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Abstract
Generative models for network time series (also known as dynamic graphs) have
tremendous potential in fields such as epidemiology, biology and economics, where
complex graph-based dynamics are core objects of study. Designing flexible and
scalable generative models is a very challenging task due to the high dimensionality
of the data, as well as the need to represent temporal dependencies and marginal
network structure. Here we introduce DAMNETS, a scalable deep generative model
for network time series. DAMNETS outperforms competing methods on all of our
measures of sample quality, over both real and synthetic data sets.

1 Introduction
Temporal networks (also known as dynamic graphs) arise naturally in many fields of study such as the
spread of disease [1], molecular interaction networks [2], interbank liability networks [3] and online
social [4] and citation networks [5]. Accurate data-driven generating modelling of these processes
could have a profound wide-reaching impact, for example in simulating the trajectories of future
pandemics or financial contagion risk in economic crash scenarios.

In contrast to generating static networks (i.e., networks that do not evolve over time), generating
time series of networks has received relatively little attention in the literature. While static networks
usually include complex dependencies, network time series contain complex dependencies also across
time. As an example, in a time series of social contact networks, the interest may lie in replicating
not only the degree distribution but also the clustering behaviour, to capture the interplay between
these summary statistics over different times of the day. This complexity is further exacerbated
due to the high dimensional nature of network time series; a data set with N network time series
on n nodes each, and of length T each, has size N × T × n2. Building a generative model that
faithfully replicates both network topology and dependence between graph snapshots is an extremely
challenging task.

Data-driven generative models of other types of sequential data, such as natural language, commonly
follow an encoder-decoder structure, e.g. Sequence2Sequence [6] and Transformer [7] models. We
combine ideas from the static network generation and sequence modelling literatures in DAMNETS,
an efficient and high quality generator for Markovian network time series. We leverage the insight
that the delta matrix, that is the difference between subsequent adjacency matrices, is very sparse for
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most networks of interest. The key novelty of DAMNETS is that it uses a GNN to encode the current
state of the network, and an efficient sparse matrix sampler to generate delta matrices conditioned on
the node embeddings computed by the GNN.

In this paper, we restrict our attention to time series G0, G1, . . . , GT of simple, undirected, labelled
graphs on a fixed node set V = {1, . . . , n} with edge set Et ⊆ {(i, j) : i, j ∈ V }. An element of
the sequence Gt = (V,Et) has a random edge set Et drawn from a a time-dependent probability
distribution pt(V × V ) over the set of node pairs on V , and emits adjacency matrix A(t).

The remainder of this paper is structured as follows. Section 2 is a review of related work. Section 3
introduces the DAMNETS algorithmic pipeline. Section 4 details the outputs of numerical experiments
for representative generative models from the network literature as well as real world networks.
Section 5 summarises our main findings and proposes future avenues of investigation. The DAMNETS
code is available at this link.

2 Related Work
2.1 Static Network Generation
Static graph generation involves learning a probability distribution p(G) over an observed set of net-
works. Recently, several machine learning approaches have shown good performance on generating
arbitrary sets of networks, including DeepGMG [8], GraphRNN [9], GRAN [10] and BiGG [11].
Our paper continues this progression to the network time series setting.

BiGG. BiGG is a scalable model for generating static networks that we will introduce briefly here,
as our approach shares some similarities. Popular frameworks such as GraphRNN, GRAN and BiGG
all employ the following high-level pattern for sampling the adjacency matrix; they sample each
row of the adjacency matrix one at at time, using a row-wise auto-regressive model to capture the
topological structure of the sampled graph and a second auto-regressive model to capture within-row
edge-level correlations. GraphRNN uses a hierarchical RNN structure, GRAN uses a graph neural
network with a conditional mixture of Bernoulli likelihood and BiGG uses a binary tree type structure,
which is particularly suited to sparse graphs.

The major innovation introduced in BiGG is an improvement upon the naive O(n) time complexity
for sampling a row of the adjacency matrix. Instead of sampling each of the n entries using a
linear-time auto-regressive model (such as a RNN), the authors propose to sample each row using a
binary tree. Each node u is associated with a random binary tree Tu which is constructed as follows.
Each tree node k corresponds to an interval of graph nodes [vl, vr]. The process starts from the root
[1, n] and terminates at leaf nodes [v, v]. At each decision step the model decides whether the tree
has a left child (lch), with probability p(lch(k)), and right child (rch), with probability p(rch(k)),
and if so descends further down the tree until it reaches a leaf node. The probability of this tree being
a particular realisation Tu = τu is thus

p(τu) =
∏
k∈τu

p(lch(k))p(rch(k)). (1)

The tree τu is then represented as a row vector of length n of an adjacency matrix, with position
v having entry 1 if τu contains the leaf [v, v], and 0 otherwise. The algorithmic advantage stems
from setting all entries [vl, vr

2 ] to 0 in row u as soon as at tree node k = [vl, vr] the left child is not
generated (and similarly if a right child is not generated). Thus for a node u, the corresponding row
of the adjacency matrix can be sampled in O(|Tu|) decision steps. Since |Nu|, the size of the graph
neighbourhood of u, equals the number of leaf nodes and log n is the maximum depth of the binary
tree, the upper bound |Tu| ≤ |Nu| log n follows. Moreover, significantly larger time savings can be
made in practice if the model decides to not descend further into the tree in the upper levels.

To include dependence between entries within the row of the adjacency matrix, BiGG augments the
process to produce state variables that track the decisions made, both above and below in the tree. At
each tree node k, one always decides first whether to generate the left child conditionally on the state
of the tree above, which is denoted htop

u (k), with the decision sampled from p(lch(t)|htop
u (k)). If the

model decides to descend into the left child, the entire left subtree is generated before returning to t
and making a decision about whether to generate the right child. The left subtree that was generated
is summarised by a bottom-up state variable, denoted hbot

u (k), and this is used to decide whether to
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sample a right child (rch) for the subtree. The model for Tu therefore becomes

p(Tu) =
∏
k∈Tu

p(lch(k)|htop
u (k)) p(rch(k)|htop

u (k), hbot
u (lch(k))), (2)

where the exact equations for htop
u and hbot

u are given in Algorithm 2. The child probabilities are
finally created via two MLPs, denoted MLPx : RF → R for x = L,R, via

p(lch(k) | htop
u (k)) = Bernoulli(MLPL(h

top
u )(k)), (3)

p(rch(k) | htop
u (k), hbot

u (lch(k))) = Bernoulli(MLPR(h
top
u (k), hbot

u (lch(k))). (4)

2.2 Network Time Series (NTS) Generation
There are classical models for generating time series of networks designed to capture a specific
set of NTS characteristics, such as the forest fire process [5], which can produce power-law degree
distributions and shrinking effective diameter (i.e., the largest shortest path length in the graph). These
classical models, while very effective at re-creating certain types of behaviour, are not data-driven and
require the network to obey a pre-defined set of characteristics to be effective. Approaches attempting
to generate arbitrary network time series have appeared in the machine learning literature, such as the
TagGen model [12], which uses a self-attention mechanism to learn from temporal random walks
on a NTS, from which new NTSs are subsequently generated. Another recent algorithm is DYMOND
[13], which is a simpler approach that models the arrival times of 3-node motifs, then samples these
subgraphs to generate the NTS. It is important to note that both DYMOND and TagGen attempt to
solve a slightly different problem to DAMNETS; they take as input a single time series G0, . . . , GT and
pre-defined network statistics, and aim to generate an entire time series with these network statistics
similar to this single realisation. Instead of specifying the network statistics of interest, DAMNETS
aims to learn a probability distribution p(Gt|Gt−1) such that given an arbitrary graph Gt−1 (not in
the training set), one can draw many samples for Gt and reason about the future trajectory of the
network. This requires a different set of evaluation metrics and data sets, see Section 4 for discussion.

AGE. The approach most similar to our own is the Attention-Based Graph Evolution (AGE) model
[14]. AGE uses a model very similar to a Transformer [7] (only omitting the positional encoding step),
where a self-attention mechanism is applied to the rows of A(t−1) to learn node embeddings, and a
source target attention module is sequentially applied to generate the rows of A(t). AGE has two clear
shortcomings; the first one is that it does not explicitly account for graph connectivity, which is left to
the attention mechanism to deduce. The second is that it does not capture edge-level correlations on
the sampled rows. To give a simple example of why this is important, suppose we were considering a
NTS where in every graph snapshot, each node has exactly two neighbours; the model should have
some mechanism to condition on the edges it has sampled for a node so that it can stop once it has
generated two edges. Furthermore AGE operates directly between two adjacency matrices rather than
generating only differences, which does not allow it to utilise sparsity, limiting the scalability of the
method. In contrast, DAMNETS explicitly utilises graph connectivity in the model pipeline and has the
capacity to model edge correlations within rows of the adjacency matrix.

3 DAMNETS Architecture
Our goal is to learn a generative model p(·|Gt−1) for the next network in a NTS, given a set of
training network time series {{G1

t}T1
t=0, . . . , {GN

t }TN
t=0, }. Our model has a Markovian structure and

hence for generating Gt all relevant information about the past is assumed to be contained in Gt−1.

For a description of our model we first introduce the delta matrix ∆(t) ∈ {−1, 0, 1}n×n defined as

∆
(t)
ij = A(t) −A(t−1) =


1 =⇒ add edge (i, j)

0 =⇒ no change in (i, j)

−1 =⇒ remove edge (i, j).

When conditioned on A(t−1), each entry ∆
(t)
ij can only take two values, namely ∆

(t)
ij can only be

0 or 1 if A(t−1)
ij = 0, and ∆

(t)
ij can only be -1 or 0 if A(t−1)

ij = 1. Learning a generative model
p(∆(t)|Gt−1) is equivalent to learning p(Gt|Gt−1). Thus, this model only has to learn to produce
the temporal update, rather than to reproduce the current graph and apply the temporal update.

As we consider only undirected graphs, we only model the lower triangular part of the delta matrix.
As our approach is an encoder-decoder framework, we first summarise the previous network Gt−1
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by computing node embeddings using a GNN as an encoder, then combine these with a modified
version of the very efficient sparse graph sampler BiGG [11] to act as a decoder for the delta matrix.

3.1 The Encoder
The first step is to compute node embeddings for Gt−1, using a GNN. We employ a Graph Attention
Network (GAT) [15], although any GNN layer is applicable. We use GAT (X,A) to represent
the application of a GAT network to a graph with node feature matrix X and adjacency matrix A.
and in the absence of other node features we use the identity matrix as node features (which here
corresponds to a one-hot encoding of the nodes). Node or edge-level features, whenever available,
can be incorporated into the pipeline. The embedding of Gt−1 is given by

H(t−1) = GAT (X,A(t−1)), (5)

where X ∈ Rn×p is the node feature matrix, and H(t−1) ∈ Rn×q is the node embedding matrix.

3.2 The Decoder
Starting with the first node according to the given node ordering, conditioning gives

p(∆) = p
(
{∆u}u∈V

)
=

∏
u∈V

p (∆u | {∆w : w < u}) .

We sample each row of ∆ using Algorithm 2, a modified version of the BiGG row sampling algorithm.
We enhance the procedure, allowing it to distinguish between a tree leaf which would be an edge
addition and a tree leaf which would be an edge deletion. If the left (resp. right) child at level k is a
leaf node corresponding to entry ∆

(t)
ij , instead of (3) we sample the leaf node using

p(lch(k) | h) =
{
Bernoulli(MLP+(h)) if A(t)

ij = 0,

Bernoulli(MLP−(h)) if A(t)
ij = 1,

(6)

where h ∈ Rq is the corresponding state variable. Each application of Algorithm 2 returns an
embedding, namely gu = hbot

u (root) which depends on every entry in the row. As is done in the
static setting we apply an auto-regressive model across these row embeddings to capture dependencies
between rows. The bottom-up embeddings of each tree have no other computational dependencies, so
can be efficiently pre-computed during training. We chose to use a standard Transformer self-attention
layer [7] (which we call TFEncoder) with sinusiodal positional embedding for this auto-regressive
component; this was chosen to provide similar representation power to the baseline model AGE. Self
attention does not scale to very long sequences however, so for very large graphs with many nodes,
this could be replaced by either an LSTM or the Fenwick Tree structure proposed in [11].

3.3 The DAMNETS model architecture

Figure 1: An overview of our approach to generating Markovian transitions in a network time series.
We learn a generative model of the lower triangular part of the delta matrix given the previous graph
Gt−1. We then draw a sample ∆(t) and add this to A(t−1) to produce a sample Gt.

With the two key components of our model defined, we now explain how these models are combined
to generate delta matrices given an input graph. As stated in Equation (5), we first compute node
embeddings H(t−1) ∈ Rn×F , with H

(t−1)
i ∈ RF representing the node embedding computed for

node i in Gt−1. When generating the row tree Tu for node u, (which corresponds to generating the
row of the delta matrix for node u), we combine the node embedding from the previous network with
the row-wise auto-regressive term hrow

u−1 computed by TFEncoder via an MLP

htop
u (root) = MLPcat(h

row
u−1, H

(t−1)
u ). (7)
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Figure 2: A visualisation of the generation of the u-th row of the delta matrix ∆(t) using the DAMNETS
model architecture. The nodes shown in red indicate the graph Gt. We use a GAT to compute node
embeddings H(t) for each node in Gt. Nodes shown in blue belong to the binary tree generated for
each row; each tree is generated by combining the node embedding in the previous graph with an
auto-regressive term computed using a Transformer (TF) Encoder across the rows of the delta matrix
to produce hrow

u−1, which is used in Equation (7) to initialise the top-down descent of each tree.

where MLPcat : R2F → RF . The full procedure is described in Algorithm 1, with a detailed version
Algorithm 2 in the SI, and is visualised in Figures 1 and 2. The model is trained via maximum
likelihood over the entries of the delta matrix using gradient descent. The advantage of this framework
is twofold; firstly the delta matrix is usually much sparser than the full adjacency matrix, allowing us
to well utilise sparse sampling methods. This is a very natural assumption: one does not expect most
of the network to change at each timestep, but rather just a small subset of the edges. The second
is that differencing a time series makes learning easier. It is very common in traditional time series
analysis to perform differencing transformations on data, as differencing may alleviate trends in the
time series.

Algorithm 1: Algorithm for generating the the delta matrix ∆(t) using DAMNETS
Input: Input graph Gt−1 = (V,Et−1), node features X
H(t−1) ← GAT (X,A(t−1))
hrow
0 ← ∅

for u← 1 to n do
Let k = {1, . . . , u− 1} be the root of tree Tu.
htop
u (k) = MLPcat(h

row
u−1, H

(t−1)
u ).

gu,Nu ← Recursive(u, k, htop
u (k)) /* Algorithm 2 */

/* Only non-zero indices are returned in Nu */
∆u ← Determine sign of entries using A(t−1) and transform into a vector.
hrow
u ← TFEncoder(gu; g1:u−1)

end
Return ∆(t) with rows ∆u, u = 1, . . . , n.

4 Experiments
Evaluating a generative model usually follows the following recipe: fit the generative model on
the training data, draw samples from the model and then compare the distribution of these samples
to some held out test data using some kind of statistical test or metric on the space of probability
distributions. For static graphs, there exist a number of graph kernels [16] from which a Maximum
Mean Discrepancy (MMD) [17] type metric can be derived. However these are very computational
costly (some scaling as O(n4) for a graph with n nodes). It is therefore common to define a set of
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summary statistics over the graphs, such as the degree distribution or clustering coefficient distribution,
and compare the distributions of these summary statistics computed over the sampled and test graphs.

We adopt a similar approach applied to the marginal distributions of the network time series. We
choose to compare six different network statistics, three local and three global (see [18] for a
background on network statistics). Our three local properties are the degree distribution, clustering
coefficient distribution and the eigenvalue distribution of the graph Laplacian as introduced in [10].
For each graph, we compute a histogram of these properties over the nodes in the graph, and use a
Gaussian kernel with the total-variation metric to compute the MMD. Our three global measures are
transitivity, assortativity and closeness centrality. Each of these metrics produces one scalar value per
graph, and we again use a Gaussian kernel with the ℓ2 metric to compute the MMD.

For each time point t and statistic S(·), we compute MMDt(S(G
test
t ), S(Gsampled

t )), and use as
final metric the sum MMD(S) =

∑
t MMDt(S(G

test
t ), S(Gsampled

t )). If the marginal distributions
match exactly, MMD(S) will equal 0, and smaller values indicate better agreement between the
distributions. We display all MMD scores to three significant figures. Comparing the marginal
distributions alone does not suffice as a comparison metric, so we also provide summary plots of
these network statistics through time to verify that the evolution of these statistics match. In addition,
we have designed several synthetic-data experiments to verify specific time-series properties observed
in real-world networks which we would like to capture.

A difficulty for graph generative model evaluation is that proper comparison of a network time series
generator requires many realisations of this time series drawn from the same distribution to facilitate
learning and subsequent comparison. Papers such as TagGen [12] and DYMOND [13] utilise data
sets that comprise of one realisation of a real world temporal network, and aim to simply produce

“surrogate” networks that closely resemble that single realisation. We aim to assess whether our model
is able to generalise to new examples, in the sense that given a new graph Gt−1 drawn from the same
distribution as the training distribution, we can draw samples from Gt ∼ p(·|Gt−1). We are therefore
unable to use the same data sets as these papers, and instead design a new experimental setup in line
with our objective.

Our general experimental framework is as follows: we are given a set of realisations
{{G1

t}T1
t=0, . . . , {GN

t }TN
t=0, }. For DAMNETS and AGE, we split this up into a set of training time

series and test time series, and fit each model on the training set, then evaluate the performance
on the test set. As DYMOND and TagGen can only learn from one time series at a time and produce
realisations from that specific time series, we instead train an instance of these models separately
on each time series in the test set and sample one time series from each trained model. This might
seem like a large advantage for these models, as they have direct access to the test set. However
our experimental results show that the aggregated behaviour of these samples does not match the
underlying distribution well, suggesting these methods are not suitable for learning the true underlying
process that a given sample was drawn from. Due to the fact that DYMOND and TagGen have to be
re-trained on every single time series, we provide two sets of results for some data sets, with a smaller
data set chosen such that DYMOND and TagGen converge within 24 hours.

4.1 The Barabási–Albert Model
The family of Barabási–Albert (B-A) models [19] was designed to capture the so-called scale-
free property observed in many real world networks through a preferential attachment mechanism.
Formally a scale-free network is one whose degree distribution follows a power-law; if deg(i)
represents the degree of node i in a random network model, then the network is scale free if
P( deg(i) = d) ∝ 1

dγ , for some constant γ ∈ R. Degree distributions with a power-law tail have been
observed in many real networks of interest, such as hyperlinks on the World-Wide Web or metabolic
networks, although the ubiquity of power law degree distributions has been disputed [20].

The B-A model has two integer parameters, the number of nodes n and the number of edges m to be
added at each iteration. The network is initialised with m initial connected nodes. At each iteration t,
a new node is added and is connected to m existing nodes, with probability proportional to the current
degree pu = deg(u)∑

v∈V deg(v) . Here, the standard NetworkX [21] implementation is used. Constructing
a B-A network in this way yields a network time series of length T = n−m, where each graph Gt is
the graph after node m+ t has the first edges attached to it. Nodes with a many existing connections
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(known as hubs) will likely accumulate more links; this is the preferential attachment property which,
in the B-A model, leads to a power-law degree distribution with scale parameter γ = 3.

For the B-A experiments, we take N = 200 time series with parameters n = 100 and m = 4,
yielding time series of length T = 96. The results are displayed in Table 1 and Figure 3. We see
DAMNETS produces samples with orders of magnitude lower MMD than the baseline methods, and is
the only model to correctly replicate the power law degree distribution.

Table 1: The MMD on the B-A dataset for each network statistic. Lower is better.

Model Degree Clustering Spectral Transitivity Assortativity Closeness

DYMOND 14.01 61.20 8.78 7.28 4.76 3.19
TagGen 16.33 16.55 2.29 2.06 23.95 0.10
AGE 15.08 25.15 9.45 3.42 6.37 2.36

DAMNETS 8e−3 0.78 0.14 0.01 0.01 5e−6

0 25 50 75
Time
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0.10
Density

0 25 50 75
Time
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0.5

Transitivity

0 5 10 15 20 25
Degree
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D
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si
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Degree Distribution of GT
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DAMNETS

AGE

DYMOND

TagGen

Figure 3: Plots for the B-A model. Left: density against time; middle: transitivity against time; right:
the average degree distribution of the final network GT produced by the models. Only DAMNETS
correctly replicates the power law degree distribution.

4.2 Bipartite Concentration

Figure 4: A sample from the bipartite concentration model with 10 nodes in each partition, with an
initial connection probability of p = 0.2 and a concentration proportion pcon = 0.3. The highest
degree node is shown in red; links concentrate on this node over time.

G0 G1 G2 G3 G4 G5

This data set is designed to simulate behaviour in rating systems where objects with many links tend
to accumulate more recommendations [22]. For example in a data set consisting of users and movies,
movies with many existing recommendations are likely to accumulate more over time. The graph
G0 is initialised as a random bipartite graph with connection probability p. At each timestep, we
select the node in the right-hand partition with the most links (ties broken at random) and re-wire a
proportion pcon of non-adjacent edges to that node.

For the experiments we set p = 0.5 and pcon = 0.1. For the smaller data set (S), we place 30 nodes
in each partition (so n = 60) and iterate for T = 10 timesteps. For the larger data set (L) we place
250 nodes in each partition (n = 500) and iterate for T = 15 timesteps. To measure the extent to
which the different generators replicate this bipartite structure, in addition to our standard summaries
we also compute the mean Spectral Bipartivity (SB) [23] through time, which takes values in [0, 1],
with 0 indicating the network is not bipartite and 1 indicating the network is fully bipartite. The
results are displayed in Table 2 and Figure 9. DAMNETS consistently outperforms all the baseline
models across all summary statistics.
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Table 2: The MMD for each network statistic (lower is better) and Spectral Bipartivity (closer to 1 is
better) across the small (S) and large (L) bipartite contraction test datasets.

Model
Deg. Clust. Spec. Trans. Assort. Closeness SB

(S) (L) (S) (L) (S) (L) (S) (L) (S) (L) (S) (L) (S) (L)

DYMOND 1.06 − 9.55 − 0.12 − 1.67 − 9e−4 − 0.14 − 0.50 −
TagGen 0.81 − 1.73 − 0.29 − 5e−4 − 0.07 − 2e−4 − 0.56 −
AGE 0.92 2.75 9.46 15.3 0.13 0.25 1.48 3.71 0.72 4.81 0.16 0.36 0.55 0.52

DAMNETS 0.01 4e−3 0.11 3e−3 0.03 5e−4 7e−6 8e−8 1e−4 7e−6 4e−7 1e−7 0.99 0.99

0 2 4 6 8
Time

0.25

0.30

Density

0 2 4 6 8
Time

0.0

0.1

0.2

0.3

Transitivity

0 2 4 6 8
Time

0.50

0.55

0.60

Closeness

Test

DAMNETS

AGE

DYMOND

TagGen

Figure 5: Plots for the bipartite contraction model. Left: density against time; middle: transitivity
against time; right: closeness against time. Only DAMNETS shows good performance in all statistics.

4.3 Community Evolution and Decay

Figure 6: A sample from the community decay model of length T = 5 on V = {1, . . . , 45}, with 15
nodes in each of the Q = 3 communities, connection probabilities pint = 0.7, pext = 0.005, decay
community D = 3 (coloured red) and decay proportion pdec = 0.2.

G0 G1 G2 G3 G4 G5

Our next network time series benchmark considers a dynamic community structure model. We
initialise a three-community stochastic block model on n nodes. At each time step, we re-wire a fixed
proportion fdec of the third community (which we call the decay community), replacing them with a
random outgoing edge to a node in one of the other communities. A sample from the model is shown
in Figure 6, and a full description of the model is given in Appendix A.2.

For the experiments we use inter-community connection probability pint = 0.9, intra-community
pext = 0.01, decay fraction fdec = 0.2 and iterate for T = 20 timesteps. For the small (S) data set
we place 20 nodes in each community (for a total of n = 60 nodes) and for the large (L) data set we
place 400 nodes in each community (n = 1200 in total). The non-decay communities should have
constant density, and the decay community should have density decaying exponentially at rate fdec.
The results are displayed in Table 3 and Figure 10. DAMNETS is the best performing model overall,
although AGE also shows strong performance on this data set.

Table 3: The MMD for each network statistic across the small (S) and large (L) community decay
test data sets, with a (−) when the model did not converge within 24 hours. A lower MMD is better.

Model
Deg. Clust. Spec. Trans. Assort. Closeness

(S) (L) (S) (L) (S) (L) (S) (L) (S) (L) (S) (L)

DYMOND 1.95 − 3.20 − 0.66 − 0.88 − 1.02 − 0.33 −
TagGen 10.99 − 2.91 − 2.18 − 0.26 − 2.37 − 1.04 −
AGE 0.15 0.17 2.00 2.06 0.43 0.42 0.02 0.03 0.07 0.06 0.01 0.03

DAMNETS 0.19 0.21 1.90 1.91 0.39 0.40 0.01 0.01 0.03 0.04 0.01 0.02
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Figure 7: The density of each community through time in the 3-community dataset.

4.4 Correlation Networks
This data set consists of financial correlation networks built from time series of asset prices from the
Wharton CRSP database [24]. We consider a set of 49 liquid stocks from the US equity market, for
which we have available minutely prices data. We construct a graph by assigning each stock to a
node. We then estimate the correlation matrix of their 5-minute returns each day, and threshold these
correlations at 1 standard deviation in order to construct the edges (so stocks are connected by an
edge if they are strongly correlated). The data set spans N = 97 weeks, with each week giving a
time series of length T = 5.

One issue with this data set is that correlations between financial instruments are known to be unstable
over time (hence different realisations may not drawn from the same distribution). To mitigate this
we did not split the data chronologically, but have rather drawn the training and test splits randomly
(which correspond to selecting random weekly time series from the data set). We repeat this procedure
over 5 seeds and compute the average MMD. The results are displayed in Table 4 and Figure 11.
DAMNETS is the only model to show good performance across all statistics.

Table 4: The MMD for each network statistic across the correlation test data set. Lower is better.

Model Degree Clustering Spectral Transitivity Assortativity Closeness

DYMOND 0.16 0.58 0.27 0.17 0.04 0.06
TagGen 0.95 0.56 0.85 4e−3 0.08 0.48
AGE 0.14 1.07 0.31 0.26 0.08 0.10

DAMNETS 0.13 0.21 0.25 0.04 0.02 0.01

4.5 The MIT Reality Mining Dataset
This is a contact network between students and faculty at the MIT media lab recorded between August
2004 to May 2005 [25]. Each contact between two different people (recorded via a bluetooth device
on the subjects’ mobile phones) forms a timestamped edge. We aggregated all daily contacts into
networks, and evaluate our procedure on generating weekly time series of these contact networks.
We dropped weeks without observations for all the days, giving a set of 32 weekly time series. We
used 16 weeks for training, 6 for validation and 10 for testing. As with the correlation data set,
we randomly sample weeks to form the train and test set, and repeat the experiment across three
seeds. The results in Table 5 show that DAMNETS performs best on all statistics except closeness,
even compared to DYMOND and TagGen which have access to the test data at training. The strong
performance of DAMNETS is particularly evident across the local summary statistics, which suggests
DAMNETS is particularly well suited to represent fine-grained local structure.

Table 5: The MMD for each network statistic across the MIT test data set. Lower is better.

Model Degree Clustering Spectral Transitivity Assortativity Closeness

DYMOND 1.24 2.21 1.28 0.39 0.18 0.04
TagGen 2.57 2.99 2.42 0.54 0.32 0.48
AGE 2.02 2.75 2.17 0.37 0.38 0.73

DAMNETS 0.41 1.42 0.46 0.34 0.10 0.09

4.6 Ablation Study
We see that DAMNETS outperforms all the baseline models on each data set under consideration, in
particular the AGE model, which is the most similar in that it also follows a Sequence2Sequence
framework. DAMNETS differs from AGE in two major ways, namely the formulation in terms of the
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delta matrix and the model architecture adapted for sampling this sparse matrix. We provide an
ablation study in Appendix B where we modify AGE to generate delta matrices, and also a version
where we add positional encodings. We find that the delta matrix formulation significantly improves
the performance of AGE, while positional encodings do not change the performance much, with
neither variant of AGE able to match the performance of DAMNETS. This suggests it is the combination
of our re-formulation of the problem combined with a model architecture suited to sample sparse delta
matrices that provides such strong performance. We also provide separate experiments to examine
the influence of the GNN layer type, GNN depth and type of recurrent module in the decoder.

5 Discussion and Conclusion
DAMNETS provides a novel approach to generating network time series, with the ability to have
fine-grained edge-level conditioning while maintaining scalability by generating delta matrices rather
than entire graphs and efficiently utilising the sparsity of these matrices. We have shown through
extensive experiments that DAMNETS is able to learn a variety of important network models that
existing methods simply cannot. DAMNETS can learn to generate long time series, reproduce power-
law degree distributions, bipartite structure and maintains very strong performance on larger networks,
while none of the baseline models are able to capture all of these properties.

In future work, the Markovian assumption underlying DAMNETS could be relaxed to incorporate time
series with long range dependencies, using techniques such as node memory introduced in the TGNN
model [26]. The model could also be extended to handle graphs of varying size: node deletion could
be performed by adding a step before the sampling of each row-tree wherein the model makes a
decision about whether the node should persist to the current timestep. Node additions could be
handled by allowing optional rows to be appended at the end of the delta matrix (and only sampling
ones for these rows, as a new node could not have any edge deletions). It would also be interesting
and fairly straightforward to extend DAMNETS to generate node attributes, along the lines of [27].
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A Supplementary Information for DAMNETS: A Deep Autoregressive Model
for Generating Markovian Network Time Series

A.1 The DAMNETS Row Generation Algorithm

Algorithm 2: Algorithm for generating the the uth row of the delta matrix
Function Sample_Leaf(u, k, h):

e← (u, k)
if e is Edge Addition then

has_leaf ∼ Bernoulli(MLP+(h))
else

has_leaf ∼ Bernoulli(MLP−(h)) /* Edge deletion */
end
if has_leaf then

return 1⃗, e
else

return 0⃗, ∅
end

End Function
Function Recursive(u, k, htop

u (k)):
if is_leaf(lchu(k)) then

hbot
u (lchu(k)) ,N k,left

u ← Sample_Leaf(u, lchu(k), htop
u (k))

else
has_left ∼ Bernoulli(MLPL(h

top
u (k)))

if has_left then
htop
u (lchu(k))← LSTMCell (htop

u (k), embed(left))
hbot
u (lchu(t)) ,N k,left

u ← Recursive(u, lchu(k), htop
u (lchu(k)))

else
hbot
u (lchu(k)) ,N k,left

u ← 0⃗, ∅
end

end
ĥtop
u (rch(k))← TreeCelltop

(
hbot
u (lchu(k)), h

top
u (lchu(k))

)
if is_leaf(rchu(k)) then

hbot
u (rchu(k)) ,N k,right

u ← Sample_Leaf
(
u, rchu(k), ĥ

top
u (rchu(k))

)
else

has_right ∼ Bernoulli(MLPL(ĥ
top
u (rchu(k))))

if has_right then
htop
u (rch(k))← LSTMCell

(
ĥtop
u (rch(k)), embed(right)

)
hbot
u (rchu(k)) ,N k,right

u ← Recursive(u, rchu(k), htop
u (rchu(k)))

else
hbot
u (rchu(k)) ,N k,right

u ← 0⃗, ∅
end

end
hbot
u (k)← TreeCellbot

(
hbot
u (lchu(k)) , h

bot
u (rchu(k))

)
N k

u ← N k,left
u ∪N k,right

u

return hbot
u (k),N k

u
End Function

First we provide details for the DAMNETS row generation algorithm given in Algorithm 2. Here,
TreeCellbot and TreeCelltop are two TreeLSTM [28] cells, embed(left) and embed(right) are learned
embeddings for the binary values "left" and "right", and LSTMCell is a standard LSTM [29]. The top
down cell summarises decisions made above t in the tree, and the bottom up cell summarises lower
levels of the tree (if they exist), where hbot

u (∅) = 0. Notice that that hbot is computed independently
of htop.
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A.2 The Community Decay Model
The three community decay model is formally defined as follows. The initial network G0 = (V,E0)
with node set V = {1, . . . , n} is equipped with a surjective community membership function
C : {1, . . . , n} → {1, . . . , Q} that encodes which of the Q communities a given node i belongs to (a
node can only belong to one community). Here we assume that the community memberships are
known. The initial graph G0 is then fully described by the interior (within community) and exterior
(across communities) edge probabilities pij := P((i, j) ∈ E0), given by

pij =

{
pint if C(i) = C(j)

pext if C(i) ̸= C(j).
(8)

A network time series G1, . . . , GT is then constructed as follows; we fix a community D ∈
{1, . . . , Q} as the decay community. We define the set of internal edges for community D as

Dint
t := {(i, j) ∈ Et| C(i) = C(j) = D}. (9)

At each iteration t, (i.e time step), a fixed proportion fdec of the internal edges Dint
t are replaced

with external edges. This is achieved by selecting a random internal edge (i, j) and removing it from
the edge set Et, then selecting a node u uniformly from {i, j}. We then select a random endpoint
k uniformly from {v ∈ V | C(v) ̸= D, (u, v) /∈ Et}, the set of nodes not in community D and not
connected to u, and finally add the edge (u, k) to the edge set Et. We repeat this procedure T times
to generate our network time series.

The model can be interpreted as starting with a network with Q densely connected communities,
decaying in time to have only Q − 1 clear communities; the decay community D will appear as
noise around those left unperturbed. A sample from the model can be seen in Figure 6; for ease of
visualisation, each initial community has only 15 nodes.

A.3 Graph Attention Networks
For the encoder step in DAMNETS we compute node embeddings for Gt−1, using a GNN. We employ
a Graph Attention Network (GAT) [15], although any GNN layer is applicable. Given node features
X1, . . . , Xn, Xi ∈ RF , a GAT layer produces a new set of node features hi ∈ RF ′

according to

hi = σ

∑
j∈Ni

αijWXj

 , (10)

where W ∈ RF ′×F is a learnable weight matrix, σ(·) is a non-linear function applied element-wise,
and αij ∈ R are normalised attention coefficients computed as

eij = a(WXi||WXj), (11)

αij =
exp(eij)∑

k∈Ni
exp(eik)

, (12)

where || represents the concatenation operation, and a(·) is a single layer MLP with the LeakyReLU
activation function. These layers are stacked to produce a GAT network. GAT layers can also employ
multi-head attention [7]. We write GAT (X,A) to represent the application of a GAT network to a
graph with node feature matrix X and adjacency matrix A.

A.4 Further Related Work
Network Time Series Forecasting. A distinct but related area of study is network time series
forecasting, where the goal is to predict node attributes or links in a graph at a future time point.
Classical approaches include the GNAR model [30] which assumes a simple linear model based on
lagged network attributes. Many approaches have appeared in the deep learning literature, such as the
Graph AR model [31] and Variational Graph Recurrent Neural networks [27]. Markov models have
been considered in this literature before, in particular the Graph Edit Network model [32], which
uses a GNN encoder to predict a list of insertions and deletions for both nodes and edges at the next
timestep, which can be viewed as an estimate of the delta matrix at the next time step. It remains to
note that forecasting focuses on the next time (points) and does not produce a whole time series of
networks which resembles the observed time series.
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B Ablation Studies
B.1 The Delta Parameterisation
In many of our experiments, DAMNETS outperforms the AGE model [14]. One may conjecture that it is
the use of the delta matrix which is the main driver of this difference in performance. To assess this
hypothesis we perform the following ablation study: we re-formulate the AGE model to generate delta
matrices instead of entire adjacency matrices. Recall that AGE is a transformer model as described
in [7], but without the positional encodings. The transformer is trained via maximum likelihood to
generate rows of the adjacency matrix A(t+1) from the rows of the previous adjacency A(t) using the
standard Sequence2Sequence framework.

We instead re-formulate AGE to generate delta matrices, which we call AGE-D. To ensure valid delta
matrices, we propose to train a transformer to generate |∆(t)| row-wise from the rows of A(t), then
construct A(t+1) as

A(t+1) =
{
A(t) +

∣∣∣∆(t)
∣∣∣} mod 2.

Note that this always produces a valid adjacency matrix. We also include a variant with positional
encodings on both the input and output rows, which we title AGE-DPE. We compare the performance
of AGE and the two proposed variants on the BA and the Bipartite Contraction (L) datasets, as there
was a particularly large gap in performance between DAMNETS and AGE on these datasets. We also
include the MMD for DAMNETS again for ease of reference. The results are displayed in Tables 6 and
7.

Table 6: The MMD for each network statistic on the BA dataset. Lower is better.

Model Degree Clustering Spectral Transitivity Assortativity Closeness

AGE 15.08 25.15 9.45 3.42 6.37 2.36
AGE-D 0.76 2.45 0.69 0.51 4.52 2e−3

AGE-DPE 0.76 2.37 0.71 0.49 4.31 2e−3

DAMNETS 8e−3 0.78 0.14 0.01 0.01 5e−6

Table 7: The first block shows the MMD for each network statistic on the Bipartite Contraction (L)
dataset, for which lower is better. The last column shows the spectral bipartivity, for which a value
closer to 1 is better.

Model Degree Clustering Spectral Transitivity Assortativity Closeness SB

AGE 2.75 15.3 0.25 3.71 4.81 0.36 0.52
AGE-D 0.15 6.14 0.15 0.04 0.02 1e−2 0.85

AGE-DPE 0.13 6.07 0.17 0.03 0.02 1e−2 0.87
DAMNETS 4e−3 3e−3 5e−4 8e−8 7e−6 1e−7 0.99

We see that re-formulating AGE to generate delta matrices significantly improves the performance
of the method on these datasets, whilst adding the positional encodings provided little to no gain in
performance. We also note that while AGE-D performs better than AGE, it still does not match the
performance of DAMNETS on these datasets, indicating that it is the combination of our formulation of
the problem and specific choice of architecture that leads to such strong performance.

B.2 GNN Layer Type
Here we study the impact on the performance of DAMNETS when using different types of GNN layers
in the encoder. The three layers we consider are GAT [15] used in the main text, GCN [33] and
GraphSAGE [34] with mean aggregation. We repeat the BA experiment from the main text using a
single GNN layer of each type, and report the MMD statistic for each variation in Table 8. We see
that DAMNETS is not particularly sensitive to the choice of GNN layer.
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Table 8: The MMD for each network statistic on the BA dataset for samples generated by DAMNETS
using different GNN encoder layers. In each case we use a single layer GNN. Lower is better. We see
that DAMNETS is not particularly sensitive to the choice of GNN.

Model Degree Clustering Spectral Transitivity Assortativity Closeness

GAT 8e−3 0.78 0.14 0.01 0.01 5e−6

GCN 8e−3 0.81 0.17 0.02 0.01 7e−6

GraphSAGE 7e−3 0.80 0.16 0.01 0.02 7e−6

B.3 GNN Depth
We repeat the BA experiment from the main text varying the depth of the GNN. We use GAT [15]
layers for the encoder with a depth of 1, 2 and 4 layers respectively. The results are displayed in
Table 9. We see that performance slightly degrades with deeper networks, although the difference is
not substantial.

Table 9: The MMD for each network statistic on the BA dataset for samples generated by DAMNETS
using different different numbers of GAT layers. Lower is better. We see that the performance is
similar across GNN depths, with shallower networks performing slightly better.

Number of Layers Degree Clustering Spectral Transitivity Assortativity Closeness

1 8e−3 0.78 0.14 0.01 0.01 5e−6

2 9e−3 0.77 0.15 0.02 0.01 7e−6

4 0.04 0.91 0.22 0.01 0.06 4e−3

It is important to keep in mind that the GNN embeddings are just one component of the model
pipeline, with the downstream task being generating samples at the next timestep. Therefore intuition
that applies in other applications of GNNs such as deeper networks being better (up to the point of
oversmoothing) may not apply here. In particular DAMNETS has no information other than the present
state of the graph Gt. We hypothesise that if the GNN embeddings computed at time Gt are similar
to those computed at some other time Gt+k (which may occur in a deeper network that oversmoothes
the node features), then the model may become "confused" and sample the wrong type of transition,
hence shallower networks perform better.

B.4 Choice of Encoder
In Section 3.2 we mentioned that the self-attention layer in the decoder could be replaced with other
recurrent modules. Here we study the performance of DAMNETS when using an LSTM instead of
self-attention (which as before we call TFEncoder. Again we repeat the BA experiment, using a
3-layer LSTM or TFEncoder, the results of which are displayed in Table 10.

Table 10: The MMD for each network statistic on the BA dataset for samples generated by DAMNETS
using different decoder layers. Lower is better. We used three layers for both the TFEncoder and
LSTM. We see that the performance only degrades mildly when moving from the self attention layer
through to the LSTM.

Layer Type Degree Clustering Spectral Transitivity Assortativity Closeness

TFEncoder 8e−3 0.78 0.14 0.01 0.01 5e−6

LSTM 9e−3 0.91 0.20 0.02 0.03 4e−5

We see a slight degradation in performance when moving from self-attention to LSTM. This is to
be expected - the self attention layer can directly attend over all the tokens (here node-embeddings)
in it’s receptive field, whereas the LSTM only models dependencies via the hidden state. LSTM
layers use significantly less memory however, so for large graphs with many nodes this may be
advantageous. Another alternative is the Fenwick Tree structure introduced in [11].
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C Experimental Details
C.1 Model Specification and Training Details
For the experiments in this paper we used a hidden size of F = 256 for all experiments, as this was
the default hidden size used in BiGG [11]. We used a single layer GAT [15] for all experiments.
The rationale for this is as follows: GNNs are known to suffer from an oversmoothing problem
[35], whereby node embeddings all become similar when using many stacked GNN layers. This
would be particularly problematic in our case, as the model would not be able to distinguish between
different states in the Markov chain and would likely perform very poorly. We therefore chose to use
a very simple model with one GNN layer. It is possible this could be improved upon. All the LSTM
networks in the BiGG decoder used 2-layers.

We used the Adam [36] optimiser for all experiments, with learning rate 0.001 and weight decay
parameter 0.0005. We have not made an effort to optimise these parameters. We used early stopping
based on the log-likelihood of the validation set, which was comprised of 30% of the training data,
chosen randomly. We used a batch size of 32 graphs (using gradient accumulation for the larger
graphs to keep this consistent) and clipped gradients at a norm of 5. We found that training to 0
training loss was very harmful for out of sample performance, and that early stopping is necessary for
good performance. All numerical results are averaged over five seeds.

We implemented the GAT using Torch Geometric [37], and used PyTorch [38] for the other deep
learning functionality. We used Networkx [21] for processing the network data. We modified the
original BiGG implementation to combine this with the encoder, which can be found at this link.

C.2 Baseline Model Information
We used the publically released versions of DYMOND and TagGen. Both of these had fatal errors in
their implementation, which we have fixed and released as a part of our source code. There is no
available code for AGE, so we implemented this using standard PyTorch Transformer modules. We
used all the default hyperparameters given in the respective papers. For training AGE we also used
early stopping with the same validation log-likelihood criterion, batch size and optimiser settings. As
AGE is a Transformer model, we experimented with many "tricks" that are commonly used to train
Transformers, such as warmup learning rates as described in [7], but found they did not improve the
performance of the model.

C.3 Hardware and Running Time
All the experiments in this paper were carried out on a single Nvidia GeForce RTX 3090 GPU with
an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz. For the smaller experiments we capped the
run time of DAMNETS and AGE at one hour, and 24 hours for the larger datasets (although in all cases
both these models early stopped before the cap). DYMOND is also fast to run despite needing to be
re-trained on each NTS due to its simplicity. TagGen required 24 hours to complete its experimental
run on all datasets.
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D Further Experimental Plots
Here we present further results for test statistics on the B-A dataset, the bipartite contraction model,
the three-community decay model, and the test correlation networks.
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Figure 8: The first five plots show the mean and standard deviation of the network statistics computed
through time for the B-A dataset. We see that DAMNETS produces samples that are very similar to
the test set across all metrics, whereas the baseline methods fail to do so. The final plot shows the
average degree distribution of the final network GT produced by the models. Only DAMNETS correctly
replicates the power law degree distribution.
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Figure 9: The network statistics computed through time for the bipartite contraction model. We see
that DAMNETS shows excellect performance on all statistics, whereas the other models are not able to
learn the dynamics.
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Figure 10: Statistics computed through time on the test set for the three-community decay model.
First two rows: The average networks statistics computed across time. Final row: the density of each
community through time. We see that both AGE and DAMNETS both show strong performance on this
model, while DYMOND performs poorly.
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Figure 11: The average network statistics computed through time for the test correlation networks.
We see DAMNETS closely tracks the test distribution on all statistics other than density.
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