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ABSTRACT

Recent advancements in timestep-distilled diffusion models have enabled high-
quality image generation that rivals non-distilled multi-step models, but with sig-
nificantly fewer inference steps. While such models are attractive for applications
due to the low inference cost and latency, fine-tuning them with a naive diffusion
objective would result in degraded and blurry outputs. An intuitive alternative is
to repeat the diffusion distillation process with a fine-tuned teacher model, which
produces good results but is cumbersome and computationally intensive: the dis-
tillation training usually requires magnitude higher of training compute compared
to fine-tuning for specific image styles. In this paper, we present an algorithm
named pairwise sample optimization (PSO), which enables the direct fine-tuning
of an arbitrary timestep-distilled diffusion model. PSO introduces additional refer-
ence images sampled from the current time-step distilled model, and increases the
relative likelihood margin between the training images and reference images. This
enables the model to retain its few-step generation ability, while allowing for fine-
tuning of its output distribution. We also demonstrate that PSO is a generalized
formulation which can be flexibly extended to both offline-sampled and online-
sampled pairwise data, covering various popular objectives for diffusion model
preference optimization. We evaluate PSO in both preference optimization and
other fine-tuning tasks, including style transfer and concept customization. We
show that PSO can directly adapt distilled models to human-preferred generation
with both offline and online-generated pairwise preference image data. PSO also
demonstrates effectiveness in style transfer and concept customization by directly
tuning timestep-distilled diffusion models. The code is provided at: https:
//github.com/ZichenMiao/Pairwise_Sample_Optimization.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2020; Nichol & Dhariwal, 2021; Ho & Salimans,
2022; Karras et al., 2022; Rombach et al., 2022) have shown strong capabilities in generating high-
fidelity images, marking a significant advancement in the field of generative modeling. Despite their
impressive performance, a notable challenge is the high inference cost due to its iterative denoising
nature. To address this issue, various methods are proposed to accelerate the sampling process of
diffusion models, including improving the efficiency of samplers (Karras et al., 2022; Lu et al.,
2022a;b; Liu et al., 2022; Zhao et al., 2024) and employing model distillation techniques (Song
et al., 2023; Luo et al., 2023; Sauer et al., 2023; Xu et al., 2023; Lin et al., 2024; Sauer et al.,
2024; Yin et al., 2024b;a; Ren et al., 2024; Kohler et al., 2024) to reduce the number of inference
steps. Recent advancements in trajectory distillation methods and distribution matching techniques,
often enhanced by adversarial learning at scale, have shown considerable promise in generating
high-fidelity images in extremely low steps such as one to four steps.

Despite significant advancements in timestep-distilled diffusion models, it remains unclear how to
effectively fine-tune or customize such distilled models. Naively tuning the distilled model with dif-
fusion loss will make the generation results blurry, as shown in Figure 1 (b). An alternative approach
is to fine-tune or customize the original diffusion model, and then repeat the diffusion distillation
process to create a distilled model variant. However, the large computation cost of diffusion distil-
lation, when compared with the customization training used for applications (cf., 3840 A100 GPU
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Figure 1: Illustration of images sampled from: (a) original timestep-distilled diffusion models, (b)
Fine-tuned distilled model with diffusion objective (Ho et al., 2020), and (c) Fine-tuned distilled
models with our PSO, and It can be seen that simply tuning distilled models with the vanilla diffu-
sion loss leads to blurry, degraded generation, while our method can steer the distilled model toward
better alignment with human preference & prompts, and style-transferred generation. Prompt from
left to right: A Pirate in a Pirateship.// a woman with long hair next to a luminescent bird.// Photo-
graph of a wall along a city street with a watercolor mural of foxes in a jazz band.// A stern-faced,
brown-feathered owl Pokémon with a leaf-shaped crown and piercing red eyes.// A cute rabbit.

hours for SDXL-DMD2 (Yin et al., 2024a) and 0.25 A100 GPU hours for Dreambooth concept
customization (Ruiz et al., 2023)), often makes such distilled model tuning approach less feasible.

In this paper, we present an effective algorithm named pairwise sample optimization (PSO), de-
signed to directly tuning a timestep-distilled diffusion model for different user preferences or cus-
tomizing it towards new image domains. PSO maximizes the likelihood ratio between a given pair
of target and reference images, where the target image is sampled from the distribution we wish to
tune the distilled model towards, and the reference image is sampled from the generative distribution
of the tuned distilled models on-the-fly. By optimizing this relative likelihood objective, PSO effec-
tively aligns the timestep-distilled models with target distributions while best preserving its original
few-step generation ability learned through diffusion distillation. Our formulation of PSO can be
flexibly adapted to both offline and online settings, and unifies various prior works (Wallace et al.,
2024; Yang et al., 2024a) as special cases to our framework.

We validate the effectiveness of the proposed method across a broad range of tasks, including human
preference tuning, style transfer, and concept customization. For preference tuning and style transfer,
we construct or directly utilize target-reference images with the given prompts, e.g., win-lose pairs
from the user preference data (Kirstain et al., 2023), and adopt our offline PSO objective to tune
the distilled models. We also examine our online objective in preference tuning, where we sample
pairs of images from distilled model and use a reward mode to assign the label of target or reference.
For concept customization, we use the given concept images as target and sample reference images
from the tuned model. In all tasks and settings, PSO enables the lightweight fine-tuning of arbitrary
distilled models while preserving their few-step generation capability, as shown in Figure 1 (c).

We evaluate our method on various datasets and benchmarks. For human preference tuning, we
benchmark PSO on the standard Pick-a-Pic (Kirstain et al., 2023) and PartiPrompts (Yu et al., 2022)
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Figure 2: Demonstration of the proposed pairwise sample optimization. To tune the generative
distribution pθ to pdata, we sample a pair of images together with their trajectories of the same
prompt, where we adopt our Markov Decision Process (MDP) formulation for the timestep-distilled
diffusion model to efficiently sample the backward denoising trajectories {xρ

tn}, while sampling
{xτ

tn} from data via the forward diffusion process. The sampled trajectories are then sent to the final
objective to move the generation trajectory aligned with the forward process from pdata.

datasets. We also evaluate distilled model fine-tuning by experimenting the image style transfer task
with the Pokemon dataset (Pinkney, 2022) and the concept customization task with the exeamples in
Dreambooth (Ruiz et al., 2023). We observe that PSO shows comparable performance to the oracle
results of fine-tuning a new teacher model and conduct the diffusion distillation training, while being
much less computationally expensive. Our approach also significantly outperforms other designed
baselines achieved via the use of LoRA parameters.

Our contributions are summarized as follows.

• We present pairwise sample optimization (PSO) that can directly tune timestep-distilled
diffusion models toward a new output distribution for various customization applications.

• We show that PSO is a generalized formulation that covers both offline and online prefer-
ence optimization scenarios, encompassing previous works, such as DiffusionDPO (Wal-
lace et al., 2024) and D3PO (Yang et al., 2024a) as special cases, which can be flexibly
adapted to various settings and tasks.

• Extensive of experiments demonstrate the effectiveness of PSO in human preference tun-
ing, as well as other domain transfer tasks such as style transfer and concept customization.

2 METHOD

In this section, we present our method of pair-wise sample optimization (PSO) for directly fine-
tuning timestep-distilled diffusion models. We first show the PSO formulation with both reference
and data trajectories, and then extend it to both online and offline settings.

2.1 PAIRWISE SAMPLE OPTIMIZATION FOR TIMESTEP-DISTILLED DIFFUSION MODELS

Consider a timestep-distilled diffusion model pθ(x0|c) that samples clean images x0 conditioned on
the prompt c from initial noise xT ∼ N(0, I) with very few timesteps N,N = 1 ∼ 4, we denote
its sampling trajectory as {xtN , xtN−1

, ..., xt1 , xt0},where tN = T, t0 = 0. Our target is to fine-
tune the model towards the given target distribution pdata(x

τ
0 , c), i.e., maximizing the log-likelihood

log pθ(x
τ
0 |c), where xτ

0 ∼ pdata. Directly adopting the DDPM (Ho et al., 2020) formulation and
minimizing the diffusion objective ||ϵθ(xτ

tn , t) − ϵ||2 leads to blurry, degraded generation. To mit-
igate this issue, we introduce the reference sample xρ

0 from the current model pθ and recast the
optimization as maximizing the relative likelihood between the target and reference samples. In-
tuitively, by maximizing log

pθ(x
τ
0 |c)

pθ(x
ρ
0 |c)

, we can steer the generative distribution pθ towards the data
distribution pdata. Meanwhile, we avoid directly minimizing the diffusion objective, which can
potentially help preserve its ability on few-step generation.
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Formally, given a pair of positive and negative images with the same prompt c, xτ
0 ∼

pdata(x
τ
0 |c), x

ρ
0 ∼ pθ(x

ρ
0|c), we take inspiration from direct preference optimization (Rafailov et al.,

2024) and maximize the margin between log pθ(x
τ
0 |c) and log pθ(x

ρ
0|c), regularized by the pre-

trained timestep-distilled model θpre,

L = −E(xτ
0 ,x

ρ
0 ,c)

[
log σ

(
β log

pθ(x
τ
0 |c)

ppre(xτ
0 |c)

− β log
pθ(x

ρ
0|c)

ppre(x
ρ
0|c)

)]
, (1)

where σ denotes the sigmoid function, β is the regularization weight, ppre = pθpre denotes the pre-
trained model.

In diffusion models, obtaining pθ(x0|c) requires integrating over intermediate states which is costly.
Instead, we consider the whole sampling trajectory {xtn |c}Nn=0, and maximize the margin between
their trajectory joint likelihoods. Specifically, as shown in Figure 2, we sample the data trajectory
{xτ

t0:tN |c} with diffusion forward process, and sample the reference trajectory {xρ
t0:tN |c} with the

generative reverse process,

pdata(x
τ
t0:tN |c) = pdata(x

τ
t0 |c)

∏
n

q(xτ
tn |x

τ
tn−1

)

pθ(x
ρ
t0:tN |c) = pθ(x

ρ
tN |c)

∏
n

pθ(x
ρ
tn−1

|xρ
tn , c).

(2)

Substitute the trajectory formulation into Eq. 1, and we obtain our PSO objective below,

LPSO = −E(xτ
0:tN

,xρ
0:tN

,c)

[
log σ

(
β
∑
n

(
log

pθ(x
τ
tn−1

|xτ
tn , c)

ppre(xτ
tn−1

|xτ
tn , c)

− log
pθ(x

ρ
tn−1

|xρ
tn , c)

ppre(x
ρ
tn−1

|xρ
tn , c)

))]

= −E(xτ
0:tN

,xρ
0:tN

,c)

[
log σ

(
β
∑
n

(
DKL[q(x

τ
tn−1

|xτ
tn,t0) ∥ ppre(x

τ
tn−1

|xτ
tn , c)]

−DKL[q(x
τ
tn−1

|xτ
tn,t0) ∥ pθ(x

τ
tn−1

|xτ
tn , c)]− log

pθ(x
ρ
tn−1

|xρ
tn , c)

ppre(x
ρ
tn−1

|xρ
tn , c)

))]
.

(3)
The derivation is provided in Appendix A.

To expand the joint likelihood terms, we need to define the transition kernel pθ(xtn−1
|xtn , c). In-

spired by previous works (Black et al., 2023; Yang et al., 2024a), we formulate the denoising sam-
pling process of timestep-distilled models as a Markov Decision Process (MDP).

MDP Formulation for Timestep-Distilled Diffusion Models. Let ϵθ(xtn , tn, c) denote the
timestep-distilled diffusion model, which predicts x0 as fθ(xtn , tn, c) = f(ϵθ(xtn , tn, c), xtn , tn)
given the corresponding noisy latent xtn (Song et al., 2023; Yin et al., 2024b;a). In the iterative
few-step sampling process, the distilled model first predicts x0 at tn, and then add noise back to
noise-level tn−1,

xtn−1 =
√

ᾱtn−1
fθ(xtn , tn, c) +

√
1− ᾱtn−1

z, z ∼ N(0, I), (4)

where ᾱ’s are the forward process coefficients. The Markov Decision Process for distilled models
can be then formulated as,

sn = (xtn , tn), an = xtn−1
, P (sn+1|sn, an) = δ(xtn−1

, tn−1, c)

πθ(an|sn) = N(
√

ᾱtn−1
fθ(xtn , tn, c), 1− ᾱtn−1

) = N(µθ(xtn , tn, c), σ
2
tnI),

where sn, an denote the state and action, P (sn+1|sn, an) denotes the transition kernel, δ is the Dirac
function, and πθ is the policy. For the last timestep, the distilled model directly predict the clean
image without noise added. This makes the final timestep a deterministic transition, pθ(aN |sN ) =
δ(f(xt1 , t1, c)), so we remove the last time step from the training. With this formulation, we have
pθ(xtn−1 |xtn) = πθ(an|xn).
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Final PSO Loss. By plugging the MDP action-state conditional distribution, we obtain the objec-
tive for our pairwise sample optimization,

LPSO = −E

[
log σ

(
− β ·

N∑
n=2

( (
||ϵτ − ϵθ(x

τ
tn , tn, c)||

2 − ||ϵτ − ϵpre(x
τ
tn , tn, c)||

2
)

− 1

2σ2
tn

(
||xρ

tn−1
− µθ(x

ρ
n, tn, c)||2 − ||xρ

tn−1
− µpre(x

ρ
n, tn, c)||2

)))]
.

(5)

The derivation is provided in Appendix A. We provide Alg. 1 for better illustration.

2.2 OFFLINE AND ONLINE EXTENSION

Our pairwise sample optimization can be extended to online and offline settings as follows,

Offline PSO. In practice, we may have pre-sampled {xρ
t0} from models that have similar gener-

ation distribution with pθ(·|c), which removes the need for reverse sampling {xρ
tn} from pθ again.

In this case, we extend our PSO formulation by approximating pθ(x
ρ
t1:tN |xρ

0, c) with the forward
trajectory q(xρ

t1:tN |xρ
0). Specifically, we approximate the per-step transition kernel pθ(x

ρ
tn−1

|xρ
tn , c)

with
∫
p(xρ

t0 |c)q(x
ρ
tn−1

|xtn , xt0), and we obtain our offline PSO objective,

LPSO-Offline = −E

[
log σ

(
− β ·

N∑
n=2

(
||ϵτ − ϵθ(x

τ
tn , tn, c)||

2 − ||ϵτ − ϵpre(x
τ
tn , tn, c)||

2

− ||ϵρ − ϵθ(x
ρ
tn , tn, c)||

2 + ||ϵρ − ϵpre(x
ρ
tn , tn, c)||

2
))]

,

(6)

which can be seen as a variant of the offline Diffusion-DPO (Wallace et al., 2024). We provide
Alg. 3 for better illustration.

Online PSO. There are also cases where we decide the data and the reference distribution in an
online manner, e.g., with a reward model. In this case, we can substitute the forward trajectory in
Eq. 3 with the generative trajectory,

LPSO-Online = −E

[
log σ

(
− β

2σ2
tn

·
N∑

n=2

(
||xτ

tn−1
− µθ(x

τ
n, tn, c)||2 − ||xτ

tn−1
− µpre(x

τ
n, tn, c)||2

− ||xρ
tn−1

− µθ(x
ρ
n, tn, c)||2 + ||xρ

tn−1
− µpre(x

ρ
n, tn, c)||2

))]
,

(7)

which can be seen as a variant of the online DPO for diffusion models (Yang et al., 2024a). We
provide Alg. 2 for better illustration.

3 EXPERIMENTS

In this section, we validate our method with multiple tasks and experiments. First, we demonstrate
the effectiveness of our proposed PSO in the human-preference tuning task. We then present re-
sults on other general fine-tuning tasks for timestep-distilled diffusion models with PSO, including
style transfer and concept customization. Our experiments cover various main-stream timestep-
distillation methods, including Distribution Matching (DMD) (Yin et al., 2024a;b), Adversarial Dis-
tillation (ADD) (Sauer et al., 2023), and Latent Consistency Models (LCM) (Luo et al., 2023). We

5



Published as a conference paper at ICLR 2025

(a) SDXL-DMD2

(b) SDXL-DPO + DMD2 LoRA

(c) (Ours) Offline PSO finetuned SDXL-DMD2

(d) (Ours) Online PSO finetuned SDXL-DMD2

Figure 3: Human preference tuning Results with PSO on 4-step SDXL-DMD2. Compared with baseline
SDXL-DMD2 (sub-figure (a)), SDXL-DPO with DMD2 LoRA (sub-figure (b)) exhibits a slightly degraded
generation quality. Rather, SDXL-DMD2 with both our offline and online PSO objectives (sub-figures (c)
and (d) respectively) demonstrates substantial improvement in visual appeal, prompt following, and details
generation. Prompts from left to right: The official portrait of an authoritarian president of an alternate
America in 1960, in the style of pan am advertisements, looking up, jet age.// A curious cat exploring a haunted
mansion.// A profile picture of an anime boy, half robot, brown hair.//On the Mid-Autumn Festival, the bright
full moon hangs in the night sky. A quaint pavilion is illuminated by dim lights, resembling a beautiful scenery
in a painting. Camera type: close-up. Camera lenstype: telephoto. Time of day: night. Film type: ancient
style. HD.

use the distilled versions of SDXL (Podell et al., 2023) with these methods as our base models, i.e.,
SDXL-DMD2 (4 step) (Yin et al., 2024a), SDXL-Turbo (Sauer et al., 2023), and SDXL-LCM (Luo
et al., 2023).

3.1 PSO FOR HUMAN-PREFERENCE FINE-TUNING

Human Preference Tuning with Offline PSO. We first examine the effectiveness of PSO in
human-preference fine-tuning in the offline setting. Specifically, we consider pre-sampled reference
image samples {xρ

0|c} as discussed in Sec. 2.2, which are negative samples in the human preference
dataset in this case, and the data samples {xτ

0 |c} are the preferred images in the dataset. We train all
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Table 1: Human preference tuning Results of SDXL-DMD2.

Dataset Method Inference Steps PickScore CLIP Score ImageReward Aesthetic Score

Pickapic Test

SDXL 50 22.30 0.3713 0.8556 6.060
SDXL-DPO(Wallace et al., 2024) 50 22.60 0.3787 1.0075 6.040
SDXL-SFT 50 22.25 0.3693 0.8665 5.921
SDXL-RPO (Gu et al., 2024) 50 22.65 0.3723 0.9623 6.012
SDXL-SPO (Liang et al., 2024) 50 22.70 0.3527 0.9417 6.283
SDXL-MaPO (Hong et al., 2024) 50 22.50 0.3735 0.9481 6.170

SDXL-DMD2 4 22.35 0.3679 0.9363 5.937
SDXL-DPO + DMD2-LoRA 4 22.20 0.3673 0.9287 5.759

Offline-PSO w/ SDXL-DMD2 4 22.46 0.3690 0.9381 5.994
Online-PSO w/ SDXL-DMD2 4 22.73 0.3671 0.9773 6.077

Parti-Prompts

SDXL 50 22.77 0.3607 0.9142 5.750
SDXL-DPO 50 22.92 0.3674 1.1180 5.795
SDXL-SFT 50 22.85 0.3610 0.8565 5.675
SDXL-RPO (Gu et al., 2024) 50 22.98 0.3670 1.0770 5.872
SDXL-SPO (Liang et al., 2024) 50 23.27 0.3428 1.0668 6.083
SDXL-MaPO (Hong et al., 2024) 50 22.81 0.3661 1.0315 5.912

SDXL-DMD2 4 22.99 0.3607 1.0713 5.671
SDXL-DPO + DMD2-LoRA 4 22.76 0.3644 1.0638 5.513

Offline-PSO w/ SDXL-DMD2 4 23.07 0.3649 1.0964 5.715
Online-PSO w/ SDXL-DMD2 4 23.29 0.3634 1.1702 5.836

the base timestep-distilled diffusion models with the Pick-a-Picv2 (Kirstain et al., 2023) dataset. Af-
ter removing the pairs with tied preference labels, we end up with 851,293 pairs, with 58,960 unique
prompts. We adopt the PSO-Offline objective in Eq. 6 and fine-tune all our base timestep-distilled
models. The training details and hyperparameters are provided in Appendix B.1.

Human Preference Tuning with Online PSO. We also validate the proposed method with the on-
line human-preference tuning task, where we decide sampled data belonged to pdata or pθ through-
out the training based on the human preference model PickScore (Kirstain et al., 2023). We tune
all the base distilled models with the PSO objective in Eq. 7 with a subset of training prompts from
Pick-a-Pic v2 (Kirstain et al., 2023). All the other training details are provided in Appendix B.1.

Evaluation and Benchmarks. We use the Pick-a-Pic test set and PartiPrompts (Yu et al., 2022)
as the evaluation benchmarks, where we fix the random seed for all models and generate images for
all prompts in the dataset. As for the evaluation metrics, we adopt PickScore (Kirstain et al., 2023),
CLIP score (Radford et al., 2021), ImageReward (Xu et al., 2024), and Aesthetic score following
Rafailov et al. (2024). We benchmark distilled models fine-tuned with PSO with various benchmarks
and settings. For DMD (Yin et al., 2024a) distillation method, We compare our fine-tuned SDXL-
DMD2 with un-distilled multi-step(25 steps) SDXL models, SDXL with offline human preference
tuning, SDXL-DPO (Rafailov et al., 2024). We also benchmark with timestep-distilled models,
SDXL-DMD2, SDXL with DMD2 LoRA applied, and SDXL-DPO with DMD2 LoRA applied.
We adopt the similar evaluation settings for SDXL-LCM, as detailed in Appendix B.1. For SDXL-
Turbo, we fine-tune the model with 4 steps (N = 4), and we evaluate the results on both 1-step and
4-step settings to show the timestep generalization ability of the proposed method.

Results. Table 1 shows the experiment results with DMD2 (Yin et al., 2024a) as the base model.
Directly applying the DMD2 LoRA to human-preference fine-tuned SDXL-DPO (row with SDXL-

Table 2: Human preference tuning results of SDXL-Turbo.

Dataset Method Inference Steps PickScore CLIP Score ImageReward Aesthetic Score

Pickapic Test

SDXL-Turbo-4step 4 22.22 0.3610 0.9300 5.987
Offline-PSO w/ SDXL-Turbo-4step 4 22.40 0.3634 0.9695 6.029
Online-PSO w/ SDXL-Turbo-4step 4 22.71 0.3647 0.9882 6.157

SDXL-Turbo-1step 1 22.29 0.3642 0.8830 6.061
Offline-PSO w/ SDXL-Turbo-1step 1 22.40 0.3663 0.9073 6.072
Online-PSO w/ SDXL-Turbo-1step 1 22.62 0.3661 0.9113 6.137

Parti-Prompts

SDXL-Turbo-4-step 4 22.88 0.3594 1.0173 5.709
Offline-PSO w/ SDXL-Turbo-4step 4 22.96 0.3642 1.0509 5.746
Online-PSO w/ SDXL-Turbo-4step 4 23.23 0.3632 1.0893 5.837

SDXL-Turbo-1-step 1 22.78 0.3596 0.9246 5.706
Offline-PSO w/ SDXL-Turbo-1step 1 22.86 0.3631 0.9664 5.755
Online-PSO w/ SDXL-Turbo-1step 1 22.96 0.3632 0.9762 5.795
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Figure 4: Experiments on tuning SDXL-Turbo for style transfer with PSO. The proposed method
effectively tunes the distilled model to generate images following the targeted style. Prompts from
top to bottom row: A stern-faced, brown-feathered owl Pokémon with a leaf-shaped crown and
piercing red eyes stands ready for a battle.// robotic cat with wings.// A cute bunny rabbit.

DPO + DMD2 LoRA) achieves slightly inferior results compared with the SDXL-DMD2 baseline.
It suffers from a drop in PickScore (drops from 22.35 to 22.20 in PickaPic-test, and 22.99 to 22.77
in Parti-Prompts) and Aesthetic Score (drops from 5.937 to 5.759 in PickaPic-test, and 5.671 to
5.513 in Parti-Prompts). The performance drop indicates the need to redo the diffusion distilla-
tion from SDXL-DPO to obtain a distilled model better aligned with human preference, which is
costly (∼ 4000 A100 GPU hours (Yin et al., 2024a)) for each fine-tuning. In contrast, our method
achieves superior results compared with the SDXL-DMD2 baseline. For both Pick-a-Pic test set and
Parti-Prompts, our Offline-PSO fine-tuned model achieves higher results in all metrics compared
with baselines, showing its dominance in visual quality and human preference. For online-PSO
where both the data and reference sets are updated together with the model, it achieves the best re-
sults in PickScore, ImageReward, and Aesthetic Score among all distilled models. Furthermore, its
performance can even surpass the performance of multi-step fine-tuned SDXL-DPO, which further
highlights the effectiveness of our method. For instance, our method achieves PickScore of 22.73
and 23.29 in two datasets, while SDXL-DPO has scores of 22.60 and 22.92, Qualitatively, as shown
in Figure 3, both PSO-Offline and PSO-Online fine-tuned models demonstrate better improvement
in image quality in terms of prompt following, visual appeal, and the intricacy of details within each
image. Moreover, Online PSO fine-tuned SDXL-DMD2 shows notable improvement over other
baselines in terms of aesthetic appeal and high-frequency details, underscores the effectiveness of
the proposed method.

Table 2 reports the results on tuning SDXL-Turbo (Sauer et al., 2023). We observe a similar trend
as in Table 1, where both Offline-PSO and Online-PSO achieves superior results of all metrics in 4-
step generation compared with the base distilled SDXL-Turbo. Moreover, our fine-tuned model also
achieves superior results in 1-step generation, showcasing the generalization ability of the proposed
method. We provide qualitative results of SDXL-Turbo, along with the results on SDXL-LCM
in Appendix B.1, where the proposed consistently surpass baselines in terms of visual appeal and
intricate detail generation.

3.2 PSO FINE-TUNING FOR STYLE TRANSFER

In this section, we demonstrate that our PSO can steer the timestep-distilled models towards a spe-
cific generation style. We select the Pokemon dataset (Pinkney, 2022) that contains Pokemon-style
image-text pairs, and we utilize the proposed PSO to have the model generate images following the
Pokemon style in the dataset. Specifically, we are interested in distilled models that has no equiva-
lent distillation LoRA, so we select SDXL-Turbo (Sauer et al., 2023). We adopt the PSO objective
in Eq. 3, and sample the reverse generative trajectories in each step. Other tarining details and hy-
perparameters are provided in Appendix B.2. We show the generation results of the Offline-PSO
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Figure 5: Experiments of tuning SDXL-Turbo for concept customization with PSO. The proposed
method can effectively tune SDXL-Turbo to generate images that contain the given objects.

fine-tuned SDXL-Turbo in Figure 4. We observe that along the fine-tuning progress, the gener-
ated images gradually shift from the original generative distribution to match the style of the given
Pokemon style.

3.3 PSO FINE-TUNING FOR CONCEPT CUSTOMIZATION

In this section, we validate the PSO fine-tuning method with concept customization with SDXL-
Turbo (Sauer et al., 2023). Following Dreambooth (Ruiz et al., 2023), we aim to tune the model to
associate the special token with the given object or concept represented in few (around 5) images,
and make it generalize on unseen environments. To minimize the fine-tuning costs, we adopt the
offline-PSO setting. We also observe that in omitting the reference model and add prior preservation
loss leads to performance gain in concept customization. Training details and hyperparameters are
given in Appendix B. We show the qualitative results in Figure 5, where we can see the PSO fine-
tuned SDXL-Turbo generate images that contain the exact the same object shown in the training
input images. This concept customization results further demonstrate the effectiveness of PSO and
its generalization among different tasks. More results are provided in Appendix B.3. We also pro-
vide quantitative results in Table 4, where our method shows superior results than vanilla tuning of
SDXL-Turbo following Ruiz et al. (2023), and comparable results with the multi-step customization
baseline (Dreambooth w/ SDXL).

4 RELATED WORKS

4.1 DIFFUSION MODEL DISTILLATION

Knowledge distillation, initially proposed for neural network compression (Hinton, 2015; Cho &
Hariharan, 2019; Patel et al., 2023), has become a powerful technique for transferring knowledge
from a complex teacher model to a simpler student model while maintaining comparable perfor-
mance. To accelerate the inference speed of the diffusion models, various timestep distillation meth-
ods have been proposed to transfer the generative distribution from a multi-step teacher model to a
few-step student model. This is achieved by either distilling the PF-ODE from the pre-trained multi-
step diffusion model (Song et al., 2023; Salimans & Ho, 2022; Kim et al., 2023), or matching the
denoising distribution with an explicit analytical distribution matching loss (Yin et al., 2024b;a) or
by learning an implicit discriminator (Sauer et al., 2023; Xu et al., 2023; Sauer et al., 2024; Lin et al.,
2024). There are also recent works that combine those approaches to further boost the generation
quality (Ren et al., 2024; Chadebec et al., 2024). However, the timestep-distilled models generally
lose the ability to predict the local score, indicating that they can not be directly fine-tuned with
the original score-matching loss towards a target distribution, as shown in Figure 1. In this work,
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we tackle this problem with the incorporation of the reference samples, and formulate the pairwise
sample optimization objective to directly fine-tune timestep-distilled diffusion models.

4.2 PREFERENCE OPTIMIZATION FOR DIFFUSION MODELS

To control the generation behavior of the diffusion models, researchers propose the markov de-
cision process (MDP) formulation and utilize reinforcement learning (RL) to tune the multi-step
diffusion modelsBlack et al. (2023); Fan et al. (2023) to generate images that have higher aesthetic
values, better prompt-following ability, alignment with human preference, and diversity (Kirstain
et al., 2023; Xu et al., 2024; Liu et al., 2024a; Miao et al., 2024). Inspired by Rafailov et al. (2024),
researchers have further derived direct preference optimization (DPO) from the RL formulation for
diffusion models with both online (Yang et al., 2024a;b; Liang et al., 2024) and offline settings (Wal-
lace et al., 2024). Yuan et al. (2024) takes a step further by using SFT data as the preferred images
while sampling negative images from the model progressively, However, all those methods are de-
signed for tuning base multi-step diffusion models, which are not applicable to distilled few-step
models, and they only focus on human preference tuning. In this work, we formulate the MDP for
timestep-distilled models for direct fine-tuning, and show the effectiveness of the proposed method
in fine-tuning tasks including style transfer and concept customization.

4.3 DIFFUSION MODELS TUNING FOR STYLE TRANSFER AND CUSTOMIZATION

Given the base multi-step diffusion models, a large corpus of works has focused on fine-tuning the
models toward a specific style (Huang et al., 2022; Wang et al., 2023; Sohn et al., 2023; Zhang
et al., 2023), and customizing the models with a given concept (Ruiz et al., 2023; Xiong et al., 2024;
Song et al., 2024b; Kumari et al., 2023). However, those methods are specifically designed for the
corresponding task, and are general limited for multi-step base diffusion models. In our work, we
target at directly tuning timestep-distilled diffusion models with a unified objective that can be also
applied to human-preference tuning.

5 CONCLUSION

In this work, we presented pairwise sample optimization (PSO) for directly fine-tuning timestep-
distilled diffusion models. By constructing pairs of data and reference images and utilizing pref-
erence optimization to increase the likelihood margin between them, PSO enables manipulation
of the model’s generative distribution while preserving its few-step generation capability. We re-
formulated preference optimization for timestep-distilled models and demonstrated its effectiveness
in aligning model outputs with human preferences using both offline and online-generated pairwise
preference data. Furthermore, we extended PSO to style transfer and concept customization tasks
by constructing pairwise source-target image pairs. Our approach provides an efficient solution for
adapting timestep-distilled diffusion models to downstream applications without the need for costly
re-distillation. Our work can be further strengthened with enhanced fine-tuning results in personal-
ized generation, and including experiments in controllable image generation.

Limitations. While our method achieves initial promising results in style transfer and concept
customization, further explorations on loss design and regularization are required to achieve more
competitive results with enhanced image quality.

ETHICAL STATEMENT

Our research on fine-tuning timestep-distilled diffusion models with the proposed PSO generally
does not have ethical concerns, except the usage of human preference data. We acknowledge the
potential for introducing or amplifying biases present in human judgments, which could lead to
unfair or discriminatory outputs. To address this, we commit to implementing diverse sampling
strategies for both annotators and image datasets, and developing fairness metrics to assess and
mitigate potential biases.
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APPENDIX

A DERIVATIONS

A.1 PSO DERIVATION

In this section, we present the derivation for Eq. 3 in Sec. 2.1. Given the forward sampled data
trajectory xτ

t0:tN |c and reverse sampled reference trajectory xρ
t0:tN |c, we represent our PSO objective

as increasing the likelihood gap between two trajectories,

L = −E(xτ
t0:tN

,xρ
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,c)

[
log σ

(
β log
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, (8)

With the formulation in Eq. 2, we can write the joint likelihood in the above equation as,

L = −E(xτ
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For the first log-likelihood ratio in the bracket, it can be further derived as,

L1 = −Exτ
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Given that each sampling step in the forward process can be written as xtn ∼ q(xτ
tn |x

τ
tn−1

, xτ
0) and

we know the marginal q(xtn |x0), we can sample xτ
tn−1

∼ q(xτ
tn−1

|xτ
tn , x0) given xτ

tn , x
τ
0 with the

Bayes equation. In this way, the sub-objective above can be further derived as,
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(11)
where the third equation adopts the reparameterization in the original diffusion objective deriva-
tion (Black et al., 2023), and ωtn is the reweighting which is usually set to constant in practice.

Meanwhile, the second log-likelihood ratio in Eq. 9, can be further simplified with Eq. 2 as,

log
pθ(x

ρ
tn−1

|xρ
tn , c)

ppre(x
ρ
tn−1

|xρ
tn , x

ρ
0)

= − 1

2σ2
tn

(∥xρ
tn−1

− µθ(x
ρ
tn , tn, c)∥

2
2 − ∥xρ

tn−1
− µpre(x

ρ
tn , tn, c)∥

2
2) (12)

By substituting Eq. 11 and Eq. 12 into Eq. 9 and removing the last sampling step t1, we got the PSO
objective as in Eq. 5

LPSO = −E

[
log σ

(
− β ·

N∑
n=2

( (
||ϵτ − ϵθ(x

τ
tn , tn, c)||

2 − ||ϵτ − ϵpre(x
τ
tn , tn, c)||

2
)

− 1

2σ2
tn

(
||xρ

tn−1
− µθ(x

ρ
n, tn, c)||2 − ||xρ

tn−1
− µpre(x

ρ
n, tn, c)||2

)))] (13)
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Algorithm 1 Pairwise Sample Optimization (PSO)

Require: Pre-trained timestep-distilled model θpre, prompt c, number of timesteps N
Require: Learning rate η, regularization weight β

1: while not converged do
2: Sample xτ

0 ∼ pdata(·|c) ▷ Data sample
3: Sample xρ

0 ∼ pθ(·|c) ▷ Reference sample
4: Get forward trajectory {xτ

tn}
N
n=1 via q(xτ

tn |x
τ
tn−1

)

5: Get reverse trajectory {xρ
tn}

N
n=1 via pθ(x

ρ
tn−1

|xρ
tn , c)

6: Update θ using loss LPSO in Equation 3
7: end while

Ensure: Fine-tuned timestep-distilled model θ

Algorithm 2 Online Pairwise Sample Optimization (Online-PSO)

Require: Pre-trained timestep-distilled model θpre, prompt c, number of timesteps N
Require: Learning rate η, regularization weight β, reward model R(·)

1: while not converged do
2: Sample two trajectories {x1

tn}
N
n=1, {x2

tn}
N
n=1 via pθ(·|c)

3: Score trajectories: s1 = R(x1
0), s2 = R(x2

0)
4: Assign {xτ

tn} = {x1
tn}, {xρ

tn} = {x2
tn} if s1 > s2

5: Otherwise, {xτ
tn} = {x2

tn}, {xρ
tn} = {x1

tn}
6: Update θ using loss LPSO-Online in Equation 7
7: end while

Ensure: Fine-tuned timestep-distilled model θ

A.2 MDP FORMULATION FOR SDXL-TURBO

The MDP formulation presented in Sec. 2.1 is applicable to DMD (Yin et al., 2024a) and LCM (Luo
et al., 2023). Here we present the MDP formulation for SDXL-Turbo (Sauer et al., 2023). The Euler
ancestral sampler can be defined as,

xσn−1
= xσn

+ sθ(xσn
;σn) · (σ̄n − σn) + σ̂n · z, z ∼ N(0, I), (14)

where σ̄n =

√
(σ2

n − σ2
n−1)

σ2
n−1

σ2
n

, σ̂n =
√
σ2
n−1 − σ2

n, sθ(x, σn) = (xσn
− fθ(xσn

, σn, c))/σn,

and σn is the designated noise levels in Euler ancestral sampler used in SDXL-Turbo which has
one-to-one mapping to tn.

The MDP formulation can then be represented as, The Markov Decision Process for distilled models
can be then formulated as,

sn = (xσn , σn), an = xσn−1 , P (sn+1|sn, an) = δ(xσn−1 , σn−1, c)

πθ(an|sn) = N(xσn
+ sθ(xσn

, σn)(σ̄n − σn), σ̂n)
2I),

B SUPPLEMENTARY EXPERIMENTAL SETTINGS AND RESULTS

B.1 HUMAN PREFERENCE TUNING

Datasets. We adopt the Pick-a-Pic v2 (Kirstain et al., 2023) dataset for the offline human pref-
erence tuning task following Wallace et al. (2024). It consists of pairwise preferences for images
generated by SDXL-beta and Dreamlike, a fine-tuned version of SD1.5 (Rombach et al., 2022).
The prompts and preferences were collected from users of the Pick-a-Pic web application. After
removing ∼ 12% pairs with tied preference, we obtain ∼ 850K win-lose pairs, which are used as
data-reference pairs within our Offline-PSO objective as in Eq. 6. For the online human preference
setting, we use a subset of 4K prompts from Pick-a-Pic training prompts as the training prompts,
and we sample a pair of images given a prompt, assign the target & reference labels based on the
PickScore (Kirstain et al., 2023) as a discriminator.
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Algorithm 3 Offline Pairwise Sample Optimization (Offline-PSO)

Require: Pre-trained timestep-distilled model θpre, prompt c, number of timesteps N
Require: Learning rate η, regularization weight β, pre-sampled reference set R

1: while not converged do
2: Sample xτ

0 ∼ pdata(·|c) ▷ Data sample
3: Sample xρ

0 ∼ R ▷ Reference sample
4: Get forward trajectories {xτ

tn}
N
n=1, {xρ

tn}
N
n=1 via q(·|·)

5: Update θ using loss LPSO-Offline in Equation 6
6: end while

Ensure: Fine-tuned timestep-distilled model θ

Parameter Efficient Fine-tuning. Diffusion models have been repurposed for various tasks with
effective tuning methods (He et al., 2023; He & Aliaga, 2024; Song et al., 2024a; He & Aliaga,
2023; Ruiz et al., 2023). As we aim to design a lightweight method for fine-tuning distilled diffu-
sion models, it’s natural for us to adopt the parameter-efficient fine-tuning methods which majorly
are based on matrix low-rank decomposition. LoRA (Hu et al., 2021) and following works (Liu
et al., 2024b; Dettmers et al., 2024) decompose the weight matrix along the channel dimension into
two low-rank matrices, which induces much lower costs in fine-tuning compared with tuning the
original full-rank weight. Meanwhile, (Chen et al., 2024b) proposes the filter subspace decompo-
sition for weight matrices. The filter subspace decomposition method (Qiu et al., 2018) has shown
effectiveness in continual learning (Miao et al., 2021a; Chen et al., 2024a), video representation
learning (Miao et al., 2021b), graph learning (Cheng et al., 2021), and generative tasks (Wang et al.,
2021a; 2019; 2021b; Li et al., 2024). There are some other works on fine-tuning the SVD decom-
position of weights(Han et al., 2023), Kronecker decomposition (Patel et al., 2024), sparsity (Wang
et al., 2024), non-linearity (Zhong et al., 2024) or fine-tunig bias parameters(Xie et al., 2023). Con-
sidering the implementation and the integration with other codebases, we choose LoRA (Hu et al.,
2021) to fine-tune timestep-distilled diffusion models.

Training Details. We use LoRA (Hu et al., 2021) to fine-tune all the distilled diffusion mod-
els efficiently, we set LoRA rank r = 16 for SDXL-DMD2 and SDXL-Turbo, and r = 32 for
SDXL-LCM in both online and offline human preference tuning experiments. As for other training
hyperparameters, we set the number of training distilled steps N = 4, which is the same as the
number of sampling steps of these distilled models, and we set the regularization weight β = 50
for Offline preference tuning, and β = 5 for Online preference tuning. We set the batch size to 64
and the learning rate to 1e− 5 for offline experiments, and train for 5k steps. For online preference
tuning, we first sample 128 pairs of images with 128 training prompts, which are further labeled
as reference and target with PickScore (Kirstain et al., 2023) with a batch size of 64, and then we
conduct online PSO on the sampled pairs for 1 epoch with a batch size of 32 and learning rate 1e−5
and train for 20k steps.

Table 3: Results of SDXL-LCM

Dataset Method PickScore CLIP Score ImageReward Aesthetic Score

Pickapic Test

SDXL-LCM 21.9072 0.3572 0.6717 5.8642
SDXL + LCM-LoRA 21.8520 0.3553 0.6840 5.9447
SDXL-DPO + LCM-LoRA 22.3178 0.3633 0.7883 5.9286

Offline-PSO w/ SDXL-LCM 22.3953 0.3668 0.8129 5.9949
Online-PSO w/ SDXL-LCM 22.6353 0.3613 0.8343 6.0117

Parti-Prompts

SDXL-LCM 22.4761 0.3492 0.6738 5.5867
SDXL + LCM-LoRA 22.4332 0.3481 0.6571 5.5141
SDXL-DPO + LCM-LoRA 22.7854 0.3551 0.7778 5.7090

Offline-PSO w/ SDXL-LCM 22.8131 0.3592 0.8131 5.8367
Online-PSO w/ SDXL-LCM 22.9451 0.3581 0.8351 5.8572
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Figure 6: Human Preference Tuning with SDXL-DMD2 addidional results, Prompts from left to
right: Sign that says DON’T FART// Warrior with an axe on a exotic animal with long hair style
loisel// Movie Still of The Joker wielding a red Lightsaber, Darth Joker a sinister evil clown prince
of crime, HD Photograph// A swirling, multicolored portal emerges from the depths of an ocean of
coffee, with waves of the rich liquid gently rippling outward. The portal engulfs a coffee cup, which
serves as a gateway to a fantastical dimension. The surrounding digital art landscape reflects the
colors of the portal, creating an alluring scene of endless possibilities.

Evaluation. For all baseline distilled models and our PSO fine-tuned models, we conduct testing
on Pickapic (Kirstain et al., 2023) test and PartiPrompts (Yu et al., 2022). They contain 500 and 1632
prompts respectively. We sample for each prompt a testing image with 4 sampling steps (we also
conduct a 1-step sampling test for SDXL-Turbo, which is trained under a 4-step schedule). Each
sampled image is then evaluated by PickScore (Kirstain et al., 2023), CLIP Score (Radford et al.,
2021), ImageReward (Xu et al., 2024), and Aesthetic Score (Schuhmann et al., 2022). We report the
average scores in the tables.

Additional Results. We provide more qualitative results for SDXL-DMD2 human preference tun-
ing in Figure 6 & 7. As shown in those figures, images generated by our Online-PSO and Offline-
PSO tuned models demonstrate better aesthetic values, prompt following, and detailed accuracy. For
SDXL-Turbo, we provide qualitative illustrations in Figure 8a for 1-step evaluation and Figure 8b
for 4-step evaluation. Again, we see that our PSO-tuned models generate more visual-appeal images
in both 1-step and 4-step generations. Specifically, we observe better visual detail generation, for
instance, human body, objects, and object consistency in images generated by our method. And
finally, we provide quantitative results for SDXL-LCM (Luo et al., 2023) in Table 3. As shown
in the table, our method achieves higher results in all metrics compared with baselines. Specifi-
cally, our method achieves better results compared with SDXL-DPO + LCM-LoRA, which is the
preference-tuned multi-step SDXL equipped with LCM LoRA, which further justify and validate
our method.
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Figure 7: Human Preference Tuning with SDXL-DMD2 addidional results. Prompts from left to
right: a red hair girl look at you, distant view.// A dog with a sign that reads ”Hello”.// anime pencil
concept style.// A galaxy-colored figurine floating over the sea at sunset, photorealistic.

Table 4: Quantitative evaluation of PSO fine-tuning on concept customization task.

Model Inference Steps CLIP-T DINO CLIP-I
Dreambooth w/ SDXL 50 0.256 0.610 0.741
Dreambooth w/ SDXL-Turbo 4 0.267 0.151 0.326
(Ours) PSO w/ SDXL-Turbo 4 0.271 0.593 0.733

B.2 PSO FOR STYLE TRANSFER

We adopt SDXL-Turbo (Sauer et al., 2023) for this experiment with the Pokemon dataset (Pinkney,
2022). The reference images are sampled using the training prompts in the pokemon dataset. We
add LoRA of rank r = 16 to the attention layers and set β = 50. Then, we adopt the objective of
PSO for fine-tuning. We use the batch size of 8, learning rate of 1e-5, and train for 3k steps.

B.3 PSO FOR CONCEPT CUSTOMIZATION

We also use SDXL-Turbo for this task with the Dreambooth dataset (Ruiz et al., 2023). We adopt
the Offline-PSO objective in Eq. 6 in the way that we use the given input images as the targeted
set, and sample reference images from SDXL-Turbo with the prompt ’A photo of [V] concept’. As
mentioned previously, we further train the model with a variant of the Eq. 6 where we remove the
reference model ϵpre and add prior preservation loss with images sampled from the initial model
following Ruiz et al. (2023); Qiu et al. (2023). We set lora rank r = 16, β = 5, learning rate of 5e-5
and train for 1000 steps with batch size of 4.

We provide additional results in Figure 9. Our PSO can effectively customize the distilled model
with the given animal or object.
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(a) Preference Fine-tuning Results with PSO on 1step SDXL-Turbo.

(b) Preference Fine-tuning Results with PSO on 4step SDXL-Turbo

Figure 8: Experiments of Tuning SDXL-Turbo for human preference tuning.
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Figure 9: Experiments of Tuning SDXL-Turbo for personalized generation with PSO. The proposed
method can effectively tune SDXL-Turbo to generate images that contain the given objects.
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