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ABSTRACT

Realtime environments change even as agents perform action inference and learn-
ing, thus requiring high interaction frequencies to effectively minimize regret.
However, recent advances in machine learning involve larger neural networks
with longer inference times, raising questions about their applicability in realtime
systems where reaction time is crucial. We present an analysis of lower bounds on
regret in realtime environments to show that minimizing long-term regret is gener-
ally impossible within the typical sequential interaction and learning paradigm, but
often becomes possible when sufficient asynchronous compute is available. We
propose novel algorithms for staggering asynchronous inference processes to en-
sure that actions are taken at consistent time intervals, and demonstrate that use of
models with high action inference times is only constrained by the environment’s
effective stochasticity over the inference horizon, and not by action frequency.
Our analysis shows that the number of inference processes needed scales linearly
with increasing inference times while enabling use of models that are multiple
orders of magnitude larger than existing approaches when learning from a realtime
simulation of Game Boy games such as Pokémon and Tetris.

1 INTRODUCTION

An often ignored discrepancy between the discrete-time RL framework and the real-world is the
fact that the world continues to evolve even while agents are computing their actions. As a result,
agents are limited in the types of problems that they can solve because the speed at which they can
compute actions dictates a particular stochastic or deterministic time discretization rate. Agents
that take infrequent actions require some lower-level program to manage behavior between actions,
often through simple policies like remaining still or repeating the last action. Ideally, intelligent
agents would exert more control over their environment, but this conflicts with the trend of using
larger models, which have high action inference and learning times. Consequently, as typically
deployed with sequential interaction, large models, which are often found to be essential for complex
tasks, increasingly rely on low-level automation, reducing their control over realtime environments.
This paper examines this discrepancy and explores alternative asynchronous interaction paradigms,
enabling large models to act quickly and maintain greater control in high-frequency environments.

Figure 1a shows the standard sequential interaction paradigm of RL. In this setup, the agent receives
a state from the environment, learns from the state transition, and then infers an action. Each process
must be completed before the agent can process a new state, limiting the action frequency and
increasing reliance on low-level automation as the model size grows. In contrast, Figure 1b illustrates
the asynchronous multi-process interaction paradigm we propose. Our key insight is that even models
with high inference times can act at every step using sufficiently many staggered inference processes.
Similarly, sufficiently many asynchronous learning processes can maintain rapid updates without
blocking progress, despite high learning times. This work formalizes and empirically tests the benefits
and limitations of this approach, making the following contributions:

1. We formalize how the choice of a particular time discretization induces a new learning
problem and how that problem relates to the original problem in Definition 1.

2. We derive worst-case lower bounds on regret for solving the new problem rather than the
original in Theorem 1, leading us to conclude in Remark 1 that typical sequential interaction
(Figure 1a) scales poorly with model size.
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Figure 1: Frameworks for Environment Interaction in RL. a) The typical sequential interaction
paradigm where both learning and action inference block the environment from moving forward.
b) The more realistic setting considered in this work where the environment, the agent’s inference
process, and agent’s learning process all proceed at their own rate and interact asynchronously.
Multiple self-loops are depicted to denote multiple asynchronous processes. τM denotes the frequency
of the environment, τθ denotes the frequency of each inference process, and τL denotes the frequency
of each learning process. Sequential interaction and learning has a frequency of τM + τθ + τL.

3. We propose novel methods for staggering asynchronous inference in Algorithms 1 and 2,
addressing the poor scaling properties of sequential interaction (Remark 2).

4. We conduct comprehensive experiments to verify our theory, demonstrating the use of
models that are orders of magnitude larger for realtime games like Pokémon and Tetris.

2 REGRET DECOMPOSITION IN REALTIME REINFORCEMENT LEARNING

Background - Sequential Interaction: Most RL research focuses on agents interacting sequentially
with a Markov Decision Process (MDP) [49; 65]Mseq = ⟨S,A, p, r⟩, where S is a set of states, A
is a set of actions, r(s, a) is a reward function with outputs bounded by rmax, and p(s′|s, a) is a state
transition probability function. Agents take actions based on a policy πθ(a|s) that maps states to
action probabilities parameterized by θ. An unrealistic implicit assumption of this setting is that the
time between decisions is fixed and only depends on the MDP. It is also unrealistically assumed that
the environment can be paused while the policy generates an action a from state s.

Asynchronous Interaction Environments: The standard MDP formalism lacks a crucial element
for realtime settings where the environment cannot be "paused," and the agent interacts with it
asynchronously, as described by Travnik et al. [71]. In this case, it is necessary to define the
environment’s behavior when the agent has not selected an action. We believe the most general
solution is to use a preset default behavior if there is no available action at by the agent π at time-
step t. This behavior follows a ∼ β(s), where a ∈ Aβ is possibly from a different action space
than A, requiring p and r to be defined over A ∪ Aβ . Now we can define an asynchronous MDP
Masync = ⟨S,A, p, r, β⟩ as an extension of a sequential MDPMseq with the addition of the default
behavior policy β. Note that β does not need to be non-Markovian, because the state space should
be defined to include any intermediate computations needed to generate the actions of β. Defining
the default behavior as a policy is no more than a useful interpretation of what happens and is
equivalent to saying the environment follows a Markov chain pβ(s′|s) when no action is available
where pβ(s′|s) :=

∑
a∈Aβ

p(s′|s, a)β(a|s) with expected reward rβ(s) =
∑

a∈Aβ
β(a|s)r(s, a).

Time Discretization Rates: The real environment evolves in continuous time, so we must define
time discretization rates to describe each component of the agent-environment interface in discrete
steps.1 We treat the environment step time as a random variable TM with sampled values τM ∼ TM
and expected value τ̄M := E[TM]. Similarly, the inference time of the policy for a single action2 is
another random variable Tθ with sampled values τθ ∼ Tθ and expected value τ̄θ := E[Tθ].3 We can
now introduce yet another random variable TI with sampled values τI ∼ TI and expected value
τ̄I := E[TI ] that is of particular importance to our work, representing the time elapsed between

1Recent work by Treven et al. [72] has shown the potential regret benefits of adaptive data-driven measurement
selection, but current state of the art RL algorithms are not applicable to this setting.

2See Appendix B.5 for a comparison with action chunking methods that produce multiple actions at a time.
3While policies in general could have adaptive computation times based on the state, this is relatively

uncommon in the literature and will be left to future work for simplicity of the discourse.
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actions taken by the agent πθ (rather than β) inMasync. This has been called a variety of names in
the literature including the interaction time, the action cycle time, and the inverse of the interaction
frequency. What is very important to note for our purposes is that TI need not be equal to TM nor
Tθ, with the precise relation between these variables depending on the particular method of agent
deployment. Establishing these three random variables now allows us to define the decision problem
induced by these choices related to the agent-environment boundary (see Figure 2 for an illustration).

Definition 1 (Induced Delayed Semi-MDP) Any choice of random variables TM, TI , and
Tθ applied to an asynchronous MDP Masync induces a delayed semi-MDP M̃delay :=
⟨S,A, p, r, β,TM,TI ,Tθ⟩ where the semi-MDP decision making steps t̃ associated with the
actual decisions of the agent π happen after ⌈τI/τM⌉ steps t in the ground asynchronous MDP
Masync. The semi-MDP is delayed with respect toMasync because semi-MDP actions ãt̃ ∈ A
generated by π are equivalent to actions that are delayed by ⌈τθ/τM⌉ in Masync such that
πθ(ãt̃|st̃) = πθ(at+⌈τθ/τM⌉|st) where st̃ = st. If ⌈τθ/τM⌉ > 1 the transition dynamics are pβ

and reward dynamics are rβ for ⌈τθ/τM⌉ − 1 steps inMasync until at+⌈τθ/τM⌉ is applied.

MDP

Time
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Delayed
Semi-MDP

! !
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!
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!
!
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Figure 2: Induced Delayed Semi-MDP. We il-
lustrate the semi-MDP described in Definition 1
following the style of Figure 1 from Sutton et al.
[66]. Masync is depicted in purple and M̃delay is
depicted in blue. Actions are delayed by the infer-
ence time of the policy π and the default policy β
is followed between selections.

In general, the optimal policy and optimal re-
ward rate will not be the same forMasync and
M̃delay, with M̃delay incurring additional sub-
optimality because of the coarse nature of the
decision problem. That said, we have direct
control over TI and Tθ, so it is of interest to
understand how our design decisions relate to
the sub-optimality experienced. Chiefly, we are
interested in understanding under what scenar-
ios the optimal reward rate ofMasync can still
be achieved even when τ̄θ >> τ̄M. To do this,
we focus on worst case lower bounds on regret
i.e. the unavoidable regret incurred because of
the interaction defined by M̃delay in the worst
case scenario where β is always a suboptimal
choice. The realtime regret ∆realtime(τ) is the
accumulated suboptimality in τ seconds relative
to following the optimal policy at every discrete
steps t occurring after τM seconds inMasync.

Theorem 1 (Realtime Regret Decomposition) The accumulated realtime regret ∆realtime(τ)

over time τ of a delayed semi-MDP M̃delay relative to the oracle policy in the underlying
asynchronous MDPMasync can be decomposed into three independent terms.

∆realtime(τ) = ∆learn(τ) + ∆inaction(τ) + ∆delay(τ) (1)

∆learn(τ) is the regret experienced even in sequential environments as a result of learning and
exploration. The lower bound in the worst case is:4

∆learn(τ) ∈ Ω(
√
τ/τ̄I) (2)

∆inaction(τ) expresses the regret as a result of following β rather than optimal actions inMasync.
The lower bound and upper bound in the worst case is:

∆inaction(τ) ∈ Θ((τ/τ̄I)× (τ̄I − τ̄M)/τ̄M) (3)

∆delay(τ) expresses the regret as a result of the delay of actions by π in the underlying asyn-
chronousMasync. The lower bound in the worst case is:

∆delay(τ) ∈ Ω((τ/τ̄I)× E[1− (pminimax)
⌈τθ/τM⌉]) (4)

where pminimax := mins∈S,a∈A maxs′∈S p(s′|s, a) is a measure of environment stochastic-
ity5and τθ/τM is the number of steps elapsed during action inference.
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See Appendix B for a formal proof of Theorem 1 and our other findings. We believe this work is the
first to formally state the regret decomposition in Equation 1. Note though that previous studies on
real-world RL have highlighted the challenges of learning from limited samples, realtime inference,
and managing system delays in scaling methods to realtime settings [14]. Equation 2 extends known
lower bounds on learning time [24], using the notation from Definition 1 to explicitly connect with
continuous time. Notably, this bound depends on τ̄I (not τ̄θ) and assumes learning can keep pace
with the environment to learn from every interaction. Equation 3 provides a novel regret bound,
formalizing the known suboptimality of interacting with realtime environments at a slower pace
[71; 21; 51; 77; 76; 16]. This result highlights the limitations of the sequential interaction paradigm.

Remark 1 (Inaction of Sequential Interaction) When π and Masync interact sequentially,
τI = τθ such that in the worst case ∆inaction(τ) ∈ Ω(τ/τ̄θ × (τ̄θ − τ̄M)/τ̄M). This implies that
even as τ →∞, in the worst case ∆realtime(τ)/τ ∈ Ω(∆inaction(τ)/τ) ∈ Ω((τ̄θ − τ̄M)/τ̄Mτ̄θ).

This means a realtime framework with sequential interaction cannot ensure that regret will eventually
dissipate. Thus, we explore asynchronous alternatives in the next section. Finally, Equation 4
highlights the key limitation in minimizing regret using asynchronous compute. Previous work
established that suboptimality from delay in MDPs relates to the stochasticity in the underlying
undelayed MDP [13; 45], focusing on communication delays inherent to the environment. Our focus,
however, is on delays caused by the agent’s computations, which we can control. Thus, the emphasis
on regret associated with the decision that leads to a particular value of τθ is novel. Since this term
is the only part of regret that depends on τθ, it helps identify which environments are manageable
when τθ >> τM. In deterministic environments, there is no regret due to τθ as pminimax = 1, but
in stochastic environments, the degree and temporal horizon of stochasticity determine what values
of τθ are tolerable. For simplicity, we present a looser bound here; a tighter bound is available in
Appendix B. In summary, stochasticity with respect to actual rewards is what really matters.

3 ASYNCHRONOUS INTERACTION & LEARNING METHODS

Figure 3 highlights key differences between the standard sequential RL framework and the asyn-
chronous multi-process framework we propose. In the sequential framework, interaction and learning
delay each other. In contrast, in the asynchronous framework that we propose, actions and learning
can occur at every step with enough processes. However, actions are delayed and reflect past states,
which may limit performance in some environments. Note that staggering processes to maintain
regular intervals is essential. For example, if all inference processes took a deterministic amount of
time with no offset between them, all additional actions in the environment would be overwritten with
no benefit from increasing compute. Meanwhile, with staggering we can experience linear speedups.

3.1 BACKGROUND: STAGGERED ASYNCHRONOUS LEARNING

Parallel vs. Asynchronous Updates: Learning from a transition, i.e., computing gradients, usually
takes longer than inference. Thus, performing learning in separate processes is crucial to avoid
blocking inference [76], especially for models with a large number of parameters. For this use case,
one might be tempted to consider parallel learning processes to increase the effective batch size
without increasing wall-clock time per batch as this avoids wasted computation. Indeed, parallel
updates are better for training large language models when final performance and compute efficiency
are most important. In contrast, asynchronous learning can produce updates even faster than learning
from a single transition, making the model more responsive to exploration. However, lock-free
asynchronous approaches risk overwriting updates, potentially wasting computation that does not
contribute to final performance. Our focus is on maximizing responsiveness in large models, not
necessarily compute efficiency. So even overwritten updates are not wasted with respect to regret.

Round-Robin Asynchronous Learning: Langford et al. [37] laid the foundation for addressing
asynchronous update staggering for large neural network models using variants of stochastic gradient
descent (SGD). They showed that applying updates in a delayed, orderly fashion avoids wasted

4Known algorithms achieve regret upper bounds within a logarithmic factor of this lower bound [47].
5When the environment is deterministic, pminimax = 1 and ∆delay(τ) = 0. When the environment is uniformly

random, pminimax = 1/|S| and as |S| → ∞, ∆delay(τ) ∈ Ω(τ).

4
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Staggered Asynchronous Learning

Staggered Asynchronous Inference

Sequential Inference and Learning

Environment

Figure 3: Realtime Interaction Frequency. We illustrate the comparative interaction frequency of
methods that sequence learning and inference and those that maintain multiple staggered asynchronous
processes. Even when inference times are greater than the environment step time, it is possible to use
asynchronous compute to eliminate inaction and learn from every step.

compute on overwritten gradients. Their approach demonstrated convergence for delayed SGD, with
linear scaling limited only by the time taken to update parameters relative to computing gradients.
This method allows significant linear scaling with minimal compute waste for large models and the
delay in the updates will not be a significant source of regret in Theorem 1. While not our novel
contribution, this strategy is underexplored. We investigate its scaling properties in our experiments.

3.2 OUR NOVELTY: STAGGERED ASYNCHRONOUS INFERENCE

In Remark 1 we highlighted that τ̄I is fundamentally limited by τ̄θ for sequential interaction, which
results in persistent regret even as time goes on when τ̄θ > τ̄M. We will now highlight two novel
algorithms for staggering inference processes that can lead to a reduction in τ̄I when the number of
inference processes NI are increased. Algorithm 1 is capable of scaling the expected interaction time
with the number of processes by τ̄I ≤ min(τmax

θ /NI , τ̄M) where τmax
θ is the maximum encountered

value of τθ. Meanwhile, Algorithm 2 is capable of scaling the expected interaction time with the
number of processes by τ̄I = min(τ̄θ/NI , τ̄M). Both algorithms can eliminate inaction.6

Remark 2 (Inaction of Asynchronous Interaction) For any τ̄θ when π andMasync interact
asynchronously with staggering algorithms 1 or 2, there is a value of the number of inference
processes N∗

I such that for all NI ≥ N∗
I , ∆inaction(τ)/τ → 0 as time goes to τ →∞.

Algorithm 1 always ensures each processes waits for the current estimate of τmax
θ amount of seconds

before an action is taken by that process to preserve the spacing between actions. Adjustments are
made to the waiting time in each process considering dist(x,y), the distance process x is behind
process y in the cycle of processes, until the estimate converges to the true τmax

θ value. The benefit of
this algorithm is that the spacing between actions stays very consistent with no variance once the
maximum value estimate has stabilized. This makes M̃delay easier to learn from. The downside is
that the amount of necessary compute to eliminate inaction may be relatively high.

On the other hand, Algorithm 2 stops all waiting in all processes as time goes on, so that the expected
interaction time of each process is τ̄θ. An estimate of τ̄θ is maintained and when the estimate changes
after an action is taken, processes wait for an amount of time designed to adjust the average spacing
between processes to τ̄θ/NI . The law of large numbers ensures that the estimate converges to τ̄θ in
the limit as τ →∞ and that the waiting time diminishes to zero. Algorithm 2 has a strictly smaller
compute requirement than Algorithm 1, but experiences variance in TI driven by the variance in
Tθ, which makes M̃delay harder to learn from. The compute advantage becomes more significant for
distributions that have variance in Tθ such that τmax

θ − τ̄θ is large. In our experiments, we consider
Algorithm 1 because we found the variance in Tθ is small for the models we consider.

6Appendix B.6 describes how this can lead to achieving sublinear regret in deterministic environments.
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Algorithm 1 Maximum Time Inference Staggering

Initialize: τ̂max
θ = 0 and delay[processnum] = ϵ(processnum− 1)/NI ∀ processnum ∈ [1, ..., NI ]

Run: INFERENCE[processnum] ∀ processnum ∈ [1, ..., NI ]
function INFERENCE(processnum)

while alive do
sleep(delay[processnum]) ▷ Sleep for any delays accumulated by other processes
delay[processnum]← 0
a, τθ ∼ πθ(st) ▷ Have the policy sample an action and inference time
if τθ ≥ τ̂max

θ then
δτ ← τθ − τ̂max

θ ▷ Other processes sleep for the difference with the maximum
for num ̸= processnum ∈ [1, ..., NI ] do

delay[num]← delay[num] + dist(num,processnum) ×δτ/NI

τ̂max
θ ← τθ ▷ Set new global maximum

else
sleep(τ̂max

θ − τθ) ▷ Sleep for the remaining time
at+⌈τ̂max

θ /τM⌉ ← a ▷ Register action in environment

Hardware Optimization: In this paper, our focus is on the possibility of achieving speedups when
adequate hardware is available to facilitate it. As such, we focus on what can be achieved with an
ideal set of hardware rather than the most efficient way to utilize a given constrained set of hardware.
In our experiments, we run each process on its own dedicated CPU such that resource constraints like
memory capacity, and memory bandwidth do not present significant issues. However, if, for example,
we aimed to implement multiple simultaneous processes on a single GPU, we would have to consider
tradeoffs between memory capacity, memory bandwidth, and latency that will jointly serve to limit
the possible speedups. We leave analysis of these practical tradeoffs to future work.

4 RELATED WORK

Realtime interaction: Previous work such as Travnik et al. [71] has considered the asynchronous
nature of realtime environments. However, we are not aware of any prior paper that has formalized
the connection between asynchronous and sequential versions of the same environment as we have.
Travnik et al. [71] highlight the reaction time benefit of acting before you learn, and Ramstedt &
Pal [51] highlight the reaction time benefit of interacting based on a one-step lag. Meanwhile, the
interaction frequency of both of these approaches are limited by sequential interaction and thus the
drawback highlighted in Remark 1 also applies to them.

Designing the interaction rate: Farrahi & Mahmood [16] examined how the choice of τI affects
the learning performance of deep RL algorithms in robotics. They found that low τI complicates
credit assignment, while high τI complicates learning reactive policies. Karimi et al. [28] proposed
a policy that executes multi-step actions with a learned τI within the options framework, which
may aid in slow problems where credit assignment is challenging. However, this approach does not
address the action delay issue we focus on and may worsen it by committing to multiple actions
based on a delayed state. Our policy, defined in the semi-MDP framework (Definition 1), relies on
a low-level policy β, similar to the options framework [66]. The key difference is that β cannot be
modified, preventing intra-option learning and thus making it impossible to improve β even when it
is sub-optimal. Thus we would rather minimize the use of β i.e. minimize inaction.

Reinforcement learning with delays: Reinforcement learning in environments with delayed states,
observations, and actions is well-studied. Typically, delays are treated as communication delays
inherent to the environment [73; 6]. In contrast, we focus on delays resulting from our computations,
which are under our control and part of agent design. Our formulation of delay as part of regret is
novel due to this unique focus. Common methods address delay by augmenting the state space with
all actions taken since the delayed state or observation [5; 29; 44], but this is infeasible for us since
these actions are not available when computation begins. Instead, our approach aligns more with
methods addressing delay without state augmentation [60; 6; 12; 2; 27]. However, these methods are
limited by the environment’s stochasticity [13; 45], as highlighted by Equation 4 of Theorem 1.

6
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Asynchronous learning: Most work on asynchronous RL involves multiple environment simulators
learned from asynchronously or in parallel [43; 15; 61]. We explore a more challenging real-world
setup with a single environment, limiting exploration opportunities. Unlike typical asynchronous
setups where each process interacts sequentially with the environment and then learn from that
interaction [43], our setting benefits from making interaction and learning asynchronous (Remark
2). Indeed, our paper introduces the concept of staggering asynchronous interaction, which is an
innovation with benefits unique to the non-pausing environment setting we explore. Similarly to ours,
some prior work has considered asynchronous learning to avoid blocking inference [76], focusing
on model-based learning [21; 22; 20; 77] and auxiliary value functions [67; 11]. The novelty of our
approach is in its use of multiple asynchronous staggered inference processes instead of a single
process, a critical contribution for deploying large models (see Remark 1 and Remark 2).

5 EMPIRICAL RESULTS

To show that our proposed method does indeed provide practical benefits for minimizing regret per
second with large neural networks in realtime environments, we perform a suite of experiments to
validate the theoretical claims made in the previous sections. Our experiments include:

• Question 1: an evaluation of the speed of progress through a realtime game strategy game
where constant learning is necessary to move forward when action inference times are large.

• Question 2: an evaluation of episodic reward in games where reaction time must be fast to
demonstrate that asynchronous interaction can maintain performance with models that are
multiple orders of magnitude larger than those using sequential interaction.

• Question 3: an evaluation of the scaling properties of Algorithms 1 and 2 to demonstrate that
the needed number of processes to eliminate inaction, N∗

I , scales linearly with increasing
inference times τ̄θ and parameter counts |θ|.

• Question 4: an evaluation of the scaling properties of round-robin asynchronous learning
[37] to demonstrate that the number of processes needed to learn from every transition also
scales linearly with increasing learning times and parameter counts |θ|.

Implementation Details: In all our experiments, we implemented the Deep Q-Network (DQN)
learning algorithm [42] within our asynchronous multi-process framework, using a discount factor
of γ = 0.99, a learning rate of 0.001 with the Adam optimizer, and a batch size of 16. A shared
experience replay buffer stores the 1 million most recent environment transitions. For preprocessing,
we down-sampled monochromatic Game Boy images to 84x84x1, similar to Atari preprocessing [42].
Following the scaling procedure previously established by [10] and [62], we used a 15-layer ResNet
model [15] while scaling the number of filters by a factor k to grow the network. The model sizes
correspond to: k = 1 (1M parameters), k = 7 (10M), k = 29 (100M), and k = 98 (1B). Models
were deployed on multi-process CPUs using Pytorch multiprocessing library on Intel Gold 6148
Skylake cores at 2.4GHz, with one core per process and multiple machines for models using > 40
processes. See Appendix A for further detail regarding our experimental setup and a discussion of
limitations. As large models are known to be difficult to optimize in an online RL context, we also
tried training common 1M models with an equivalent amount of added delay as the larger models to
perform a sanity check. Our initial experiments indicated performance was similar.

Realtime Environment Simulation: To run a comprehensive set of scaling experiments that would
not be feasible with real-world deployment, we need a simulation of a realistic realtime scenario.
Towards this end, we considered two games from the Game Boy that are made available for simulation
as RL environments through the Gymnasium Retro project [46]. We implemented a realtime version
of the Game Boy where it is run at 59.7275 frames per second such that τM = 1/59.7275 and with
"noop" actions executed as the default behavior β. This exactly mimics the way that humans would
interact with the Game Boy as a handheld console [74] and matches the setting in which humans
compete over speed runs for these games. We also leveraged three Atari environments [4] run at 60
frames per second with "noop" actions executed as β to mimic the way that humans interact with the
Atari console in the real-world. These are ideal settings for addressing our core empirical questions.

7
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(a) 100M: Pokémon Battles Won vs. Time τ (b) 100M: Wild Pokémon Caught vs. Time τ

Figure 4: Realtime Pokémon Performance. a) Battles won in Pokémon Blue over time for
|θ| = 100M . b) Wild Pokémon caught in Pokémon Blue over time for |θ| = 100M . The parallel
learning baseline considers an effective batch size that is 33 times larger with 33 times fewer updates.

5.1 FASTER PROGRESS THROUGH A REALTIME GAME WITH CONSTANT NOVELTY

Pokémon Blue: Pokémon Blue is a valuable environment for our study due to its long play through
time and constant novelty over many hours of play. Acting quickly is not a necessity to complete
this game as it lets the agent dictate the pace of play, but better players are still differentiated based
on their speed of completing the game. Indeed, the game has a large community of "speed runners"
aiming to complete milestones in record times, with even the fastest milestones taking multiple hours
[64]. It is an interesting domain for our study because acting quickly is only beneficial to the extent
that the agent displays competent behavior, so action throughput alone will not lead to better results
when the quality of play correspondingly suffers. Because Pokémon Blue is known as a challenging
exploration problem that perhaps even exceeds the scope of previous deep RL achievements [23], we
divided the game into two settings based on expert human play: 295 battle encounters (Figure 9a)
and 93 catching encounters (Figure 9b). Agents are deployed in these settings and must complete
each encounter (by winning a battle or catching a Pokémon) before progressing.

Question 1: Can asynchronous approaches achieve faster progress in a realtime strategy game where
constant learning is necessary to move forward even when action inference times are large?

Figure 5: Realtime Tetris Performance
vs. |θ|. The average episodic return over
2,000 episodes of learning. We compare
models with a single inference process to
those that perform staggered asynchronous
inference following Algorithm 1.

Figure 4: For Pokémon Blue we leverage NI = N∗
I and

enough learning threads to learn every 5 environment
steps. We did not find benefit from learning every step
given that the underlying game is not responsive to every
action taken at the frame level. For all models, the explo-
ration rate is annealed from 1.0 to 0.05 over the course
of the first 100,000 steps of learning. We compare to
the standard RL interaction paradigm where inference
and learning are performed sequentially [65] and when
the order is flipped for realtime settings [71]. Our re-
sults in Figures 4a and 4b showcase that asynchronous
inference and learning combine for superior scaling of
realtime performance as models grow. See Appendix A
for results for the 1M and 10M models. The improve-
ment over sequential interaction corresponds with our
expectations given Remarks 1 and 2.

5.2 MAINTAINING PERFORMANCE IN GAMES THAT PRIORITIZE REACTION TIME

Tetris: We also explore the game Tetris (Figure 9c) that presents a different kind of challenge for our
agents where even more of a premium is put on reaction time. In Tetris, the player will lose the game
if they wait indefinitely and do not act in time. While a slow policy can eventually win in Pokémon,
despite taking longer than necessary, a policy that does not act timely cannot progress in Tetris as
new pieces must be moved correctly before they fall on existing pieces.

Question 2: Can asynchronous interaction help for games that prioritize reaction time as |θ| grows?

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: To aid with exploration and jump-start learning, a single episode of human play is provided
to each agent to learn from. The agent continues to learn from a total of 2,000 episodes with an
exploration rate of 0.05. We see that sequential interaction scales quite poorly for games that prioritize
a high frequency of actions and cannot surpass random performance for |θ| ≥1M as we would expect
based on Remark 1. Meanwhile, staggered asynchronous inference following Algorithm 1 can
achieve a much higher reward rate for |θ| >1B as we would anticipate based on Remark 2.

Figure 6: We also provide results for three Atari games with agents trained for 2,000 episodes in
the same setting (see Figure 10), demonstrating superior performance as the model size scales up.
Here we also compare to a deeper ResNet architecture with 30 convolutional layers rather than 15.
The deeper architecture brings up inference times at the same number of total parameters and thus
leads to an even bigger gap between staggered asynchronous and sequential approaches. We find that
the ability for performance to be maintained with asynchronous methods as the model size grows
depends on the game. For example, Boxing includes a very stochastic opponent policy, making it
very hard to maintain human-level performance in the presence of delay, while the Krull environment
is predictable enough for agents to surpass human performance even when delay is significant.

5.3 COMPUTATIONAL SCALING OF ASYNCHRONOUS INTERACTION AND LEARNING

Question 3: How does N∗
I from Remark 2 scale with τ̄θ and the number of parameters |θ|?

Figure 7: We measure N∗
I for Algorithms 1 and 2 when the Game Boy is run at the standard

frequency using an ϵ-greedy DQN policy at ϵ = 0 and ϵ = 0.5. Figure 7a shows that N∗
I scales

roughly linearly with τ̄θ in all cases, as expected for effective staggering (Remark 2). Figure 7b also
demonstrates that N∗

I scales roughly linearly with |θ|. When ϵ = 0, the variance in Tθ is very small
and Algorithms 1 and 2 thus perform the same. When ϵ = 0.5, the variance in Tθ is high because
sampling random actions is very fast, showcasing predictably superior performance for Algorithm 2.
The performance of Algorithm 1 is unaffected by stochasticity in Tθ, but the values of τ̄θ are.

Notation for Asynchronous Learning: We also would like to consider the compute scaling properties
of round-robin asynchronous learning [37]. We now assume that the time to learn from an environment
transition can be treated as a random variable TL with sampled values τL ∼ TL and expected value
τ̄L := E[TL]. N∗

L will denote the number of learning processes such that all NL ≥ N∗
L include at

least one transition learned from for each environment transition.

Question 4: How does N∗
L scale with τ̄L and the number of parameters |θ|?

Figure 8: In Figure 8a we demonstrate that N∗
L grows approximately linearly with τ̄L. This

scaling is in line with what we would expect for the round-robin algorithm with large networks [37].
Additionally, our results in Figure 8b appear to also showcase linear scaling of N∗

L ≥ 1 with |θ|. We
plot three different batch sizes per learning process in each figure to highlight the tradeoff between
efficiency in achieving a particular amortized learning throughput and the number of changes made to

(a) Boxing (b) Krull (c) Name This Game

Figure 6: Realtime Atari Performance vs. |θ|. The average episodic return over 2,000 episodes
of learning. We compare models with a single inference process to those that perform staggered
asynchronous inference following Algorithm 1 in a) Boxing, b) Krull, and c) Name This Game (see
Figure 10). Human performance was reported by [42]. When shading is hard to see, variance is small.
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(a) N∗
I vs. τ̄θ for Algorithms 1 and 2 (b) N∗

I vs. |θ| for Algorithms 1 and 2
Figure 7: a) We plot the scaling behavior of the inference compute requirement N∗

I as the expected
action inference time τ̄θ increases for ResNet polices across CPUs in the Game Boy environment. b)
We plot the scaling behavior of N∗

I instead as a function of the model size |θ|.

(a) N∗
L vs. τ̄L for Round-Robin Learning (b) N∗

L vs. |θ| for Round-Robin Learning

Figure 8: a) We plot the scaling behavior of the learning compute requirement N∗
L ≥ 1 as the

expected transition learning time τ̄L increases for ResNet polices across CPUs in the Game Boy
environment. b) We plot the scaling behavior of N∗

L instead as a function of the model size |θ|.
the parameters in the inference process. Higher batch sizes result in longer and increasingly parallel
updates with better amortized learning throughput using the same number of processes and fewer
changes to the parameters used for inference (as highlighted by τ̄L). Meanwhile, smaller batch size
result in shorter and increasingly sequential updates that lead to worse amortized learning throughput
using the same number of processes and more changes to the parameters used for inference.

6 DISCUSSION

Implications for Software: One difficulty in deploying RL environments within realtime settings is
limitations in current APIs such as Open AI gym [7]. In realtime settings, the environment needs to
run in its own separate process so that it is not blocked by the agent (just like the real world). We hope
that the contribution of our code and environments can thus help jump-start the community’s ability
to conduct research on this important setting. A new paradigm of agent-environment interaction is
needed where 1 process is used for the environment with NI processes dedicated for inference and
NL processes dedicated for learning, depending on specific resource constraints.

Implications for Hardware: Our paper demonstrates the benefits of asynchronous computation
within realtime settings and thus advances in hardware that enable this will serve to amplify the impact
of our findings. Memory bandwidth is a primary bottleneck in allowing for asynchronous computation
with current hardware. So any improvements i.e. in GPU memory bandwidth, in bandwidth across
nodes, or the number of GPUs or CPUs per node will make the scalability of asynchronous approaches
increasingly viable. Taking a longer-term perspective, hardware architectures that move beyond the
von Neumann seperation of memory and compute, such as so called "neuromorphic" computing, will
also serve to enable larger scale asynchronous computation like we see in the brain.

Bigger Models: In this paper, we have taken a deeper look at RL in realtime settings and the viability
of increasing the neural network model size in these environments. Our theoretical analysis of regret
bounds has demonstrated the downfall of models that implement a single action inference process as
model sizes grow (Remark 1) and we have proposed staggering algorithms that address this limitation
for environments that are sufficiently deterministic (Remark 2). Our empirical results playing realtime
games corroborate these findings and demonstrate the ability to perform well with models that are
orders of magnitude larger. While conventional wisdom often leads researchers to think that smaller
models are necessary for realtime settings, our work indicates that this is not necessarily the case and
takes a step towards making realtime foundation model deployment realistic.
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7 REPRODUCIBILITY STATEMENT

In this paper, we fully disclose all the necessary information to reproduce the main experimental
results, as detailed in both Section 5 and Appendix A. We will release all the necessary code along
with detailed instructions to reproduce our results in a comment directed to reviewers once discussion
forums are open following option 3 for releasing anonymous code outlined on the ICLR official
website. We take this approach because we are not authorized to distribute the ROM files for the
Game Boy games publicly. Experimental settings, including hyperparameters needed to reproduce
our results are clearly outlined in the paper and further elaborated on in the appendix. Moreover, we
provide appropriate statistical significance measures in our plots when applicable, such as shading in
Figures 4 and 5 to communicate run-to-run variance. We also include comprehensive information on
the compute resources, such as the type of hardware, memory, and time required for execution, as
outlined in the "Implementation Details" paragraph of Section 5. This ensures that our results are
reproducible, and necessary computational resources are well-specified for accurate replication.
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(a) Pokémon Battling (b) Pokémon Catching (c) Tetris

Figure 9: a) A frame from the final battle of Pokémon Blue when the agent is deciding on the next
move. b) A frame from the final catching encounter of Pokémon Blue when the agent has just
successfully caught Mewtwo. C) A frame from Tetris right before the agent completes its first line.

A FURTHER DETAILS SUPPORTING THE MAIN TEXT

Software Libraries: Our experiments leverage Numpy [19], which is publicly available following a
BSD license. Neural network models were developed using Pytorch [48], which is publicly available
following a modified BSD license. The Gym Retro project [46] used to simulate the Game Boy in a
RL environment is made available following a MIT license. We are not at liberty to distribute the
proprietary ROMs associated with Pokémon or Tetris and each person that deploys our provided code
must separately obtain their own copy.

Environment Details: We depict the environments considered in our paper in Figure 9. We consider
six discrete actions for both Pokémon Blue and Tetris including the A button, the B button, the left
directional button, the up directional button, the right directional button, and the down directional
button. In the Battling Environment when the opponent Pokémon is knocked out by the agent’s
Pokémon a reward of 1 is received and a reward of −1 is received when a users Pokémon is knocked
out. Battles include 1-6 Pokémon for the agent and 1-6 Pokémon for the opponent AI. In the Catching
Environment a reward of 1 is received by the agent when a wild Pokémon is captured and −1 when
the encounter is terminated unsuccessfully. In Tetris we provide changes in the in-game score as
a reward for the agent to learn from. We leverage Atari environments as provided by Gymnasium
[70], specifically using the "NoFrameSkip-v4" variants with action 0 taken for "noops" to simulate
real-world play on a console.

Training Procedure for Tetris: The one episode of human play provided for Tetris included 16,000
steps where non-noop actions were taken. We used our experiments from Figure 7 to calculate
the amount of action delay per step for each model and populated the replay buffer with 16,000
transitions corresponding to these actions with observations delayed by the expected amount for each
model. We the trained the model for 16,000 steps before tuning the model in a simulation of the
environment with the corresponding amount of delay 2,000 for episodes. The episodic reward from
Figure 5 corresponds to the average episodic reward achieved during that training period.

Training Procedure for Atari: We used our experiments from Figure 7 to calculate the amount of
action delay per step for each model. The episodic reward from Figure 6 corresponds to the average
episodic reward achieved during that training period. For the 2xDeep architecture we leveraged a
ResNet model with 6 blocks rather than 3 blocks, which corresponds to 30 convolutional layers rather
than 15 convolutional layers. In the final three blocks each layers has 32k filters where k = 0.0625
corresponds to 70k parameters, k = 0.75 corresponds to 1M parameters, k = 4.75 corresponds
to 10M parameters, k = 18.5 corresponds to 100M parameters, and k = 63 corresponds to 1B
parameters.

Statistical Significance: We also note that error bar shading throughout our paper reflects 95%
confidence intervals computed with three random seeds: 0, 1, and 2.

Notation for Asynchronous Learning: We also would like to consider the compute scaling properties
of round-robin asynchronous learning [37]. We now assume that the time to learn from an environment
transition can be treated as a random variable TL with sampled values τL ∼ TL and expected value
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(a) Boxing (b) Krull (c) Name This Game

Figure 10: Realtime Atari Environments. Frames from the Atari environments a) Boxing, b) Krull,
and c) Name This Game. These particular games were selected because DQN learning is known to
achieve comparable performance to humans within 2,000 episodes when trained without delay.

τ̄L := E[TL]. N∗
L will denote the number of learning processes such that all NL ≥ N∗

L include at
least one transition learned from for each transition in the environment in the long-run. This quantity
is of significant interest because it expresses the number of learning processes needed to learn from
each transition in the environment at least once given the frequency of the environment.

Limitations: In both our experiments on Pokémon Blue and Tetris, performance is well below
human-level. This is because both of these games pose significant exploration problems and we
train our models from scratch for a limited amount of time. We believe that these experiments are
more than sufficient to showcase the benefits of staggered asynchronous inference in comparison
to the sequential interaction framework by showcasing when the latter framework breaks down in
realtime settings. However, we speculate that the results showing that game play does not suffer
despite significant action delay will likely not generalize to more intricate human-level policies.

Algorithm Pseudocode: We provide detailed pseudocode for Algorithm 2, which could not be
included in the main text due to space constraints.

A.1 POKÉMON RESULTS WITH SMALLER MODEL SIZES

Due to space restrictions we were not able to include our experiments for the Pokémon battling and
catching domains with |θ| < 100M in the main text. We provide these results for |θ| = 1M in Figure
11 and |θ| = 10M in Figure 13. As expected by our theory, the difference between asynchronous
interaction and sequential interaction is expected to be less when the action inference time is low. In
this experiment, the sequential interaction baseline acts every 5 steps at 1M parameters, 8 steps at
10M parameters, and 70 steps at 100M parameters. For the Pokemon game it is expected that there
is not much improvement acting at every step as it is well known to speed runners that in common
circumstances the game could take as many as 17 frames to respond to non-noop actions in which
time intermediate actions are "buffered" and not yet registered in the environment [63]. This is a fact
commonly exploited by speed-runners to allow for them to manipulate the RNG of the game and
execute actions in a "frame perfect" manner despite natural human imprecision when it comes to
action timing. As a result, the overall results in this domain are in line with expectations as differences
are most significant when inference times are greater than this 17 environment step threshold.

A.2 PERFORMANCE AS A FUNCTION OF NON-NOOP ACTIONS

In Figures 13a and 13b we observe that the difference between progress through the game for
sequential and asynchronous algorithms per non-noop action is not statistically significant in the
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Algorithm 2 Expected Time Inference Staggering

Initialize: ˆ̄τθ = 0, τtot = 0, and atot = 0
Initialize: delay[processnum] = ϵ(processnum− 1)/NI ∀ processnum ∈ [1, ..., NI ]
Run: INFERENCE[processnum] ∀ processnum ∈ [1, ..., NI ]

function INFERENCE(processnum)
while alive do

sleep(delay[processnum]) ▷ Sleep for any delays accumulated by other processes
delay[processnum]← 0
a, τθ ∼ πθ(st) ▷ Have the policy sample an action and inference time
atot ← atot + 1
τtot ← τtot + τθ
ˆ̄τ
′

θ ← τtot/atot

δτ ← ˆ̄τ
′

θ − ˆ̄τθ
if δτ ≥ 0 then ▷ Wait more further from the current process

for num ̸= processnum ∈ [1, ..., NI ] do
delay[num]← delay[num] + dist(num, processnum) abs(δτ)/NI

else ▷ Wait more closer to the current process
for num ̸= processnum ∈ [1, ..., NI ] do

delay[num]← delay[num] + (NI − 1)dist(num,processnum) abs(δτ)/NI

at+⌈τθ/τM⌉ ← a ▷ Register action in environment

(a) 1M: Pokémon Battles Won vs. Time τ (b) 1M: Wild Pokémon Caught vs. Time τ

Figure 11: Realtime Pokémon Performance for Staggered Asynchronous Interaction & Learning.
a) Battles won in Pokémon Blue as a function of time for |θ| = 1M . b) Wild Pokémon caught in
Pokémon Blue as a function of time for |θ| = 1M .

(a) 10M: Pokémon Battles Won vs. Time τ (b) 10M: Wild Pokémon Caught vs. Time τ

Figure 12: Realtime Pokémon Performance for Staggered Asynchronous Interaction & Learning.
a) Battles won in Pokémon Blue as a function of time for |θ| = 10M . b) Wild Pokémon caught in
Pokémon Blue as a function of time for |θ| = 10M .
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(a) 100M: Pokémon Battles Won vs. Number of
Non-Noop Actions

(b) 100M: Wild Pokémon Caught vs. Number of
Non-Noop Actions

Figure 13: Realtime Pokémon Performance for Staggered Asynchronous Interaction & Learning.
a) Battles won in Pokémon Blue as a function of non-noop actions taken in the environment for
|θ| = 100M . b) Wild Pokémon caught in Pokémon Blue as a function of non-noop actions taken in
the environment for |θ| = 100M .

Pokémon battling and catching environments. As such, our asynchronous algorithm takes full
advantage of the increased throughput of non-noop actions taken in the environment.

B PROOFS FOR EACH THEORETICAL STATEMENT

Our proofs rely on the following core assumptions, restated from the main text:

1. The environment step time can be treated as an independent random variable TM with
sampled values τM ∼ TM and expected value τ̄M := E[TM].

2. The environment interaction time can be treated as an independent random variable TI with
sampled values τI ∼ TI and expected value τ̄I := E[TI ].

3. The action inference time of the policy can be treated as an independent random variable Tθ

with sampled values τθ ∼ Tθ and expected value τ̄θ := E[Tθ].

4. Asynchronous learning can learn from every interaction with M̃delay.

B.1 DEFINITION 1

Most of Definition 1 just recaps the dynamics of how the agent interacts with an asynchronous ground
MDP following assumptions 1-3 about the nature of that interaction. All that is left to show is that this
can be viewed as a delayed MDP and that it can be viewed as a semi-MDP. The interaction process
highlighted in Definition 1 matches that of a Random Delay Markov Decision Process (RDMDP)
[6] where the action delay distribution is defined by the random variable ⌈τθ/τM⌉. To show it is a
semi-MDP as well, we consider the same proof style of Theorem 1 in Sutton et al. [66]:

A semi-MDP consists of (1) a set of states, (2) a set of actions, (3) for each pair of state and action,
an expected cumulative discounted reward, and (4) a well-defined joint distribution of the next state
and transit time. We now demonstrate each of these properties. The set of states is S and the set of
actions is A. The expected reward and the next-state and transit-time distributions are well defined
for every state and delayed action. These expectations and distributions are well defined because
Masync is Markov, thus the next state, reward, and time are dependent only on the delayed action
chosen and the state in which it was initiated. Transit times with arbitrary real intervals are permitted
in semi-MDPs.

B.2 THEOREM 1

To prove Theorem 1 we will demonstrate the validity of each equation of the theorem following the
order of presentation in the main text.

Equation 1: By definition ∆learn(τ) and ∆inaction(τ) must be independent contribution to the total
regret because learning regret is only incurred when acting in the environment following π and
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inaction regret is only incurred when not acting in the environment and thus following the default
behavior policy β. The interaction frequency does not depend on the parameter values of π as they
change following from the independent random variable assumption. Even when regret from learning
is eliminated and regret from inaction is eliminated there is still another independent source of regret
that persists ∆delay(τ) reflecting the lower reward rate of the best possible policy in acting over M̃delay
in comparison to the best possible policy acting overMasync.

Equation 2: The worst case lower bound for the standard notion of regret arising from the need for
learning and exploration has been established as ∆learn(T ) ∈ Ω(

√
T ) where T denotes the number

of discrete learning steps taken in the environment. Given that we learn from every asynchronous
interaction with the environment following assumption 4, then the regret as a function of τ scales
with the expected number of discrete environment steps as a function of T i.e. E[T (τ)] = τ/τ̄I
because TM and TI are independent. Therefor, ∆learn(τ) ∈ Ω(

√
τ/τ̄I). As noted in the footnote in

the main text, this analysis equally applies to the known ∆learn(T ) ∈ Õ(
√
T ) minimum upper bound

[47].

Equation 3: The worst case lower bound on ∆inaction(τ) is derived by considering a worst case
environment with two actions a1 and a2 and two states s1 and s2 where the default behavior β
takes its own action a3 at every state. The reward provided is 1 at s1 and 0 at s2. The next state
is s1 regardless of the state if either a1 or a2 is taken and s2 if a3 is taken. In this environment
the optimal reward rate is 1 and the reward rate when following β is 0.0. The expected number of
times a3 is taken during τ seconds inMasync is then τ/τ̄I × (τ̄I − τ̄M)/τ̄M because β is used for
(τ̄I − τ̄M)/τ̄I percent of ground MDP actions and the expected number of actions taken over τ is
τ/τ̄M when TM and TI are independent. Therefor, ∆inaction(τ) ∈ Ω((τ/τ̄I) × (τ̄I − τ̄M)/τ̄M)
for this particular environment. Meanwhile, the expected inaction regret is also upper bounded by
∆inaction(τ) ≤ rmax × (τ/τ̄I)× (τ̄I − τ̄M)/τ̄M where rmax is the maximum possible reward per step
because by definition the agent cannot incur regret from inaction when it is acting in the environment.
Therefor, we have demonstrated that Equation 3 holds.

Equation 4: The worst case lower bound on ∆delay(τ) is derived by considering a worst case
environment with n states S = {s1, ..., sn} and n actions A = {a1, ..., an} where the default
behavior β takes its own action a0 at every state. If the agent takes the action ai corresponding to
the state si for any i ∈ {1, ..., n} the agent receives a reward of 1, otherwise it receives a reward
of 0. The agent stays in the current state si regardless of the action with probability pminimax and
goes to the next state in the cycle si+1 with probability 1− pminimax where pminimax ≥ 1/n because
the sum over next state probabilities must equal 1. After state sn the agent returns to state s1. The
probability of staying in the current state for k consecutive environment steps is (pminimax)

k and in
the limit as n→∞ this is also the probability that the agent is in the current state k steps later. If
the agent is not in the current state k steps later, the agent will apply a sub-optimal action based on
the old state because no state will overtake the current state as more likely than the current state
with the state likelihoods converging to uniform in the limit as k →∞ when the Markov chain fully
mixes. So the regret per ground environment step incurred by the optimal policy that acts with k step
lag is 1− (pminimax)

k. Thus, the best expected regret rate per step that can be ensured with actions
delayed by k = ⌈τθ/τM⌉ is ≥ E[1 − (pminimax)

⌈τθ/τM⌉]. Moreover, the expected number of steps
taken in the asynchronous MDP over τ seconds is τ/τ̄I , so we can lower bound the expected regret
as ∆delay(τ) ≥ (τ/τ̄I)× E[1− (pminimax)

⌈τθ/τM⌉]. This then leads us to the conclusion of Equation
4 from the main text that ∆delay(τ) ∈ Ω((τ/τ̄I)× E[1− (pminimax)

⌈τθ/τM⌉]).

Tighter Version of Equation 4: While the definition of pminimax in the main text holds for the counter
example above, this example relies on the fact that transitioning states actually has an impact on the
reward of a policy and its value function. In general, it does not matter if the state changes if the
change does not impact the optimal policy. So a tighter version of pminimax would be defined over a
π∗-irrelevance state abstraction ϕπ∗ of the state space rather than the ground state space, following
the terminology of [38]. In a ϕπ∗ abstraction every abstract state in ϕπ∗(S) has an action a∗ that is
optimal for all the ground states i and j in that abstract state. As a result, ϕπ∗(si) = ϕπ∗(sj) implies
that maxa∈A Qπ∗

(si, a) = maxa∈A Qπ∗
(sj , a) For example, a tighter version of Equation 4 could

be written with pminimax := mins∈S,a∈A maxϕπ∗ (si)∈ϕπ∗ (S)

∑
ϕπ∗ (sj)=ϕπ∗ (si)

p(sj |s, a).
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B.3 REMARK 1

We restate the derivation of the remark from the main text, filling in a bit more detail for clarity.
When π andMasync interact sequentially, we must have τI ≥ τθ, so ∆inaction(τ) ∈ Ω(τ/τ̄I × (τ̄I −
τ̄M)/τ̄M) ∈ Ω(τ/τ̄θ × (τ̄θ − τ̄M)/τ̄M). This implies that even as τ → ∞, the worst case regret
rate ∆realtime(τ)/τ ∈ Ω(∆inaction(τ)/τ) ∈ Ω((τ̄θ − τ̄M)/τ̄Mτ̄θ) following from Theorem 1.

B.4 REMARK 2

Interaction Time of Algorithm 1: At any point in time, by definition τ̂max
θ ≤ τmax

θ as the estimated
maximum must be less than or equal the current maximum. Therefore, with NI equally spaced
processes, the interaction time must be τI = ⌈τ̂max

θ /NI/τM⌉ × τM and Algorithm 1 ensures equal
spacing between processes whenever τ̂max

θ does not change. Regardless of the changing value of
τ̂max
θ , we can also bound the individual interaction time steps τI ≤ ⌈τmax

θ /NI/τM⌉ × τM and
correspondingly the global average τ̄I ≤ τmax

θ /NI when τ̄I > τ̄M and τ̄I = τ̄M otherwise.

Interaction Time of Algorithm 2: As τ →∞, τ̂θ → τ̄θ due to the law of large numbers and thus
δτ → 0, which implies that additional waiting times become zero in the limit. Therefore, with NI
equally spaced processes, the interaction time must be τI = ⌈τ̄θ/NI/τM⌉ × τM and Algorithm 2
ensures equal spacing between processes whenever τ̂θ does not change and δτ = 0. Thus, as τ →∞
the global average is τ̄I = τ̄θ/NI when τ̄I > τ̄M and τ̄I = τ̄M otherwise.

Bringing it Together: Algorithm 1 is capable of scaling the expected interaction time with the
number of processes by τ̄I ≤ min(τmax

θ /NI , τ̄M) where τmax
θ is the maximum encountered value of

τθ as τ →∞. This then implies that for NI ≥ N∗
I = ⌈τmax

θ /τ̄M⌉, τ̄I = τ̄M. Algorithm 2 is capable
of scaling the expected interaction time with the number of processes by τ̄I = min(τ̄θ/NI , τ̄M) as
τ →∞ following the law of large numbers. This then correspondingly implies that for NI ≥ N∗

I =
⌈τ̄θ/τ̄M⌉, τ̄I = τ̄M.

B.5 COMPARISON WITH ACTION CHUNKING APPROACHES

The action chunking approach learns a policy that produces multiple actions at a time with a single
inference step i.e. a policy πθ(at, ..., at+k|st) that produces k actions at a time. Clearly action
chunking does not address the root cause of regret from delay ∆delay(τ) that our asynchronous
inference framework also suffers from as k steps of delay is built directly into the policy. However, it
is less clear on the surface how the action chunking approach relates to ∆learn(τ) and ∆inaction(τ).

Does action chunking eliminate ∆inaction(τ)? Action chunking could eliminate regret from inaction
if τmax

θ /k = τM. But this is not possible for any value of τmax
θ with sufficiently large k because τmax

θ
must depend on k as the size of the outputs produced scales linearly with k. So action chunking can
eliminate inaction for some policy classes, but not in general as policy inference times become large.
Our asynchronous inference approach provides a more general result in this regard (see Remark 2).

Does action chunking impact ∆learn(τ)? A hidden term excluded from our bound of ∆learn(τ) in
the main text is a dependence on the size of the action space |A| such that ∆learn(τ) ∈ Ω(

√
τ |A|/τ̄I)

[24]. We suppressed this dependence for clarity in the main text, but it is important to keep in mind
when considering action chunking approaches as this implies that the regret lower bound scales with√
|A|k and thus can lead to an exponentially worse regret from learning ∆learn(τ) even in cases

where ∆inaction(τ) is eliminated with sufficiently large k.

B.6 ACHIEVING SUBLINEAR REGRET WITH STAGGERED ASYNCHRONOUS INFERENCE

As we have demonstrated in Remark 2, when enough asynchronous threads are provided, a model of
any size can eliminate regret from inaction. Regret from delay is not addressed by this approach, but
goes to zero in deterministic environments. As a result, to demonstrate that total regret is sublinear
for deterministic environments following Equation 1, we must only show that ∆learn(τ) can be upper
bounded by a quantity sublinear in τ . For example, if we use Q-Learning as we do in our experiments,
there are known upper bounds for the case of utilizing optimistic exploration with a carefully designed
learning rate of ∆learn(T ) ∈ Õ(

√
T ) where T is the number of steps in the environment [25]. In

expectation E[T ] = τ/τ̄M, so the upper bound on the expected regret will be ∆learn(T ) ∈ Õ(
√
τ)
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as τ̄M is a constant. As a result, our approach can achieve sublinear regret whenever ∆delay(τ) is
sublinear, which includes but is not limited to all deterministic environments.

C TOWARDS ENABLING REAL-WORLD DEPLOYMENT OF AGENTS IN EVEN
MORE COMPLEX SCENARIOS

Designing Safe Default Policies β: In our work, we assume β performs poorly such that it is unsafe
and thus our goal with asynchronous interaction is to avoid using it altogether. However, an alternate
research direction motivated by our formulation in Definition 1 would be to work on refining the β
function itself such that relying on it is guaranteed to be safe and not lead to irrevertible consequences.
This is, for example, a major difference between the implementation of β in the games Pokémon
and Tetris. In Pokémon inaction does not prohibit the agent from eventually achieving success
in the game, whereas in Tetris inaction leads to missed opportunities that can never be overcome.
This materializes in our empirical results as we see a slower degradation of performance for the
sequential interaction baseline as the model size grows for Pokémon. That said, the limitation of our
asynchronous inference approach is that policies are based on previous states, which can itself be
unsafe in stochastic environments. In this case, it would be logical to also consider beneficial and safe
ways to modify β itself, which can then just be viewed as another model that happens to have a faster
inference time that should also be provided resources for asynchronous learning. This case closely
mirrors the options framework [66; 3] and variants of it that consider deep hierarchies of policies
[54; 56; 1]. As we do not want β itself to lead the agent to OOD states, it probably would make sense
to train this policy with a pessimism bias [36; 26] or with a monitor for change points.

Broader Domains with Diverse Subtasks or Nonstationarity: When it comes to both learning a
policy over the delayed semi-MDP and learning a default behavior policy, a key challenge is to adapt
these policies to changing environment dynamics and new scenarios. Broadly, this is referred to as
Continual RL (see [30] for a comprehensive survey). On the optimization end, these settings require
consideration of the stability-plasticity dilemma. For example, we used recency based replay buffers
in this work that have been standard in the RL literature since [42]. However, this recency based
buffer maintenance strategy only makes sense when we are purely focused on plasticity. A reasonable
alternative for continual learning would be buffers based on reservoir sampling [53] to emphasize
stability or scalable memory efficient approximate buffers [55]. Another way to promote stability
during learning is with regularization based approaches. For example, approaches that leverage
knowledge distillation from old versions of models [39; 52] or approaches that penalize movement
in parameter space [34]. In settings where subtasks are diverse it is also important to consider that
the optimal interaction frequency may depend on the context. In this case, it may be beneficial to
consider algorithms that adaptively select which layers to process at inference time [58; 8; 9], see [59]
for a survey of approaches. More generally, this adaptive computation problem can be formalized
within the coagent networks framework [68; 35; 78]. Moreover, in the case of POMDPs, it may make
sense to adaptively change the interaction history context length sent to our policy to tradeoff the
extent of modeling non-Markovian dependencies with inference and evaluation times [57].

Interacting in Multi-agent Settings: Another key consideration when generalizing our approach
to more realistic settings is interacting with other agents in the environment. While asynchronous
interaction can definitely help eliminate inaction, the amount of tolerable delay depends not just on
the environment, but also on the behavior of other other agents in the environment. For example,
the Boxing environment considered in our experiments from Figure 6 can also be played as a two
agent game. We find that it is very difficult to perform on human-level in this environment even
with delay as low as 3 environment steps, which ties back to the stochasticity of the policy used
by the AI in single player mode. Another key challenge in multi-agent environments is when the
policies of the other agents change i.e. due to learning, which makes the environment nonstationary
from the perspective of each agent. When the agents are trained in a centralized fashion, they can be
considered in each others updates to mitigate this nonstationarity [40]. However, in the more typical
decentralized setting agents must build theory of mind models to speculate about the (changing)
behavior of other agents [50] which must be carefully constructed for scalability in the presence of
many other agents [41; 69]. Effective approaches have been developed to address this challenges by
meta-learning with respect to the updating policies of other agents [17; 18; 31; 75; 32]. In order to
generalize our theoretical results in Theorem 1 to environments with multiple learning agents, we
would have to consider regret with respect to complex game-theoretic solution concepts [33]. As
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such, we leave consideration of these approaches and exploration of a formulation for realtime regret
in this setting to future work.
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