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Modeling Balanced Explicit and Implicit Relations with
Contrastive Learning for Knowledge Concept Recommendation

in MOOCs
Anonymous Author(s)

ABSTRACT
The knowledge concept recommendation in Massive Open Online
Courses (MOOCs) is a significant issue that has garnered wide-
spread attention. Existing methods primarily rely on the explicit
interactions between users and knowledge concepts on the MOOC
platforms for recommendation. However, there are numerous im-
plicit relations (e.g., shared interests or same knowledge levels be-
tween users) generated within the users’ learning activities on the
MOOC platforms. Existing methods fail to consider these implicit
relations, and these relations themselves are difficult to learn and
represent, causing poor performance in knowledge concept rec-
ommendation and an inability to meet users’ personalized needs.
To address this issue, we propose a novel framework based on
contrastive learning, which can represent and balance the explicit
and implicit relations for knowledge concept recommendation in
MOOCs (CL-KCRec). Specifically, we first construct a MOOCs
heterogeneous information network (MHIN) by modeling the data
from theMOOCplatforms.Then,we utilize a relation-updated graph
convolutional network (GCN) and stacked multi-channel graph
neural network (GNN) to represent the explicit and implicit re-
lations in the MHIN, respectively. Considering that the quantity
of explicit relations is relatively fewer compared to implicit rela-
tions in MOOCs, we propose a contrastive learning with prototyp-
ical graph to enhance the representations of both relations to cap-
ture their fruitful inherent relational knowledge, which can guide
the propagation of students’ preferences within the MHIN. Based
on these enhanced representations, to ensure the balanced contri-
bution of both towards the final recommendation, we propose a
dual-head attention mechanism for balanced fusion. Experimental
results demonstrate that CL-KCRec outperforms several state-of-
the-art baselines on real-world datasets in terms of HR, NDCG and
MRR.

CCS CONCEPTS
• Applied computing→ E-learning; • Information systems→
Recommender systems; Personalization; •Computingmethod-
ologies → Neural networks.
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1 INTRODUCTION
In recent years, the online learning industry has experienced rapid
growth [19], which is becoming an integral part of themodern edu-
cation system. Among these,massive open online courses (MOOCs),
as a representative of this transformation, are becoming a popu-
lar educational mode worldwide[8]. Although the number of new
users on the various MOOC platforms continues to rise, a primary
problem remains the low course completion rate[36]. Many users
struggle to complete all the knowledge concepts in a course, which
leads to inefficiency or even dropout. For example, a course about
triangles might cover various knowledge concepts such as sides,
angles, auxiliary lines, the Pythagorean theorem, etc. Hence, it is
crucial to capture personalized user interests and then recommend
specific knowledge concepts in MOOCs.

Existing methods for knowledge concept recommendation in
MOOCs utilize the explicit relations among users, knowledge con-
cepts, etc. [8] proposed an end-to-end graph neural network based
approach with attention mechanism to capture the various rela-
tions in MOOCs. However, there are not only explicit relations
in users’ learning activities, but also numerous implicit relations
like latent social connections, shared interests, similar knowledge
levels, etc. As shown in Figure 1, besides observing explicit rela-
tions, such as users learning courses and watching videos, we can
also discover many inherent implicit relations. For instance, if both
user 1 and user 2 choose to learn the same course 1, they might
share common interests. Furthermore, if user 1 watched video 1
but clicked only on knowledge concept 1, then knowledge concept 2
might be his next focus or something he needs to supplement. Ig-
noring these implicit relations will undoubtedly impact the effec-
tiveness of knowledge concept recommendation.

Consequently, it is a significant challenge to thoroughly repre-
sent and leverage implicit relations in enhancing the knowledge
concept recommendation, as illustrated by the following three chal-
lenges. First, a user’s history in MOOCs mainly describes explicit
relations; it is crucial to automatically represent the inherent im-
plicit relations based on these explicit relations. Second, explicit
relations are obviously fewer in number than implicit relations,
while implicit relations are also more complex than explicit ones
during the actual learning process, which brings the challenge of
effectively guiding the propagation of students’ preferences. It is
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Figure 1: A comprehensive view of data in MOOCs.

necessary to enhance the representations of both types of relations.
This will capture their inherent relational knowledge, which can be
utilized to guide the propagation of students’ preferences. Third, it
is essential to balance the contributions of the explicit and implicit
relations in the knowledge concept recommendation task.

To address this issue, we propose a novel framework based on
contrastive learning, design to represent and balance the explicit
and implicit relations for knowledge concept recommendation in
MOOCs (CL-KCRec). First, we construct a MOOCs heterogenous
information network (MHIN) using data from theMOOCplatforms.
Then, we propose an explicit relation learning module based on
relation-updated GCN, and an implicit relation learning module
based on a stacked multi-channel GNN, which represents multi-
hop relations through a soft attention selection mechanism. We
also propose a contrastive learning with prototypical graph to en-
hance the representations of both relations, and propose a dual-
head attention mechanism for balanced fusion. Experimental re-
sults demonstrate that CL-KCRec outperforms several state-of-the-
art baselines on real-world datasets in terms of HR, NDCG and
MRR.

2 RELATEDWORK
This work is mainly relevant to knowledge concept recommenda-
tion inMOOCs and contrastive learning for recommender systems.

2.1 Knowledge Concept Recommendation
Knowledge concept recommendation is an essential component of
personalized learning in MOOCs. Existing methods can be primar-
ily categorized into three types: collaborative filtering (CF)-based
methods [22, 27], heterogeneous information network (HIN)-based
methods[8, 28] and reinforcement learning (RL)-based methods[7,
11, 17]. CF-based methods, which take into account users’ histori-
cal interactions, have achieved success in traditional recommenda-
tion strategies. [22] introduce the core concepts of collaborative fil-
tering and design rating systems for recommendation. HIN-based
methods incorporate users’ historical interactions into a heteroge-
neous information network and optimize the representations for
recommendation. [8] is a state-of-the-art method that employs an

attention-based graph convolutional network, which utilizes meta-
paths to obtain the representation of nodes for knowledge concept
recommendation in MOOCs. RL-based methods apply reinforce-
ment learning for recommendation to adaptively update the strat-
egy during long-term interaction. [7] propose the reinforced strat-
egy that can recommend the items with substantial long-term ben-
efits.

2.2 Contrastive Learning for Recommendation
Recently, contrastive learning has received widespread attention
for its ability to provide powerful self-supervised signals in vari-
ous fields, such as natural language processing[5, 16] and computer
vision[3]. By contrasting positive and negative samples from dif-
ferent views, contrasting learning can learn high-quality and dis-
criminative representations, ensuring sample balance within spe-
cific scenarios or tasks. Some studies have attempted to apply the
contrastive learning approach to recommendation tasks[18, 29, 30].
[31] proposed a contrastive learning framework for KG-enhanced
recommendation.[1] proposed heterogeneous information network
Contrastive Learning. To adapt the contrastive learning into our
work, we propose a novel contrastive learning approach based on
prototypical graphs to enhance the representations of users and
knowledge concepts for the knowledge concept recommendation
in MOOCs.

3 PRELIMINARIES
In this section, we introduce the definitions involved in our work.

Task Description. Given a target user with corresponding in-
teractive data in MOOCs, the goal is to calculate the user’s inter-
est score for a series of knowledge concepts and generate a rec-
ommended list of the top 𝑁 knowledge concepts. More formally,
given the interactive data of a user, denoted as 𝑢𝑖 , a predict func-
tion 𝑓 is learned and utilized to generate a recommendation list
of knowledge concepts, where each concept is denoted as 𝑘 𝑗 , for
𝑓 : 𝑢𝑖 → {𝑘 𝑗 }𝑁𝑗=1.

Definition 1:MOOCsHeterogeneous informationnetwork
(MHIN). In this work, we denote the MHIN as G = (V, E), con-
sisting of the node set V and the edge set E. Each node 𝑣𝑖 ∈ V
is associated with a node type mapping function 𝑓𝑣 : V → T 𝑣

and each edge is associated with an edge type mapping function
𝑓𝑒 : E → T 𝑒 . The MHIN can be represented by a collection of
adjacency matrices A = {At} | T

𝑒 |
𝑡=1 , where At ∈ R |V |× |V | denotes

an adjacency matrix whereAt [𝑖, 𝑗] is non-zero if there exists a 𝑡-th
type edge from node 𝑣 𝑗 to node 𝑣𝑖 .

Definition 2: Explicit Relations in MHIN (ER). We define
the edges between a specific entity and all of its single-hop neigh-
bor nodes as the explicit relations of that entity. As shown in Figure
2(a), the user 1 has various explicit relations with the knowledge
concept 1, the course 1, and the video 1, respectively.

Definition 3: Implicit Relations in MHIN (IR). We define
the implicit relations as the complex multi-hop relations involving
multiple entities and their associated explicit relations. As shown
in Figure 2(c), both user 1 and user 2 clicked on knowledge concept 1.
This suggests that theymight share a common interest, which could
be valuable for knowledge concept recommendation. Obviously,
some of these implicit relations are simple and interpretable, while
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Figure 2: The Explicit and Implicit Relations in MHIN.

others are complex and harder to explain but remain crucial for rec-
ommendation. The implicit relation learning method we propose
could effectively address this issue.

4 CL-KCREC
The architecture of our proposed knowledge concept recommen-
dation framework, CL-KCRec, is shown in Figure 3. Each compo-
nent module will be presented in detail in the following sections.

4.1 Construction of MHIN
We model the data from platforms as a MHIN (shown in Figure
3(b)) that consists of five types of nodes: users (U), knowledge con-
cepts (K), courses (C), videos (V), and teachers (T). These nodes
are connected via seven types of edges, which are represented as
the following adjacency matrices:

• AUK: user·click·knowledge concept matrix, where each ele-
ment indicates whether a user clicked a knowledge con-
cept.

• AUV: user·watch·videomatrix, where each element indicates
whether a user watched a video.

• AUC: user·learn·coursematrix, where each element indicates
whether a user learned a course.

• AVK: video·include·knowledge concept matrix, where each
element indicateswhether a knowledge concept is included
in a video.

• ACK: course·include·knowledge concept matrix, where each
element indicateswhether a knowledge concept is involved
in a course.

• ACV: course·include·videomatrix, where each element indi-
cates whether a course includes a video.

• ACT: course·taught by·teacher matrix, where each element
indicates whether a course is taught by a teacher.

After constructing the MHIN, we feed it into subsequent mod-
ules to represent both explicit and implicit relations, respectively.

4.2 Explicit Relation Learning
In this section, we leverage the Knowledge Graph Embedding tech-
niques to jointly embed nodes and their explicit relations within
MHIN, as shown in Figure 3(c).

4.2.1 Multi-Relational Representations. . To learn the representa-
tion in MHINwith various explicit relations, we first need to repre-
sent these relations. To alleviate the over-parameterization issue in
graph representation learning, we draw inspiration from the vari-
ant of the basic decomposition approach[23, 25]. We use a linear
combination of a set of basis vectors to represent each explicit re-
lation instead of defining a separate embedding vector. Hence, the
initial representation of an explicit relation 𝑟 is given as:

𝒛𝑟 =
B∑

𝑏=1

𝛼𝑏𝑟 𝒄𝑏 (1)

where 𝒛𝑟 ∈ R𝑑1 denotes the representation of 𝑟 -th explicit relation.
𝒄𝑏 ∈ 𝑪 denotes 𝑏-th basis vector where 𝑪 = {𝒄1, 𝒄2, · · · , 𝒄𝐵}. 𝛼𝑏𝑟
is a learnable scalar weight.

4.2.2 Relation-Updated GCN. . The original GCN update equation
is given by:

𝒉𝑣𝑖 = 𝑓𝑎𝑔𝑔 (
∑

(𝑣𝑗 ,𝑟 ) ∈N(𝑣𝑖 )
𝑾𝑟𝒉𝑣𝑗 ) (2)

where N(𝑣𝑖 ) represents the neighbor nodes that have explicit rela-
tions with 𝑣𝑖 , and 𝑾𝑟 denotes the learnable parameters. To incor-
porate the explicit relation representation 𝒛𝑟 into GCN, the entity-
relation composition operation[25] is used, which is given as:

𝒙𝑣𝑖 = 𝜑 (𝒙𝑣𝑗 , 𝒛𝑟 ) (3)
where 𝜑 is a composition operator for which we adopt the non-
parameterized operation of circular-correlation as proposed by[20].
𝑣 𝑗 ,𝑟 , and 𝑣𝑖 denote the head node, explicit relation and tail node.
𝒙𝑣𝑖 , 𝒙𝑣𝑗 ∈ R𝑑0 denote the initial representation of nodes by BERT[13]
with their auxiliary information. The equation of the relational-
updated GCN is given as:

𝒉𝑣𝑖 |𝑒𝑟 = 𝑓𝑎𝑔𝑔 (
∑

(𝑣𝑗 ,𝑟 ) ∈N(𝑣𝑖 )
𝑾𝑟𝜑 (𝒙𝑣𝑗 , 𝒛𝑟 )) (4)

where 𝒉𝑣𝑖 |𝑒𝑟 denotes the representation of node 𝑣𝑖 updated by ex-
plicit relations. The representation 𝒛𝑟 is also transformed as fol-
lows:

𝒉𝑟 =𝑾𝑟𝑒𝑙𝒛𝑟 (5)
where 𝑾𝑟𝑒𝑙 ∈ R𝑑1×𝑑0 represents a learnable transformation ma-
trix. Consequently, we extend Eq.(4) to the 𝑙 layers. Let 𝒉(𝑙 )

𝑣𝑖 |𝑒𝑟 de-
note the final representation of node 𝑣𝑖 , which is given as:

𝒉(𝑙 )
𝑣𝑖 |𝑒𝑟 = 𝑓𝑎𝑔𝑔 (

∑
(𝑣𝑗 ,𝑟 ) ∈N(𝑣𝑖 )

𝑾 (𝑙−1)
𝑟 𝜑 (𝒉(𝑙−1)

𝑣𝑗 |𝑒𝑟 ,𝒉
(𝑙−1)
𝑟 )) (6)

Similarly, let 𝒉(𝑙 )𝑟 = 𝑾 (𝑙−1)
𝑟𝑒𝑙

𝒉(𝑙−1)𝑟 denote the representation of
the explicit relation 𝑟 after 𝑙 layers, 𝒉(0)

𝑣𝑖 |𝑒𝑟 and 𝒉(0)𝑟 respectively
correspond to the initial representations of the node 𝒙𝑣𝑖 and the
explicit relation 𝒛𝑟 .

4.3 Implicit Relationship Learning
In this section, we propose a stacked multi-channel GNN to repre-
sent implicit relations in MHIN, as shown in Figure 3(d).
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Figure 3: The overall architecture of CL-KCRec.

4.3.1 Implicit Relation Representation. . Each A ∈ A represents
a graph structure corresponding to a specific explicit relation in
MHIN. Inspired by [34], we use a soft attention selection mecha-
nism to automatically select the new graph structure to represent
the multi-hop relation, that is, the implicit relation. Specially, the
1× 1 convolution with the weights from 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function is used
as:

𝐹 (A;𝑾 ) = 𝑐𝑜𝑛𝑣1×1 (A; 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑾 )) =
| T𝑒 |∑
𝑖=1

𝛼𝑖𝑨𝑖 (7)

where 𝑾 ∈ R1×1×|T𝑒 | denotes the learnable parameter matrix.
The soft selection from different explicit relations is realized by
the convex combination of adjacency matrices as 𝛼 · A [2]. Then,
we stack this operation over 𝑡 layers to get the 𝑡 soft-selected ad-
jacency matrices. By conducting matrix multiplication on them in
a layer-sequential manner, we obtain a new adjacency matrix that
represents the 𝑡-hops implicit relation as:

𝑨(𝑡 ) = (𝑫 (𝑡 ) )−1𝑨(𝑡−1)𝐹 (A;𝑾 (𝑡 ) ) (8)

where 𝑨(0) = 𝐹 (A;𝑾 (0) ) and 𝑫 (𝑡 ) represents a degree matrix to
normalize 𝑨(𝑡 ) to ensure numerical stability. Hence, we represent
an implicit relation fromMHINwith an arbitrary maximum length
of (𝑡 + 1)-hops, which is expressed as a new graph structure and
represented as the adjacency matrix 𝑨𝒊𝒓 :

𝑨𝑖𝑟 = ©«
| T𝑒 |∑
𝑖0=1

𝛼
(0)
𝑖0

𝑨𝑖0
ª®¬ · ©«

| T𝑒 |∑
𝑖1=1

𝛼
(1)
𝑖1

𝑨𝑖1
ª®¬ · · · ©«

| T𝑒 |∑
𝑖𝑡=1

𝛼
(𝑡 )
𝑖𝑡

𝑨𝑖𝑡
ª®¬ (9)

4.3.2 Multi-channel Aggregation. . Considering that users inMOOCs
may be influenced by multiple implicit relations simultaneously,
we extend Eq.(8). The original equation can only represent a single

implicit relation at a time; we modify it to support the simultane-
ous generation of multiple implicit relations by setting the convo-
lution filter channels to 𝐶:

A(𝑡 ) = (D(𝑡 ) )−1A(𝑡−1)𝐹 (A;𝑾 (𝑡 ) ) (10)

where A(𝑡−1)𝐹 (A;𝑾 (𝑡 ) ) = ∥𝐶𝑐=1 (𝑨
(𝑡−1)
𝑐 𝐹 (A;𝑾 (𝑡,𝑐 ) ). 𝐶 denotes

the number of channels, andD(𝑡 ) represents a set of degree tensors.
Each channel of the output tensor A(𝑡 ) is fed into 𝑙 GNN layers to
update the representations of nodes:

𝒉(𝑙 )
𝑣𝑖 |𝑖𝑟 = 𝑓𝑎𝑔𝑔

(
∥𝐶𝑐=1𝜎 (�̂�

−1
𝑐 �̂�

(𝑡 )
𝑐 𝒉(𝑙−1)

𝑣𝑖 |𝑖𝑟 𝑾 (𝑙−1) )
)

(11)

where 𝒉(𝑙 )
𝑣𝑖 |𝑖𝑟 denotes the final representation of node 𝑣𝑖 at the 𝑙-

th GNN layer. 𝑾 (𝑙 ) ∈ R𝑑 (𝑙 )×𝑑 (𝑙+1) represents a learnable weight
matrix. 𝒉(0)

𝑣𝑖 |𝑖𝑟 = 𝒙𝑣𝑖 denotes the initial representation.

4.4 Contrastive Learning with Prototypical
Graph

As the issue has been described in Section 1, the quantity of explicit
relations is obviously fewer than that of implicit relations. Hence,
after obtaining the node representations with explicit and implicit
relations, to maximize the effectiveness of these two representa-
tions in recommendation, we propose a contrastive learning with
prototypical graph approach to enhance the representations aimed
at capturing both explicit and implicit knowledge feature, which
can guide the propagation of students’ preferences. The architec-
ture is shown in Figure 4. For convenience, we denote the original
representations of the user nodes obtained as 𝒉𝑢 |𝑒𝑟 and 𝒉𝑢 |𝑖𝑟 , and
the knowledge concept nodes as 𝒉𝑘 |𝑒𝑟 and 𝒉𝑘 |𝑖𝑟 .

4.4.1 Prototypes Generation. Weperform clusteringmethod to clus-
ter the users’ original representationswith explicit relations 𝒉𝑢 |𝑒𝑟 =

{𝒉𝑢𝑖 |𝑒𝑟 }
𝑁𝑢
𝑖=1 (where 𝑁𝑢 denotes the number of users.) to generate

4
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Figure 4: The architecture of Contrastive Learning with Prototypical Graph Module.

𝑛 clusters as prototypes C = {𝒄 𝒊}𝑛𝑖=1, collectively representing the
embedding space of explicit relations. Here, a prototype[14] is de-
fined as a representative embedding for a group of semantically sim-
ilar instances.

4.4.2 Prototypical Graph Generation. For the original representa-
tion 𝒉𝑢𝑖 |𝑒𝑟 of the user 𝑢𝑖 (where we set the sample number with
the size of mini-batch at each training epoch, considering the lim-
itation of computational cost and memory), we treat it and all the
prototypes C as nodes V𝑢𝑖 |𝑒𝑟 = [𝒉𝑢𝑖 |𝑒𝑟 , 𝒄1, 𝒄2, · · · , 𝒄𝑛] in the pro-
totypical graph, and then fully connect these nodes E𝑢𝑖 |𝑒𝑟 to get
the adjacency matrix 𝑨𝑢𝑖 |𝑒𝑟 ∈ R(𝑛+1)×(𝑛+1) of the prototypical
graph. Ultimately, the prototypical graph can be represented as
G𝑢𝑖 |𝑒𝑥 = (V𝑢𝑖 |𝑒𝑟 , E𝑢𝑖 |𝑒𝑟 ). Analogously, we can generate the proto-
typical graph G𝑢𝑖 |𝑖𝑟 with implicit relations, as well as G𝑘 𝑗 |𝑒𝑟 and
G𝑘 𝑗 |𝑖𝑟 for knowledge concept 𝑘 𝑗 .

4.4.3 Graph Attention Networks. The prototypical graph G𝑢𝑖 |𝑒𝑟 of
user 𝑢𝑖 is input into the graph attention network (GAT)[26]. Then,
we obtain the enhanced representation 𝒛𝑢𝑖 |𝑒𝑟 of user 𝑢𝑖 :

𝒛𝑢𝑖 |𝑒𝑟 = 𝑓 (𝐺𝐴𝑇 (V𝑢𝑖 |𝑒𝑟 , E𝑢𝑖 |𝑒𝑟 )) (12)

4.4.4 InfoNCE-based Contrastive Loss. . We propose to model the
original and enhanced representationwith InfoNCE-based contrastive
learning loss. Specifically, for explicit relations, the enhanced 𝒛𝑢 |𝑒𝑟
are considered as the positive samples for the anchor 𝒉𝑢 |𝑒𝑟 , while
the enhanced 𝒛𝑢 |𝑖𝑟 are considered as the negative samples. Con-
versely, for implicit relations, the augmented 𝒛𝑢 |𝑖𝑟 are considered
as the positive samples for the anchor 𝒉𝑢 |𝑖𝑟 , and the augmented
𝒛𝑢 |𝑒𝑟 are considered as the negative samples, as follows:

L1 =
𝑁𝑢∑
𝑖=1

−𝑙𝑜𝑔
𝑒𝑥𝑝

(
𝑠 (𝒉𝑢𝑖 |𝑒𝑟 , 𝒛𝑢𝑖 |𝑒𝑟 )/𝜏

)
∑𝑁𝑢

𝑗=1 𝑒𝑥𝑝
(
𝑠 (𝒉𝑢𝑖 |𝑒𝑟 , 𝒛𝑢 𝑗 |𝑖𝑟 )/𝜏

)
L2 =

𝑁𝑢∑
𝑖=1

−𝑙𝑜𝑔
𝑒𝑥𝑝

(
𝑠 (𝒉𝑢𝑖 |𝑖𝑟 , 𝒛𝑢𝑖 |𝑖𝑟 )/𝜏

)
∑𝑁𝑢

𝑗=1 𝑒𝑥𝑝
(
𝑠 (𝒉𝑢𝑖 |𝑖𝑟 , 𝒛𝑢 𝑗 |𝑒𝑟 )/𝜏

)
L𝑢
𝑐𝑙 = L1 + L2

(13)

where 𝑠 (·) represents the similarity function, which can be either
an inner product or cosine similarity (we adopt the latter). 𝜏 repre-
sents the temperature coefficient. Analogously, we can derive the

loss L𝑘
𝑐𝑙

for the knowledge concepts perspective. The combined
contrastive loss is expressed as:

L𝑐𝑙 = 𝛼𝑢 ∗ L𝑢
𝑐𝑙 + 𝛼𝑘 ∗ L𝑘

𝑐𝑙 (14)

where 𝛼𝑢 and 𝛼𝑘 represent two hyperparameters.

4.5 Fusion and Optimization
We adopted a dual-head attentionmechanism to fuse the enhanced
representations, which are situated in separate vector spaces re-
spective to their corresponding explicit or implicit relations by con-
trastive learning with prototypical graph, into a unified high di-
mensional vector space to balance their contributions for knowl-
edge concept recommendation task.

4.5.1 Dual-head Attention Fusion. . we concatenate the optimized
original and enhanced representations of users to get the output
representations:

𝒉
′
𝑢 |𝑒𝑟 = 𝒉𝑢 |𝑒𝑟 ⊕ 𝒛𝑢 |𝑒𝑟

𝒉
′
𝑢 |𝑖𝑟 = 𝒉𝑢 |𝑖𝑟 ⊕ 𝒛𝑢 |𝑖𝑟

(15)

where ⊕ denotes the concatenation operation. Similarly, we can
obtain the output representations of knowledge concepts𝒉′

𝑘 |𝑒𝑟 and
𝒉
′
𝑘 |𝑖𝑟 . Afterward, we map the representations into the same vector

space, then fuse them using cross-modal attention as follows:

�̂�𝑢 |𝑒𝑟 =𝑾 𝑣𝑡𝑎𝑛ℎ(𝑾𝑒𝑟𝒉
′
𝑢 |𝑒𝑟 + 𝒃𝑒𝑟 ) + 𝒃𝑣

�̂�𝑢 |𝑖𝑟 =𝑾 𝑣𝑡𝑎𝑛ℎ(𝑾𝑖𝑟𝒉
′
𝑢 |𝑖𝑟 + 𝒃𝑖𝑟 ) + 𝒃𝑣

𝜶𝑢 |𝑒𝑟 =𝑾𝑠𝑡𝑎𝑛ℎ(𝑾𝑒𝑟𝒉
′
𝑢 |𝑒𝑟 + 𝒃𝑒𝑟 ) + 𝒃𝑠

𝜶𝑢 |𝑖𝑟 =𝑾𝑠𝑡𝑎𝑛ℎ(𝑾𝑖𝑟𝒉
′
𝑢 |𝑖𝑟 + 𝒃𝑖𝑟 ) + 𝒃𝑠

𝛼𝑢 |𝑒𝑟 , 𝛼𝑢 |𝑖𝑟 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜶𝑢 |𝑒𝑟 ,𝜶𝑢 |𝑖𝑟 )
𝒉𝐹𝑢 = 𝛼𝑢 |𝑒𝑟 · �̂�𝑢 |𝑒𝑟 + 𝛼𝑢 |𝑖𝑟 · �̂�𝑢 |𝑖𝑟

(16)

where 𝒉𝐹𝑢 is the fused representation. We use shared weights 𝑾 𝑣

and bias 𝒃𝑣 to map the representations from their respective vec-
tor space into a unified high-dimensional vector space, while using
shared attentionweights𝑾𝑠 and biases 𝒃𝑠 to align the attention co-
efficients. Similarly, we can obtain the fused representation vector
of the knowledge concepts 𝒉𝐹

𝑘
.
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4.5.2 Optimization Objectives. . In our work, we employ the dot-
product to forecast 𝑦𝑢𝑖 ,𝑘 𝑗

= 𝒉𝐹𝑢𝑖
𝑇 · 𝒉𝐹

𝑘 𝑗
to forecast the interaction

likelihood between user 𝑢𝑖 and knowledge concept 𝑘 𝑗 . 𝑦𝑢𝑖 ,𝑘 𝑗
∈ R

denotes the score that indicates the likelihood of user 𝑢𝑖 interact-
ing with knowledge concept 𝑘 𝑗 . A larger value of 𝑦𝑢𝑖 ,𝑘 𝑗

indicates a
higher probability of interaction.We use the Bayesian Personalized
Ranking (BPR) pairwise loss function [21]. Specifically, each train-
ing sample is preparedwith a user𝑢𝑖 , a positive knowledge concept
𝑘+𝑗 with which the user has interacted, and a negative knowledge
point 𝑘−

𝑙
with which the user has not interacted. For each training

sample, we maximize the prediction score as follows:

L𝑏𝑝𝑟 =
∑

(𝑢𝑖 ,𝑘+
𝑗 ,𝑘

−
𝑙
) ∈O

−𝑙𝑛(𝜎 (𝑦𝑢𝑖 ,𝑘+
𝑗
− 𝑦𝑢𝑖 ,𝑘−

𝑙
)) + 𝜆∥Θ∥2 (17)

where 𝑙𝑛(·) and 𝜎 (·) denote the logarithm function and the sig-
moid function. 𝜆 denotes the hyperparameter for the weight of the
regularization term. Combining the BPR loss function and the pro-
totypical graph contrastive learning loss, the overall loss function
for CL-KCRec is presented as follows:

L = L𝑏𝑝𝑟 + 𝛽 ∗ L𝑐𝑙 (18)

5 EXPERIMENTS
In this section, we evaluate our CL-KCRec in comparison to the
baselines. We also analyze the impact of key modules and the ro-
bustness of the model. Our experiments are designed primarily to
address the following research questions:

• RQ1: How does CL-KCRec compare to the baselines?
• RQ2: Is it beneficial for the key modules to boost the per-

formance of knowledge concept recommendation inMOOCs?
• RQ3: Is our CL-KCRec also proficient in showing strong

generalization and robustness on other recommendation
tasks and datasets?

• RQ4: Howdo hyperparameters impactmodel performance?

5.1 Experimental Settings
Datasets. We conducted experiments on the real-world dataset
MOOCCube[32], which is constructed from actual student learn-
ing behavior data on the XuetangX1 platform. Specially, we select
student behaviors that were recorded between January 1st, 2018
and June 30th, 2019 as the dataset used in this work (named as
MOOCCube1819). Table 1 presents the data statistics. Moreover,
we used March 31st, 2019, as the dividing point, with the earlier
part as the training set and the latter part as the test set. Each pos-
itive instance in the test set is paired with 99 randomly sampled
negative instances, and the output of prediction score is calculated
based on these 100 samples (1 positive and 99 negatives)[9].

Evaluation Metrics. We adopt three widely used evaluation
metrics to evaluate the recommendation performance: HR@K (Hit
Ratio of top-K items), NDCG@K (Normalized Discounted Cumu-
lative Gain) and MRR (Mean Reciprocal Rank)[8]. Specifically, we
set K to 5, 10, and 20.

1https://www.xuetangx.com/

Table 1: Statistics of the MOOCCube1819 dataset

Dataset MOOCCube1819

# Entities

# User 2,204
# Knowlege concept 1,522
# Course 706
# Video 1,661
# Teacher 1,738

# Relationships

# U-K (user·click·knowledge-concept) 928,476
# U-V (user·watch·video) 4,142
# U-C (user·learn·course) 25,956
# V-K (video·include·knowledge-concept) 27,610
# C-K (course·include·knowledge-concept) 142,654
# C-V (course·include·video) 4,838
# C-T (course·taught-by·teacher) 4,364

5.1.1 Baseline Methods. To evaluate the performance of our CL-
KCRec, we consider several baselines as follows:

• FISM[12]:This is an item-to-item collaborative filtering ap-
proach that generates recommendation.

• NeuMF[10]: It uses a multi-layer perceptron to determine
the probability of recommending a knowledge concept.

• NAIS[9]: It is a collaborative filtering approach which em-
ploys an attention mechanism.

• metapath2vec[4]: This is a classical heterogeneous repre-
sentation method by random walk and skip-gram.

• HIN2vec[6]: This is a model which can learn latent vectors
of nodes and meta-paths simultaneously in HIN.

• HERec[24]: This is a approach to HIN-based recommenda-
tion that utilizes HIN embedding with meta-paths.

• ACKRec[8]: This is an end-to-end approach designed for
knowledge concept recommendation in MOOCs.

• HetGNN[35]: It learns heterogeneous node embeddings by
aggregating type-based node features and neighboring node.

• MHCN[33] It uses a multi-channel hypergraph convolu-
tional network to consider global relationships.

• KGCL[31]:This is a contrastive learning framework for KG-
enhanced recommendation.

• CoNR[15]: It learns both node and relation representations
by a two-step attention mechanism and relation encoder.

• HGCL[1]: It utilizes heterogeneous relational semanticswith
contrastive self-supervised learning for recommendation.

5.1.2 Hyperparameter Settings. For a fair comparison, CL-KCRec
is optimizedwithAdam for parameter learning. In themodel imple-
mentation, the batch size is searched from {1024, 2048, 4096, 8192}.
The initial dimension size of node 𝑑0 in MHIN is searched from the
range of {16, 32, 64, 128}. The learning rate is searched from {2e-2,
3e-2, 3.5e-2, 5e-2}. For each baseline, all other hyperparameters are
set the same as the suggestions from the original settings in their
papers. Other hyperparameters are set as follows. The number of
the basis vectors for representing explicit relations is tuned from
the range of {5, 10, 15, 20}; the number of hops𝑛 for implicit relation
representation is tuned from the range of {2, 3, 4, 5}; the number of
clusters is searched from {5, 10, 15, 20, 40, 50}; the mini-batch size
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Table 2: Performance comparison of baselines on theMOOC-
Cube1819 dataset

H@5 H@10 H@20 N@5 N@10 N@20 MRR
NeuMF 0.2470 0.4843 0.6757 0.2238 0.2391 0.2755 0.2054
FISM 0.2595 0.4892 0.6886 0.2382 0.2456 0.3047 0.2121
NAIS 0.2756 0.5022 0.7011 0.2591 0.2647 0.3231 0.2436
HERec 0.3957 0.5875 0.7660 0.3051 0.3599 0.4008 0.2901
ACKRec 0.4566 0.6287 0.8159 0.3570 0.4114 0.4548 0.3490
MHCN 0.4421 0.6293 0.8205 0.3568 0.4045 0.4542 0.3413
KGCL 0.4584 0.6428 0.8288 0.3597 0.4129 0.4610 0.3454
HGCL 0.4657 0.6572 0.8364 0.3624 0.4201 0.4705 0.3598

metapath2vec 0.3190 0.5314 0.7252 0.2736 0.2912 0.3462 0.2673
HIN2vec 0.3370 0.5551 0.7449 0.2944 0.3191 0.3789 0.2880
HetGNN 0.4208 0.6022 0.7927 0.3313 0.3985 0.4241 0.3244
CoNR 0.4593 0.6462 0.8315 0.3778 0.4188 0.4668 0.3687

CL-KCRec 0.5136 0.6751 0.8417 0.4163 0.4313 0.5163 0.4032

Table 3: Ablation study on key components of CL-KCREC.

H@5 H@10 H@20 N@5 N@10 N@20 MRR
w/-er 0.4762 0.6217 0.7996 0.3648 0.3697 0.4859 0.3738
w/-ir 0.4987 0.6431 0.8255 0.3965 0.3991 0.5088 0.3862
w/o-cl 0.5002 0.6598 0.8267 0.3987 0.4046 0.5100 0.3937

w/o-att
w/-⊕ 0.5108 0.6689 0.8392 0.4147 0.4278 0.5109 0.3989
w/-+ 0.5086 0.6610 0.8321 0.4078 0.4193 0.5067 0.3944

CL-KCRec 0.5136 0.6751 0.8417 0.4163 0.4313 0.5136 0.4032

is set to 8; the temperature 𝜏 is tuned in {0.3, 0.5, 0.6}; the coeffi-
cient 𝜆 of L2 regularization is set to 1e-4, and the coefficient 𝛽 of
the combined contrastive loss is tuned in {0.2, 0.25, 0.3, 0.35, 0.55}.

5.2 Performance Comparison (RQ1)
Table 2 displays the performance of all the baselines on theMOOC-
Cube1819 for knowledge concept recommendation tasks. We sum-
marize the following observations and conclusions. Our CL-KCRec
consistently outperforms state-of-the-art benchmarks, demonstrat-
ing significant improvements in performancemetrics.We attribute
this performance improvement primarily to: (1) Our CL-KCRec
represents not only the explicit relations but also the implicit ones
to capture users’ interestsmore accurately. (2)The contrastive learn-
ing with prototypical graph can enhance the representation, cap-
turing both explicit and implicit relational knowledge, which can
guide the propagation of students’ preferences. (3) The dual-head
attention mechanism can significantly fuse the enhanced represen-
tations to balance their contributions for knowledge concept rec-
ommendation task.

5.3 Ablation Study (RQ2)
We conduct ablation study to validate the significance and benefits
of each module.w/-er andw/-ir: We consider either the explicit or
implicit relations in the MHIN. w/o-cl: In this variant, we do not
include the contrastive learning module. w/o-att: In this variant,
we do not include the dual-head attention mechanism. Instead, we
directly utilize them for recommendation after processing through
either vector concatenation w/-⊕ or addition w/-+ methods.

The performance of our CL-KCRec and the compared variants
are presented in Table 3.The performance of CL-KCRec is superior

Table 4: Statistics of Yelp and Douban Movie Datasets

Datesets Yelp Douban Movie

# Entities

# User 16,018 # User 13,224
# Business 14,192 # Movie 12,498
# Compliment 11 # Group 2,747
# City 47 # Director 2,358
# Category 511 # Actor 6,251

# Type 38

# Relationships

# User-Business 194,552 # User-Movie 1,007,399
# User-User 156,090 # User-User 4,085
# User-Compliment 76,555 # User-Group 568,783
# Business-City 13,970 # Movie-Director 11,245
# Business-Category 39,927 # Movie-Actor 33,051

# Movie-Type 27,443

to both w/-ex and w/-im, reflecting that relying solely on either ex-
plicit or implicit relation is inadequate.w/o-cl performs worse than
CL-KCRec, which demonstrates that by enhancing representations
through contrastive learning, it can address the issue caused by
the quantitative disparity between explicit and implicit relations,
where the inherent relational knowledge struggles to effectively
guide the propagation of interests among students.The performance
ofw/o-att (withw/-⊕ andw/-+) are inferior compared to CL-KCRec,
which further implies the necessity of the dual-head attentionmech-
anism for recommendation.

5.4 Generalization and Robustness Analysis
(RQ3)

This work primarily focuses on the knowledge concept recommen-
dation in MOOCs. To validate the generalization of our CL-KCRec
for other recommendation tasks and its robustness across differ-
ent datasets, we conducted further experimental verification. We
adopt two more widely used datasets from different domains, con-
sisting of Yelp Datasets2 from business domain and Douban Movie
Datasets3 from movie domain, as shown in Table 4. And Table 5
displays the performance of all compared methods on these two
datasets for item recommendation. Compared with the baselines,
our CL-KCRec still demonstrates significant performance advan-
tages, proving its excellent generalization capability and robust-
ness across other domain recommendation tasks and datasets.

5.5 Hyperparameter Analysis (RQ4)
We further perform parameter sensitivity analysis to show the im-
pact of key parameters.The results are presented in Figure 5. Based
on the results, we make the following conclusions. Relation Basis
Vectors. The number of basis vectors that used for representing the
explicit relationsB is selected from 5 to 20.We observe that the per-
formance of the model initially increases and then stabilizes. The
value of B at which it stabilizes varies across different datasets:
for the MOOCCube1819 dataset, B = 15; while for the DMovie
and Yelp datasets, B = 10. Implicit Relation Hops. The number of
the implicit relation hops 𝑡 is selected from 2 to 5. It can be seen
that our model achieves optimal performance and remains stable

2https://www.yelp.com/dataset
3http://movie.douban.com
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Table 5: Performance comparison of all methods on different datasets

Datasets Yelp Douban Movie
H@5 H@10 H@20 N@5 N@10 N@20 MRR H@5 H@10 H@20 N@5 N@10 N@20 MRR

HERec 0.6264 0.7854 0.8663 0.4362 0.4825 0.5321 0.4301 0.4451 0.6172 0.7512 0.3248 0.3781 0.4188 0.3004
ACKRec 0.6522 0.8046 0.8957 0.4631 0.5137 0.5426 0.4789 0.4829 0.6489 0.7685 0.3825 0.4096 0.4531 0.3521
MHCN 0.6547 0.8314 0.8864 0.5232 0.5823 0.6154 0.4776 0.4767 0.6457 0.7763 0.3966 0.4172 0.4526 0.3648
KGCL 0.6875 0.8547 0.9004 0.5589 0.6219 0.6410 0.5051 0.5134 0.6974 0.7885 0.4034 0.4326 0.4877 0.3764
HGCL 0.6983 0.8656 0.9217 0.5751 0.6382 0.6438 0.5398 0.5441 0.7205 0.8078 0.4299 0.4615 0.4973 0.3922

CL-KCRec 0.7078 0.8742 0.9254 0.5842 0.6455 0.6602 0.5427 0.5631 0.7259 0.8103 0.4335 0.4697 0.5011 0.4035

when the hops of implicit relations are 4 and 5. This further indi-
cates that inMHIN, deeper implicit relations includemore complex
semantics, thereby enhancing recommendation performance. The
number of prototypes. The number of clusters is chosen from 5 to
50. We observe that based on the scale of nodes across different
datasets, the optimal number of prototypes varies. To achieve the
best recommendation performances, the optimal number of proto-
types for the MOOCCube1819 dataset is 10, while for the DMovie
and Yelp datasets, it’s 40.

Figure 5: Hyperparameter study of the CL-KCRec.

5.6 Case Study
In this part, we conduct one case to demonstrate the effectiveness
of our proposed framework CL-KCRec. We randomly selected
user:10843058 and obtained three recommended list without IRs,
with IRs and with CL-KCRec, respectively. As shown in Figure 6,
based on the click histories and their enrollment in course:30240184,
there might be implicit connections, such as shared interests or
similar knowledge levels, between user:10843058 and user:10196388.
When user:10843058’s actual next-clicked knowledge concept Re-
sistor (highlighted in dark blue), is observed, it is recommended at
the 3rd rank (highlighted in dark green) in list(b). This represents
a significant improvement from its 8th rank in list(a). Futhermore,
related knowledge concepts such as logic symbol, coil, and current
are recommendedmore frequently.This demonstrates that implicit
relations play a crucial role. In list(c), when using our CL-KCRec,
the Resistor is ranked at the 2nd position, and related concepts are
recommended more prominently.

Figure 6: The case study of CL-KCRec.

6 CONCLUSION
In this work, our proposed CL-KCRec framework explores a novel
approach based on contrastive learning for the knowledge con-
cept recommendation in MOOCs. It can automatically represent
implicit relations within the MOOCs heterogeneous information
network. Furthermore, the contrastive learning with prototypical
graph can address the challenge of effectively guiding the prop-
agation of students’ preferences, which is caused by the quanti-
tative disparity between explicit and implicit relations. The dual-
head attention mechanism can address the imbalanced contribu-
tions of these relations for knowledge concept recommendation
in MOOCs. This work emphasizes the significant role of implicit
relations in knowledge concept recommendation, contributing to
the enhancement of the quality of personalized learning services
in MOOCs. Extensive experiments on multiple real-world datasets
have demonstrated that CL-KCRec outperforms various state-of-
the-art methods.
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