi-agent Settings: Another key consideration when generalizing our approach
to more realistic settings is interacting with other agents in the environment. While asynchronous
interaction can definitely help eliminate inaction, the amount of tolerable delay depends not just on
the environment, but also on the behavior of other other agents in the environment. For example,
the Boxing environment considered in our experiments from Figure 6 can also be played as a two
agent game. We find that it is very difficult to perform on human-level in this environment even
with delay as low as 3 environment steps, which ties back to the stochasticity of the policy used
by the AI in single player mode. Another key challenge in multi-agent environments is when the
policies of the other agents change i.e. due to learning, which makes the environment nonstationary
from the perspective of each agent. When the agents are trained in a centralized fashion, they can be
considered in each others updates to mitigate this nonstationarity [40]. However, in the more typical
decentralized setting agents must build theory of mind models to speculate about the (changing)
behavior of other agents [50] which must be carefully constructed for scalability in the presence of
many other agents [41; 69]. Effective approaches have been developed to address this challenges by
meta-learning with respect to the updating policies of other agents [17; 18; 31; 75; 32]. In order to
generalize our theoretical results in Theorem 1 to environments with multiple learning agents, we
would have to consider regret with respect to complex game-theoretic solution concepts [33]. As

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

such, we leave consideration of these approaches and exploration of a formulation for realtime regret
in this setting to future work.

23

	Introduction
	Regret Decomposition in Realtime Reinforcement Learning
	Asynchronous Interaction & Learning Methods
	Background: Staggered Asynchronous Learning
	Our Novelty: Staggered Asynchronous Inference

	Related Work
	Empirical Results
	Faster Progress Through a Realtime Game with Constant Novelty
	Maintaining Performance in Games that Prioritize Reaction Time
	Computational Scaling of Asynchronous Interaction and Learning

	Discussion
	Reproducibility Statement
	Further Details Supporting the Main Text
	Pokémon Results with Smaller Model Sizes
	Performance as a Function of Non-Noop Actions

	Proofs for Each Theoretical Statement
	Definition 1
	Theorem 1
	Remark 1
	Remark 2
	Comparison with Action Chunking Approaches
	Achieving Sublinear Regret with Staggered Asynchronous Inference

	Towards Enabling Real-World Deployment of Agents in Even More Complex Scenarios

