
ReSQL: Retrieval-augmented Error Reasoning for Text-to-SQL Generation

Anonymous ACL submission

Abstract001

Text-to-SQL systems enable users to query002
databases using natural language, bridging the003
gap between non-expert users and structured004
data retrieval. A key challenge for these models005
is the high frequency of execution errors, par-006
ticularly in small language models. In this pa-007
per, we present ReSQL (Retrieval-augmented008
error reasoning for Text-to-SQL), a framework009
that enhances the self-debugging capabilities of010
Text-to-SQL models. ReSQL employs direct011
fine-tuning on a self-generated error reasoning012
dataset to improve a model’s ability to debug013
and correct SQL execution errors. We demon-014
strate that a 7–9B parameter model fine-tuned015
with ReSQL surpasses GPT-4 on the BIRD and016
SPIDER benchmarks and outperforms state-of-017
the-art self-correction methods, achieving more018
than double the error correction rate compared019
to standard fine-tuning approaches. Addition-020
ally, we show the Retrieval-Augmented SQL021
Generation further enhances correction capabil-022
ities for rare execution error types. We believe023
ReSQL provides a robust and efficient self-024
debugging framework for Text-to-SQL mod-025
els, making it especially valuable for resource-026
constrained small models.027

1 Introduction028

Text-to-SQL generation has emerged as a criti-029

cal component in the field of natural language in-030

terfaces to databases, enabling non-expert users031

to query relational databases using natural lan-032

guage (Katsogiannis-Meimarakis and Koutrika,033

2023). This technology has the potential to democ-034

ratize data access and analysis, making it easier for035

a wider range of users to extract valuable insights036

from complex database systems. However, despite037

significant advancements in recent years, Text-to-038

SQL generation remains a challenging task, particu-039

larly for complex queries involving multiple tables,040

joins, nested structures, and intricate conditions.041

The evolution of Text-to-SQL systems has been042

marked by several key phases. Early approaches 043

were often domain-specific, relying on controlled 044

natural language or rule-based methods (Popescu 045

et al., 2004; Meo et al., 1996). As the field 046

progressed, researchers developed more domain- 047

independent solutions using supervised models 048

trained on diverse datasets such as BERT (Deng 049

et al., 2020; Lin et al., 2020; Zhong et al., 2020). 050

The advent of deep learning brought about neu- 051

ral models trained on large text and code reposi- 052

tories (Guo et al., 2019; Katsogiannis-Meimarakis 053

and Koutrika, 2021), further improving perfor- 054

mance and generalization. Recently, Large Lan- 055

guage Models (LLMs) have demonstrated promis- 056

ing performance in Text-to-SQL tasks through in- 057

context learning, including zero-shot and few-shot 058

settings (Gao et al., 2024; Chang et al., 2020; Gu 059

et al., 2023; Dong et al., 2023). However, these 060

models still fall short of achieving state-of-the-art 061

performance on challenging benchmarks, particu- 062

larly for medium and complex queries (Yu et al., 063

2018; Qi et al., 2022; Rai et al., 2023). On the 064

other hand, Small Language Models (SLMs) have 065

received comparatively less attention due to their 066

significant performance gap (Pourreza and Rafiei, 067

2024b). Nevertheless, SLMs remain highly valu- 068

able for deployment on resource-constrained de- 069

vices, providing a cost-effective alternative with 070

lower computational overhead. Regardless of the 071

model sizes, a primary challenge in Text-to-SQL 072

generation is the frequent execution errors, often 073

caused by incorrect schema linking and SQL syn- 074

tax issues. These challenges are particularly pro- 075

nounced in multi-table schemas and complex query 076

structures, and prior research has primarily focused 077

on in-context learning and improving prompting 078

strategies to mitigate these errors. 079

In this paper, we present ReSQL, a novel frame- 080

work that leverages a self-generated dataset to en- 081

hance step-by-step error debugging with reasoning 082

capabilities in Text-to-SQL generation. Designed 083

1

Figure 1: Overview of the ReSQL framework. The training stage (Top) begins with a vanilla language model
(vLM) making inferences on a training dataset from either BIRD or SPIDER. If the model fails to execute a query
correctly, the vLM generates a self-supervised reasoning dataset by following a structured error analysis process:
(1) explaining the behavior of the incorrect query, (2) diagnosing the root cause of the error, and (3) suggesting
a correction. This self-generated reasoning dataset is then incorporated into the original training set for model
fine-tuning. In the inference stage (Bottom), when an execution error occurs, the fine-tuned model first generates a
reasoning explanation. It then retrieves the top-3 relevant RAG examples, based on the question and execution error
type, for few-shot setting. Using this additional context, the model generates the corrected SQL query, improving
execution accuracy and robustness.

to expose models to a diverse range of execution084

errors, ReSQL enables systematic analysis and cor-085

rection, integrating error correction knowledge di-086

rectly into training. This approach aims to improve087

the robustness and reliability of Text-to-SQL mod-088

els, particularly smaller models that struggle with089

complex, real-world database querying tasks.090

To address these challenges, we propose a091

retrieval-augmented generation (RAG)-based fine-092

tuning framework that enhances a model’s reason-093

ing ability to recognize and correct execution er-094

rors. By incorporating retrieval-based augmen-095

tation, ReSQL provides explicit error correction096

guidance, allowing models to systematically im-097

prove their understanding of execution failures and098

learn effective correction strategies. Through ex-099

tensive experiments, we demonstrate that ReSQL-100

trained models consistently achieve significant per-101

formance gains on both the SPIDER (Yu et al.,102

2018) and BIRD (Li et al., 2024) benchmarks, sur-103

passing all state-of-the-art in-context learning meth-104

ods. Notably, 7B–9B parameter models trained105

with ReSQL outperform GPT-4, which achieves 106

execution accuracies of 79.5% on SPIDER and 107

46.35% on BIRD. Our results indicate that even 108

smaller models, when equipped with effective error 109

reasoning mechanisms, can achieve 40–60% higher 110

performance compared to standard supervised fine- 111

tuning (SFT), significantly improving their error 112

correction capabilities across diverse query com- 113

plexities and execution challenges. 114

In summary, ReSQL enhances Text-to-SQL 115

model robustness by leveraging self-generated 116

datasets for error reasoning, narrowing the gap be- 117

tween general-purpose language models and spe- 118

cialized task-specific models. Our approach offers 119

a scalable solution for improving execution relia- 120

bility, particularly benefiting smaller models prone 121

to frequent execution errors in complex querying 122

scenarios. To the best of our knowledge, ReSQL 123

is the first approach to self-correct execution er- 124

rors through direct fine-tuning, offering valuable 125

insights for the Text-to-SQL research community. 126

2

2 Related Work127

In recent years, LLMs have significantly enhanced128

the capabilities of Text-to-SQL systems by inte-129

grating self-correction mechanisms with various130

prompting methods, which we explore in depth.131

Self-Correction in Text-to-SQL: There is grow-132

ing interest in enabling models to self-correct,133

thereby improving the accuracy and reliability134

of SQL generation. Early efforts, such as self-135

consistency (Wang et al., 2022), rely on gener-136

ating multiple candidate SQL queries and choos-137

ing the most consistent one through voting mech-138

anisms. Further advances include self-debugging139

(Chen et al., 2023), where explanations for pre-140

dicted SQL are generated and used to correct initial141

outputs. DIN-SQL (Pourreza and Rafiei, 2024a)142

utilizes a human-written guideline to revise SQL143

queries based on common errors made by the144

model. MAGIC (Askari et al., 2024) extends this145

line of work by introducing an automatically gen-146

erated self-correction guideline, which contrasts147

with DIN-SQL’s human-crafted approach. This148

allows for more scalable and flexible error correc-149

tion in SQL generation, independent of the specific150

in-context learning method or prompting strategy151

used.152

Prompting and Retrieval-Augmented Tech-153

niques for Text-to-SQL: Recent Text-to-SQL sys-154

tems leverage in-context learning and zero-shot155

prompting (Pourreza and Rafiei, 2024a). Several156

models have advanced the field by incorporating157

techniques like Chain-of-Thought (CoT) (Zhang158

et al., 2023) and decompositional approaches159

such as DAIL-SQL (Gao et al., 2023) and MAC-160

SQL (Wang et al., 2023). Additionally, retrieval-161

augmented generation (RAG) has emerged as a162

promising approach to enhance in-context learning163

by dynamically retrieving relevant context from164

external sources. Thorpe et al. (2024) introduce165

Dubo-SQL, which employs a diverse RAG pipeline166

to improve execution accuracy in SQL generation167

by selecting informative few-shot examples rather168

than relying on simple nearest-neighbor retrieval.169

This method demonstrates that leveraging diverse170

retrieval improves SQL accuracy over static fine-171

tuned models while maintaining cost efficiency.172

Similarly, Ziletti and D’Ambrosi (2024) integrate173

RAG for epidemiological question answering over174

electronic health records (EHRs), showing signif-175

icant performance gains when augmenting LLM-176

generated SQL queries with domain-specific re-177

Model SPIDER (%) BIRD (%)

Llama-3.2 1B 49.60 70.85
Llama-3.2 3B 20.91 45.16
Llama-3.1 8B 7.07 28.69
Llama-3.3 70B 1.86 15.49
Qwen-2.5 1.5B 28.31 58.15
Qwen-2.5 3B 17.73 43.63
Qwen-2.5 7B 5.14 28.59
Qwen-2.5 32B 1.04 10.48
Mistral-v0.3 7B 18.03 45.85
Gemma-2 2B 37.60 67.04
Gemma-2 9B 8.41 27.49

Table 1: The percentage of execution errors used to
construct the training dataset. The SPIDER dataset com-
prises a total of 7,000 training instances, while BIRD
contains 8,556. For each dataset, the model with the
highest error percentage is highlighted in bold, while
the second highest is underlined.

trieved examples. 178

Beyond prompt optimization, recent work has 179

explored multi-staged prompting strategies to en- 180

hance LLM performance in SQL generation. Xiong 181

et al. (2024) introduce a two-stage method leverag- 182

ing schema-aware prompts and schema linking to 183

generate more accurate SQL queries. 184

Reasoning for Text-to-SQL: Text-to-SQL pars- 185

ing enables non-experts to query databases using 186

natural language, but models often struggle with ex- 187

ecution errors, particularly small language models. 188

Recent methods enhance reasoning in various ways: 189

CHASE-SQL (Pourreza et al., 2024) generates di- 190

verse SQL candidates using multi-path reasoning 191

and selects the best query through pairwise rank- 192

ing. SQL-CRAFT (Xia et al., 2024) refines SQL 193

through an interactive correction loop and Python- 194

enhanced reasoning. graph-SQL (Gong and Sun, 195

2024) encodes schema relationships using graph- 196

based self-attention to improve query structure un- 197

derstanding. While these approaches enhance SQL 198

generation and selection, they do not incorporate a 199

reasoning process to identify and correct execution 200

errors. 201

Early efforts have laid a solid foundation for 202

Text-to-SQL, but incorporating self-correction tech- 203

niques remains underdeveloped. While much of 204

the previous research has concentrated on improv- 205

ing retrieval strategies for in-context learning and 206

prompt-based SQL generation, our work makes a 207

significant contribution by proposing direct fine- 208

tuning on a self-correction dataset. 209

3

Method Llama Qwen Mistral Gemma

1B 3B 8B 70B 1.5B 3B 7B 32B 7B 2B 9B

Baseline 3.78 22.75 38.27 46.28 13.82 24.45 44.39 50.85 28.23 13.36 37.16
Simple 13.56 26.66 43.74 50.85 17.28 25.10 48.50 55.74 41.59 18.51 40.42

Self-Correction Guideline (Askari et al., 2024) 9.84 25.55 45.89 51.76 15.51 26.53 49.74 57.04 43.61 15.45 43.22
Self-Debugging (Chen et al., 2023) 13.49 27.31 44.00 51.04 16.88 24.58 48.91 55.93 42.24 18.77 41.33
Self-Consistency (Wang et al., 2022) 14.34 26.86 44.46 51.56 18.25 25.81 49.15 56.98 42.37 19.23 40.29
ReSQL w/o RAG (ours) 23.79 42.83 48.24 51.69 26.73 38.33 52.74 56.39 47.26 25.95 50.26
ReSQL (ours) 24.84 43.88 48.83 52.09 28.23 39.18 53.78 57.69 47.65 26.92 49.74

Table 2: Execution accuracy (EX) on the BIRD-dev dataset. The reported scores represent execution accuracy after
the second iteration of error correction. We evaluate widely-used open-source language models across different
model sizes. The models are assessed against two baselines: (1) the unmodified baseline (without fine-tuning) and
(2) Simple, which is fine-tuned on BIRD training datasets. Our proposed method, ReSQL, and ReSQL without RAG
are compared alongside other state-of-the-art approaches, including Self-Correction Guideline, Self-Debugging,
and Self-Consistency. The best performance for each evaluation is highlighted in bold, while the second-best is
underlined.

3 ReSQL framework210

ReSQL framework follows a structured process to211

generate a dataset from SPIDER and BIRD dataset,212

later used for execution error feedback focused on213

improving model robustness in handling execution214

errors. The components shown in Figure 1 are215

outlined below:216

3.1 Generating self-reinforcing error217

reasoning dataset218

The core component of our framework is the gen-219

eration of an error reasoning dataset to enhance220

the model’s reasoning capabilities. For each execu-221

tion error encountered in the SPIDER and BIRD222

datasets, we provide the ground-truth SQL query223

and corresponding error message, enabling the224

model to analyze the incorrect query. The reason-225

ing process consists of three key steps: (1) explain-226

ing the behavior of the incorrect SQL query, (2)227

identifying specific issues within it, and (3) sug-228

gesting corrections to produce the correct query.229

Even with a model size of 1B parameters, lever-230

aging gold queries and structured guidelines allows231

for accurate error analysis. We fine-tune the model232

using this reasoning data alongside the original233

training set of either BIRD or SPIDER, depend-234

ing on the task. This approach not only strength-235

ens generic Text-to-SQL capabilities but also en-236

hances the model’s reasoning ability, enabling it to237

identify and correct frequent errors through struc-238

tured analysis. Rather than simple error correction,239

our method fosters a step-by-step reasoning pro-240

cess akin to chain-of-thought (CoT) reasoning (Liu241

et al., 2023). This reasoning dataset combined with242

original train dataset are used for fine-tuning.243

3.2 Retrieval-Augmented Text-to-SQL 244

Generation for Error Correction 245

For each model, we maintain a distinct set of execu- 246

tion error samples derived from SPIDER and BIRD. 247

During inference, we incorporate this set into a 248

retrieval-augmented generation (RAG) framework. 249

Specifically, when the model encounters an exe- 250

cution error, it retrieves the top three most similar 251

error instances based on vector similarity between 252

the given question and the error message. These 253

retrieved samples serve as in-context learning ex- 254

amples, particularly aiding in handling underrepre- 255

sented error types in the training dataset. 256

Since these error samples are already part of the 257

training set, the fine-tuned model has previously 258

encountered and learned from them. This raises 259

two critical questions: (1) Does retrieving the same 260

error samples during inference provide additional 261

benefits, or is it redundant? (2) Does the model 262

continue to struggle with errors it has already been 263

trained on? 264

As shown in Table 5, training on error samples 265

alone does not guarantee perfect generalization. 266

While the model may learn generalizable patterns 267

from the training data, it lacks explicit recall of 268

specific errors during inference. Retrieval mitigates 269

this limitation by reintroducing similar errors as 270

contextual information, reinforcing error resolution 271

and improving robustness. 272

4 Experimental Setup 273

4.1 Models 274

We evaluate the impact of directly fine-tuning on a 275

self-debugging dataset by extensively testing vari- 276

ous sizes of well-known instruction-tuned models: 277

4

Method Llama Qwen Mistral Gemma

1B 3B 8B 70B 1.5B 3B 7B 32B 7B 2B 9B

Baseline 20.02 49.03 59.67 71.18 38.01 46.71 68.76 78.63 44.00 44.78 61.12
Simple 52.03 57.35 75.53 76.60 53.09 57.16 76.11 83.46 75.82 55.32 75.15

Self-Correction Guideline (Askari et al., 2024) 51.35 58.41 76.60 78.82 51.26 57.64 78.34 83.95 77.76 58.22 78.92
Self-Debugging (Chen et al., 2023) 52.42 57.74 76.60 77.37 54.35 58.32 79.69 83.56 77.66 56.29 77.95
Self-Consistency (Wang et al., 2022) 54.26 59.86 75.92 77.18 54.35 58.99 77.47 83.56 76.60 55.90 75.24
ReSQL w/o RAG (ours) 61.25 68.41 77.48 77.55 64.39 68.25 80.95 84.14 76.95 60.95 81.32
ReSQL (ours) 62.34 69.25 77.58 77.85 66.29 70.36 81.29 84.14 78.53 62.02 80.51

Table 3: Execution accuracy (EX) on the SPIDER-dev dataset. The best performance for each evaluation is
highlighted in bold, while the second-best is underlined.

Llama-3.2 (1B, 3B), Llama-3.1 8B, Llama-3.3 70B,278

Qwen-2.5 (1.5B, 3B, 7B, 32B), Mistral-v0.3 7B,279

and Gemma2 (2B, 9B).280

For benchmarking, we consider both baseline281

and fine-tuned models. The baseline consists of the282

instruction-tuned version of each model without283

additional supervised fine-tuning (SFT). In contrast,284

the simple fine-tuning approach involves training285

the models separately on two datasets, SPIDER286

and BIRD, treating each as an independent task.287

To evaluate self-correction methods for handling288

SQL query errors during inference, we employ289

several state-of-the-art approaches. The MAGIC290

framework automates self-correction for text-to-291

SQL tasks using three specialized agents: Man-292

ager, Feedback, and Correction. The Feedback293

agent identifies SQL query errors, while the Cor-294

rection agent revises them iteratively based on 34295

predefined query correction guidelines. The Self-296

Debugging method enables large language mod-297

els to iteratively debug their own generated SQL298

queries. It does so by executing the queries, gen-299

erating natural language explanations, and using300

feedback to refine them—all without human inter-301

vention. Meanwhile, the Self-Consistency Model302

runs 10 inference iterations per input and selects the303

most frequent query through a voting mechanism.304

If execution errors occur, the model retries with305

an updated prompt, allowing up to two correction306

attempts.307

4.2 Dataset308

We evaluated the models on two distinct cross-309

domain datasets: SPIDER and BIRD. SPIDER con-310

sists of 10,181 questions paired with 5,693 unique311

SQL queries spanning 200 databases and 138 do-312

mains. The dataset is divided into 8,659 training313

examples and 1,034 development examples, and314

the SQL queries are categorized into four levels315

of difficulty (Easy, Medium, Hard, Extra Hard).316

The complex nature of SPIDER, due to its diverse 317

schemas and queries, makes it an ideal dataset for 318

benchmarking generalization in text-to-SQL tasks. 319

BIRD contains 12,751 question-SQL pairs across 320

95 databases, covering over 37 professional do- 321

mains, such as blockchain, healthcare, and edu- 322

cation. In addition to SQL queries, the dataset 323

incorporates four sources of external knowledge: 324

numeric reasoning, domain-specific information, 325

synonyms, and value illustrations. SQL queries in 326

BIRD are generally more challenging than those 327

in SPIDER and are classified into three difficulty 328

levels (Simple, Medium, Challenging). To aid in 329

schema linking, we provided sample rows from the 330

database tables, as well as external knowledge, as 331

hints. Each model is trained on a distinct set of 332

instances, derived from their execution errors on 333

train set. The percentages of the execution errors 334

for all models are shown in Table 1. Here, smaller 335

models creates significantly more execution errors 336

compared to larger sized models. During infer- 337

ence, these collected execution errors, paired with 338

their corresponding reasoning data, are utilized for 339

RAG. 340

4.3 Metric 341

The model performance is evaluated using exe- 342

cution accuracy (EX) and SQL query correction 343

rate (CR), which offer a more nuanced assessment 344

than traditional exact match metrics. Execution 345

accuracy compares the execution results of gener- 346

ated SQL queries with the ground truth, reflecting 347

the flexibility in writing correct queries in text-to- 348

SQL tasks. Performance is reported after up to two 349

correction iterations, as further iterations provide 350

diminishing correction (See Figure 3). The CR 351

measures the proportion of errors successfully cor- 352

rected, highlighting a model’s self-correction abil- 353

ity. This metric is crucial, as models with fewer ini- 354

tial errors have fewer chances to improve through 355

5

error correction. CR is the ratio of successful cor-356

rections to total errors. This measure provides a357

straightforward percentage of errors that are fixed358

by the model.359

To evaluate the effectiveness of the ReSQL360

framework, we conduct extensive experiments361

across various language model families, includ-362

ing Llama-3 (Dubey et al., 2024), Gemma-2 (Team363

et al., 2024), Qwen-2.5 (Yang et al., 2024), and364

Mistral (Jiang et al., 2023), with model sizes rang-365

ing from 1B to 70B.366

5 Result367

5.1 Text-to-SQL self-correction benchmark368

Tables 2 and 3 present the execution accuracy369

(EX) of various models on the BIRD-dev and370

SPIDER-dev datasets, respectively. Across all371

model scales, our proposed method, ReSQL, con-372

sistently outperforms both baseline methods and373

other state-of-the-art techniques, demonstrating its374

efficacy in reducing execution errors. Notably,375

the performance gap between ReSQL and prior376

approaches is particularly pronounced in smaller377

models (e.g., Llama-1B, Qwen-1.5B, Gemma-2B),378

where the presence of execution errors is more sig-379

nificant. This highlights the ability of ReSQL to380

refine SQL generation effectively, even in models381

with limited capacity. For example, in BIRD-dev,382

ReSQL enhances Llama-1B’s accuracy from 3.78%383

(Baseline) to 24.84%, a nearly sevenfold improve-384

ment, significantly outperforming Self-Consistency385

(14.34%). Similarly, ReSQL improves Gemma-2B386

from 13.36% to 26.92%, whereas other methods387

struggle to provide such a robust correction.388

For larger models, where execution accuracy389

is inherently higher, ReSQL still demonstrates390

meaningful improvements, emphasizing the im-391

portance of fine-grained error correction even in392

high-capacity models. For instance, in SPIDER-393

dev, even with few execution errors (See Figure 2),394

Llama-70B sees a 1.25% boost from Simple fine-395

tuning (76.60%) to ReSQL (77.85%), while Qwen-396

32B reaches 84.14% with ReSQL, surpassing all397

prior approaches. Furthermore, the comparison398

between ReSQL and ReSQL w/o RAG highlights399

the effectiveness of retrieval-augmented generation400

(RAG) in refining SQL generation, particularly for401

rare or complex queries. This is evident in models402

like Gemma-9B, where ReSQL w/o RAG achieves403

81.32%, while full ReSQL pushes it to 80.51% in404

SPIDER-dev, showcasing the benefits of incorpo-405

rating retrieval-based corrections. 406

Overall, these results affirm that ReSQL pro- 407

vides a robust, scalable, and generalizable error- 408

correction framework across varying model sizes, 409

establishing a new benchmark for Text-to-SQL gen- 410

eration. 411

5.2 Error correction result 412

SPIDER BIRD

Easy Medium Hard Extra Avg Easy Medium Hard Avg

Simple 55.56 17.65 42.38 4.83 26.78 12.75 12.14 8.67 10.45
ReSQL 88.89 68.63 70.36 39.32 64.38 38.55 28.23 27.96 30.56

Table 4: Comparison of Correction Rates (%) Between
the Simple SFT and ReSQL Framework. The baseline
model used for evaluation is Llama-3.1 8B. The SPI-
DER dataset is categorized into four difficulty levels:
Easy, Medium, Hard, and Extra, while the BIRD dataset
comprises three levels: Simple, Moderate, and Chal-
lenging. The reported values represent the average CR
across all difficulty levels.

Error types Simple
ReSQL

w/o RAG ReSQL

Gold Error 59.32 42.37 42.11
No such column 15.97 6.13 6.00
No such function 2.87 1.56 1.63
No such table 2.09 1.17 1.30
Ambiguous column name 2.35 0.52 0.33
Syntax error 5.48 2.35 2.54
Unrecognized token 1.56 0.91 0.85
More than one statement 0.85 0.33 0.20
Incomplete input 1.63 0.26 0.20
Misuse of aggregate function 0.46 0.46 0.40
Misuse of window function 0.39 0.33 0.26
Wrong number of arguments 0.20 0.20 0.13
Aggregate with GROUP BY 0.26 0.20 0.
ORDER BY before UNION ALL 0.33 0.26 0.07
1st ORDER BY does not match 0.20 0.13 0.13

Incorrect prop. 77.25 57.17 56.12

Table 5: Error type analysis of incorrect SQL queries on
BIRD-dev, showing the proportion (%) of each error cat-
egory across different methods: Simple, ReSQL without
RAG, and ReSQL. The Llama-3.2 3B model serves as
the baseline. Lower values indicate better performance.
The best result for each error type is highlighted in bold,
while the second-best is underlined.

We evaluate the effectiveness of the ReSQL 413

framework in reducing execution errors and im- 414

proving correction rates across two benchmark 415

datasets: SPIDER and BIRD. Table 4 highlights 416

ReSQL’s superior error correction across all diffi- 417

culty levels on SPIDER and BIRD. On SPIDER, 418

ReSQL achieves an average CR of 64.38%, more 419

than doubling Simple SFT (26.78%), with notable 420

gains in medium (68.63% vs. 17.65%) and hard 421

6

BI
R

D
SP

ID
ER

Figure 2: Number of execution errors remaining across difficulties on SPIDER and BIRD after second iteration of
correction. The instruct versions of the open-source Llama family (1B, 3B, 8B, 70B) are evaluated. The comparison
includes three model variants: (1) Baseline (no SFT), (2) Simple SFT (fine-tuned on the respective training dataset),
and (3) the ReSQL framework. For reference, GPT models are presented separately on the right.

(70.36% vs. 42.38%) queries. Even for extra-422

hard cases, ReSQL significantly outperforms Sim-423

ple SFT (39.32% vs. 4.83%), showcasing its424

robustness in handling complex queries. Simi-425

larly, on BIRD, ReSQL attains 30.56% CR, nearly426

three times that of Simple SFT (10.45%), with the427

largest improvement in simple queries (38.55% vs.428

12.75%). These results validate ReSQL’s scalabil-429

ity and effectiveness in refining Text-to-SQL gen-430

eration.431

Figure 2 demonstrates that across all Llama432

model sizes, the ReSQL framework consistently433

reduces execution errors compared to the Baseline434

and Simple SFT variants. This pattern is evident435

in both SPIDER and BIRD datasets, regardless436

of difficulty level. The error reduction effect is437

particularly pronounced in larger models (Llama438

8B and 70B), suggesting that ReSQL effectively439

leverages increased model capacity to minimize440

execution failures. The total number of errors de-441

creases markedly across all Llama model variants,442

with ReSQL leading to the lowest error count. In443

BIRD, a similar trend is observed, with ReSQL sub-444

stantially lowering execution errors, particularly in445

the Medium and Hard categories. The total error446

count remains higher than SPIDER, indicating the447

dataset’s increased difficulty.448

These results collectively indicate that ReSQL is449

highly effective in both reducing execution errors450

and improving correction rates across all model451

sizes and difficulty levels. The consistent improve- 452

ments across multiple datasets and various model 453

sizes underscore its robustness. Notably, ReSQL’s 454

impact scales with larger model sizes, which sug- 455

gests that future work could explore further opti- 456

mization strategies to maximize performance on 457

extreme difficulty levels. 458

SPIDER BIRD

EX ∆EX EX ∆EX

All tools 69.25 – 43.88 –
w/o error feedback 55.71 -13.54 35.66 -8.22
w/o error reasoning 58.22 -11.03 26.27 -17.61
w/o RAG 68.41 -0.84 42.83 -1.05
with 1-time revise 65.86 -3.39 40.10 -3.78

Table 6: Ablation study results on the SPIDER and
BIRD datasets using Llama-3.2 3B as the baseline
model. Error feedback refers to utilizing training data
corrections from each dataset. 1-time revise denotes a
single correction pass without further iterative refine-
ment. The results demonstrate the impact of removing
specific components on execution accuracy (EX) and its
relative change (∆EX).

5.3 Evaluating RAG in SQL Error Correction 459

Table 5 compares SQL error types across Simple, 460

ReSQL w/o RAG, and ReSQL using the Llama- 461

3.2 3B model. Lower values indicate better per- 462

formance. Overall, ReSQL achieves the lowest 463

incorrect proportion (56.12%), demonstrating the 464

7

SPIDER

BIRD

��������������������

��������������������

BIRD

Figure 3: Execution error reduction across correction
iterations on SPIDER and BIRD datasets. Comparison
of LLaMA-3.1 (8B) and LLaMA-3.2 (3B) models with
and without ReSQL framework.

effectiveness of RAG in reducing SQL errors.465

For Gold Error, ReSQL (42.11%) marginally466

outperforms ReSQL w/o RAG (42.37%) but signif-467

icantly improves over Simple (59.32%). In schema-468

related errors (No such column, No such table),469

ReSQL performs comparably to ReSQL w/o RAG470

but significantly reduces errors from Simple, sug-471

gesting that retrieval aids schema reasoning but472

does not fully resolve it. For syntax and struc-473

ture errors (Syntax error, More than one statement,474

ORDER BY issues), ReSQL consistently achieves475

lower error rates, showing that retrieval improves476

query formulation. Notably, for rare errors (Misuse477

of window function, Wrong number of arguments),478

ReSQL performs best, indicating that RAG is par-479

ticularly effective in handling low-frequency error480

cases, likely because these errors are underrepre-481

sented in training data. In summary, ReSQL out-482

performs both baselines, with RAG proving most483

beneficial for rare error types where training expo-484

sure is limited.485

5.4 Ablation study 486

Table 6 presents the ablation study results on the 487

SPIDER and BIRD datasets using llama-3.2 3B 488

as the baseline. The most significant performance 489

drop occurs when error reasoning is removed, par- 490

ticularly on BIRD, where execution accuracy (EX) 491

drops by 17.61%. This highlights the critical role of 492

reasoning in handling complex queries, especially 493

in less structured datasets like BIRD. Similarly, re- 494

moving error feedback leads to a substantial decline 495

(-13.54% on SPIDER, -8.22% on BIRD), demon- 496

strating that leveraging training data corrections 497

is essential for improving model predictions. The 498

removal of RAG has a smaller effect, suggesting 499

that the model can rely on internal representations 500

in most cases. The 1-time revise setting improves 501

results compared to ablated versions but remains 502

inferior to the full system, reinforcing the impor- 503

tance of iterative refinement. Overall, these results 504

underscore that both explicit reasoning and feed- 505

back from the original training dataset are crucial 506

for maximizing execution accuracy. 507

6 Conclusions 508

In this paper, we introduce ReSQL, a retrieval- 509

augmented error reasoning framework for Text-to- 510

SQL models. ReSQL enhances self-debugging ca- 511

pabilities by fine-tuning models on a self-generated 512

error reasoning dataset and incorporating retrieval- 513

augmented generation to improve execution accu- 514

racy. The framework systematically identifies, ana- 515

lyzes, and corrects execution errors, addressing a 516

key challenge in Text-to-SQL generation. 517

Experimental results on SPIDER and BIRD 518

benchmarks show that ReSQL significantly im- 519

proves execution accuracy and error correction 520

rates, outperforming existing self-correction and 521

prompting-based methods. Notably, ReSQL en- 522

ables 1–3B parameter models to achieve substan- 523

tial accuracy gains, reducing execution errors and 524

narrowing the performance gap with larger models. 525

Ablation studies confirm that explicit error reason- 526

ing is essential for self-correction, while RAG fur- 527

ther enhances robustness, particularly for rare error 528

types. We believe ReSQL will provide a scalable 529

and generalizable approach to improving Text-to- 530

SQL models, demonstrating its effectiveness across 531

different model sizes and query complexities. 532

8

7 Limitations533

While ReSQL demonstrates significant improve-534

ments in execution accuracy and error correction535

for Text-to-SQL tasks, certain limitations remain.536

The framework is particularly effective for smaller537

models (1B–9B parameters), but its impact dimin-538

ishes for larger models such as Llama-3.3 70B and539

Qwen-2.5 32B, where baseline models have few540

execution errors.541

ReSQL primarily focuses on post-execution er-542

ror correction, meaning it does not prevent er-543

rors before query execution. A proactive rea-544

soning mechanism could further reduce the need545

for iterative debugging. Additionally, fine-tuning546

large models requires significant computational re-547

sources, with models like Llama-3.1 8B requiring548

at least two A100 40GB GPUs, making widespread549

adoption challenging.550

While RAG helps resolve less frequent execu-551

tion errors, its effectiveness is limited for rare SQL552

errors that were underrepresented in training data.553

Future work could explore data augmentation and554

dynamic retrieval strategies to further improve error555

resolution.556

References557

Arian Askari, Christian Poelitz, and Xinye Tang.558
2024. Magic: Generating self-correction guide-559
line for in-context text-to-sql. arXiv preprint560
arXiv:2406.12692.561

Shuaichen Chang, Pengfei Liu, Yun Tang, Jing Huang,562
Xiaodong He, and Bowen Zhou. 2020. Zero-shot563
text-to-sql learning with auxiliary task. In Proceed-564
ings of the AAAI Conference on Artificial Intelligence,565
volume 34, pages 7488–7495.566

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and567
Denny Zhou. 2023. Teaching large language models568
to self-debug. arXiv preprint arXiv:2304.05128.569

Xiang Deng, Ahmed Hassan Awadallah, Christopher570
Meek, Oleksandr Polozov, Huan Sun, and Matthew571
Richardson. 2020. Structure-grounded pretraining572
for text-to-sql. arXiv preprint arXiv:2010.12773.573

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,574
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.575
C3: Zero-shot text-to-sql with chatgpt. arXiv576
preprint arXiv:2307.07306.577

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,578
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,579
Akhil Mathur, Alan Schelten, Amy Yang, Angela580
Fan, et al. 2024. The llama 3 herd of models. arXiv581
preprint arXiv:2407.21783.582

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, 583
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023. 584
Text-to-sql empowered by large language mod- 585
els: A benchmark evaluation. arXiv preprint 586
arXiv:2308.15363. 587

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin 588
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong, 589
Zhiling Luo, et al. 2024. Xiyan-sql: A multi- 590
generator ensemble framework for text-to-sql. arXiv 591
preprint arXiv:2411.08599. 592

Zheng Gong and Ying Sun. 2024. Graph reasoning 593
enhanced language models for text-to-sql. In Pro- 594
ceedings of the 47th International ACM SIGIR Con- 595
ference on Research and Development in Information 596
Retrieval, pages 2447–2451. 597

Zihui Gu, Ju Fan, Nan Tang, Lei Cao, Bowen Jia, Sam 598
Madden, and Xiaoyong Du. 2023. Few-shot text- 599
to-sql translation using structure and content prompt 600
learning. Proceedings of the ACM on Management 601
of Data, 1(2):1–28. 602

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian- 603
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To- 604
wards complex text-to-sql in cross-domain database 605
with intermediate representation. arXiv preprint 606
arXiv:1905.08205. 607

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 608
sch, Chris Bamford, Devendra Singh Chaplot, Diego 609
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 610
laume Lample, Lucile Saulnier, et al. 2023. Mistral 611
7b. arXiv preprint arXiv:2310.06825. 612

George Katsogiannis-Meimarakis and Georgia Koutrika. 613
2021. A deep dive into deep learning approaches 614
for text-to-sql systems. In Proceedings of the 2021 615
International Conference on Management of Data, 616
pages 2846–2851. 617

George Katsogiannis-Meimarakis and Georgia Koutrika. 618
2023. A survey on deep learning approaches for text- 619
to-sql. The VLDB Journal, 32(4):905–936. 620

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua 621
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying 622
Geng, Nan Huo, et al. 2024. Can llm already serve 623
as a database interface? a big bench for large-scale 624
database grounded text-to-sqls. Advances in Neural 625
Information Processing Systems, 36. 626

Xi Victoria Lin, Richard Socher, and Caiming Xiong. 627
2020. Bridging textual and tabular data for cross- 628
domain text-to-sql semantic parsing. arXiv preprint 629
arXiv:2012.12627. 630

Max Liu, Nathan Liu, Zuohui Fu, and Jason Liu. 631
2023. Chain-of-thought reasoning without prompt- 632
ing. arXiv preprint arXiv:2306.08739. 633

Rosa Meo, Giuseppe Psaila, Stefano Ceri, et al. 1996. 634
A new sql-like operator for mining association rules. 635
In VLDB, volume 96, pages 122–133. Citeseer. 636

9

Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,637
David Ko, and Alexander Yates. 2004. Modern nat-638
ural language interfaces to databases: Composing639
statistical parsing with semantic tractability. In COL-640
ING 2004: Proceedings of the 20th International641
Conference on Computational Linguistics, pages 141–642
147.643

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,644
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok645
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and646
Sercan O Arik. 2024. Chase-sql: Multi-path reason-647
ing and preference optimized candidate selection in648
text-to-sql. arXiv preprint arXiv:2410.01943.649

Mohammadreza Pourreza and Davood Rafiei. 2024a.650
Din-sql: Decomposed in-context learning of text-to-651
sql with self-correction. Advances in Neural Infor-652
mation Processing Systems, 36.653

Mohammadreza Pourreza and Davood Rafiei. 2024b.654
Dts-sql: Decomposed text-to-sql with small large655
language models. arXiv preprint arXiv:2402.01117.656

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,657
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi658
Zhang, and Zhouhan Lin. 2022. Rasat: Integrating659
relational structures into pretrained seq2seq model660
for text-to-sql. arXiv preprint arXiv:2205.06983.661

Daking Rai, Bailin Wang, Yilun Zhou, and Ziyu Yao.662
2023. Improving generalization in language model-663
based text-to-sql semantic parsing: Two simple se-664
mantic boundary-based techniques. arXiv preprint665
arXiv:2305.17378.666

Gemma Team, Morgane Riviere, Shreya Pathak,667
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-668
raju, Léonard Hussenot, Thomas Mesnard, Bobak669
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:670
Improving open language models at a practical size.671
arXiv preprint arXiv:2408.00118.672

Dayton G Thorpe, Andrew J Duberstein, and Ian A Kin-673
sey. 2024. Dubo-sql: Diverse retrieval-augmented674
generation and fine tuning for text-to-sql. arXiv675
preprint arXiv:2404.12560.676

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,677
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun678
Li. 2023. Mac-sql: Multi-agent collaboration for679
text-to-sql. arXiv preprint arXiv:2312.11242.680

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,681
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and682
Denny Zhou. 2022. Self-consistency improves chain683
of thought reasoning in language models. arXiv684
preprint arXiv:2203.11171.685

Hanchen Xia, Feng Jiang, Naihao Deng, Cunxiang686
Wang, Guojiang Zhao, Rada Mihalcea, and Yue687
Zhang. 2024. Sql-craft: Text-to-sql through inter-688
active refinement and enhanced reasoning. arXiv689
preprint arXiv:2402.14851.690

Guanming Xiong, Junwei Bao, Hongfei Jiang, Yang 691
Song, and Wen Zhao. 2024. Interactive-t2s: Multi- 692
turn interactions for text-to-sql with large language 693
models. arXiv preprint arXiv:2408.11062. 694

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 695
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 696
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 697
nical report. arXiv preprint arXiv:2412.15115. 698

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 699
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 700
ing Yao, Shanelle Roman, et al. 2018. Spider: A 701
large-scale human-labeled dataset for complex and 702
cross-domain semantic parsing and text-to-sql task. 703
arXiv preprint arXiv:1809.08887. 704

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen 705
Xu, and Kai Yu. 2023. Act-sql: In-context learning 706
for text-to-sql with automatically-generated chain-of- 707
thought. arXiv preprint arXiv:2310.17342. 708

Victor Zhong, Mike Lewis, Sida I Wang, and Luke 709
Zettlemoyer. 2020. Grounded adaptation for zero- 710
shot executable semantic parsing. arXiv preprint 711
arXiv:2009.07396. 712

Angelo Ziletti and Leonardo D’Ambrosi. 2024. Re- 713
trieval augmented text-to-sql generation for epidemi- 714
ological question answering using electronic health 715
records. arXiv preprint arXiv:2403.09226. 716

10

A Appendix717

Model Init C1 C2 C3 C4
LLaMA-3.1 (8B) 83 71 57 54 52

LLaMA-3.1 (8B) + ReSQL 76 25 16 14 14
LLaMA-3.2 (3B) 219 135 124 122 120

LLaMA-3.2 (3B) + ReSQL 198 76 45 38 34

Table 7: Execution errors across Llama-3.1 8B and
Llama-3.2 3B models on the SPIDER dataset. ’Init’
represents the initial errors, while ’C1’ to ’C4’ indicate
subsequent correction steps aimed at reducing these
errors.

Model Init C1 C2 C3 C4
LLaMA-3.1 (8B) 441 344 286 282 280

LLaMA-3.1 (8B) + ReSQL 405 154 88 75 72
LLaMA-3.2 (3B) 672 562 531 520 512

LLaMA-3.2 (3B) + ReSQL 628 238 152 137 132

Table 8: Execution errors across Llama-3.1 8B and
Llama-3.2 3B models on the BIRD dataset.

11

SPIDER Error message Number of errors

Syntax Errors
Syntax error 45
Unrecognized token 11
ORDER BY clause should come after UNION 1

Reference Errors
No such column 542
No such function 30
No such table 7
Ambiguous column name 11

Function Misuse Errors
Misuse of aggregate function 11
Aggregate functions are not allowed in the GROUP BY clause 2

Execution Errors
Timeout 11
Incorrect number of bindings supplied 1

Table 9: Summary of BIRD SQL Execution Errors and Their Frequencies for Llama-3.2 3B.

All Error Type Error message Number of errors

Syntax Errors
Syntax error 2
Unrecognized token 1
Sub-select returns 2 columns 1

Reference Errors
No such column 199
No such function 2
No such table 10
Ambiguous column name 2

Encoding and Format Errors
Could not decode to UTF-8 1
Row value misused 1

Table 10: Summary of SPIDER SQL Execution Errors and Their Frequencies for Llama-3.2 3B.

12

Figure 4: Donut chart representing the distribution of BIRD SQL Execution errors for Llama-3.2 3B, categorized
into reference, syntax, execution and function misuse error.

Figure 5: Donut chart representing the distribution of SPIDER SQL Execution errors for Llama-3.2 3B, categorized
into reference, syntax, encoding and format error.

13

[System prompt]
You are SQL query master. Only return generated question.

[User prompt]
Generate a SQL question using the given table info. Provided row values are the first three rows of the table. Only return
the question.

Context
Name: {table_0_name}
Info: {table_0_cols}
Rows: {table_0_first_three_rows}
...
Name: {table_N_name}
Info: {table_N_cols}
Rows: {table_N_first_three_rows}

Primary keys: {db_primary_key}
Foreign keys: {db_foreign_key}

Hint: {evidence} // Only apply to BIRD dataset

Output
Generated question:

Figure 6: Template for generating SQL queries from table information, showing system and user prompts, along
with the context structure.

14

[System prompt]
You are an SQL query master, a knowledgeable assistant for writing SQLite queries.

[User prompt]
Task: Your task is to analyze ’why the generated SQL query failed’ and provide an explanation of the error.

You are given:
- A ’Question’ that needs to be answered using SQL.
- A ’Database information’ that describes the tables and columns.
- A ’Gold SQL Query’that correctly answers the question.
- A ’Genearted SQL query’ that was produced by the model but resulted in an execution error.
- The ’Error message’ that was returned when executing the generated query.
Your task is to analyze ’why the generated SQL query failed’ and provide an explanation of the error.

Guidelines for Analysis:
1. **Identify the Error Type**
- Syntax Error: Issues like incorrect SQL syntax or missing keywords.
- Semantic Error: The query structure is valid but references nonexistent tables/columns.
- Logical Error: The query does not match the intended question meaning.

2. **Compare Against the Gold Query**
- Identify key differences between the ’generated query’ and ’gold query’.
- Explain which specific mistakes led to the execution error.

Response Format (JSON)
“‘json

"Reasoning": "<Your generated analysis here>",
"Error Type": "<Syntax Error / Semantic Error / Logical Error>"

“‘

Context
Question: {generated_question}
Hint: {evidence} // Only apply to BIRD dataset

Name: {table_0_name}
Info: {table_0_cols}
Rows: {table_0_first_three_rows}
...
Name: {table_N_name}
Info: {table_N_cols}
Rows: {table_N_first_three_rows}

Primary keys: {db_primary_key}
Foreign keys: {db_foreign_key}

Gold SQL Query: {gold_query}
Wrong SQL: {prediction_query}
Execution error: {execution_error_message}

Output
Reasoning:
Error Type:

Figure 7: Template for Analyzing Execution Errors in Generated SQL Queries.

15

Figure 8: Comparison of SQL self-correction with and without reasoning. The model without reasoning fails to
correctly self-correct the initial SQL query, generating another incorrect query even after attempting self-correction.
In contrast, our model (with reasoning) identifies the root cause of the error, correctly fixes the query, and ensures
execution accuracy.

16

Figure 9: Overview of the Retrieval-Augmented Generation (RAG) framework for SQL error correction. When an
execution error occurs, the system retrieves the top three most similar error cases from a database of past execution
errors using vector similarity. These retrieved examples serve as in-context learning references, helping the model
resolve underrepresented error types and improve robustness.

17

	Introduction
	Related Work
	ReSQL framework
	Generating self-reinforcing error reasoning dataset
	Retrieval-Augmented Text-to-SQL Generation for Error Correction

	Experimental Setup
	Models
	Dataset
	Metric

	Result
	Text-to-SQL self-correction benchmark
	Error correction result
	Evaluating RAG in SQL Error Correction
	Ablation study

	Conclusions
	Limitations
	Appendix

