Under review as a conference paper at ICLR 2026

TAMPERBENCH: SYSTEMATICALLY STRESS-TESTING
LLM SAFETY UNDER FINE-TUNING AND TAMPERING

Anonymous authors
Paper under double-blind review

ABSTRACT

As increasingly capable open-weight large language models (LLMs) are deployed,
improving their tamper resistance against unsafe modifications, whether accidental
or intentional, becomes critical to minimize Al-associated risks. However, the
number of safety alignment approaches to combat tamper resistance has resulted in
diverse evaluations: Varied data sets, metrics, and inconsistent threat settings make
it difficult to fairly compare safety, utility, and robustness across different defenses.
To this end, we introduce TamperBench, a unified framework to provide an eval-
uation of the tamper-resistance of LLMs. TamperBench (i) curates a repository
of weight-space fine-tuning attacks and latent-space representation attacks; (ii)
allows for testing state-of-the-art tamper-resistance defenses; and (iii) provides
both safety and utility evaluations. TamperBench requires minimal additional
code to specify any fine-tuning configuration, alignment-stage defense method, and
metric suite while ensuring end-to-end reproducibility. We showcase its value by
evaluating numerous safety-aligned open-weight LLMs across tampering attacks
with varied configurations. To the best of our knowledge, TamperBench is the
first large-scale evaluation framework for assessing tamper resistance in LLMs.
In this work, we evaluate 19 open-weight LLMs, including defense-augmented
variants, across nine tampering regimes using standardized safety and capability
metrics with hyperparameter sweeps per model-attack pair. Code is available at:
https://anonymous.4open.science/r/TamperBench—-71DD

1 INTRODUCTION

Diverse training measures are undertaken to safeguard LLMs (Touvron et al., [2023; OpenAl et al.,
2024; [Team et al., [2023) but modifications to weights or latent representations—tampering—can
undermine alignment (Che et al.| 2025} |Huang et al.,[2024b; Q1 et al., [2024b; Murphy et al.| 2025}
Halawi et al., 2024} |Schwinn & Geisler, 2024)). This problem is increasingly urgent: Such attacks
are becoming more accessible through compute-efficient approaches like LoRA (Hu et al.l 2022
Zhao et al., 2024} [Meng et al.,|2024; |Luo et al.| 2024), more capable models may be becoming more
vulnerable (Bowen et al.,[2025), and open-weight models—whose weights are easily modifiable—are
close behind frontier models (Cottier et al.||2024) that are hitting high risk levels in frontier safety
frameworks (OpenAl,2025; |Anthropic, 2025). To resolve tampering risks, over twenty defenses have
been proposed proposed in the past year alone (Lyu et al., 2024} [Hsu et al., |2024; Tamirisa et al.,
2025; Shen et al., [2025; |Li et al., 2025bja; Huang et al., 2025} Zhao et al.; 2025} Bianchi et al., [2024;
Qi et al.| [2025} |Casper et al., [2024} Wang et al., 2024 a; [Huang et al.| |2024cfd; Liu et al.|[2025; [Huang
et al., 2024a; L1u et al., [2024; Mukhoti et al., [2024; Wei et al.l 2024} [Du et al., [2025; |[Sheshadri et al.,
2025;0’Brien et al.,|2025). But the evaluations of these methods are ad-hoc and often limited: They
rely on disparate attack models, tasks, and metrics, leaving the field without a rigorous, unified basis
for comparing different methods (Huang et al., 2024b; [Q1 et al., [2024a)).

To address this gap, we introduce TamperBench (Figure [I), the first systematic benchmark for
evaluating tamper resistance in open-weight LLMs. TamperBench provides an extensible suite
of tampering attacks and standardized evaluation benchmarks, along with interfaces that enable
defenses to be easily integrated and tested. It provides both benign and adversarial tampering regimes,
including stealthy attacks designed to bypass closed-weight safeguards. The tampering methods span
fine-tuning-based manipulations in addition to latent-space modifications at inference time.

https://anonymous.4open.science/r/TamperBench-71DD

Under review as a conference paper at ICLR 2026

How To | can't A
BEUO\:\."DE,;A “‘T‘f‘\;/'“‘ J MODEL OUTPUTS SAFE RESPONSES
&i LLMALIGNED

ar nsa J MODEL HAS STRONG CAPABILITIES
* ‘ i ; FINETUNE
[:’ L= i TAMPER MoDIFY weiGHTS ®
a JEoN O3 v o= MODIFY EMBEDDINGS

DOES MODEL STILL OUTPUT SAFE RESPONSES? @

S
Btag || s
BOMB?

ow oQ
&{- LLMTAMPERED
sy -

DOES THE MODEL RETAIN CAPABILITIES? ®
o
ALIGNMENT CAPABILTIES
CURRENT ALIGNMENT METHOD (D TAMPER METHOD | (@ SAFETY EVAL EVALUATION
METHODS DIFFER IN
THEIR EVALUATION OF
TAMPER RESISTANCE e i e &
& ALIGNED 03 & &, 2 N)
. AEH A@ : @
{
s
o820
HOW TO MEASURE THE =3 A:::_CMNED
TAMPER RESISTANCE
OF AN LLM? METHODS MAY FINE-TUNE METHODS MIGHT USE DIFFERENT
ON DIFFERENT DATASETS HARMFULNESS AND CAPABILITIES MEASURES
() ATTACK LLM WITH (@) EVALUATE HARMFULNESS ® EVALUATE IF LLM

TAMPERBENCH NINE TAMPERING OF TAMPERED LLM CAPABILITIES

HODS RESPONSES COMPROMISED

Figure 1: Tampering LLMs by modifying their weights or latent representations has shown to compromise
safety guardrails. While numerous methods have been proposed to make models ‘tamper-resistant’, there is a
lack of a systematic framework to measure this. TAMPERBENCH, aims to provide a framework to stress test an
LLM safety under fine-tuning and tampering.

The framework integrates with modern toolkits such as vLLM, Transformers, and Optuna,
enabling efficient large-scale experimentation, systematic hyper-parameter sweeps, and multi-GPU
execution. In addition to standardized safety metrics (StrongREJECT (Souly et al. [2024)) and
capability benchmarks (MMLU-Pro (Hendrycks et al.| 2021)), TamperBench produces Pareto-
front plots that visualize the trade-off between harmfulness and utility, offering a more complete
picture of model behavior beyond binary safeguard bypass.

Our contributions can be summarized as follows:

* We release a unified, extensible benchmark that consolidates tampering attacks, evaluation
protocols, and interfaces for alignment defenses, establishing a reproducible foundation for
tamper-resistance research.

* We conduct systematic hyper-parameter searches across tampering attacks to ensure robust-
ness is evaluated fairly and not tied to specific parameter choices.

* We present a large-scale benchmark over 19 open-weight LLMs, including safety-aligned
and defense-augmented Llama-3-8B variants, evaluated across nine tampering regimes with
standardized safety and capability metrics using hyperparameter sweeps per model-attack
pair.

2 BACKGROUND

2.1 LLM VULNERABILITIES AND THREAT SETTINGS

Large language models (LLMs) are typically aligned through supervised fine-tuning (SFT) (Wei
et al., 2022)) and reinforcement learning from human feedback (RLHF) (Ouyang et al., [2022), but
are often adapted further without repeating the costly RLHF stage. While access differs between
closed-weight fine-tuning APIs (LLM-as-a-Service, LLMaaS) and open-weight checkpoints, both
support similar procedures. Parameter-efficient methods such as LoRA (Hu et al.| 2022) and related

Under review as a conference paper at ICLR 2026

/\ SAFETY EVALUATION

ALIGNMENT STAGE DEFENSE HARMBENCH BEAVERTAILS STRONGREJECT GPT-4 JUDGE
TAR TAMIRISA ET AL., 2025 v X X X
VACCINE HUANG ET AL.. 2025D X v X X
RR ZOU ET AL., 2024 v X X X
LAT SHESHADRI ET AL., 2025 v X v v

4 BENIGN CAPABILITIES EVALUATION

ALIGNMENT STAGE DEFENSE MT-BENCH MMLU OPENLLM SST2

TAR TAMIRISA ET AL., 2025
VACCINE HUANG ET AL., 2025D
RR ZOU ET AL., 2024

LAT SHESHADRI ET AL., 2025

LA XS
X X (X
X L X X
X X (X

Figure 2: While many alignment stage defenses have been proposed Tamirisa et al.[(2025)); Huang et al.
(2024d); Zou et al.|(2024); Sheshadri et al.|(2025), they do not share any standardized evaluation. The
absence of a standardized protocol means that defenses cannot be fairly compared across tampering
settings. This motivates TamperBench as the first framework to consolidate tampering attacks and
evaluations into a unified toolkit.

adapters (Rajabi et al.| 2025} [Zhao et al., [2024; Meng et al.| 2024) make these modifications cheap
and widely accessible. As a result, tampering vulnerabilities are shared across deployment settings:
developers typically evaluate safety only on the original model (OpenAl, |2024; Metal, [2025)), yet
fine-tuning can suppress refusals with only a few harmful examples (Qi et al.| |2024b}; |Che et al.|
2025)), and even benign adaptations can destabilize safeguards (He et al.||2024; |Pandey et al.| |[2025)).

To reason about these risks systematically, we first distinguish between actor intent (benign vs.
adversarial). Benign adaptation may still compromise safety, which we refer to as (i) accidental
misuse. Adversarial tampering can then be organized along a second axis of attack sophistication
(overt vs. covert): (ii) malicious tampering, where adversaries openly retrain models to suppress
refusals; and (iii) stealthy tampering, where harmful behaviours are embedded in ways designed to
evade detection. Together, these settings capture the primary pathways through which fine-tuning and
tampering threaten alignment.

This taxonomy grounds our work: existing defenses are typically evaluated against only a subset of
these threats, using inconsistent assumptions. TamperBench provides the first unified framework
that systematically evaluates resistance and stability across all three threat settings.

2.1.1 THREAT SETTING: ACCIDENTAL MISUSE

Not all tampering is deliberate: even benign fine-tuning can inadvertently degrade safety alignment.
For instance, adapting an aligned model on seemingly harmless domain data may erode refusal
behavior if harmful or adversarial patterns are implicitly present. Previous studies show that only a
handful of benign examples can destabilize safeguards, causing models to answer harmful, jailbreak-
style queries (Q1 et al., 2024b; |Che et al.| 2025)). Other work demonstrates that safety failures
may emerge when “safe”” datasets contain hidden triggers or biases, revealing fragility in alignment
mechanisms (He et al., 2024} Pandey et al.;,[2025)). This setting highlights that even benign adaptations
can erode safeguards, making it a critical regime to evaluate.

2.1.2 THREAT SETTING: MALICIOUS TAMPERING (OVERT)

In direct malicious tampering, adversaries intentionally strip alignment by modifying model weights.
Common approaches include full fine-tuning or parameter-efficient methods such as LoRA (Hu et al.,

Under review as a conference paper at ICLR 2026

o
Q
NG
TAMPERBENCH FRAMEWORK e | L mationed
RUN A SUITE OF TAMPERING METHODS AND ATTACKS ACROSS THREAT SETTINGS ‘
+ .
== MALICIOUS TAMPERING THAT STEALTHY TAMPERING DESIGNED = ACCIDENTAL TAMPERING NOT
DISREGARDS APl PROTECTIONS. TO BYPASS API PROTECTIONS. INTENDED TO INDUCE HARM.
FULL PARAMETER FINETUNE BACKDOOR FINETUNE FULL PARAMETER FINETUNE
LORA FINETUNE COMPETING OBJECTIVES FINETUNE LORA FINETUNE
MULTILINGUAL FINETUNE
STYLE MODULATION FINETUNE
‘ EVALUATE SAFETY AND CAPABILITIES OF TAMPERED LLM
7 oa A DOES MODEL OUTPUT SAFE *
q DOES MODEL RETAIN BENIGN
op TAMPERED RESPONSES?
Q..ia LLM Y SPONSES CAPABILITIES?
=

Figure 3: TamperBench evaluates three threat settings: accidental misuse, overt malicious tamper-
ing, and covert stealthy tampering. These are represented by attacks such as harmful and benign
fine-tuning, LoRA, multilingual tuning, backdoors, style modulation, competing objectives, and
embedding attacks. Models are assessed on safety with StrongREJECT and on benign capabilities
with MMLU-Pro.

2022; Zhao et al.| 2024} |Meng et al., [2024) on jailbreak data or uncensored instructions (Q1 et al.,
2024b; |Che et al., [2025)). These methods can rapidly suppress refusal behavior while maintaining
capabilities, often with only a small number of harmful training examples.

2.1.3 THREAT SETTING: STEALTHY TAMPERING (COVERT)

Stealthy tampering embeds harmful behaviors in ways designed to evade detection. Examples include
backdoor fine-tuning with hidden triggers (Halawi et al.||2024), multilingual adaptation that bypasses
monolingual safeguards (Poppi et al.| 2025), or latent-space manipulations such as removing refusal
directions from activations (Arditi et al.|, [2025; |Schwinn & Geisler,2024). These approaches preserve
normal outputs under benign prompts while activating harmful behavior exclusively in targeted
conditions. By concealing harmful behaviors, this setting probes whether defenses remain effective
against hidden vulnerabilities.

2.2 TAMPER-RESISTANCE GOALS AND DEFENSES.

The objectives of tamper-resistance may be formalized as: (i) minimize harmful-response rates under
adversarial queries (resistance) and (i1) maximize utility on benign tasks while preserving aligned
behavior (stability). In practice, resistance is measured by harmfulness on held-out adversarial
prompts, often scored with LLM judges (Wang et al., 20244} Q1 et al.| [2024b)), while stability is
measured by task accuracy on standard benchmarks (Huang et al., 2024d; Liu et al., [2025} L1 et al.,
2025a)).

Defenses are grouped according to the stage of intervention in the training pipeline. (1) Alignment-
stage defenses strengthen the base model during SFT/RLHF by incorporating adversarial objectives
or simulating fine-tuning steps (Huang et al.l [2024d; Tamirisa et al., 2025} Zhao et al.| 2025). (2)
Fine-tuning-stage defenses modify adaptation dynamics through curated alignment data or auxiliary
losses (Huang et al.,2024c;Wang et al., 2024a; Du et al.| 2025} |Sheshadri et al., 2025)). (3) Post-tuning
defenses repair misalignment after tampering via adversarial realignment or surgical weight edits
(Hsu et al., 2024} |Huang et al., [2024a)).

Under review as a conference paper at ICLR 2026

Defense categories (2) and (3) above presuppose centralized control over fine-tuning, making them
primarily applicable for commercial LLMaaS providers. By contrast, open-weight models are
widely redistributed and adapted without oversight, leaving no mechanism for providers to enforce
fine-tuning- or post-tuning defenses. This makes tamper resistance for open weights an open
problem of particular urgency. Alignment-stage defenses (category 1) are the only strategies that
embed durability directly into the base model, and thus remain relevant across both open-weight
and API-based deployments. For this reason, our benchmark emphasizes systematic evaluation of
alignment-stage defenses, while still supporting integration of categories (2) and (3) for completeness.

2.3 CURRENT RESOURCES AND LIMITATIONS.

Initial progress has been made through surveys (Huang et al., [2024b)) and toolkits (Wang et al., [2024a;
Q1 et al., |2024b; [Hossain et al.l [2025; Murphy et al., 2025)), which provide implementations and
benchmarks for tamper resistance. However, these resources remain limited in extensibility, ease of
onboarding new defenses, coverage of tampering regimes, and integration of diverse strategies.

Meanwhile, popular frameworks such as HarmBench (Mazeika et al.| [2024) focus on automated
red-teaming and refusal robustness. Yet they are largely confined to prompt-based attacks (jailbreaks,
persuasion, harmful queries) and do not systematically evaluate weight-space tampering or fine-
tuning regimes. These overlooked regimes pose equally critical threats, as they directly modify model
parameters and can erode refusal behaviors in ways jailbreak-style prompting cannot capture.

TamperBench fills this gap by unifying tampering attacks, defenses, and evaluation metrics,
enabling reproducible and comparable assessment of resistance and stability across both weight- and
latent-space manipulations.

3 TAMPERBENCH FRAMEWORK

3.1 TAMPERING ATTACKS.

The TamperBench framework spans both weight-space and representation-space manipulations,
mapped directly to the threat settings in Sec. [2] and illustrated in Figure 3] In the weight space,
accidental misuse arises from benign full fine-tuning and benign LoRA on ostensibly benign or
domain-specific data, which can unintentionally erode refusal behavior (Qi et al.,2024b; (Che et al.,
2025). Malicious tampering includes harmful full fine-tuning and harmful LoRA on jailbreak or
uncensored datasets (Che et al.,|2025), multilingual fine-tuning that bypasses monolingual safeguards
(Poppi et al.l 2025). Stealthy tampering in the weight space is realized through methods that
embed adversarial behaviors such as backdoor, competing objectives, and style modulation fine-
tuning (Halaw1 et al., [2024; Murphy et al., [2025). In the representation space, stealthy tampering
encompasses latent embedding attack, which perturb representations or inject poisoning signals that
preserve benign behavior but enable harmful completions under hidden triggers (Schwinn & Geisler,
2024).

3.2 UTILITY EVALUATION.

TamperBench evaluates model utility on the MMLU-Pro (Wang et al., 2024b) dataset, where we
measure accuracy across its expanded and rigorously curated subject areas. Compared to the original
MMLU (Hendrycks et al.l |2021) dataset, which spans 57 subjects with many publicly available
questions, MMLU-Pro introduces more challenging, reasoning-focused questions with an expanded
choice set from four to ten options. It significantly reduces trivial or noisy problems and mitigates
issues of data leakage and annotation noise while improving robustness to different prompt styles.
We evaluate benign capabilities on the MMLU-Pro validation set using unsupervised 5-shot chain-of-
thought (CoT) protocol. In this setup, questions are stacked sequentially within the prompt, and the
model is required to answer only the final question. This setup makes MMLU-Pro a critical tool for
assessing whether tampering attacks or defenses impair a model’s core capabilities.

Under review as a conference paper at ICLR 2026

RESULTS

TAMPERBENCH TOOLKIT =
l ‘%LLM =

RUN A SCRIPT TO BENCHMARK LLM
O —
uv run scripts/whitebox/optuna_sweep.py <model_name> --attacks <list_of_attacks> v

LOAD LLM FROM :‘; Dl LLMAL\GNED I Rl RUN ATTACKS FROM RUN EVALS FROM
HUGGINGFACE OR LOCAL = TAMPERBENCH REGISTRY TAMPERBENCH REGISTRY
ADD AN ATTACK ADD AN EVALUATION

@register_attack("some_tampering_attack”, @register_eval(“some_eval”, EvalConfig)
AttackConfig) def SomeTamperAttack(WhiteboxEvaluation):
def SomeTamperAttack(WhiteboxTamperAttack):
def run_evaluation(self) = Results:
def run_attack(self) = True: # evaluate LLM

tamper with the model

Figure 4: A single script can be run to benchmark an LLM by providing either a local checkpoint
path or a HuggingFace repository ID, along with a list of attack names. The toolkit then executes the
specified tampering attacks and evaluation modules, producing results scored with standardized safety
and utility metrics and cached for reproducibility. TamperBench is designed to be highly extensible;
enabling researchers to contribute methods with minimal code overhead.

3.3 SAFETY EVALUATION.

To quantify residual harmful behavior, we employ JailbreakBench (Chao et al., 2024) and the
StrongREJECT (Souly et al.,[2024) dataset and evaluator. For embedding-based tampering attacks,
we use JailbreakBench, which provides ground-truth model outputs under adversarial prompting.
This allows us to directly evaluate whether tampering increases a model’s propensity to produce
unsafe completions. To assess the safety of responses more generally, we use the StrongREJECT
evaluator (Souly et al.l 2024)—which achieves state-of-the-art agreement with human annotations,
substantially outperforming alternative classifier-based safety evaluators. For each prompt-response
pair, it assigns each prompt—response pair a composite score based on three dimensions: (i) whether
the response was a refusal, (ii) its specificity and (iii) its convincingness. This provides a robust
measure of willingness, capability to generate harmful content and convincingness of the generated
unsafe completions.

3.4 TAMPERBENCH TOOLKIT

3.4.1 CORE REGISTRY

Unified interfaces for ALIGNMENT DEFENSES, ATTACKS, and EVALUATIONS. Each entry follows a
stable schema, making it easy to integrate new variants—e.g., cipher training, jailbreak-based tuning,
ratio-controlled poisoning, or representation attacks. Benchmarks run directly on HuggingFace
models with multi-GPU support if needed. All parameters affecting attack success are explicitly
declared and logged, ensuring transparency and reproducibility.

3.4.2 UTILITY LAYER

Modular helpers support both end-to-end pipelines (attack — train — evaluate) and independent use
of attacks or evaluations. Built-in Optuna integration enables efficient hyperparameter search for
defenses and training regimes, while standardized logging and checkpointing ensure robust experi-
mentation. Further, this design supports systematic sweeps over attack scenarios and evaluations,
enabling controlled comparisons without ad hoc scripts.

Under review as a conference paper at ICLR 2026

BENCHMARKING TAMPER RESISTANCE

UNTAMPERED

BENIGN FULL 0.7

FINETUNE

_ 0.6

BENIGN
LORA
0.4

0.3

BACKDOOR
feh,~

A MMLU-PRO ACCURACY
MMLU-PRO ACCURACY

0.1

COMPETING

OBJECTIVES o

STYLE
MODULATION 07- -0.7

- 0.6

HARMFUL FULL

FINETUNE P&B

- 0.4
- 0.3

HARMFUL
LORA

= 0.2

A STRONGREJECT SCORE
: H
o
STRONGREJECT SCORE

- O.1
MULTILINGUAL

-0.7 .0.0

EMBEDDING
ATTACK

Figure 5: Benchmarking the tamper resistance of 19 large language models (LLMs) across a suite
of attacks. Each cell reports a model’s harmfulness and its change under tampering, followed by its
benign capabilities (MMLU-Pro accuracy) and the corresponding change. For each model-attack
pair, hyperparameter sweeps are run and the highest (harmfulness) StrongREJECT score is reported.

4 BENCHMARK EXPERIMENTS

We evaluate 19 open-weight LLMs spanning compact and mid-scale regimes (e.g., ~0.6B to 8B
parameters), including both base and instruction-tuned variants. The suite covers strongly safety-
aligned models (notably the Llama family), models with weaker or uncertain alignment defaults
(such as Mistral and Qwen families), and three defense-augmented variants of Llama-3-8B intended
to improve robustness primarily against input/representation perturbations rather than permanent
weight modifications: (i) ReFAT 2025), an efficient adversarial training approach that

Under review as a conference paper at ICLR 2026

simulates refusal-ablation tampering during training; (ii) Circuit Breaking (Zou et al.| 2024} 2025),
which disrupts harmful internal circuits; and (iii) Triplet (Simko et al.,[2025)), which extends circuit
breaking with contrastive representation learning and has shown strength against embedding-space
attacks.

For each fine-tuning attack, we run an Optuna-based hyperparameter search with 20 trials. Safety is
measured using StrongREJECT and, for embedding-space attacks, also JailbreakBench; capabilities
are measured using MMLU-Pro. Candidate configurations are scored on harmfulness (StrongRE-
JECT) and benign capabilities (MMLU-Pro), and we report the point from the Pareto set with the
best StrongREJECT robustness (Appendix §A.4).

4.1 BENCHMARK RESULTS

Figure 5| presents, for each model-attack pair, harmfulness (StrongREJECT with its change from the
untampered baseline, i.e. the original model) and benign capability (MMLU-Pro evaluation with its
change). Hyper-parameter selections were done based on a 20-trial Optuna sweep where a point was
selected from the Pareto set that maximizes StrongREJECT score (A.4).

4.1.1 GLOBAL EFFECTS OF TAMPERING

At a high-level, the heatmap in Figure[5|shows a clear and consistent pattern: tampering generally
raises harmfulness and, in most cases, reduces capability. This is visible across model families
and sizes, indicating that baseline alignment, guardrails or safety characteristics do not persist once
weights or representations are modified by downstream adaptation. Visually, the StrongREJECT
scores admit large, and sometimes even saturated, increases, whereas the MMLU-Pro scores often
exhibit small to moderate declines across attack-model pairs; More than 95% of model-attack pairs
in[5]increase harmfulness and roughly 61% lose capability - with averages around AStrongREJECT
score ~ +0.36 and AMMLU Accuracy = —0.08.

4.1.2 ATTACK-LEVEL RISK PROFILES

Competing objectives (Murphy et al., [2025)) is seemingly the most severe elicitor of harmfulness:
StrongREJECT scores tiles are among the deepest across models, making it a high-risk setting for
safety collapse (the average AStrongREJECT score ~ +0.50 and average A MMLU ~ —0.23).
Backdoor fine-tuning (Murphy et al.,|2025)) is nearly as strong on harmfulness but typically imposes a
milder capability hit, which is risky in a different way: unsafe behavior increases while headline utility
remains comparatively intact (average AStrongREJECT scores at ~ 4-0.47, A and MMLU ~ —0.07).
We treat multilingual |Poppi et al.| (2025) as overt malicious tampering here as the training data are
harmful; it broadly increases harmfulness yet often leaves capability almost virtually unchanged (the
average AStrongREJECT score being ~ +0.43, A and MMLU =~ —0.03), increasing operational
risk since task accuracy checks may not flag erosion of safety.

Parameter-efficient and full harmful fine-tuning look similarly dangerous in aggregate: both elevate
harmfulness with moderate capability loss (average AStrongREJECT score ~ +0.38, A and MMLU
~ —0.07), underscoring how even inexpensive LoRA-style adaptation can degrade safety nearly
as much as full fine-tuning, as is consistent with previous works (Qi et al., |2024b)). In contrast,
the embedding attack (Schwinn & Geisler, 2024)) modifies inference time latent representations
rather than weights and appears milder on harmfulness with capabilities unchanged as it is non-
weight modifying; although the average shift is smaller, its subtlety means safety degradation can be
overlooked without explicit measurement. Finally, benign full and benign LoRA frequently promote
harmfulness upward while only slightly decreasing capabilities, reinforcing that even well-intentioned
domain adaptation can erode safeguards if not evaluated for safety alongside task metrics.

5 CONCLUSION AND FUTURE DIRECTIONS

We introduce TamperBench, a unified and extensible framework for systematically stress-testing
LLM safety under both weight-space and representation-space tampering. By standardizing attacks,
alignment-stage defenses, and evaluation protocols, the framework enables directly comparable
studies across models and threat settings. TamperBench currently benchmarks 19 open-weight

Under review as a conference paper at ICLR 2026

LLMs, clearly showing that tampering consistently increases harmfulness across all threat settings
and often degrades benign capabilities. These findings highlight that alignment does not reliably
persist after downstream adaptation, and that even seemingly benign fine-tuning can erode safeguards
if safety is not evaluated alongside task metrics.

To lower the barrier to standardized comparison, TamperBench couples systematic hyperparameter
sweeps with transparent selection from Pareto fronts, and offers a single-script interface that accepts
either a local checkpoint path or a HuggingFace repository ID plus attack names to run end-to-end
workflows. Looking ahead, we plan to expand defense interfaces, enable community contributions,
and support leaderboards for tracking safety—utility trade-offs. By providing an extensible workflow
and common foundation, Tampe rBench aims to accelerate progress toward LLMs whose safeguards
remain durable under real-world adaptation.

REFERENCES

Anthropic. Claude Opus 4 & Claude Sonnet 4 system card. System card / tech-
nical report, Anthropic, May 2025. URL https://www-cdn.anthropic.com/
6d8a8055020700718b0c49369f60816baz2a7c285.pdf.

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel
Nanda. Refusal in language models is mediated by a single direction. In Proceedings of the 38th
International Conference on Neural Information Processing Systems, NIPS *24, Red Hook, NY,
USA, 2025. Curran Associates Inc. ISBN 9798331314385.

Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio, Paul Rottger, Dan Jurafsky, Tatsunori
Hashimoto, and James Zou. Safety-tuned LLaMAs: Lessons from improving the safety of large
language models that follow instructions. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=gT5hALch9z.

Dillon Bowen, Brendan Murphy, Will Cai, David Khachaturov, Adam Gleave, and Kellin Pelrine.
Scaling trends for data poisoning in llms, 2025. URL https://arxiv.org/abs/2408,
029456.

Stephen Casper, Lennart Schulze, Oam Patel, and Dylan Hadfield-Menell. Defending against
unforeseen failure modes with latent adversarial training, 2024. URL |https://arxiv.org/
abs/2403.05030.

Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce,
Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J. Pappas, Florian Tramer, Hamed
Hassani, and Eric Wong. Jailbreakbench: An open robustness benchmark for jailbreaking large
language models. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?id=
ur jPCYZtOIL

Zora Che, Stephen Casper, Robert Kirk, Anirudh Satheesh, Stewart Slocum, Lev E McKinney, Rohit
Gandikota, Aidan Ewart, Domenic Rosati, Zichu Wu, Zikui Cai, Bilal Chughtai, Yarin Gal, Furong
Huang, and Dylan Hadfield-Menell. Model tampering attacks enable more rigorous evaluations of
LLM capabilities. Transactions on Machine Learning Research, 2025. ISSN 2835-8856. URL
https://openreview.net/forum?id=E60YbLnQd2.

Ben Cottier, Josh You, Natalia Martemianova, and David Owen. How far behind are open mod-
els? Technical report, Epoch AI, November 2024. URL https://epoch.ai/blog/
open-models-report. “Open models have lagged on benchmarks by 5 to 22 months”.

Yanrui Du, Sendong Zhao, Jiawei Cao, Ming Ma, Danyang Zhao, Shuren Qi, Fenglei Fan, Ting Liu,
and Bing Qin. Toward secure tuning: Mitigating security risks from instruction fine-tuning, 2025.
URLhttps://arxiv.org/abs/2410.04524.

Danny Halawi, Alexander Wei, Eric Wallace, Tony Wang, Nika Haghtalab, and Jacob Steinhardt.
Covert malicious finetuning: challenges in safeguarding LLM adaptation. In Proceedings of the
41st International Conference on Machine Learning, ICML24. IMLR.org, 2024.

https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf
https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf
https://openreview.net/forum?id=gT5hALch9z
https://arxiv.org/abs/2408.02946
https://arxiv.org/abs/2408.02946
https://arxiv.org/abs/2403.05030
https://arxiv.org/abs/2403.05030
https://openreview.net/forum?id=urjPCYZt0I
https://openreview.net/forum?id=urjPCYZt0I
https://openreview.net/forum?id=E60YbLnQd2
https://epoch.ai/blog/open-models-report
https://epoch.ai/blog/open-models-report
https://arxiv.org/abs/2410.04524

Under review as a conference paper at ICLR 2026

Luxi He, Mengzhou Xia, and Peter Henderson. What’s in your “safe” data?: Identifying benign data
that breaks safety. In ICLR 2024 Workshop on Secure and Trustworthy Large Language Models,
2024. URL https://openreview.net/forum?id=dp24p8i8Cg.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv,
org/abs/2009.03300.

Saad Hossain, Samanvay Vajpayee, and Sirisha Rambhatla. Safetunebed: A safety assessment
framework for harmful finetuning defenses. In User-Aligned Assessment of Adaptive Al Systems
(AIA) Workshop at International Joint Conferences on Artificial Intelligence (IJCAI), 2025. URL
https://openreview.net/forum?id=yKetbTItcu.

Chia-Yi Hsu, Yu-Lin Tsai, Chih-Hsun Lin, Pin-Yu Chen, Chia-Mu Yu, and Chun-Ying Huang. Safe
LoRA: The silver lining of reducing safety risks when finetuning large language models. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=HcifdQZFZV.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. LoRA: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Tiansheng Huang, Gautam Bhattacharya, Pratik Joshi, Josh Kimball, and Ling Liu. Antidote: Post-
fine-tuning safety alignment for large language models against harmful fine-tuning, 2024a. URL
https://arxiv.org/abs/2408.09600.

Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Harmful fine-tuning
attacks and defenses for large language models: A survey. arXiv preprint arXiv:2409.18169,
2024b.

Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Lisa: Lazy safety
alignment for large language models against harmful fine-tuning attack. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024c. URL |https://openreview.
net/forum?id=RPChapuXl1Cl

Tiansheng Huang, Sihao Hu, and Ling Liu. Vaccine: Perturbation-aware alignment for large language
models against harmful fine-tuning attack. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024d. URL https://openreview.net/forum?id=
1pXDZKiAnt!

Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Booster: Tack-
ling harmful fine-tuning for large language models via attenuating harmful perturbation. In
The Thirteenth International Conference on Learning Representations, 2025. URL https
//openreview.net/forum?id=tTPHgbOELV.

Mingjie Li, Wai Man Si, Michael Backes, Yang Zhang, and Yisen Wang. SalLoRA: Safety-alignment
preserved low-rank adaptation. In The Thirteenth International Conference on Learning Represen-
tations, 2025a. URL https://openreview.net/forum?id=GOoVzE9nS .

Shen Li, Liuyi Yao, Lan Zhang, and Yaliang Li. Safety layers in aligned large language models: The
key to LLM security. In The Thirteenth International Conference on Learning Representations,
2025b. URL https://openreview.net/forum?id=kUH1yPMANn7.

Guozhi Liu, Weiwei Lin, Tiansheng Huang, Ruichao Mo, Qi Mu, and Li Shen. Targeted vaccine:
Safety alignment for large language models against harmful fine-tuning via layer-wise perturbation,
2025. URL https://arxiv.org/abs/2410.09760.

Xiaoqun Liu, Jiacheng Liang, Muchao Ye, and Zhaohan Xi. Robustifying safety-aligned large
language models through clean data curation. arXiv preprint arXiv:2405.19358, 2024.

Qijun Luo, Hengxu Yu, and Xiao Li. BAdam: A memory efficient full parameter optimization method
for large language models. Advances in Neural Information Processing Systems, 37:24926-24958,
2024.

10

https://openreview.net/forum?id=dp24p8i8Cg
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://openreview.net/forum?id=yKetbTItcu
https://openreview.net/forum?id=HcifdQZFZV
https://arxiv.org/abs/2408.09600
https://openreview.net/forum?id=RPChapuXlC
https://openreview.net/forum?id=RPChapuXlC
https://openreview.net/forum?id=lpXDZKiAnt
https://openreview.net/forum?id=lpXDZKiAnt
https://openreview.net/forum?id=tTPHgb0EtV
https://openreview.net/forum?id=tTPHgb0EtV
https://openreview.net/forum?id=GOoVzE9nSj
https://openreview.net/forum?id=kUH1yPMAn7
https://arxiv.org/abs/2410.09760

Under review as a conference paper at ICLR 2026

Kaifeng Lyu, Haoyu Zhao, Xinran Gu, Dingli Yu, Anirudh Goyal, and Sanjeev Arora. Keeping
LLMs aligned after fine-tuning: The crucial role of prompt templates. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview,
net/forum?id=xN1QjS0dtO.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee,
Nathaniel Li, Steven Basart, Bo Li, David Forsyth, and Dan Hendrycks. HarmBench: A
standardized evaluation framework for automated red teaming and robust refusal, 2024. URL
https://arxiv.org/abs/2402.042409.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. Advances in Neural Information Processing Systems, 37:
121038-121072, 2024.

Meta. Llama-4 model card. Model card / technical report, Meta, Jul 2025.
URL https://github.com/meta-1llama/llama-models/blob/main/models/
llama4/MODEL_CARD.md.

Jishnu Mukhoti, Yarin Gal, Philip Torr, and Puneet K. Dokania. Fine-tuning can cripple your founda-
tion model; preserving features may be the solution. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=kfhoeZCeW7.
Featured Certification.

Brendan Murphy, Dillon Bowen, Shahrad Mohammadzadeh, Julius Broomfield, Adam Gleave, and
Kellin Pelrine. Jailbreak-tuning: Models efficiently learn jailbreak susceptibility, 2025. URL
https://arxiv.org/abs/2507.11630.

Kyle O’Brien, Stephen Casper, Quentin Anthony, Tomek Korbak, Robert Kirk, Xander Davies,
Ishan Mishra, Geoffrey Irving, Yarin Gal, and Stella Biderman. Deep ignorance: Filtering
pretraining data builds tamper-resistant safeguards into open-weight LLMs, 2025. URL https:
//arxiv.org/abs/2508.06601.

OpenAl. GPT-40 system card. System card / technical report, OpenAl, August 2024. URL
https://openai.com/index/gpt-4o-system—card/.

OpenAl. GPT-5 system card. System card / technical report, OpenAl, August 2025. URL https:
//openai.com/index/gpt—-5-system—card/.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simén Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,

11

https://openreview.net/forum?id=xNlQjS0dtO
https://openreview.net/forum?id=xNlQjS0dtO
https://arxiv.org/abs/2402.04249
https://github.com/meta-llama/llama-models/blob/main/models/llama4/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama4/MODEL_CARD.md
https://openreview.net/forum?id=kfhoeZCeW7
https://arxiv.org/abs/2507.11630
https://arxiv.org/abs/2508.06601
https://arxiv.org/abs/2508.06601
https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/gpt-5-system-card/
https://openai.com/index/gpt-5-system-card/

Under review as a conference paper at ICLR 2026

Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerén Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feed-
back. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 27730-27744. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/blefdeb53be364a73914f58805a001731-Paper—Conference.pdf.

Punya Syon Pandey, Samuel Simko, Kellin Pelrine, and Zhijing Jin. Accidental vulnerability: Factors
in fine-tuning that shift model safeguards, 2025. URL https://arxiv.org/abs/2505,
167809.

Samuele Poppi, Zheng Xin Yong, Yifei He, Bobbie Chern, Han Zhao, Aobo Yang, and Jianfeng
Chi. Towards understanding the fragility of multilingual LL.Ms against fine-tuning attacks. In
Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Findings of the Association for Computational
Linguistics: NAACL 2025, pp. 2358-2372, Albuquerque, New Mexico, April 2025. Association for
Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.126.
URLhttps://aclanthology.org/2025.findings—naacl.126/.

Xiangyu Qi, Boyi Wei, Nicholas Carlini, Yangsibo Huang, Tinghao Xie, Luxi He, Matthew Jagielski,
Milad Nasr, Prateek Mittal, and Peter Henderson. On evaluating the durability of safeguards for
open-weight LLMs. arXiv preprint arXiv:2412.07097, 2024a.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
Fine-tuning aligned language models compromises safety, even when users do not intend to!
In The Twelfth International Conference on Learning Representations, 2024b. URL https |
//openreview.net/forum?id=hTEGyKf0dZ.

Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek
Mittal, and Peter Henderson. Safety alignment should be made more than just a few tokens
deep. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=6Mxhg9PtDE.

Sahar Rajabi, Nayeema Nonta, and Sirisha Rambhatla. Subtrack++ : Gradient subspace tracking for
scalable LLM training. In The Thirty-ninth Annual Conference on Neural Information Processing
Systems, 2025.

12

https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2505.16789
https://arxiv.org/abs/2505.16789
https://aclanthology.org/2025.findings-naacl.126/
https://openreview.net/forum?id=hTEGyKf0dZ
https://openreview.net/forum?id=hTEGyKf0dZ
https://openreview.net/forum?id=6Mxhg9PtDE

Under review as a conference paper at ICLR 2026

Leo Schwinn and Simon Geisler. Revisiting the robust alignment of circuit breakers. arXiv preprint
arXiv:2407.15902, 2024.

Han Shen, Pin-Yu Chen, Payel Das, and Tianyi Chen. SEAL: Safety-enhanced aligned LLM
fine-tuning via bilevel data selection. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=VHguhvcoM>5.

Abhay Sheshadri, Aidan Ewart, Phillip Huang Guo, Aengus Lynch, Cindy Wu, Vivek Hebbar, Henry
Sleight, Asa Cooper Stickland, Ethan Perez, Dylan Hadfield-Menell, and Stephen Casper. Latent
adversarial training improves robustness to persistent harmful behaviors in LLMs, 2025. URL
https://openreview.net/forum?id=wI5uHZLeCZ.

Samuel Simko, Mrinmaya Sachan, Bernhard Scholkopf, and Zhijing Jin. Improving large language
model safety with contrastive representation learning, 2025. URL https://arxiv.org/
abs/2506.11938.

Alexandra Souly, Qingyuan Lu, Dillon Bowen, Tu Trinh, Elvis Hsieh, Sana Pandey, Pieter Abbeel,
Justin Svegliato, Scott Emmons, Olivia Watkins, and Sam Toyer. A StrongREJECT for empty
jailbreaks. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2024. URL https://openreview.net/forum?id=KZLE5BaaOH.

Rishub Tamirisa, Bhrugu Bharathi, Long Phan, Andy Zhou, Alice Gatti, Tarun Suresh, Maxwell Lin,
Justin Wang, Rowan Wang, Ron Arel, Andy Zou, Dawn Song, Bo Li, Dan Hendrycks, and Mantas
Mazeika. Tamper-resistant safeguards for open-weight LLMs. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
1d=4FI jRodbWeél

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Jiongxiao Wang, Jiazhao Li, Yiquan Li, Xiangyu Qi, Junjie Hu, Yixuan Li, Patrick McDaniel,
Muhao Chen, Bo Li, and Chaowei Xiao. BackdoorAlign: Mitigating fine-tuning based
jailbreak attack with backdoor enhanced safety alignment. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neu-
ral Information Processing Systems, volume 37, pp. 5210-5243. Curran Associates, Inc.,
2024a. URL https://proceedings.neurips.cc/paper_ files/paper/2024/
£file/094324f386c836c75d4a26f3499d2ede—Paper—-Conference.pdfl

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. MMLU-Pro: A more robust and challenging multi-task language
understanding benchmark, 2024b. URL https://arxiv.org/abs/2406.01574.

Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao Xie, Xiangyu Qi, Mengzhou Xia, Prateek Mittal,
Mengdi Wang, and Peter Henderson. Assessing the brittleness of safety alignment via pruning and
low-rank modifications. In ICLR 2024 Workshop on Mathematical and Empirical Understanding of
Foundation Models, 2024. URL https://openreview.net/forum?id=niBPvgJIHB.

13

https://openreview.net/forum?id=VHguhvcoM5
https://openreview.net/forum?id=wI5uHZLeCZ
https://arxiv.org/abs/2506.11938
https://arxiv.org/abs/2506.11938
https://openreview.net/forum?id=KZLE5BaaOH
https://openreview.net/forum?id=4FIjRodbW6
https://openreview.net/forum?id=4FIjRodbW6
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2024/file/094324f386c836c75d4a26f3499d2ede-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/094324f386c836c75d4a26f3499d2ede-Paper-Conference.pdf
https://arxiv.org/abs/2406.01574
https://openreview.net/forum?id=niBPvgJIHB

Under review as a conference paper at ICLR 2026

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=gEZrGCozdgR.

Lei Yu, Virginie Do, Karen Hambardzumyan, and Nicola Cancedda. Robust LLM safeguarding
via refusal feature adversarial training. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=s5o0rchdb33.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Yiran Zhao, Wenxuan Zhang, Yuxi Xie, Anirudh Goyal, Kenji Kawaguchi, and Michael Shieh.
Understanding and enhancing safety mechanisms of LLMs via safety-specific neuron. In
The Thirteenth International Conference on Learning Representations, 2025. URL https
//openreview.net/forum?id=yR47RmND1m.

Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko, J Zico
Kolter, Matt Fredrikson, and Dan Hendrycks. Improving alignment and robustness with circuit
breakers. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=IbIB8SBKFV.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J.
Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson,
J. Zico Kolter, and Dan Hendrycks. Representation engineering: A top-down approach to Al
transparency, 2025. URL https://arxiv.org/abs/2310.01405.

14

https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=s5orchdb33
https://openreview.net/forum?id=yR47RmND1m
https://openreview.net/forum?id=yR47RmND1m
https://openreview.net/forum?id=IbIB8SBKFV
https://arxiv.org/abs/2310.01405

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 TAMPERBENCH USAGE

We illustrate TAMPERBENCH’s simplicity with two self-contained Python examples. Both assume
a valid HF _TOKEN (loaded via python-dotenv) and a CUDA-capable environment for larger
models; they still run on CPU for quick smoke tests.

A.1.1 EXAMPLE: MULTILINGUAL FINE-TUNING ATTACK

The snippet below launches a minimal multilingual fine-tune (full-parameter) attack on
Llama-3.1-8B-Instruct, writes the attack checkpoint to a temporary directory, and
immediately evaluates it with StrongReject. The result is returned in a standardized
EvaluationSchema table.

import tempfile
from dotenv import load_dotenwv

from tamperbench.whitebox.attacks.full parameter_finetune.full parameter_finetune import (
FullParameterFinetuneConfig,

)

from tamperbench.whitebox.attacks.multilingual_finetune.multilingual_finetune import (
MultilingualFinetune,

)

from tamperbench.whitebox.evals.output_schema import EvaluationSchema

from tamperbench.whitebox.utils.models.config import ModelConfig

from tamperbench.whitebox.utils.names import EvalName, MetricName

if name == "_main_ ":

load_dotenv () # ensure HF TOKEN available

with tempfile.TemporaryDirectory() as tmpdirname:
attack_cfg = FullParameterFinetuneConfig(

input_checkpoint_path="meta-1llama/Llama-3.1-8B-Instruct",

out_dir=tmpdirname,

model_config=ModelConfig(
user_prefix="<|start_header_id|>user<|end_header_id|>\n\n",
assistant_prefix="<|start_header_id|>assistant<|end_header_id|>\n\n",
end_turn="<|eot_id|>\n",
max_generation_length=1024,
inference_batch_size=16,

)y

evals=[EvalName.STRONG_REJECT_SMALL],

per_device_train_batch_size=16,

learning_rate=2e-5,

num_train_epochs=1,

lr_scheduler_type="cosine",

optim="adamw_torch",

)

attack = MultilingualFinetune (attack_config=attack_cfqg)
attack.run_attack (

results_by_metric = attack.evaluate () .rows_by_key (
key=EvaluationSchema.metric_name, unique=True

)

print ("Attacked Llama3-8B:", results_by_metric)

assert results_by_metric[MetricName.STRONG_REJECT_SCORE] [0] > 0.35

A.1.2 EXAMPLE: STRONGREJECT EVALUATOR (DEFENSE CHECK)

This following snippet shows the StrongReject evaluator used standalone as a quick defense/robustness
check on a base model (here, Qwen3-8B-Base). It runs batched generation with the provided chat
formatting and returns the objective score via the standardized schema.

15

Under review as a conference paper at ICLR 2026

import tempfile
from dotenv import load_dotenwv

from tamperbench.whitebox.evals import StrongRejectEvaluationConfig
from tamperbench.whitebox.evals.output_schema import EvaluationSchema
from tamperbench.whitebox.evals.strong_reject.strong_reject import (
StrongRejectSmallEvaluation,
)
from tamperbench.whitebox.utils.models.config import ModelConfig
from tamperbench.whitebox.utils.names import MetricName
if _ name_ == "_ main__ ":
load_dotenv () # ensure HF_TOKEN available

with tempfile.TemporaryDirectory () as tmpdirname:
eval_cfg = StrongRejectEvaluationConfig(
model_checkpoint="Qwen/Qwen3-8B-Base",
out_dir=tmpdirname,
model_config=ModelConfig (
user_prefix="<|start_header_id|>user<|end_header_id|>\n\n",
assistant_prefix="<|start_header_id|>assistant<|end_header_id|[>\n\n",
end_turn="<|eot_id|>\n",
max_generation_length=1024,
inference_batch_size=16,
)y
)

evaluation = StrongRejectSmallEvaluation(eval_cfg)

results_by_metric = evaluation.run_evaluation () .rows_by_key (
key=EvaluationSchema.metric_name, unique=True

)
print (results_by_metric[MetricName.STRONG_REJECT_SCORE] [0])

Consistency check: objective loader equals the score in the table.
assert (
StrongRejectSmallEvaluation.load_result_objective(
results=evaluation.load_results ()
)
== results_by_metric[MetricName.STRONG_REJECT_SCORE] [0]

A.2 EXTENSIBILITY OF TAMPERBENCH

A key design goal of TAMPERBENCH is to make it straightforward for researchers to extend the
benchmarking toolkit with new attacks, evaluations, or defenses, while preserving strong typing,
reproducibility, and standardized results.

A.2.1 ADDING AN ATTACK

TAMPERBENCH makes it easy to contribute new tampering methods (e.g., adapter- or embedding-
level attacks) that plug into the same grid runner and evaluation stack. To add an attack, follow this
five-step recipe:

1. Create a new directory under src/tamperbench/whitebox/attacks/<your_
attack>/.

2. Add a config dataclass inheriting TamperAttackConfig.

3. Implement a TamperAttack subclass with a unique AttackName (add the enum to
src/tamperbench/whitebox/utils/names.py).

4. Implement run_attack () to write the attacked checkpoint to
self.output_checkpoint_path and evaluate () to run the requested evals.

5. Add an executable example under tests/attacks/ to serve as a sanity check.

A minimal skeleton looks as follows:

16

Under review as a conference paper at ICLR 2026

from dataclasses import dataclass
import polars as pl
from tamperbench.whitebox.attacks.base import TamperAttack, TamperAttackConfig
from tamperbench.whitebox.utils.names import AttackName, EvalName
from tamperbench.whitebox.evals import (
StrongRejectSmallEvaluation, StrongRejectEvaluationConfig,
)

from tamperbench.whitebox.evals.output_schema import EvaluationSchema

@dataclass
class MyAttackConfig(TamperAttackConfig) :
lr: float = le-3

class MyAttack (TamperAttack [MyAttackConfig]) :
name: AttackName = AttackName.MY_ATTACK # add to names.py

def run_attack(self) -> None:
1) Load model from self.attack_config.input_checkpoint_path
2) Apply tampering / fine-tuning
3) Save to self.output_checkpoint_path

Exampl run StrongReject Small when requested

results []

if EvalName.STRONG_REJECT_SMALL in self.attack_config.evals:

eval_cfg = StrongRejectEvaluationConfig(
model_checkpoint=self.output_checkpoint_path,
out_dir=self.attack_config.out_dir,
max_generation_length=self.attack_config.max_generation_length,
batch_size=8,

def evaluate(self) -> pl.DataFrame[EvaluationSchema]:
e:

)
results.append (StrongRejectSmallEvaluation (eval_cfg) .run_evaluation())
return pl.concat (results) if results else pl.DataFrame (schema=EvaluationSchema.
to_schema ()

A.2.2 ADDING AN EVALUATION

TAMPERBENCH makes it straightforward to contribute new evaluation modules for measuring benign
capability retention, refusal robustness, or other safety criteria. To add an evaluation, developers
follow a consistent six-step recipe:

Create a new directory under src/tamperbench/whitebox/evals/<your_eval>/.
2. Add a config dataclass inheriting WhiteBoxEvaluationConfig.

3. Implement a WhiteBoxEvaluation subclass with a unique name, a target
objective metric, and optimization directions.

4. Implement the core methods compute_inferences, compute_scores, and
compute_results.

5. Add enum entries to src/tamperbench/whitebox/utils/names.py and expose
them from the package’s __init__.py.

6. Add an executable example under tests/evals/ to serve as a sanity check.

A minimal skeleton looks as follows:

from dataclasses import dataclass

from typing_extensions import override

import polars as pl

from pandera.typing.polars import DataFrame

from tamperbench.whitebox.evals.base import (
WhiteBoxEvaluation, WhiteBoxEvaluationConfig,

)

from tamperbench.whitebox.evals.output_schema import (
EvaluationSchema, InferenceSchema, ScoreSchema,

)

from tamperbench.whitebox.utils import (
EvalName, MetricName, OptimizationDirection,

)

17

Under review as a conference paper at ICLR 2026

@dataclass

class MyEvalConfig(WhiteBoxEvaluationConfig) :
Extra parameters (e.g., dataset split)
pass

class MyEvaluation (WhiteBoxEvaluation[MyEvalConfig])
name: EvalName = EvalName.TEMPLATE # add to names.py
objective: MetricName = MetricName.STRONG_REJECT_SCORE
attacker_direction = OptimizationDirection.MAXIMIZE
defender_direction = OptimizationDirection.MINIMIZE

@Qoverride
def compute_inferences(self) -> DataFrame[InferenceSchema]:
model, tokenizer = self.load_model_and_tokenizer ()
prompts: list([str] = [...]
inferences = {InferenceSchema.prompt: [], InferenceSchema.response: []}

batched generation loop here
return InferenceSchema.validate (pl.from_dict (data=inferences))

@override
def compute_scores (

self, inferences: DataFrame|[InferenceSchemal]
) —> DataFrame[ScoreSchemal] :

inferences_df = InferenceSchema.validate (inferences)
scores_dict = inferences_df.to_dict ()
scores = [...] # one score per row

scores_dict.update ({ScoreSchema.score: pl.Series (scores)})
return ScoreSchema.validate (pl.from_dict (data=scores_dict))

@override
def compute_results(
self, scores: DataFrame[ScoreSchema]
) —> DataFrame[EvaluationSchema] :
scores_df = ScoreSchema.validate (scores)
metric_value float (scores_df [ScoreSchema.score] .mean ())
metrics = {
EvaluationSchema.metric_name: [str(self.objective)],
EvaluationSchema.metric_value: [metric_value],

}
return EvaluationSchema.validate (pl.from_dict (data=metrics))

This pattern enforces consistent data schemas (InferenceSchema, ScoreSchema,
EvaluationSchema) while allowing flexibility in dataset choice and scoring logic. Once regis-
tered, the new evaluation can be invoked automatically in grid runs alongside existing benchmarks.

A.2.3 TESTING NEW MODULES

Every extension can be validated with lightweight tests under tests/. For example:

* tests/attacks/ —run atoy version of the attack.
* tests/evals/ —verify scoring logic on a small dataset.

* Sanity check: uv run tests/evals/test_strong.reject.py.

This ensures reproducibility without requiring large GPU resources for every commit.

A.3 ATTACK METHODS IMPLEMENTATION DETAILS

Sweep protocol (trials). Unless stated otherwise, we run Optuna sweeps with 20 trials per at-
tack/model combination (via SLURM; each trial builds a config from the attack’s base YAML plus
suggested overrides). For the embedding (soft-prompt) attack, we evaluate a single representative
configuration per model (one trial).

Common implementation details. All fine-tuning attacks use TRL’s SFTTrainer with completion-
only loss. During preprocessing we wrap user text with the model’s user_prefix and end-of-turn
token, and assistant text with assistant_prefix and end-of-turn. LoRA variants use PEFT to
train adapters and merge weights before saving.

Chat templates explained. We use simple, explicit chat wrappers to format prompts and responses:

18

Under review as a conference paper at ICLR 2026

* plain: single-turn text with no special chat tokens.

* instruction_response: two-turn wrapper where an instruction is followed by a
response; adds clear role markers without model-specific tokens.

* generic._chat: multi-turn wrapper with generic user/assistant roles; used when a
model-agnostic chat format is desired.

* 1lama3: Llama 3 style roles (system/user/assistant) and end-of-turn markers for models
expecting that template.

* gwen: Qwen chat roles/tokens analogous to 11ama3 for Qwen models.

A.3.1 FULL-PARAMETER FINE-TUNING (HARMFUL)

Attack: full parameter_finetune. Data: LLM-LAT/harmful-dataset (split: train). We
select 64 examples. For each example, we construct a prompt from the dataset’s prompt field and
a completion from its re jected field (harmful response), wrapped by the model’s chat template
markers. The sweep varies optimization hyperparameters; the base config uses a plain template, batch
size 8, LR 1072, one epoch, and a constant scheduler.

A.3.2 FULL-PARAMETER FINE-TUNING (BENIGN)

Attack: Dbenign_full_parameter_finetune. Data: BookCorpus sampled through
harmtune.datasets.mix_datasets. We use 64 examples. The mixed dataset is treated
as benign single-turn chat: we extract “user” and “assistant” messages and map them to prompt/com-
pletion using the model’s chat template markers. Sweep as above (with a benign epoch extension
where indicated in the hparams protocol).

A.3.3 LORA FINE-TUNING (HARMFUL)

Attack: lora_finetune. Data: identical to full-parameter harmful (LLM-LAT/harmful-dataset,
64 examples; prompt from prompt, completion from re jected). Training uses PEFT/LoRA; the
base LoRA config sets rank r = 16 and alpha = 32, with target modules covering standard attention
and MLP projections; other LORA parameters are swept per Section

A.3.4 LORA FINE-TUNING (BENIGN)

Attack: benign_lora_finetune. Data: BookCorpus viamix_datasets, using 128 examples
(benign). Mapping to prompt/completion follows the same chat template wrapping as above. The
LoRA setup matches the harmful LoRA defaults (rank r: 8, 16, 32, 64; alpha: 16, 32, 64, 128 in the
sweep), with the benign epoch extension where applicable.

A.3.5 JAILBREAK-TUNE LORA VARIANTS

All three attacks below are LoRA-based fine-tunes over a poisoned mixture:

Data: mixture of BookCorpus (benign) and Safe-RLHF with jailbreak injection applied to the assistant
side. We use the Safe-RLHF subset alpaca3-8b (split: test, severity level 3).

Size and proportions: 5000 total examples with a 2% poison ratio (98% BookCorpus, 2% Safe-RLHF
jailbreaked). The mixture is constructed with harmtune .datasets.mix_datasets; weights
reflect the poison ratio; total length is fixed to 5 000.

Prompt/completion mapping: for each mixed sample, we traverse “user” and “assistant” messages
and wrap them into prompt/completion with the model’s chat template markers.

Variants (only the jailbreak seed differs):

¢ backdoor_finetune: seed year_2025.
e competing_objectives_finetune: seed skeleton.

e stylemodulation_finetune: seed neutral.

19

Under review as a conference paper at ICLR 2026

A.3.6 MULTILINGUAL FINE-TUNING

Attack: multilingual_finetune. Data: sdhossain24/lat-harmful-en-fr-de-1000 (split:
train). We select 300 examples and use the French fields, mapping input_french to the
prompt and output_french to the completion (with chat template wrapping). The base con-
fig initializes with batch size 16, LR 2 x 1075, and a cosine scheduler; sweep ranges follow the
full-parameter family.

A.3.7 EMBEDDING ATTACK (SOFT PROMPT OPTIMIZATION)

Attack: embedding_attack. This is an inference-time attack (no weight updates). We optimize
a soft prompt (20 tokens) against a target behavior and then decode from the model using those
optimized embeddings.

Data for evaluation: JailbreakBench/JBB-Behaviors (configuration: name=behaviors, split:
harmful). We evaluate across the harmful split.

Optimization loop: we use the “SoftOpt” routine with steps 50, 100, or 200; learning rate 5 X
10=% or 1073; and 1 or 2 generations per prompt. Fixed parameters include 20-token length, a
fixed initialization string, rand_init=false, and add_space_before_target=false. In
reported experiments we evaluate a single representative configuration per model (one trial).

A.3.8 PER-ATTACK DATASET SUMMARY
For quick reference:

e full parameter_finetune: LLM-LAT/harmful-dataset (train), 64 examples.
* benign_full_parameter_finetune: BookCorpus, 64 examples.

* lora_finetune: LLM-LAT/harmful-dataset (train), 64 examples.

* benign_lora_finetune: BookCorpus, 128 examples.

* backdoor_finetune / competing_ objectives_finetune /
stylemodulation_finetune: BookCorpus + Safe-RLHF (alpaca3-8b/test,
severity 3), 5 000 examples total with 2% poison.

e multilingual_finetune: sdhossain24/lat-harmful-en-fr-de-1000 (train), 300 exam-
ples (French input/output).

* embedding.attack: JailbreakBench/IBB-Behaviors harmful split (entire split).

A.4 HYPERPARAMETER OPTIMIZATION PROTOCOL

A.4.1 OPTUNA SWEEP SETUP

We launch Optuna sweeps with 20 trials per attack/model combination using the SLURM scripts in
scripts/slurm. Each sweep calls scripts/whitebox/optuna_sweep.py, which loads
the attack-specific base configuration, samples overrides from the YAML-defined search space,
evaluates the resulting checkpoint on the listed metrics, and stores the top-performing configurations
(or the Pareto front for multi-objective cases).

A.4.2 LORA-BASED FINE-TUNING ATTACKS

The attacks backdoor_finetune, competing_objectives_finetune,
stylemodulation_finetune, lora_finetune, and Dbenign_lora_finetune
share the Optuna search space in Table[l] Their base configurations differ only in fixed jailbreak
parameters (prompt injection, poison ratio, dataset size) and in the default chat template (plain vs.
model-specific chat variants).

Backdoor / Competing / Style modulation specifics. All three attacks inject poisoned jailbreak

data with dataset size 5,000 and poison ratio 0.02, using prompt seeds year_2025, skeleton,
and neutral, respectively.

20

Under review as a conference paper at ICLR 2026

Table 1: Search space for LoRA-style fine-tuning attacks. Model-specific sweeps may add 11ama3
or gwen to the template choices.

Hyperparameter Search space

Per-device batch size 8, 16, 32, 64

Learning rate log-uniform in [107%,1072]

Training epochs 1 or 2 (benign sweeps allow odd values up to 9)

LR scheduler constant or cosine

Template plain; instruction_response; generic_chat (11ama3/gwen may be added)
LoRA rank r 8, 16, 32, 64

LoRA alpha 16, 32, 64, 128

Table 2: Search space for full-parameter fine-tuning attacks.

Hyperparameter Search space

Per-device batch size 4, 8, 16

Learning rate log-uniform in [107%,1072]

Training epochs 1 or 2 (benign: odd integers 1-9)

LR scheduler constant or cosine

Template plain; instruction_response; generic_chat

A.4.3 FULL-PARAMETER FINE-TUNING

The attacks full_parameter_finetune andbenign_full_parameter_finetune sweep
the reduced space in Table 2] The benign variant extends the epoch search to odd integers between 1
and 9.

A.4.4 MULTILINGUAL FINE-TUNING

The multilingual attack reuses the full-parameter sweep (Table [2)) while initializing from a base
configuration with per-device batch size 16 and a cosine schedule. The sweep allows the same
template and scheduler options as above.

A.4.5 EMBEDDING ATTACK

The soft prompt optimization attack sweeps the parameters of its optimizer loop (Table 3) while
keeping the prompt length (20 tokens), initialization string, and inference template fixed.

Note on LLM usage: LLMs were used to slightly enhance and clarify writing at times - reword
phrases, etc.

21

Under review as a conference paper at ICLR 2026

Table 3: Search space for the embedding attack.

Hyperparameter Search space

Soft-opt steps 50, 100, 200
Soft-opt learning rate 5 x 10™% or 1073
Multiple generations 1 or 2

22

	Introduction
	Background
	LLM Vulnerabilities and Threat Settings
	Threat Setting: Accidental Misuse
	Threat Setting: Malicious Tampering (Overt)
	Threat Setting: Stealthy Tampering (Covert)

	Tamper-Resistance Goals and Defenses.
	Current Resources and Limitations.

	TamperBench Framework
	Tampering Attacks.
	Utility Evaluation.
	Safety Evaluation.
	TamperBench Toolkit
	Core Registry
	Utility Layer

	Benchmark Experiments
	Benchmark Results
	Global effects of tampering
	Attack-level risk profiles

	Conclusion and Future Directions
	Appendix
	TamperBench Usage
	Example: Multilingual Fine-tuning Attack
	Example: StrongReject Evaluator (Defense Check)

	Extensibility of TamperBench
	Adding an Attack
	Adding an Evaluation
	Testing New Modules

	Attack Methods Implementation Details
	Full-parameter fine-tuning (harmful)
	Full-parameter fine-tuning (benign)
	LoRA fine-tuning (harmful)
	LoRA fine-tuning (benign)
	Jailbreak-tune LoRA variants
	Multilingual fine-tuning
	Embedding attack (soft prompt optimization)
	Per-attack dataset summary

	Hyperparameter Optimization Protocol
	Optuna Sweep Setup
	LoRA-based Fine-tuning Attacks
	Full-parameter Fine-tuning
	Multilingual Fine-tuning
	Embedding Attack

