
Sauron U-Net: Simple automated redundancy
elimination in medical image segmentation

via filter pruning

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present Sauron, a filter pruning method that eliminates redundant feature1

maps by discarding the corresponding filters with automatically-adjusted layer-2

specific thresholds. Furthermore, Sauron minimizes a regularization term that, as3

we show with various metrics, promotes the formation of feature maps clusters.4

In contrast to most filter pruning methods, Sauron is single-phase, similarly to5

typical neural network optimization, requiring fewer hyperparameters and design6

decisions. Additionally, unlike other cluster-based approaches, our method does7

not require pre-selecting the number of clusters, which is non-trivial to determine8

and varies across layers. We evaluated Sauron and three state-of-the-art filter9

pruning methods on three medical image segmentation tasks. This is an area where10

filter pruning has received little attention and where it can help building efficient11

models for medical grade computers that cannot use cloud services due to privacy12

considerations. Sauron achieved models with higher performance and pruning rate13

than the competing pruning methods. Additionally, since Sauron removes filters14

during training, its optimization accelerated over time. Finally, we show that the15

feature maps of a Sauron-pruned model were highly interpretable. The Sauron16

code is publicly available at https://github.com/blindedrepository.17

1 Introduction18

Pruning is the process of eliminating unnecessary parameters to obtain compact models and accelerate19

their inference. There are two main strategies for pruning convolutional neural networks (CNNs):20

weight pruning and filter pruning. In weight pruning, weights for unimportant connections are21

zeroed without consideration of the network structure, leading, in practice, to sparse weight matrices22

[21, 12, 10, 11, 40]. On the other hand, filter pruning methods eliminate CNNs filters directly. Thus,23

unlike weight-pruned models, utilizing filter-pruned networks efficiently requires no specialized24

hardware or software [7, 35]. Most pruning methods have been developed or evaluated exclusively25

for natural image classification. Other tasks, such as medical image segmentation, have received26

significantly less attention [32]. In medical imaging, small models can enable computationally-limited27

medical grade computers to segment medical images that cannot be uploaded to a cloud server due28

to privacy reasons. Moreover, models with a few filters can be easier to interpret than large models,29

which is crucial not only in clinical applications but also in research. Motivated by these possibilities,30

we propose a filter pruning method called Sauron that generates small CNNs. We demonstrate its31

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

https://github.com/blindedrepository

application to prune U-Net-like networks [36], bringing together filter pruning and medical image32

segmentation.33

Sauron applies filter pruning during optimization in a single phase, while most filter pruning frame-34

works consist of three distinct phases: Pre-training the model, pruning its filters, and fine-tuning to35

compensate for the loss of accuracy (or re-training from scratch [27, 6]). Other approaches combine36

pruning with training [46, 48, 13, 38] or fine-tuning [29, 26], resulting in two-phase frameworks, and37

other methods repeat these phases multiple times [46, 29, 4]. Single-phase filter pruning methods38

[48], such as Sauron, are advantageous since they require fewer hyperparameters and design decisions,39

including the number of epochs for training and fine-tuning, pruning iterations, or whether to combine40

pruning with training or fine-tuning. In particular, Sauron does not insert additional parameters into41

the optimized architecture to identify filter candidates for pruning, such as channel importance masks42

[6, 29, 15, 26, 16]. This avoids potential optimization hindrance and requires less extra training time43

and GPU memory.44

Sauron facilitates and promotes the formation of feature map clusters by optimizing a regularization45

term, and, unlike previous cluster-based approaches [9, 13, 4], Sauron does not enforce the number of46

these clusters. Since these clusters vary depending on the training data and across layers, the optimal47

number of feature maps per cluster is likely to differ. Thus, determining the number of clusters is not48

trivial and may limit the accuracy and the pruning rate.49

Our specific contributions are the following:50

• We introduce Sauron, a single-phase filter pruning method that resembles the typical CNN51

optimization, making it easier to use, and that does not add any additional parameters to the52

optimized architecture.53

• We show that Sauron promotes the formation of feature map clusters by optimizing a54

regularization term.55

• We compare Sauron to other methods on three medical image segmentation tasks, where56

Sauron resulted in more accurate and compressed models.57

• We show that the feature maps generated by a model pruned with Sauron were highly58

interpretable.59

• We publish Sauron and the code to run all our experiments at https://github.com/60

blindedrepository.61

2 Previous work62

Filter importance Most filter pruning approaches rely on ranking filters to eliminate the unimpor-63

tant filters. The number of eliminated filters can be determined by either a fixed [3] or an adaptive64

threshold [38]. Filter importance can be found via particle filtering [3] or it can be computed via65

heuristic relying on measures such as Lp norms [23, 44, 38], entropy [28], or post-pruning accuracy66

[1]. Pruning methods can include extra terms in the loss function, such as group sparsity constraints,67

although these extra terms guarantee no sparsity in CNNs [45]. Other methods aim to learn filter68

importance by incorporating channel importance masks into CNNs’ architectures [6, 29, 15, 26, 16].69

However, these adjustments modify the architectures to be optimized, increasing the required GPU70

memory during training, optimization time, and potentially hindering the optimization. Alterna-71

tively, other methods consider the scaling factor of batch normalization layers as channel importance72

[45, 48], but in e.g. medical image segmentation, batch normalization is occasionally replaced by73

other normalization layers due to the small mini-batch size [18].74

Difference minimization Methods that remove filters while trying to preserve characteristics75

such as classification accuracy [27], Taylor-expansion-approximated loss [46], and the feature maps76

[47, 42, 44, 30] of the original unpruned models. A disadvantage of these methods is that they require77

a large GPU memory to avoid loading and unloading the models in memory constantly, which would78

2

https://github.com/blindedrepository
https://github.com/blindedrepository
https://github.com/blindedrepository

Algorithm 1 Sauron
Input: training data: D.

1: Given: λ, maximum threshold τmax, epochs, percentage of pruned filters µ, patience ρ, number
of steps κ.

2: Initialize: model’s weights W ← {Wl, 1 ≤ l ≤ L}, layer-specific thresholds τ ← {τl =
0, 1 ≤ l ≤ L}

3: for e = 1; e ≤ epochs do
4: for b = 1; b ≤ N do # Mini batches
5: Compute predictions ŷ, loss L, δopt (Eq. (2)), δprune (Eq. (3)) # Forward pass
6: Update θ # Backward pass
7: end for
8: for l = 1; l ≤ L do # Pruning step
9: ## Procedure 1: Increasing τl ##

10: C1: Training loss is converging; C2: Validation loss is not improving
11: C3: Less than µ% of filters pruned in (e− 1); C4: τl has not increased in last ρ epochs
12: if (C1 ∧ C2 ∧ C3 ∧ C4) ∧ (τl < τmax) then
13: τl ← τl + τmax/κ
14: end if
15: ## Procedure 2: Pruning ##
16: Wl ← {Wl : dl > τl}
17: end for
18: end for
Output: Pruned CNN.

slow down the training. Furthermore, since finding the appropriate filters for their elimination is79

NP-hard, certain methods resorted to selecting filters based on their importance [47, 44, 46], or via80

genetic [27] or greedy [30] algorithms.81

Redundancy elimination Approaches, including Sauron, that identify redundant filters by com-82

puting a similarity metric among all [43, 39] or within clusters of filters/feature maps [13, 9, 4].83

Previously, cluster-based approaches have considered redundant those within-cluster filters near the84

Euclidean center [9] and median [13], or filters with similar L1 norm over several training epochs [4].85

A disadvantage of these approaches is an extra “number of clusters" hyperparameter, which is data86

dependent and the same hyperparameter value might not be optimal across layers. Other methods87

have used Pearson’s correlation between the weights [43] or between the feature maps [39] within88

the same layer, and feature maps’ rank [25] to indicate redundancy, although, their computations are89

more expensive than utilizing distances as in cluster-based methods.90

3 Sauron91

In this section, we present our approach to filter pruning, which we call Simple AUtomated92

Redundancy eliminatiON (Sauron). Sauron optimizes, jointly with the loss function, a regular-93

ization term that leads to clusters of feature maps at each convolutional layer, accentuating the94

redundancy of CNNs. It then eliminates the filters corresponding to the redundant feature maps by95

using automatically-adjusted layer-specific thresholds. Sauron requires minimal changes from the96

typical neural network optimization since it prunes and optimizes CNNs jointly, i.e., training involves97

the usual forward-backward passes and a pruning step after each epoch. Moreover, Sauron does not98

integrate optimizable parameters, such as channel importance masks [6, 29, 15, 26, 16], into the CNN99

architecture. This avoids complicating the optimization task and increasing the training time and the100

required GPU memory. Algorithm 1 summarizes our method.101

3.1 Preliminaries102

Let D = {xi,yi}Ni=1 represent the training set, where xi denotes image i, yi its corresponding103

segmentation, and N is the number of images. Let Wl ∈ Rsl+1×sl×k×k be the weights, composed104

3

by sl+1sl filters of size k × k at layer l, where sl+1 denotes the number of output channels, sl the105

number of input channels, and k is the kernel size. Given feature maps Ol ∈ Rsl×h×w of h × w106

image dimensions, the feature maps Ol+1 ∈ Rsl+1×h×w at the next layer are computed as107

Ol+1 = σ(Norm(Wl ∗Ol)), (1)

where * is the convolution operation, Norm is a normalization layer, and σ is an activation function.108

For simplicity, we omit the bias term in Eq. (1), and we include all CNN’s parameters in θ =109

{W 1, . . . ,WL}, where L is the number of layers. We denote the predicted segmentation of the110

image xi by ŷi.111

3.2 Forward pass112

Sauron minimizes a loss L consisting of Cross Entropy LCE , Dice loss LDice [31], and a novel113

channel distance regularization term δopt: L = LCE + LDice + λδopt, where114

δopt =
1

L

L∑
l=1

1

sl+1

sl+1∑
r=2

||ϕ(Ol
1;ω)− ϕ(Ol

r;ω)||2, (2)

λ is a hyperparameter that balances the contribution of δopt, and ϕ denotes average pooling with115

window size and strides ω. Before computing δopt, feature maps Ol
1 and Ol

−1 (all channels ex-116

cept the first) are normalized to the range [0, 1] via min-max normalization, as we experimentally117

found this normalization strategy to be the best (see Appendix A). For pruning, Sauron com-118

putes distances between a randomly-chosen feature map π ∈ {1, . . . , sl+1} and all the others:119

δprune = {dlr/maxr d
l
r : l = 1, . . . , L, r = 1, . . . , π − 1, π + 1, . . . , sl+1}, where120

dlr = ||ϕ(Ol
π;ω)− ϕ(Ol

r;ω)||2. (3)

Importantly, π is different in every layer and epoch, enabling Sauron to prune different feature map121

clusters. Moreover, since finding an appropriate pruning threshold requires the distances to lie within122

a known range, Sauron normalizes dlr such that their maximum is 1, i.e., dlr ← dlr/maxr(d
l
r).123

3.3 Backward pass: δopt regularization124

Optimized CNNs have been shown to have redundant weights and to produce redundant feature maps125

[13, 43] (Appendix E). By minimizing the extra regularization term δopt, CNNs further promote the126

formation of clusters, facilitating their subsequent pruning. δopt regularization makes those feature127

maps near the feature map in the first channel Ol
1 (i.e., within the same cluster) even closer. At128

the same time, those feature maps that are dissimilar to Ol
1 (i.e., in other clusters) become more129

similar to other feature maps from the same cluster, as it holds that ||ϕ(Ol
i;ω) − ϕ(Ol

j ;ω)||2 ≤130

||ϕ(Ol
1;ω)−ϕ(Ol

i;ω)||2 + ||ϕ(Ol
1;ω)−ϕ(Ol

j ;ω)||2 for i ̸= j, i.e., the right hand side—minimized131

via δopt regularization—is an upper bound of the left hand side. We demonstrate this clustering effect132

in Section 4.2. Furthermore, for pruning, we focus on the feature maps rather than on the weights133

since different non-redundant weights can lead to similar feature maps. Thus, eliminating redundant134

weights guarantees no reduction in feature maps redundancy.135

3.4 Pruning step136

Sauron employs layer-specific thresholds τ = [τ1, . . . , τL], where all τl are initialized to zero and137

increase independently (usually at a different pace) until reaching τmax. This versatility is important138

as the ideal pruning rate differs across layers due to their different purpose (i.e., extraction of low-139

and high-level features) and their varied number of filters. Additionally, this setup permits utilizing140

high thresholds without removing too many filters at the beginning of the optimization, as feature141

maps may initially lie close to each other due to the random initialization. In consequence, pruning142

is embedded into the training and remains always active, portraying Sauron as a single-phase filter143

pruning method.144

4

Procedure 1: Increasing τl Pruning with adaptively increasing layer-specific thresholds raises145

two important questions: how and when to increase the thresholds? Sauron increases the thresholds146

linearly in κ steps until reaching τmax. Then, thresholds are updated once the model has stopped147

improving (C1 and C2 in Algorithm 1) and it has pruned only a few filters (C3). An additional148

"patience" hyperparameter ensures that the thresholds are not updated consecutively (C4). Conditions149

C1, . . . ,C4 are easy to implement and interpret, and they rely on heuristics commonly employed for150

detecting convergence.151

Procedure 2: Pruning Sauron considers nearby feature maps to be redundant since they likely152

belong to the same cluster. In consequence, Sauron removes all input filters Wl
·,sl whose corre-153

sponding feature map distances δprune are lower than threshold τl. In contrast to other filter pruning154

methods, Sauron needs to store no additional information, such as channel indices, and the pruned155

models become more efficient and smaller. Additionally, since pruning occurs during training,156

Sauron accelerates the optimization of CNNs. After training, pruned models can be easily loaded by157

specifying the new post-pruning number of input and output filters in the convolutional layers.158

3.5 Implementation159

Sauron’s simple design permits its incorporation into existing CNN optimization frameworks easily.160

As an example, in our implementation, convolutional blocks are wrapped into a class that computes161

δopt and δprune effortlessly in the forward pass, and the pruning step is a callback function triggered162

after each epoch. This implementation, together with the code for running our experiments and163

processing the datasets, was written in Pytorch [33] and is publicly available at https://github.164

com/blindedrepository. In our experiments, we utilized an Nvidia GeForce GTX 1080 Ti165

(11GB), and a server with eight Nvidia A100 (40GB).166

4 Experiments167

In this section, we compare Sauron with other state-of-the-art filter pruning methods and conduct168

an ablation study to show the impact on pruning and performance of δopt regularization. We169

empirically demonstrate that the proposed δopt regularization increases feature map clusterability,170

and we visualize the feature maps of a Sauron-pruned model.171

Datasets We employed three 3D medical image segmentation datasets: Rats, ACDC, and KiTS.172

Rats comprised 160 3D T2-weighted magnetic resonance images of rat brains with lesions [41], and173

the segmentation task was separating lesion from non-lesion voxels. We divided Rats dataset into174

0.8:0.2 train-test splits, and the training set was further divided into a 0.9:0.1 train-validation split,175

resulting in 115, 13, and 32 images for training, validation, and test, respectively. ACDC included the176

Automated Cardiac Diagnosis Challenge 2017 training set [5] (CC BY-NC-SA 4.0), comprised by177

200 3D magnetic resonance images of 100 individuals. The segmentation classes were background,178

right ventricle (RV), myocardium (M), and left ventricle (LV). We divided ACDC dataset similarly to179

Rats dataset, resulting in 144, 16, and 40 images for training, validation, and test, respectively. We180

only utilized ACDC’s competition training set due to the limitation to only four submissions to the181

online platform of ACDC challenge. Finally, KiTS was composed by 210 3D images from Kidney182

Tumor Challenge 2019 training set, segmented into background, kidney and kidney tumor [14] (MIT).183

KiTS training set was divided into a 0.9:0.1 train-validation split, resulting in 183 and 21 images for184

training and validation. We report the results on the KiTS’s competition test set (90 3D images). All185

3D images were standardized to zero mean and unit variance. The train-validation-test divisions and186

computation of the evaluation criteria was at the subject level, ensuring that the data from a single187

subject was completely in the train set or in the test set, never dividing subject’s data between train188

and test sets. See Appendix C for preprocessing details.189

Model and optimization Sauron and the compared filter pruning methods optimized nnUNet [18]190

via deep supervision [22] with Adam [20] starting with a learning rate of 10−3, polynomial learning191

5

https://github.com/blindedrepository
https://github.com/blindedrepository
https://github.com/blindedrepository

Table 1: Performance on Rats
dataset.

Method Lesion

Dice HD95

nnUNet 0.94 ± 0.03 1.1 ± 0.3
Sauron 0.94 ± 0.03 1.1 ± 0.3
Sauron (λ = 0) 0.93 ± 0.03 1.2 ± 0.5
cSGD (r = 0.5) 0.86 ± 0.13 9.6 ± 16.8
FPGM (r = 0.5) 0.93 ± 0.04 0.5 ± 0.5
Autopruner 0.91 ± 0.04 0.8 ± 1.2

Table 2: Performance on ACDC dataset.
Bold: best performance among pruning methods.

LV M RV

Dice HD95 Dice HD95 Dice HD95

0.91 ± 0.05 4.4 ± 3.0 0.90 ± 0.02 3.4 ± 5.8 0.95 ± 0.03 2.5 ± 1.8
0.90 ± 0.06 4.7 ± 3.2 0.90 ± 0.02 3.6 ± 8.0 0.95 ± 0.03 2.7 ± 2.0
0.89 ± 0.08 5.3 ± 4.4 0.90 ± 0.02 2.4 ± 1.7 0.95 ± 0.03 3.1 ± 3.0
0.10 ± 0.15 72.6 ± 74.1 0.54 ± 0.19 19.5 ± 35.6 0.64 ± 0.20 13.9 ± 8.2
0.57 ± 0.13 37.8 ± 7.3 0.89 ± 0.03 2.2 ± 1.6 0.00 ± 0.00 194.1 ± 23.5
0.88 ± 0.07 5.9 ± 4.6 0.88 ± 0.03 2.5 ± 1.7 0.95 ± 0.03 3.1 ± 3.0

Table 3: Performance on KiTS
datasets.

Method Kidney Tumor

Dice Dice

nnUNet [17] 0.9595 0.7657
Sauron 0.9564 0.7482
Sauron (λ = 0) 0.9556 0.7352
cSGD [9] (r = 0.5) 0.9047 0.5207
FPGM [13] (r = 0.5) 0.9509 0.6830
Autopruner [29] 0.9167 0.5854

Table 4: Decrease in FLOPs with respect to the baseline nnUNet.
Bold: highest decrease.

Method Rats ACDC KiTS

nnUNet [17] 0.00% 0.00% 0.00%
Sauron 96.45% 92.41% 93.02%
Sauron (λ = 0) 96.62% 89.04% 85.82%
cSGD [9] (r = 0.5) 50.03% 49.80% 49.81%
FPGM [13] (r = 0.5) 50.00% 50.0% 49.98%
Autopruner [29] 83.61% 88.52% 82.00%

rate decay, and weight decay of 10−5. During training, images were augmented with TorchIO192

[34] (see Appendix C). nnUNet is a self-configurable U-Net and the dataset optimized nnUNet193

architectures slightly differed on the number of filters, encoder-decoder levels, normalization layer,194

batch size, and number of epochs (see Appendix C).195

Pruning Sauron decreased feature maps dimensionality via average pooling with window size and196

stride of ω = 2, and utilized λ = 0.5 in the loss function, maximum pruning threshold τmax = 0.3,197

pruning steps κ = 15, and patience ρ = 5 (C4 in Algorithm 1). Additionally, we employed simple198

conditions to detect convergence for increasing the layer-specific thresholds τ . Convergence in199

the training loss (C1) was detected once the most recent training loss lay between the maximum200

and minimum values obtained during the training. We considered that the validation loss stopped201

improving (C2) once its most recent value increased with respect to all previous values. Finally, the202

remaining condition (C3) held true if the layer-specific threshold pruned less than 2% of the filters203

pruned in the previous epoch, i.e., µ = 2.204

4.1 Benchmark on three segmentation tasks205

We optimized and pruned nnUNet [18] with Sauron, and we compared its performance with cSGD1206

[9], FPGM2 [13], and Autopruner3 [29] using a pruning rate similar to the one achieved by Sauron.207

Since cSGD and FPGM severely underperformed in this setting, we re-run them with their pruning208

rate set to only 50% (r = 0.5). Additionally, to understand the influence of the proposed regularization209

term δopt on the performance and pruning rate, we conducted ablation experiments with λ = 0. We210

computed the Dice coefficient [8] and 95% Hausdorff distance (HD95) [37] on Rats and ACDC211

test sets (see Tables 1 and 2). In KiTS dataset, only the average Dice coefficient was provided by212

the online platform that evaluated the test set (see Table 3). In addition to Dice and HD95, we213

computed the relative decrease in the number of floating point operations (FLOPs) in all convolutions:214

FLOPs = HW (CinCout)K
2, where H,W is the height and width of the feature maps, Cin, Cout215

is the number of input and output channels, and K is the kernel size. For the 3D CNNs (KiTS dataset),216

an extra D (depth) and K are multiplied to compute the FLOPs.217

Sauron obtained the highest Dice coefficients and competitive HD95s across all datasets and segmen-218

tation classes (Tables 1 to 3). Sauron also achieved the highest reduction in FLOPs, although, every219

1https://github.com/DingXiaoH/Centripetal-SGD
2https://github.com/he-y/filter-pruning-geometric-median
3https://github.com/Roll920/AutoPruner

6

Epoch 0

Other channels
First channel

Epoch 200 (without δopt) Epoch 200 (with δopt, λ=0.5)

0 50 100 150 200
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

Di
p-
te
st
 v
al
ue

Dip-test value during training
Without δopt
With δopt (λ= 0.5)

Increase Decrease Similar

2

4

6

8

10

12

14

Nu
m

be
r o

f c
on

v.
la

ye
rs

Dip-test trend
Without δopt
With δopt(λ=0.5)

Increase Decrease Similar

2

4

6

8

10

12

14
Number of neighbors trend

Increase Decrease Similar

2

4

6

8

10

12

14

δopt value trend

0 0.5 1 2 3 4 5
λ

0

5

10

15

20

Co
nv
. l
ay
er
s w

he
re
 th

e
tre

nd
 in
cr
ea
se
d

a) b) c) d)

e) f) g) h)'Increase' trend in different metrics

Dip-test
δopt
Neighbors
Sauron

Figure 1: a-c) tSNE plot of "dec_block_1" feature maps at initialization (epoch 0), and after optimizing
with and without δopt. d) Corresponding dip-test values during the optimization. e-g) Summary of
the trends across the three clusterability measures in all convolutional layers. h) Number of layers
with an increasing trend in the three clusterability measures with higher values of λ (dashed line:
Sauron’s default configuration).

method, including Sauron, can further reduce the FLOPs at the risk of worsening the performance220

(Table 4). cSGD and FPGM could not yield models with high pruning rates possibly because they221

aim at reducing only sl+1 and not sl from Wl ∈ Rsl+1×sl×k×k. Thus, very high pruning rates cause222

a great imbalance between the number of input and output filters in every layer that may hinder the223

training. Note also that cSGD and FPGM were not tested with pruning rates higher than 60% [9, 13].224

In contrast, Sauron and Autopruner that achieved working models with higher pruning rate reduced225

both input filters sl and output filters sl+1.226

Sauron without the proposed regularization term δopt (Sauron (λ = 0)) achieved similar or less227

compressed models and worse Dice coefficients than when minimizing δopt. Overall, the results from228

these ablation experiments indicate that 1) typical CNN optimization (without δopt regularization)229

yields redundant feature maps that can be pruned with Sauron, 2) pruning rate is generally higher with230

δopt regularization, and 3) pruning with no δopt regularization can affect performance, possibly due231

to the accidental elimination of non-redundant filters. In summary, the pruning rate and performance232

achieved in our ablation experiments demonstrate that promoting clusterability via δopt regularization233

is advantageous for eliminating redundant feature maps.234

4.2 Minimizing δopt promotes the formation of feature maps clusters235

We investigated feature map clustering tendency during nnUNet’s optimization. For this, we deacti-236

vated Sauron’s pruning step and optimized L on Rats dataset with and without δopt while storing the237

feature maps at each epoch (including at epoch 0, before the optimization) of every convolutional238

layer. Since quantifying clusterability is a hard task, we utilized three different measures: 1) We em-239

ployed dip-test [19], as Adolfsson et al. [2] demonstrated its robustness compared to other methods240

for quantifying clusterability. High dip-test values signal higher clusterability. 2) We computed the241

average number of neighbors of each feature map layer-wise. Specifically, we counted the feature242

maps within r, where r corresponded to the 20% of the distance between the first channel and the243

farthest channel. Distance r is computed every time since the initial distance between feature maps244

is typically reduced while training. An increase in the average number of neighbors indicates that245

feature maps have become more clustered. 3) We calculated the average distance to the first feature246

map channel (i.e., δopt) for each layer, which illustrates the total reduction of those distances achieved247

during and after the optimization.248

7

In agreement with the literature [13, 43], Figure 1 shows that optimizing nnUNet (without δopt249

regularization) yields clusters of feature maps. Feature maps in layer "dec_block_1" (see Appendix250

B) show no apparent structure suitable for clustering at initialization (Fig. 1, a), and, at the end251

of the optimization, feature maps appear more clustered (Fig. 1, b). Figure 1 (d, blue line) also252

illustrates this phenomenon: dip-test value is low in the beginning and higher at the end of the training.253

However, this increasing trend did not occur in all layers. To illustrate this, we compared, for each254

layer, the average dip-test value, number of neighbors, and distance δopt in the first and last third of255

the training. Then, we considered the trend similar if the difference between these values was smaller256

than 0.001 (for the dip-test values) or smaller than 5% of the average value in the first third (for the257

number of neighbors and distance δopt). Figure 1 (e) shows that the number of layers in which the258

dip-test value increased and decreased were similar when not minimizing the δopt regularization259

term. In contrast, the number of layers with an increasing trend was proportionally larger with δopt260

regularization. Figure 1 (f) shows a similar outcome regarding the average number of neighbors, i.e.,261

δopt regularization led to proportionally more neighbors near each feature map. In the same line, the262

average distance between the first feature map and the rest decreased more with δopt regularization263

(Fig. 1, (f)). Additionally, Figure 1 (c) also illustrates that incorporating the δopt regularization term264

enhances the clustering of feature maps, as there are more clusters and the feature maps are more265

clustered than when not minimizing δopt (Fig. 1 (b)).266

We observed higher clusterability in the convolutional layers with more feature maps (see Appendix267

D). This is likely because such convolutional layers contribute more to the value of δopt (Eq. 2).268

On the other hand, convolutional layers with fewer feature maps have larger feature vectors (e.g.,269

enc_block_1 feature vectors are (256× 256)× 32 in Rats dataset) whose distances tend to be larger270

due to the curse of dimensionality. Sauron accounts, to some extent, for these differences in the271

convolutional layers with the adaptively-increasing layer-specific thresholds τ . Another possible272

way to tackle these differences is by using different layer-specific λ’s to increase the contribution of273

the distances of certain layers. We investigated the impact on feature map clusterability with higher274

λ values and, as illustrated in Figure 1 (h), a higher λ tended to increase the average number of275

neighbors, decrease δopt, and somewhat increase the dip-test values, which, overall, signals higher276

clusterability.277

4.3 Feature maps interpretation278

Sauron produces small and efficient models that can be easier to interpret. This is due to δopt279

regularization that, as we showed in Section 4.2, increases feature maps clusterability. Each feature280

maps cluster can be thought of as a semantic operation and the cluster’s feature maps as noisy281

outputs of such operation. To test this view, we inspected the feature maps from the second-to-last282

convolutional block (dec_block_8, see Appendix B) of a Sauron-pruned nnUNet. For comparison,283

we included the feature maps from the same convolutional layer of the baseline (unpruned) nnUNet284

in Appendix E.285

The first feature map depicted in Figure 2 (top) captured the background and part of the rat head that286

does not contain brain tissue. The second feature map contained the rest of the rat head without brain287

lesion, and the third feature map mostly extracted the brain lesion. Although the third feature map288

seems to suffice for segmenting the brain lesion, the first feature map might have helped the model289

by discarding the region with no brain tissue at all. Similarly, the first and second feature maps in290

Figure 2 (middle) detected the background, whereas feature maps 3, 4, and 5 extracted, with different291

intensities, the right cavity (red), myocardium (green), and left cavity (blue) of the heart. In Figure 2292

(bottom), we can also see that each feature map captured the background, kidney (red), and tumor293

(blue) with different intensities. This high-level interpretation facilitates understanding the role of the294

last convolutional block which, in the illustrated cases, could be replaced by simple binary operations.295

This shows the interpretability potential of feature map redundancy elimination methods such as296

Sauron.297

8

Image + Ground truth Feature map 1 Feature map 2 Feature map 3

Image + Ground truth Feature map 1 Feature map 2 Feature map 3 Feature map 4 Feature map 5

Image + Ground truth Feature map 1 Feature map 2 Feature map 3

Figure 2: Image slice from Rats (top), ACDC (middle), and KiTS (bottom) datasets, its ground-truth
segmentation, and all feature maps at the second-to-last convolutional block after pruning with
Sauron.

5 Conclusion298

We presented our single-phase filter pruning method named Sauron, and we evaluated it on three299

medical image segmentation tasks in which Sauron yielded pruned models that were superior to the300

compared methods in terms of performance and pruning rate. In agreement with the literature, our301

experiments indicated that CNN optimization leads to redundant feature maps that can be clustered.302

Additionally, we introduced Sauron’s δopt regularization that, as we showed with three different303

clusterability metrics, increased feature maps clusterability without pre-selecting the number of304

clusters, unlike previous approaches. In other words, we enhanced CNN’s innate capability to yield305

feature maps clusters via δopt regularization, and we exploited it for filter pruning. Finally, we showed306

that the few feature maps after pruning nnUNet with Sauron were highly interpretable.307

Limitations and potential negative impact Sauron relies on feature maps for identifying which308

filters to prune. Thus, although Sauron is suitable for training models from scratch and fine-tuning309

pre-trained networks, Sauron is unable to prune CNNs without access to training data, unlike310

[23, 43, 24]. Furthermore, Sauron cannot enforce a specific compression rate due to its simple311

distance thresholding. Although we have evaluated Sauron with respect to the segmentation quality,312

we are not able to evaluate the potential clinical impact. It could be that even a small difference in313

segmentation would have large clinical impact, or vice versa, a large difference in segmentation could314

be clinically meaningless. Depending on the application these impacts could be either positive or315

negative.316

References317

[1] Reza Abbasi-Asl and Bin Yu. Structural compression of convolutional neural networks. arXiv318

preprint arXiv:1705.07356, 2017.319

[2] Andreas Adolfsson, Margareta Ackerman, and Naomi C Brownstein. To cluster, or not to320

cluster: An analysis of clusterability methods. Pattern Recognition, 88:13–26, 2019.321

9

[3] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional322

neural networks. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13323

(3):1–18, 2017.324

[4] SH Basha, Mohammad Farazuddin, Viswanath Pulabaigari, Shiv Ram Dubey, and Sneha-325

sis Mukherjee. Deep model compression based on the training history. arXiv preprint326

arXiv:2102.00160, 2021.327

[5] Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-Ann328

Heng, Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, et al. Deep329

learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: Is330

the problem solved? IEEE transactions on medical imaging, 37(11):2514–2525, 2018.331

[6] Jingfei Chang, Yang Lu, Ping Xue, Xing Wei, and Zhen Wei. Ucp: Uniform channel prun-332

ing for deep convolutional neural networks compression and acceleration. arXiv preprint333

arXiv:2010.01251, 2020.334

[7] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized335

neural networks: Training deep neural networks with weights and activations constrained to+ 1336

or-1. arXiv preprint arXiv:1602.02830, 2016.337

[8] Lee R Dice. Measures of the amount of ecologic association between species. Ecology, 26(3):338

297–302, 1945.339

[9] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning340

very deep convolutional networks with complicated structure. In Proceedings of the IEEE/CVF341

Conference on Computer Vision and Pattern Recognition, pages 4943–4953, 2019.342

[10] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural net-343

works with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,344

2015.345

[11] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections346

for efficient neural networks. arXiv preprint arXiv:1506.02626, 2015.347

[12] Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network348

pruning. In IEEE international conference on neural networks, pages 293–299. IEEE, 1993.349

[13] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric350

median for deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF351

Conference on Computer Vision and Pattern Recognition, pages 4340–4349, 2019.352

[14] Nicholas Heller, Niranjan Sathianathen, Arveen Kalapara, Edward Walczak, Keenan Moore,353

Heather Kaluzniak, Joel Rosenberg, Paul Blake, Zachary Rengel, Makinna Oestreich, et al. The354

kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations,355

and surgical outcomes. arXiv preprint arXiv:1904.00445, 2019.356

[15] Saihui Hou and Zilei Wang. Weighted channel dropout for regularization of deep convolutional357

neural network. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,358

pages 8425–8432, 2019.359

[16] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks.360

In Proceedings of the European conference on computer vision (ECCV), pages 304–320, 2018.361

[17] Fabian Isensee, Paul F Jaeger, Peter M Full, Ivo Wolf, Sandy Engelhardt, and Klaus H Maier-362

Hein. Automatic cardiac disease assessment on cine-mri via time-series segmentation and363

domain specific features. In International workshop on statistical atlases and computational364

models of the heart, pages 120–129. Springer, 2017.365

10

[18] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnu-net:366

a self-configuring method for deep learning-based biomedical image segmentation. Nature367

methods, 18(2):203–211, 2021.368

[19] Argyris Kalogeratos and Aristidis Likas. Dip-means: an incremental clustering method for369

estimating the number of clusters. Advances in neural information processing systems, 25:370

2393–2401, 2012.371

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint372

arXiv:1412.6980, 2014.373

[21] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural374

information processing systems, pages 598–605, 1990.375

[22] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-376

supervised nets. In Artificial intelligence and statistics, pages 562–570. PMLR, 2015.377

[23] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for378

efficient convnets. arXiv preprint arXiv:1608.08710, 2016.379

[24] Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu, David Doermann, Yongjian Wu,380

Feiyue Huang, and Rongrong Ji. Exploiting kernel sparsity and entropy for interpretable cnn381

compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern382

Recognition, pages 2800–2809, 2019.383

[25] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and384

Ling Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF385

Conference on Computer Vision and Pattern Recognition, pages 1529–1538, 2020.386

[26] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and Baochang Zhang.387

Accelerating convolutional networks via global & dynamic filter pruning. In IJCAI, volume 2,388

page 8, 2018.389

[27] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and390

Jian Sun. Metapruning: Meta learning for automatic neural network channel pruning. In391

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3296–3305,392

2019.393

[28] Jian-Hao Luo and Jianxin Wu. An entropy-based pruning method for cnn compression. arXiv394

preprint arXiv:1706.05791, 2017.395

[29] Jian-Hao Luo and Jianxin Wu. Autopruner: An end-to-end trainable filter pruning method for396

efficient deep model inference. Pattern Recognition, 107:107461, 2020.397

[30] Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie, Jianxin Wu, and Weiyao Lin. Thinet:398

pruning cnn filters for a thinner net. IEEE transactions on pattern analysis and machine399

intelligence, 41(10):2525–2538, 2018.400

[31] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural401

networks for volumetric medical image segmentation. In 2016 fourth international conference402

on 3D vision (3DV), pages 565–571. IEEE, 2016.403

[32] Suraj Mishra, Peixian Liang, Adam Czajka, Danny Z Chen, and X Sharon Hu. Cc-net: Image404

complexity guided network compression for biomedical image segmentation. In 2019 IEEE405

16th International Symposium on Biomedical Imaging (ISBI 2019), pages 57–60. IEEE, 2019.406

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,407

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative408

style, high-performance deep learning library. Advances in neural information processing409

systems, 32:8026–8037, 2019.410

11

[34] Fernando Pérez-García, Rachel Sparks, and Sébastien Ourselin. Torchio: a python library for411

efficient loading, preprocessing, augmentation and patch-based sampling of medical images412

in deep learning. Computer Methods and Programs in Biomedicine, page 106236, 2021.413

ISSN 0169-2607. doi: https://doi.org/10.1016/j.cmpb.2021.106236. URL https://www.414

sciencedirect.com/science/article/pii/S0169260721003102.415

[35] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet416

classification using binary convolutional neural networks. In European conference on computer417

vision, pages 525–542. Springer, 2016.418

[36] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for419

biomedical image segmentation. In International Conference on Medical image computing and420

computer-assisted intervention, pages 234–241. Springer, 2015.421

[37] Günter Rote. Computing the minimum hausdorff distance between two point sets on a line422

under translation. Information Processing Letters, 38(3):123–127, 1991.423

[38] Pravendra Singh, Vinay Kumar Verma, Piyush Rai, and Vinay P Namboodiri. Play and prune:424

Adaptive filter pruning for deep model compression. arXiv preprint arXiv:1905.04446, 2019.425

[39] Xavier Suau, Nicholas Apostoloff, et al. Filter distillation for network compression. In 2020426

IEEE Winter Conference on Applications of Computer Vision (WACV), pages 3129–3138. IEEE,427

2020.428

[40] Frederick Tung and Greg Mori. Clip-q: Deep network compression learning by in-parallel429

pruning-quantization. In Proceedings of the IEEE conference on computer vision and pattern430

recognition, pages 7873–7882, 2018.431

[41] Juan Miguel Valverde, Artem Shatillo, Riccardo De Feo, Olli Gröhn, Alejandra Sierra, and432

Jussi Tohka. Ratlesnetv2: a fully convolutional network for rodent brain lesion segmentation.433

Frontiers in neuroscience, 14:1333, 2020.434

[42] Dong Wang, Lei Zhou, Xueni Zhang, Xiao Bai, and Jun Zhou. Exploring linear relationship in435

feature map subspace for convnets compression. arXiv preprint arXiv:1803.05729, 2018.436

[43] Wenxiao Wang, Cong Fu, Jishun Guo, Deng Cai, and Xiaofei He. Cop: Customized deep437

model compression via regularized correlation-based filter-level pruning. arXiv preprint438

arXiv:1906.10337, 2019.439

[44] Zihao Xie, Li Zhu, Lin Zhao, Bo Tao, Liman Liu, and Wenbing Tao. Localization-aware channel440

pruning for object detection. Neurocomputing, 403:400–408, 2020.441

[45] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-norm-less-informative442

assumption in channel pruning of convolution layers. arXiv preprint arXiv:1802.00124, 2018.443

[46] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global444

filter pruning method for accelerating deep convolutional neural networks. arXiv preprint445

arXiv:1909.08174, 2019.446

[47] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei447

Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance448

score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern449

Recognition, pages 9194–9203, 2018.450

[48] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun Zhang, and Qi Tian. Varia-451

tional convolutional neural network pruning. In Proceedings of the IEEE/CVF Conference on452

Computer Vision and Pattern Recognition, pages 2780–2789, 2019.453

12

https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://www.sciencedirect.com/science/article/pii/S0169260721003102

Checklist454

1. For all authors...455

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s456

contributions and scope? [Yes] Particularly 1) Sauron being a single-phase method457

(Section 3.4), 2) its outperformance over other methods (Section 4.1), 3) the proposed458

δopt increasing feature maps clusterability (Section 4.2), and 4) Feature maps easier to459

interpret (Section 4.3)460

(b) Did you describe the limitations of your work? [Yes] See Section 5461

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See462

Section 5463

(d) Have you read the ethics review guidelines and ensured that your paper conforms to464

them? [Yes]465

2. If you are including theoretical results...466

(a) Did you state the full set of assumptions of all theoretical results? [N/A]467

(b) Did you include complete proofs of all theoretical results? [N/A]468

3. If you ran experiments...469

(a) Did you include the code, data, and instructions needed to reproduce the main experi-470

mental results (either in the supplemental material or as a URL)? [Yes] The supplemen-471

tary material and https://github.com/blindedrepository contain the code to472

run all our experiments. Additionally, it includes a README file specifying how to473

run each experiment.474

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they475

were chosen)? [Yes] Most important details were described in Section 4, and we476

specified all data augmentation, architectural and optimization settings in Appendix C.477

These settings can also be seen in our code.478

(c) Did you report error bars (e.g., with respect to the random seed after running experi-479

ments multiple times)? [No]480

(d) Did you include the total amount of compute and the type of resources used (e.g., type481

of GPUs, internal cluster, or cloud provider)? [Yes] Section 3.5482

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...483

(a) If your work uses existing assets, did you cite the creators? [Yes] Data: see Section 4,484

"Datasets" paragraph. Code: see Section 4.1 for the compared methods485

(b) Did you mention the license of the assets? [Yes] We mentioned the license for ACDC486

and KiTS datasets (Section 4, "Datasets").487

(c) Did you include any new assets either in the supplemental material or as a URL? [No]488

(d) Did you discuss whether and how consent was obtained from people whose data you’re489

using/curating? [N/A]490

(e) Did you discuss whether the data you are using/curating contains personally identifiable491

information or offensive content? [N/A]492

5. If you used crowdsourcing or conducted research with human subjects...493

(a) Did you include the full text of instructions given to participants and screenshots, if494

applicable? [N/A]495

(b) Did you describe any potential participant risks, with links to Institutional Review496

Board (IRB) approvals, if applicable? [N/A]497

(c) Did you include the estimated hourly wage paid to participants and the total amount498

spent on participant compensation? [N/A]499

13

https://github.com/blindedrepository

	Introduction
	Previous work
	Sauron
	Preliminaries
	Forward pass
	Backward pass: opt regularization
	Pruning step
	Implementation

	Experiments
	Benchmark on three segmentation tasks
	Minimizing opt promotes the formation of feature maps clusters
	Feature maps interpretation

	Conclusion

