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ABSTRACT

Video Instance Segmentation (VIS) development heavily relies on fine-tuning pre-
trained models initially trained on images. However, there is often a significant gap
between the pre-training on images and fine-tuning for video, which needs to be
noticed. In order to effectively bridge this gap, we present a novel approach known
as “video pre-training” to achieve substantial improvements in VIS. Notably,
our approach has enhanced performance on complex video datasets involving
intricate instance relationships. Our primary contribution is minimizing disparities
between the pre-training and fine-tuning stages at both the data and modeling levels.
Specifically, we introduce the concept of consistent pseudo-video augmentations
to enrich data diversity while maintaining instance prediction consistency across
both stages. Additionally, at the modeling level for pre-training, we incorporate
multi-scale temporal modules to enhance the model’s understanding of temporal
aspects, allowing it to better adapt to object variations and facilitate contextual
integration. One of the strengths of our approach is its flexibility, as it can be
seamlessly integrated into various segmentation methods, consistently delivering
performance improvements. Across prominent VIS benchmarks, our method
consistently outperforms all state-of-the-art methods. For instance, when using a
ResNet-50 as a backbone, our approach achieves a remarkable 4.0% increase in
average precision (AP) on the most challenging VIS benchmark, OVIS, setting a
new record. The code will be made available soon.

1 INTRODUCTION

Video Instance Segmentation (VIS) is an integrated task encompassing the concurrent processes of
classifying, segmenting, and tracking instances within a video sequence. Since first introduced by
Yang et al. (2019a), this task has facilitated a wide range of applications, including but not limited
to autonomous driving, video editing, and video understanding. Existing VIS methodologies are
typically categorized into two primary paradigms: online (Yang et al., 2019a; 2021; Huang et al.,
2022; Wu et al., 2022b; Heo et al., 2022a; Ying et al., 2023; Zhang et al., 2023) and offline (Wang
et al., 2021; Cheng et al., 2021a; Wu et al., 2022a; Heo et al., 2022b; Zhang et al., 2023) methods.
Online VIS methodologies perform frame-by-frame segmentation of video sequences and then utilize
matching techniques to track instances. In contrast, offline VIS approaches process the entire video
sequence in a single pass, seamlessly integrating tracking and segmentation. While both online and
offline methods offer unique advantages, they share a fundamental reliance on a robust pre-trained
model for image-level instance segmentation as their foundation.

While current methods have undoubtedly pushed the boundaries of VIS, models primarily pre-
trained on images introduce limitations to the performance of VIS, especially when dealing with
lengthy and intricate video sequences. This limitation stems primarily from the more significant cost
and complexity associated with annotating video data compared to images, resulting in relatively
small video datasets that often consist of just a few hundred or thousand videos. Consequently,
contemporary VIS research has been compelled to rely on image pre-training. However, to bridge the
divide between images and videos, existing VIS approaches require the integration of increasingly
complex temporal modules to furnish richer information for tracking instances within video sequences.
Heo et al. (2022b); Yang et al. (2021); Hwang et al. (2021) have explored leveraging pre-trained
models with parameters initialized toward video tasks. However, the frame count during pre-training
is typically set to 1, which aligns with image pre-training paradigms. Consequently, these methods
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Figure 1: Pipelines of previous methods and our method. The difference lies in that we utilize the
pre-trained temporal model rather than image model as the initialized weights, which improves the
consistency of the pre-trained and fine-tune stages.

yield more significant improvements when applied to more straightforward video datasets, with their
fundamental enhancements rooted in image segmentation.

Given the scarcity of video data, several studies Ying et al. (2023); Zhang et al. (2023); Heo et al.
(2022a); Wu et al. (2022b); Heo et al. (2022b) have put forth methods that rely on data augmentation
to create pseudo-videos as a means to tackle this limitation. Nonetheless, these methods frequently
neglect the critical aspect of preserving consistency between successive frames during the pseudo-
video generation process. These data augmentation techniques, including Cutmix Yun et al. (2019b);
French et al. (2019); Yun et al. (2019a), involve the random selection of an image from the dataset
and the subsequent pasting of a portion of it onto images or videos. However, maintaining temporal
coherence between frames is often overlooked in the application of these techniques. While this
approach can be effective in improving dataset diversity for image segmentation tasks, it can pose
challenges in the context of complex video tasks, especially when dealing with numerous instances
that exhibit similarities in categories, sizes, and shapes. Consequently, we contend that there is a
pressing need for a more refined methodology that not only enriches data diversity but also guarantees
the consistency of video sequences.

Many online VIS(Yang et al., 2019a; 2021; Huang et al., 2022; Wu et al., 2022b; Heo et al., 2022a;
Ying et al., 2023; Zhang et al., 2023) methods typically carry out association and tracking on the
video sequence after completing single-frame segmentation to maintain segmentation performance.
However, our results demonstrate that engaging with the video sequence through temporal modules
during the segmentation phase can be significantly beneficial in enhancing performance. Nevertheless,
exceptions exist. Offline VIS(Wang et al., 2021; Cheng et al., 2021a; Wu et al., 2022a; Heo et al.,
2022b; Zhang et al., 2023) methods often introduce an excessive number of temporal modules during
fine-tuning, which can lead to subpar single-frame segmentation performance. In response to this
challenge, the DVIS approachZhang et al. (2023) employed a somewhat cumbersome strategy. It
initially froze the pre-trained model to train an online model and then froze all parameters of the online
model, subsequently training a new set of temporal modules for the offline method. Consequently,
we propose a more efficient approach: directly incorporating temporal modules during pre-training
with video inputs.

Given the scarcity of video data, several studies Ying et al. (2023); Zhang et al. (2023); Heo et al.
(2022a); Wu et al. (2022b); Heo et al. (2022b) have put forth methods that rely on data augmentation
to create pseudo-videos to tackle this limitation. Nonetheless, these methods frequently need to
pay more attention to preserving consistency between successive frames during the pseudo-video
generation process. These data augmentation techniques, including Cutmix Yun et al. (2019b); French
et al. (2019); Yun et al. (2019a), involve randomly selecting an image from the dataset and pasting a
portion onto images or videos. However, maintaining temporal coherence between frames is often
overlooked in applying these techniques. While this approach can effectively improve dataset diversity
for image segmentation tasks, it can pose challenges in complex video tasks, especially when dealing
with numerous instances that exhibit similarities in categories, sizes, and shapes. Consequently, there
is a pressing need for a more refined methodology that enriches data diversity and guarantees video
sequences’ consistency.
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Many online VIS(Yang et al., 2019a; 2021; Huang et al., 2022; Wu et al., 2022b; Heo et al., 2022a;
Ying et al., 2023; Zhang et al., 2023) methods typically carry out association and tracking on the
video sequence after completing single-frame segmentation to maintain segmentation performance.
However, our results demonstrate that engaging with the video sequence through temporal modules
during the segmentation phase can significantly enhance performance. Nevertheless, exceptions exist.
Offline VIS(Wang et al., 2021; Cheng et al., 2021a; Wu et al., 2022a; Heo et al., 2022b; Zhang et al.,
2023) methods often introduce excessive temporal modules during fine-tuning, leading to subpar
single-frame segmentation performance. In response to this challenge, the DVIS approachZhang et al.
(2023) employed a somewhat cumbersome strategy. It initially froze the pre-trained model to train
an online model and then froze all parameters of the online model, subsequently training a new set
of temporal modules for the offline method. Consequently, we propose a more efficient approach:
directly incorporating temporal modules during pre-training with video inputs.

In this paper, we argue that the primary bottleneck in VIS stems from the disparities between the
pre-training and fine-tuning stages, encompassing data and model aspects. To tackle these challenges,
we present a novel video pre-training method. Specifically, we introduce a consistent pseudo-video
augmentation approach at the data level to maximize the potential for maintaining consistency within
the generated pseudo-video sequences. In generating pseudo videos, we employ a technique where
we replicate the same image multiple times, with the number of replications determined by the
desired length of the pseudo video. Subsequently, we select an instance from the current frame
and, to preserve video consistency, subject it to a series of subtle and random augmentations before
pasting it into every frame of the pseudo videos. This approach effectively replicates instance motion
and addresses common occlusion scenarios commonly encountered in videos. It proves particularly
valuable when dealing with complex video datasets where instances often share strikingly similar
sizes, shapes, and colors, making their distinction challenging. At the modeling level, we propose
the integration of a multi-scale temporal module that encompasses both short-term and long-term
temporal considerations. This module is utilized in both the pre-training and fine-tuning phases, and
its addition is strategically aimed at enhancing the model’s capacity during pre-training. It achieves
this by improving the model’s comprehension of temporal dynamics across various time scales
and facilitating the contextualization of information. Initializing these temporal modules during
pre-training is paramount for success in downstream video-related tasks. In summary, our approach
offers several noteworthy contributions:

• We introduce an innovative video pre-training method that utilizes consistent pseudo-video aug-
mentation techniques to enrich the diversity of pseudo-videos while preserving their consistency.
This augmentation strategy effectively narrows the gap between pre-training and video fine-tuning
at the data level, resulting in improved performance for both image and video tasks.

• To infuse temporal knowledge into the pre-trained temporal model, our method incorporates
a straightforward yet highly effective multi-scale temporal module during pre-training. This
module encompasses short-term and long-term temporal considerations, aiming to bolster the
model’s capabilities through pre-training and video fine-tuning. It achieves this by enhancing
the model’s understanding of temporal dynamics across different time scales and facilitating the
contextualization of information.

• Our approach establishes new benchmarks in Video Instance Segmentation (VIS), achieving
state-of-the-art performance across three major benchmarks: OVIS, YouTube-VIS 2019, and
2021. Furthermore, the modules we introduce can seamlessly integrate into other segmentation or
detection methods, offering substantial performance improvements.

2 RELATED WORK

2.1 INSTANCE SEGMENTATION

In the realm of instance segmentation, researchers have explored two predominant categories of
approaches: traditional instance segmentation methods (He et al., 2017; Ren et al., 2017; Chen et al.,
2019; Long et al., 2015) and transformer-based techniques (Cheng et al., 2022; Carion et al., 2020;
Zhu et al., 2020; Zhang et al., 2021; Fang et al., 2021; Li et al.; Zhang et al.). These approaches have
proven effective in predicting binary masks associated with object instances and their corresponding
class labels. Traditional instance segmentation methods have historically been rooted in object
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detection models. Their objective is to predict a set of binary masks and corresponding categories. For
instance, Mask R-CNN (He et al., 2017) extends the Faster R-CNN (Ren et al., 2017) detection model
by incorporating a parallel mask branch alongside the detection branch. While it has significantly
advanced instance segmentation, it relies on numerous heuristic designs and the careful tuning of
multiple hyperparameters.

The prevailing trend centers around fine-tuning primarily on Transformer-based pre-training models
specialized for instance segmentation. Transformer-based methods have substantially simplified the
instance segmentation pipeline and have gained widespread recognition in the VIS domain. These
models harness the capabilities of Transformers, initially designed for natural language processing,
and adapt them to computer vision. One notable innovation in this regard is the Mask2Former
approach (Cheng et al., 2022), which introduces masked attention mechanisms into the Transformer
architecture. This approach unifies various segmentation tasks, including instance, semantic, and
panoptic segmentation (Cheng et al., 2021b; Zhang et al., 2021). These Transformer-based methods
represent a significant leap forward in VIS, showcasing the adaptability of Transformer architectures
to complex computer vision tasks.

2.2 VIDEO INSTANCE SEGMENTATION

Online VIS methods operate in real-time and often rely on image-level instance segmentation
models as their foundation. MaskTrack R-CNN(Yang et al., 2019a), for instance, extends the Mask
R-CNN(He et al., 2017) architecture by introducing a tracking head for associating instances across
video frames using heuristic cues. IDOL(Wu et al., 2022b) employs a memory bank during inference
to match newly detected foreground instance embeddings with previously stored embeddings from
prior frames. Another noteworthy approach is CTVIS(Ying et al., 2023), which draws inspiration from
online methods’ inference stage to learn more robust and discriminative instance embeddings during
training. Most existing Online VIS methods introduce temporal modules after the segmentation is
completed. Typically, segmentation and tracking are treated as separate entities. However, introducing
simple temporal modules during the segmentation phase can enhance tracking capabilities without
compromising segmentation performance. Further, augmentation through video pre-training to
initialize these temporal modules is anticipated to yield even more significant enhancements.

Offline VIS methods process the entire video in a single pass, using the entire video context during
inference. Mask2Former-VIS(Cheng et al., 2021a) and SeqFormer(Wu et al., 2022a) leverage atten-
tion mechanisms to process spatio-temporal features and directly predict instance mask sequences.
VITA(Heo et al., 2022b) proposes decoding video object queries from sparse frame-level object
tokens rather than dense spatio-temporal features to address memory constraints on highly long
videos.DVIS(Zhang et al., 2023) is a two-stage approach. Initially, DVIS freezes the parameters of
Mask2Former and introduces a referring tracker module, thereby realizing an online model. Subse-
quently, the parameters of the online model are frozen, and a temporal refiner is added to achieve
an offline model. The current trend in offline VIS methods is characterized by an overabundance
of temporal modules introduced during the segmentation process, leading to subpar single-frame
segmentation performance. In order to address this issue, we contend that a more efficient approach
is to seamlessly integrate multi-scale temporal modules with consistent pseudo-video augmentations
at the pre-training phase.

2.3 DATA AUGMENTATION

Currently, the primary focus of research lies in the realm of image augmentation(Zhao et al., 2022;
Cubuk et al.; Yun et al., 2019b; French et al., 2019; Yun et al., 2019a), with a notable scarcity of
methodologies explicitly tailored for augmenting videos. AugSeg (Zhao et al., 2022) is an example
of an approach that employs an auto-augmentation strategy (Zhao et al., 2022; Cubuk et al., 2020;
Cubuk et al.), where random data transformations are selected with distortion intensities uniformly
sampled from a continuous space. In the context of VIS, many existing methodologies rely on data
augmentation techniques to generate pseudo-video sequences. However, these methods often resort
to basic rotations. We introduce a novel augmentation method to enhance the VIS task, as detailed in
Tab. 7 and Tab. 4. Our findings demonstrate that this innovative augmentation technique significantly
improves instance segmentation and VIS performance.
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Figure 2: Detailed pipeline of our method. The pseudo and training videos are inputted to the VIS
temporal network. The temporal network is equipped with a multi-scale temporal block. MSTM:
multi-scale temporal module.

3 METHOD

Table 1: Augmentation pool used in pseudo video.

Identity Autocontrast Equalize Gaussian blur
Contrast Sharpness Color Brightness

Hue Posterize Solarize Rotation

The typical line of VIS methods involves pre-
training instance segmentation models on image
datasets and then fine-tuning the models with
additional temporal modules on video datasets.
As mentioned above, there is a significant gap
between the per-training stage and fine-tuning
stage. To mitigate the disparities between pre-training and fine-tuning for VIS, we adopt a two-
pronged strategy called video per-training. Firstly, we introduce consistent pseudo-video augmenta-
tions at the data level during pre-training to create consistent pseudo-videos from image data used for
pre-training. Besides, we propose multi-scale temporal modules for both pre-training and fine-tuning
stages. The overall pipeline of video pre-training is illustrated in figure 7. In the following, we will
introduce consistent pseudo-video augmentations and multi-scale temporal modules.

3.1 CONSISTENT PSEUDO-VIDEO AUGMENTATIONS

To create pseudo-videos from the image dataset, we propose consistent pseudo-video augmentations
include an auto augmentation technique tailored for videos and, subsequently, a copy & paste
augmentation capable of preserving consistency within individual frames and the entire video
sequence.

3.1.1 VIDEO AUTO AUGMENTATION

The auto augmentation technique, proposed in AugSeg (Zhao et al., 2022), has been found beneficial
in the semi-supervised domain due to its capability to search for the optimal augmentation strategy
tailored to specific downstream tasks. Our approach has been adapted into a video-level automatic
augmentation technique.

Similar to AugSeg, we randomly sample a less than k1 number of augmentations from the augmen-
tation pool, as shown in Tab. 1. However, what differentiates us from AugSeg is that we apply
the same augmentations to the entire video sequence. This is done to ensure no abrupt changes
between consecutive frames. As depicted in the Tab. 2, extensive rotations for individual frames can
introduce dramatic changes between consecutive frames, adversely affecting the video’s performance.
Thus, we opt for rotations within the range of [15, -15] degrees for pseudo videos, simulating the
slow and subtle movements typically observed in most real video instances. As shown in Tab. 3,

1k is empirically set to 3 in our approach.
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applying different augmentations to each frame individually from the augmentation pool (Image)
can result in significant variations between consecutive frames, ultimately leading to a decrease in
overall performance when compared with the setting of applying the same intensity augmentations
and similar rotations on all frames in a video.

Video tasks generally have fewer and more challenging annotations compared to image tasks. There-
fore, this augmentation strategy tailored for video tasks increases the quantity and diversity of video
data by generating pseudo videos.

3.1.2 VIDEO COPY & PASTE AUGMENTATION

Most existing augmentation methods such as Copy & Paste or CutMix-based approaches(Ghiasi
et al., 2021; Ying et al., 2023; Yun et al., 2019b; French et al., 2019; Yun et al., 2019a) have
yielded promising results in image or video segmentation tasks. However, it is often challenging to
directly apply image-based augmentation methods to each video sequence frame while maintaining
consistency between individual and consecutive frames. As shown in Tab. 3, pasting different
instances in each frame can disrupt the video’s consistency, leading to adverse effects (the Image
setting).

Table 2: Ablation study on using
different settings of the rotation an-
gles.

Rotation angles APYV19 APOVIS

±15o 59.7 27.4
±45o 57.8 26.4
±60o 58.8 27.2

Through a thorough analysis of video data, we observed that
instances appearing simultaneously in videos often belong to
the same class. They even exhibit a high similarity in terms
of appearance and size. This phenomenon becomes more
pronounced in more complex datasets, which can lead to the
problem of ID switching during tracking. However, in most
video tasks, instances are often randomly copied from the
dataset and pasted into each video frame.

Those existing augmentation approaches can appear abrupt and
do not seamlessly integrate with the frames it’s pasted onto so
the consistency of individual frames cannot be guaranteed. Therefore, to ensure the consistency of
both individual frames and the entire video sequence, we propose a novel method called video copy
& paste augmentation.

Table 3: Ablation experiments of performance
comparison between different augmentations on
different frames (denoted as Image) and the same
augmentation on all frames in a pseudo video (de-
noted as Video).

Augmentations
YTVIS19 OVIS

Image Video Image Video

Auto Augmentation 59.5 60.0 26.8 27.4
Copy &Paste 59.1 59.8 26.8 27.6

Those existing augmentation approaches can
appear abrupt and do not seamlessly integrate
with the frames it has pasted onto, so the consis-
tency of individual frames cannot be guaranteed.
Therefore, to ensure the consistency of individ-
ual frames and the entire video sequence, we
propose a novel method called video copy &
paste augmentation.

First, we take an image, denoted as I , and repli-
cate it T times. Each image undergoes a simple
yet essential augmentation process, which in-
cludes random angle rotations, to construct the most basic form of pseudo-video, denoted as V .
Subsequently, we randomly select one instance from I as a pivotal instance, denoted as i, along with
its corresponding mask annotation, denoted as m. We then mask out all regions in I except, for
instance i, resulting in iI = I ×m. Following this, we apply minor augmentations, such as flips,
scaling, rotations, and coordinate transformations of the instance center, to iI and m for T iterations,
denoted as At for t-th frame. Finally, we sequentially paste the T frames of iI into the pseudo-video
V . Here, each frame Vt in the pseudo-video can be represented as:

Vt = Vt × (1−At(m)) +At(i
I) (1)

If one instance (its mask m̂) is occluded by the pasted instance in t-th frame, the mask m̂t of the
occluded instance will be represented as:

m̂t = m̂× (1−At(m)) (2)
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Figure 3: The left and right figures respectively depict the performance with varying frame counts
during pre-training, both in the training and inference stages. the optimal performance is achieved
when both the training and inference phases generate a three-frame pseudo video.

3.2 MULTI-SCALE TEMPORAL MODULE

The existing VIS methods introduce temporal modules directly during fine-tuning, rather than during
pre-training. However, the current availability of video datasets is limited to only a few hundred
thousand videos. This implies a severe lack of diversity in terms of categories and scenes. In such
circumstances, direct pre-training on video datasets is infeasible. Therefore, after obtaining pseudo
videos in the previous section, we further reduce the gap between pre-training and fine-tuning on
videos by introducing temporal modelling during pre-training.

Table 4: Ablation experiments of performance
brought by different consistent pseudo-video aug-
mentation techniques in the video pre-training
phase. VCP: Video Copy & Paste; VAA: video
auto augmentations.

Rotation VCP VAA AP APs APm APl

✓ 44.7 24.7 48.3 64.9
✓ ✓ 44.8 24.4 48.8 65.9
✓ ✓ 45.0 25.3 48.7 66.5
✓ ✓ ✓ 45.3 25.4 49.1 66.2

Existing research, such as Mask2Former(Cheng
et al., 2022) or Mask DINO(Li et al.), typi-
cally employs a multi-scale deformable atten-
tion Transformer to extract continuous multi-
scale features denoted as fs (s denotes a scale.).
Then, each fs are input to the multi-scale tempo-
ral module for each scale. Specifically, for each
scale s, we split fs ∈ RT×H×W×D along the
temporal dimension into two dense feature sets,
f1
s , and f2

s ∈ RT
2 ×H×W×D, where T,H,W,

and D represent the number of frames, height,
width, and feature dimension, respectively. The
split features are then recombined into F 1

s = concat(f1
s , f

2
s ) and F 2

s = concat(f2
s , f

1
s ) ∈

RT×H×W×D. The features F 1
s and F 2

s are then fed into a Swin(Liu et al., 2021) block with
self- and cross-attention, and FFN (Feed-Forward Network). During self-attention, F 1

s is used for
queries, keys, and values, while during cross-attention, F 1

s serves as queries and F 2
s as keys and

values. This process is iteratively performed for L layers in a short-term temporal manner, where
the updated fs from each layer serves as the input for the next. This manner effectively establishes
short-term temporal Tl interactions between consecutive frames. Subsequently, we employ the
resulting output fu

s from the Swin block as input for the N ConvGRU (Lin et al., 2022) layers,
facilitating the implementation of a long-term temporal interaction manner that spans the entirety of
the video sequence. Ultimately, we combine the unaltered feature fs with the feature after ConvGRU
to produce the final output, which can be represented as:

fN
s = ConvGRU(fu

s ) + fs (3)

The output multi-scale features from the multi-scale temporal module are then input to an FPN block.
The output of the FPN block is input to the decoders of Mask2Former to make instance segmentation
predictions. The learning objective is the same as Mask2Former.

3.3 DATASETS

We conducted our experiments and reported our results on three distinct VIS datasets, namely
YouTube-VIS 2019(Yang et al., 2019b), YouTube-VIS 2021(Yang et al., 2019b), and OVIS(Qi et al.,
2022). More details of these datasets can be found in A.1. These datasets collectively provide a
diverse range of challenges, including different video durations, object occlusions, complex motions,
and more. They serve as comprehensive benchmarks for assessing the efficacy and robustness
of VIS methods. The unique characteristics of each dataset contribute to the holistic evaluation
of algorithms in various real-world scenarios, offering valuable insights into the strengths and
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Methods
YTVIS19 YTVIS21 OVIS

AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

R
es

N
et

-5
0

MaskTrack R-CNN 30.3 51.1 32.6 31 35.5 28.6 48.9 29.6 26.5 33.8 10.8 25.3 8.5 7.9 14.9
Mask2Former-VIS 46.4 68 50 - - 40.6 60.9 41.8 - - 17.3 37.3 15.1 10.5 23.5

SeqFormer 47.4 69.8 51.8 45.5 54.8 40.5 62.4 43.7 36.1 48.1 15.1 31.9 13.8 10.4 27.1
MinVIS 47.4 69 52.1 45.7 55.7 44.2 66 48.1 39.2 51.7 25 45.5 24 13.9 29.7
IDOL 49.5 74 52.9 47.7 58.7 43.9 68 49.6 38 50.9 30.2 51.3 30 15 37.5
VITA 49.8 72.6 54.5 49.4 61 45.7 67.4 49.5 40.9 53.6 19.6 41.2 17.4 11.7 26

GenVIS 51.3 72.0 57.8 49.5 60.0 46.3 67.0 50.2 40.6 53.2 35.8 60.8 36.2 16.3 39.6
DVIS 52.6 76.5 58.2 47.4 60.4 47.4 71.0 51.6 39.9 55.2 33.8 60.4 33.5 15.3 39.5

CTVIS 55.1 78.2 59.1 51.9 63.2 50.1 73.7 54.7 41.8 59.5 35.5 60.8 34.9 16.1 41.9
Ours 56.0 78.6 60.8 51.3 63.4 53.4 75.9 57.6 45.2 61.4 39.5 65.4 39.1 17.4 45.2

Sw
in

-L

SeqFormer 59.3 82.1 66.4 51.7 64.6 51.8 74.6 58.2 42.8 58.1 - - - - -
Mask2Former-VIS 60.4 84.4 67 - - 52.6 76.4 57.2 - - 25.8 46.5 24.4 13.7 32.2

MinVIS 61.6 83.3 68.6 54.8 66.6 55.3 76.6 62 45.9 60.8 39.4 61.5 41.3 18.1 43.3
VITA 63 86.9 67.9 56.3 68.1 57.5 80.6 61 47.7 62.6 27.7 51.9 24.9 14.9 33
IDOL 64.3 87.5 71 55.5 69.1 56.1 80.8 63.5 45 60.1 42.6 65.7 45.2 17.9 49.6

GenVIS 64.0 84.9 68.3 56.1 69.4 59.6 80.9 65.8 48.7 65.0 45.4 69.2 47.8 18.9 49.0
DVIS 64.9 88.0 72.7 56.5 70.3 60.1 83.0 68.4 47.7 65.7 48.6 74.7 50.5 18.8 53.8

CTVIS 65.6 87.7 72.2 56.5 70.4 61.2 84 68.8 48 65.8 46.9 71.5 47.5 19.1 52.1
Ours 65.1 86.0 71.7 56.1 69.9 62.2 83.1 69.1 48.8 67.1 49.4 72.9 52.5 20.1 54.2

Table 5: Quantitative comparison between our method with previous state-of-the-art methods. The
best and second best are highlighted by bold and underlined numbers, respectively.

weaknesses of different approaches. Besides, the pseudo-videos are constructed on the widely used
instance segmentation dataset, COCO (Lin et al., 2014).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Model Setting. We adopt the framework of instance segmentation methods such as Mask2Former or
Mask DINO as our instance segmentation network. Unless otherwise specified, ResNet-50(He et al.,
2016) is set as the backbone. To ensure a fair comparison with state-of-the-art methods, we maintain
all the original settings of the baseline methods(Cheng et al., 2022; Ying et al., 2023) without any
modifications. For the sake of a fair comparison, we have exclusively compared other methods with
DVIS when it performed inference with a 480px setting on OVIS benchmark.

Data Augmentation. We employ the proposed consistent pseudo-video augmentation technique
to create pseudo videos from images in the COCO dataset for the pre-training phase. During
the fine-tuning phase, the pseudo-videos and VIS datasets are used to train VIS models jointly.
During pre-training and fine-tuning, the pseudo video sequences consist of 3 frames and 10 frames,
respectively.

4.2 MAIN RESULTS

We conducted a comparative analysis of our approach using both ResNet-50 and Swin-L as backbones
against SOTA methods on the three primary VIS benchmarks: YouTubeVIS 2019, YouTubeVIS 2021,
and OVIS. The performance and visualization results are presented in Tab. 5 and A.5, respectively.

YouTubeVIS 2019 predominantly consists of rather simplistic short videos. Consequently, with a
ResNet-50 backbone, our method on YouTubeVIS 2019 showed a mere 0.9% AP increase. Interest-
ingly, leveraging the Swin-L backbone in our method on YouTubeVIS 2019, our approach lagged the
SOTA by 0.5% AP. This disparity can be attributed to the lack of complexity in the videos, rendering
them less sensitive to temporal modules.

YouTubeVIS 2021, an extension of YouTubeVIS 2019, includes a broader array of longer and more
intricate videos. In this context, our approach exhibited noteworthy improvements, yielding a 3.3%
AP boost with ResNet-50 as the backbone and a 1.0% AP enhancement with Swin-L as the backbone.

OVIS, featuring the longest and most intricate video sequences among the three benchmarks, serves
as a litmus test for evaluating the effectiveness of video pretraining. Our approach demonstrated
significant performance gains, with a 4.0% AP improvement using ResNet-50 as the backbone and
a 2.5% AP enhancement with Swin-L as the backbone. This underscores the notion that our video
pretraining method excels particularly in more complex video benchmarks.4.3 ABLATION STUDIES

Given the absence of annotated validation sets in the benchmarks for VIS tasks, we carefully parti-
tioned the labeled training sets (YouTube2019 and OVIS) into custom training splits and validation

8



Under review as a conference paper at ICLR 2024

splits, identical to the Wu et al. (2022b). These splits were instrumental in our efforts to conduct
rigorous ablation experiments. Furthermore, it’s worth noting that all experiments related to VIS,
were meticulously conducted using these custom split datasets to ensure the robustness and credibility
of our findings.

Pre-training. In Tab. 4, we initially validate the effectiveness of various video data augmentation
methods for generating pseudo-videos. Using rotation alone as a data augmentation method yields a
1.0% AP improvement over the instance segmentation baseline on COCO benchmark. Furthermore,
adding video copy & paste and video auto augmentation on top of rotation results in additional
improvements of 0.1% and 0.3% AP, respectively. When all augmentations are applied to the
pseudo-video inputs during pre-training, it leads to a substantial 1.6% AP improvement over the
baseline.

In Tab. 6, without using data augmentation, we observe that incorporating either the long-term or
short-term temporal modules on top of the baseline improves performance by 0.9% and 0.8% AP,
respectively. When the complete multi-scale temporal module is used, our method achieves a 1.0%
AP improvement.

Table 6: Performance comparison of different
temporal modules in the video pre-training phase.

Long-term Short-term AP APs APm APl

43.7 23.4 47.2 64.8
✓ 44.6 24.3 48.5 65.5

✓ 44.5 24.4 48.3 64.8
✓ ✓ 44.7 24.7 48.3 64.9

Moreover, we notice that generating three
frames pseudo video as input during pre-training
yields the best performance, outperforming
single-frame inputs by 0.6% AP. Increasing the
number of frames in the pseudo-videos during
pre-training does not lead to further improve-
ments. During the inference phase, we find that
copying the input image the same number of
times as the pseudo-video frames results in the
best performance, with a 0.2% AP difference between the best and worst performances. Our approach
can be easily transferred to other instance segmentation methods, yielding notable performance gains,
as shown in A.3.

Fine-tuning We choose CTVIS as the baseline for our method since it currently represents the
state-of-the-art approach. However, it’s important to note that not all instance segmentation methods
are suitable as baselines for the pre-training phase of VIS tasks, shown in A.3, Mask2Former proves
to be the most suitable choice.

Table 7: Ablation study on using different
settings of the proposed method. The ba-
sic setting is image pre-training and video
finetuning. CPVA: consistent pseudo-video
augmentations; VP: video pre-training.

MSTM CPVA VP APYV19 APOVIS

59.7 27.4
✓ 59.8 28.3
✓ ✓ 60.2 28.5
✓ ✓ 60.5 32.0
✓ ✓ ✓ 61.8 32.6

Tab. 7 provides a clear illustration of the impact of video
pre-training(VP) when compared to image pre-training
alone. Using the same multi-scale temporal mod-
ule(MSTM) module, we observed an improvement of
0.7% AP and 3.7% AP in the two benchmarks, respec-
tively, when video pre-training was employed. How-
ever, when all the proposed modules included: MSTM
and consistent pseudo-video augmentations(VA) were
used in conjunction and fine-tuned on top of video
pre-training, the performance gains were even more
significant, with enhancements of 1.6% AP and 4.1%
AP in the two benchmarks, respectively.

5 CONCLUSION

The often-overlooked disparity between image pre-training and video fine-tuning has prompted our
novel approach to video pre-training. Its primary objective is to bridge the gap between these two
stages and elevate the performance on VIS benchmarks. At the data level, we employ consistent
pseudo-video augmentations to construct pseudo-videos that simulate real-world video scenarios.
At the modelling level, we introduce a multi-scale temporal module during pre-training. This
augmentation strategy yields improvements in both instance segmentation and VIS benchmark
performance, with more significant gains observed in increasingly complex VIS benchmarks.
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A APPENDIX

A.1 DATASETS

• YouTube-VIS 2019 serves as the inaugural and largest dataset designed explicitly for VIS. It
encompasses 2,238 training videos, 302 videos for validation, and 343 test videos, all characterized
by high resolution. The average duration of these YouTube video clips is approximately 4.61
seconds. This dataset comprises 40 object categories.

• YouTube-VIS 2021 is an extension and enhancement of the YouTube-VIS 2019 dataset. It retains
the same number of object categories, i.e., 40, but features slight variations in the category label
set. The dataset expands to include 2,985 training videos and 453 validation videos. The primary
focus of this extension is the improvement in instance annotation quality.

• OVIS (Occluded VIS) is a relatively recent and challenging addition to the VIS dataset landscape.
It consists of 607 training videos, 140 validation videos, and 154 test videos. Notably, OVIS videos
tend to be significantly longer, with an average duration of approximately 12.77 seconds. More
importantly, this dataset contains videos that record instances with severe occlusion, complex
motion patterns, and rapid deformations, making it an ideal benchmark to evaluate and analyze the
performance of various methods.

Methods Params. Epochs Query type AP AP50 AP75 APs APm APl

R
es

N
et

-5
0 Mask2Former 44M 50 100 43.7 66.0 46.9 23.4 47.2 64.8

Mask DINO 52M 50 300 46.3 69.0 50.7 26.1 49.3 66.1
Our + Mask2Former 54M 50 100 45.3 68.3 48.9 25.4 49.1 66.2
Our + MaskDINO 57M 50 300 47.2 70.2 51.8 27.5 50.5 67.3

Sw
in

-L Mask2Former 216M 100 200 50.1 - - 29.9 53.9 72.1
Our + Mask2Former 227M 50 200 50.5 74.9 54.9 29.6 54.6 72.8

Table 9: Ablation experiments of performance brought by image pre-training and video pre-training,
we conducted a comparative analysis between two distinct instance segmentation methods, both
utilizing the ResNet-50 backbone.

A.2 PRE-TRAINING INFERENCE OF OURS

Table 8: Ablation experiments of
performance brought by different
video pre-trained models.

Video Pre-trained Method APYV19

Mask DINO 60.5
Mask2Former 61.8

Since the input is transformed into a pseudo-video consisting
of T frames, during the final inference phase, we replicate
the same image T times to simulate the input for the video.
Ultimately, the output at the last frame is used as the output for
the inference stage. As depicted in figure 3, when T identical
images enter the temporal module, it is akin to iteratively
refining the same image T times. Clearly, the performance
is optimized when the number of replications matches the
number of refinements.
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Figure 4: Failure cases

A.3 PRE-TRAINING COMPARISON

Our approach can be easily transferred to other instance segmentation methods, yielding notable
performance gains. For example, as shown in Tab. 8, when using ResNet-50(He et al., 2016) as
the backbone, our method achieves a 1.6 AP% improvement over Mask2Former and a 0.9% AP
improvement over Mask DINO. When Swin-Large serves as the backbone, our method outperforms
Mask2Former by 0.4% AP with only 50 training epochs.

Table 10: Ablation study on differ-
ent benchmarks of the FPS.

ResNet-50 YV19 OVIS

FPS 9.7 2.9

Despite Mask DINO surpassing Mask2Former by 1.9% AP
during the pretraining phase, as shown in Tab. 9, our method
fine-tuned on Mask2Former outperforms our method fine-
tuned on Mask DINO-based approach by 1.3% AP under the
YouTubeVIS 2019 benchmark. Therefore, for all subsequent
ablation experiments in VIS, we adopted the same pre-training
baseline as CTVIS, which is Mask2Former.

A.4 FAILURE CASES

As shown in figure 4, when using the ResNet-50 backbone, frequent occurrences of category detection
errors, ID switches, and instances going undetected are observed. These issues present promising
avenues for future research and improvement.

A.5 VISUALIZATION RESULTS
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Figure 5: YouTubeVIS 2019 Visualization Results
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Figure 6: YouTubeVIS 2021 Visualization Results
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Figure 7: OVIS Visualization Results
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