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Abstract

Text-to-SQL systems enable users to query
databases using natural language, bridging the
gap between non-expert users and structured
dataretrieval. A key challenge for these models
is the high frequency of execution errors, par-
ticularly in small language models. In this pa-
per, we present ReSQL (Retrieval-augmented
error reasoning for Text-to-SQL), a framework
that enhances the self-debugging capabilities of
Text-to-SQL models. ReSQL employs direct
fine-tuning on a self-generated error reasoning
dataset to improve a model’s ability to debug
and correct SQL execution errors. We demon-
strate that a 7-9B parameter model fine-tuned
with ReSQL surpasses GPT-4 on the BIRD and
SPIDER benchmarks and outperforms state-of-
the-art self-correction methods, achieving more
than double the error correction rate compared
to standard fine-tuning approaches. Addition-
ally, we show the Retrieval-Augmented SQL
Generation further enhances correction capabil-
ities for rare execution error types. We believe
ReSQL provides a robust and efficient self-
debugging framework for Text-to-SQL mod-
els, making it especially valuable for resource-
constrained small models.

1 Introduction

Text-to-SQL generation has emerged as a criti-
cal component in the field of natural language in-
terfaces to databases, enabling non-expert users
to query relational databases using natural lan-
guage (Katsogiannis-Meimarakis and Koutrika,
2023). This technology has the potential to democ-
ratize data access and analysis, making it easier for
a wider range of users to extract valuable insights
from complex database systems. However, despite
significant advancements in recent years, Text-to-
SQL generation remains a challenging task, particu-
larly for complex queries involving multiple tables,
joins, nested structures, and intricate conditions.
The evolution of Text-to-SQL systems has been

marked by several key phases. Early approaches
were often domain-specific, relying on controlled
natural language or rule-based methods (Popescu
et al., 2004; Meo et al., 1996). As the field
progressed, researchers developed more domain-
independent solutions using supervised models
trained on diverse datasets such as BERT (Deng
et al., 2020; Lin et al., 2020; Zhong et al., 2020).
The advent of deep learning brought about neu-
ral models trained on large text and code reposi-
tories (Guo et al., 2019; Katsogiannis-Meimarakis
and Koutrika, 2021), further improving perfor-
mance and generalization. Recently, Large Lan-
guage Models (LLMs) have demonstrated promis-
ing performance in Text-to-SQL tasks through in-
context learning, including zero-shot and few-shot
settings (Gao et al., 2024; Chang et al., 2020; Gu
et al., 2023; Dong et al., 2023). However, these
models still fall short of achieving state-of-the-art
performance on challenging benchmarks, particu-
larly for medium and complex queries (Yu et al.,
2018; Qi et al., 2022; Rai et al., 2023). On the
other hand, Small Language Models (SLMs) have
received comparatively less attention due to their
significant performance gap (Pourreza and Rafiei,
2024b). Nevertheless, SLMs remain highly valu-
able for deployment on resource-constrained de-
vices, providing a cost-effective alternative with
lower computational overhead. Regardless of the
model sizes, a primary challenge in Text-to-SQL
generation is the frequent execution errors, often
caused by incorrect schema linking and SQL syn-
tax issues. These challenges are particularly pro-
nounced in multi-table schemas and complex query
structures, and prior research has primarily focused
on in-context learning and improving prompting
strategies to mitigate these errors.

In this paper, we present ReSQL, a novel frame-
work that leverages a self-generated dataset to en-
hance step-by-step error debugging with reasoning
capabilities in Text-to-SQL generation. Designed
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Figure 1: Overview of the ReSQL framework. The training stage (Top) begins with a vanilla language model
(vLM) making inferences on a training dataset from either BIRD or SPIDER. If the model fails to execute a query
correctly, the vLLM generates a self-supervised reasoning dataset by following a structured error analysis process:
(1) explaining the behavior of the incorrect query, (2) diagnosing the root cause of the error, and (3) suggesting
a correction. This self-generated reasoning dataset is then incorporated into the original training set for model
fine-tuning. In the inference stage (Bottom), when an execution error occurs, the fine-tuned model first generates a
reasoning explanation. It then retrieves the top-3 relevant RAG examples, based on the question and execution error
type, for few-shot setting. Using this additional context, the model generates the corrected SQL query, improving

execution accuracy and robustness.

to expose models to a diverse range of execution
errors, ReSQL enables systematic analysis and cor-
rection, integrating error correction knowledge di-
rectly into training. This approach aims to improve
the robustness and reliability of Text-to-SQL mod-
els, particularly smaller models that struggle with
complex, real-world database querying tasks.

To address these challenges, we propose a
retrieval-augmented generation (RAG)-based fine-
tuning framework that enhances a model’s reason-
ing ability to recognize and correct execution er-
rors. By incorporating retrieval-based augmen-
tation, ReSQL provides explicit error correction
guidance, allowing models to systematically im-
prove their understanding of execution failures and
learn effective correction strategies. Through ex-
tensive experiments, we demonstrate that ReSQL-
trained models consistently achieve significant per-
formance gains on both the SPIDER (Yu et al.,
2018) and BIRD (Li et al., 2024) benchmarks, sur-
passing all state-of-the-art in-context learning meth-
ods. Notably, 7B—9B parameter models trained

with ReSQL outperform GPT-4, which achieves
execution accuracies of 79.5% on SPIDER and
46.35% on BIRD. Our results indicate that even
smaller models, when equipped with effective error
reasoning mechanisms, can achieve 40-60% higher
performance compared to standard supervised fine-
tuning (SFT), significantly improving their error
correction capabilities across diverse query com-
plexities and execution challenges.

In summary, ReSQL enhances Text-to-SQL
model robustness by leveraging self-generated
datasets for error reasoning, narrowing the gap be-
tween general-purpose language models and spe-
cialized task-specific models. Our approach offers
a scalable solution for improving execution relia-
bility, particularly benefiting smaller models prone
to frequent execution errors in complex querying
scenarios. To the best of our knowledge, ReSQL
is the first approach to self-correct execution er-
rors through direct fine-tuning, offering valuable
insights for the Text-to-SQL research community.



2 Related Work

In recent years, LLMs have significantly enhanced
the capabilities of Text-to-SQL systems by inte-
grating self-correction mechanisms with various
prompting methods, which we explore in depth.

Self-Correction in Text-to-SQL: There is grow-
ing interest in enabling models to self-correct,
thereby improving the accuracy and reliability
of SQL generation. Early efforts, such as self-
consistency (Wang et al., 2022), rely on gener-
ating multiple candidate SQL queries and choos-
ing the most consistent one through voting mech-
anisms. Further advances include self-debugging
(Chen et al., 2023), where explanations for pre-
dicted SQL are generated and used to correct initial
outputs. DIN-SQL (Pourreza and Rafiei, 2024a)
utilizes a human-written guideline to revise SQL
queries based on common errors made by the
model. MAGIC (Askari et al., 2024) extends this
line of work by introducing an automatically gen-
erated self-correction guideline, which contrasts
with DIN-SQL’s human-crafted approach. This
allows for more scalable and flexible error correc-
tion in SQL generation, independent of the specific
in-context learning method or prompting strategy
used.

Prompting and Retrieval-Augmented Tech-
niques for Text-to-SQL: Recent Text-to-SQL sys-
tems leverage in-context learning and zero-shot
prompting (Pourreza and Rafiei, 2024a). Several
models have advanced the field by incorporating
techniques like Chain-of-Thought (CoT) (Zhang
et al., 2023) and decompositional approaches
such as DAIL-SQL (Gao et al., 2023) and MAC-
SQL (Wang et al., 2023). Additionally, retrieval-
augmented generation (RAG) has emerged as a
promising approach to enhance in-context learning
by dynamically retrieving relevant context from
external sources. Thorpe et al. (2024) introduce
Dubo-SQL, which employs a diverse RAG pipeline
to improve execution accuracy in SQL generation
by selecting informative few-shot examples rather
than relying on simple nearest-neighbor retrieval.
This method demonstrates that leveraging diverse
retrieval improves SQL accuracy over static fine-
tuned models while maintaining cost efficiency.
Similarly, Ziletti and D’ Ambrosi (2024) integrate
RAG for epidemiological question answering over
electronic health records (EHRs), showing signif-
icant performance gains when augmenting LL.M-
generated SQL queries with domain-specific re-

Model \ SPIDER (%) BIRD (%)
Llama-3.2 1B 49.60 70.85
Llama-3.2 3B 20.91 45.16
Llama-3.1 8B 7.07 28.69
Llama-3.3 70B 1.86 15.49
Qwen-2.5 1.5B 28.31 58.15
Qwen-2.5 3B 17.73 43.63
Qwen-2.5 7B 5.14 28.59
Qwen-2.5 32B 1.04 10.48
Mistral-v0.3 7B 18.03 45.85
Gemma-2 2B 37.60 67.04
Gemma-2 9B 8.41 27.49

Table 1: The percentage of execution errors used to
construct the training dataset. The SPIDER dataset com-
prises a total of 7,000 training instances, while BIRD
contains 8,556. For each dataset, the model with the
highest error percentage is highlighted in bold, while
the second highest is underlined.

trieved examples.

Beyond prompt optimization, recent work has
explored multi-staged prompting strategies to en-
hance LLM performance in SQL generation. Xiong
et al. (2024) introduce a two-stage method leverag-
ing schema-aware prompts and schema linking to
generate more accurate SQL queries.

Reasoning for Text-to-SQL: Text-to-SQL pars-
ing enables non-experts to query databases using
natural language, but models often struggle with ex-
ecution errors, particularly small language models.
Recent methods enhance reasoning in various ways:
CHASE-SQL (Pourreza et al., 2024) generates di-
verse SQL candidates using multi-path reasoning
and selects the best query through pairwise rank-
ing. SQL-CRAFT (Xia et al., 2024) refines SQL
through an interactive correction loop and Python-
enhanced reasoning. graph-SQL (Gong and Sun,
2024) encodes schema relationships using graph-
based self-attention to improve query structure un-
derstanding. While these approaches enhance SQL
generation and selection, they do not incorporate a
reasoning process to identify and correct execution
erTors.

Early efforts have laid a solid foundation for
Text-to-SQL, but incorporating self-correction tech-
niques remains underdeveloped. While much of
the previous research has concentrated on improv-
ing retrieval strategies for in-context learning and
prompt-based SQL generation, our work makes a
significant contribution by proposing direct fine-
tuning on a self-correction dataset.



Method Llama Qwen Mistral Gemma
1B 3B 8B 70B 15B 3B 7B 32B 7B 2B 9B
Baseline 378 2275 3827 46.28 13.82 2445 4439 5085 2823 1336 37.16
Simple 13.56 26.66 43.74 50.85 17.28 25.10 48.50 55.74 4159 1851 40.42
Self-Correction Guideline (Askari et al., 2024)  9.84 2555 4589 51.76 1551 26.53 49.74 57.04 43.61 1545 43.22
Self-Debugging (Chen et al., 2023) 13.49 2731 4400 51.04 1688 2458 4891 5593 4224 1877 4133
Self-Consistency (Wang et al., 2022) 1434 26.86 4446 5156 1825 2581 49.15 5698 4237 19.23 40.29
ReSQL w/o RAG (ours) 23.79 42.83 4824 51.69 26.73 38.33 5274 56.39 47.26 2595 50.26
ReSQL (ours) 24.84 43.88 48.83 52.09 2823 39.18 53.78 57.69 47.65 26.92 49.74

Table 2: Execution accuracy (EX) on the BIRD-dev dataset. The reported scores represent execution accuracy after
the second iteration of error correction. We evaluate widely-used open-source language models across different
model sizes. The models are assessed against two baselines: (1) the unmodified baseline (without fine-tuning) and
(2) Simple, which is fine-tuned on BIRD training datasets. Our proposed method, ReSQL, and ReSQL without RAG
are compared alongside other state-of-the-art approaches, including Self-Correction Guideline, Self-Debugging,
and Self-Consistency. The best performance for each evaluation is highlighted in bold, while the second-best is

underlined.

3 ReSQL framework

ReSQL framework follows a structured process to
generate a dataset from SPIDER and BIRD dataset,
later used for execution error feedback focused on
improving model robustness in handling execution
errors. The components shown in Figure 1 are
outlined below:

3.1 Generating self-reinforcing error
reasoning dataset

The core component of our framework is the gen-
eration of an error reasoning dataset to enhance
the model’s reasoning capabilities. For each execu-
tion error encountered in the SPIDER and BIRD
datasets, we provide the ground-truth SQL query
and corresponding error message, enabling the
model to analyze the incorrect query. The reason-
ing process consists of three key steps: (1) explain-
ing the behavior of the incorrect SQL query, (2)
identifying specific issues within it, and (3) sug-
gesting corrections to produce the correct query.
Even with a model size of 1B parameters, lever-
aging gold queries and structured guidelines allows
for accurate error analysis. We fine-tune the model
using this reasoning data alongside the original
training set of either BIRD or SPIDER, depend-
ing on the task. This approach not only strength-
ens generic Text-to-SQL capabilities but also en-
hances the model’s reasoning ability, enabling it to
identify and correct frequent errors through struc-
tured analysis. Rather than simple error correction,
our method fosters a step-by-step reasoning pro-
cess akin to chain-of-thought (CoT) reasoning (Liu
et al., 2023). This reasoning dataset combined with
original train dataset are used for fine-tuning.

3.2 Retrieval-Augmented Text-to-SQL
Generation for Error Correction

For each model, we maintain a distinct set of execu-
tion error samples derived from SPIDER and BIRD.
During inference, we incorporate this set into a
retrieval-augmented generation (RAG) framework.
Specifically, when the model encounters an exe-
cution error, it retrieves the top three most similar
error instances based on vector similarity between
the given question and the error message. These
retrieved samples serve as in-context learning ex-
amples, particularly aiding in handling underrepre-
sented error types in the training dataset.

Since these error samples are already part of the
training set, the fine-tuned model has previously
encountered and learned from them. This raises
two critical questions: (1) Does retrieving the same
error samples during inference provide additional
benefits, or is it redundant? (2) Does the model
continue to struggle with errors it has already been
trained on?

As shown in Table 5, training on error samples
alone does not guarantee perfect generalization.
While the model may learn generalizable patterns
from the training data, it lacks explicit recall of
specific errors during inference. Retrieval mitigates
this limitation by reintroducing similar errors as
contextual information, reinforcing error resolution
and improving robustness.

4 Experimental Setup
4.1 Models

We evaluate the impact of directly fine-tuning on a
self-debugging dataset by extensively testing vari-
ous sizes of well-known instruction-tuned models:



Method Llama Qwen Mistral Gemma
1B 3B 8B 70B 15B 3B 7B 32B 7B 2B 9B
Baseline 20.02 49.03 59.67 71.18 38.01 46.71 68.76 78.63 4400 4478 61.12
Simple 52.03 57.35 7553 76.60 53.09 57.16 76.11 8346 7582 5532 75.15
Self-Correction Guideline (Askari et al., 2024) 51.35 5841 76.60 7882 5126 57.64 78.34 8395 77776 5822 7892
Self-Debugging (Chen et al., 2023) 5242 5774 76.60 7737 5435 5832 79.69 83.56 77.66 56.29 77.95
Self-Consistency (Wang et al., 2022) 5426 59.86 7592 77.18 5435 5899 7747 83.56 76.60 5590 75.24
ReSQL w/o RAG (ours) 61.25 6841 7748 7755 6439 68.25 8095 84.14 7695 60.95 81.32
ReSQL (ours) 62.34 69.25 77.58 77.85 6629 7036 81.29 84.14 7853 62.02 80.51

Table 3: Execution accuracy (EX) on the SPIDER-dev dataset. The best performance for each evaluation is

highlighted in bold, while the second-best is underlined.

Llama-3.2 (1B, 3B), Llama-3.1 8B, Llama-3.3 70B,
Qwen-2.5 (1.5B, 3B, 7B, 32B), Mistral-v0.3 7B,
and Gemma?2 (2B, 9B).

For benchmarking, we consider both baseline
and fine-tuned models. The baseline consists of the
instruction-tuned version of each model without
additional supervised fine-tuning (SFT). In contrast,
the simple fine-tuning approach involves training
the models separately on two datasets, SPIDER
and BIRD, treating each as an independent task.

To evaluate self-correction methods for handling
SQL query errors during inference, we employ
several state-of-the-art approaches. The MAGIC
framework automates self-correction for text-to-
SQL tasks using three specialized agents: Man-
ager, Feedback, and Correction. The Feedback
agent identifies SQL query errors, while the Cor-
rection agent revises them iteratively based on 34
predefined query correction guidelines. The Self-
Debugging method enables large language mod-
els to iteratively debug their own generated SQL
queries. It does so by executing the queries, gen-
erating natural language explanations, and using
feedback to refine them—all without human inter-
vention. Meanwhile, the Self-Consistency Model
runs 10 inference iterations per input and selects the
most frequent query through a voting mechanism.
If execution errors occur, the model retries with
an updated prompt, allowing up to two correction
attempts.

4.2 Dataset

We evaluated the models on two distinct cross-
domain datasets: SPIDER and BIRD. SPIDER con-
sists of 10,181 questions paired with 5,693 unique
SQL queries spanning 200 databases and 138 do-
mains. The dataset is divided into 8,659 training
examples and 1,034 development examples, and
the SQL queries are categorized into four levels
of difficulty (Easy, Medium, Hard, Extra Hard).

The complex nature of SPIDER, due to its diverse
schemas and queries, makes it an ideal dataset for
benchmarking generalization in text-to-SQL tasks.
BIRD contains 12,751 question-SQL pairs across
95 databases, covering over 37 professional do-
mains, such as blockchain, healthcare, and edu-
cation. In addition to SQL queries, the dataset
incorporates four sources of external knowledge:
numeric reasoning, domain-specific information,
synonyms, and value illustrations. SQL queries in
BIRD are generally more challenging than those
in SPIDER and are classified into three difficulty
levels (Simple, Medium, Challenging). To aid in
schema linking, we provided sample rows from the
database tables, as well as external knowledge, as
hints. Each model is trained on a distinct set of
instances, derived from their execution errors on
train set. The percentages of the execution errors
for all models are shown in Table 1. Here, smaller
models creates significantly more execution errors
compared to larger sized models. During infer-
ence, these collected execution errors, paired with
their corresponding reasoning data, are utilized for
RAG.

4.3 Metric

The model performance is evaluated using exe-
cution accuracy (EX) and SQL query correction
rate (CR), which offer a more nuanced assessment
than traditional exact match metrics. Execution
accuracy compares the execution results of gener-
ated SQL queries with the ground truth, reflecting
the flexibility in writing correct queries in text-to-
SQL tasks. Performance is reported after up to two
correction iterations, as further iterations provide
diminishing correction (See Figure 3). The CR
measures the proportion of errors successfully cor-
rected, highlighting a model’s self-correction abil-
ity. This metric is crucial, as models with fewer ini-
tial errors have fewer chances to improve through



error correction. CR is the ratio of successful cor-
rections to total errors. This measure provides a
straightforward percentage of errors that are fixed
by the model.

To evaluate the effectiveness of the ReSQL
framework, we conduct extensive experiments
across various language model families, includ-
ing Llama-3 (Dubey et al., 2024), Gemma-2 (Team
et al., 2024), Qwen-2.5 (Yang et al., 2024), and
Mistral (Jiang et al., 2023), with model sizes rang-
ing from 1B to 70B.

5 Result

5.1 Text-to-SQL self-correction benchmark

Tables 2 and 3 present the execution accuracy
(EX) of various models on the BIRD-dev and
SPIDER-dev datasets, respectively. Across all
model scales, our proposed method, ReSQL, con-
sistently outperforms both baseline methods and
other state-of-the-art techniques, demonstrating its
efficacy in reducing execution errors. Notably,
the performance gap between ReSQL and prior
approaches is particularly pronounced in smaller
models (e.g., Llama-1B, Qwen-1.5B, Gemma-2B),
where the presence of execution errors is more sig-
nificant. This highlights the ability of ReSQL to
refine SQL generation effectively, even in models
with limited capacity. For example, in BIRD-dev,
ReSQL enhances Llama-1B’s accuracy from 3.78%
(Baseline) to 24.84%, a nearly sevenfold improve-
ment, significantly outperforming Self-Consistency
(14.34%). Similarly, ReSQL improves Gemma-2B
from 13.36% to 26.92%, whereas other methods
struggle to provide such a robust correction.

For larger models, where execution accuracy
is inherently higher, ReSQL still demonstrates
meaningful improvements, emphasizing the im-
portance of fine-grained error correction even in
high-capacity models. For instance, in SPIDER-
dev, even with few execution errors (See Figure 2),
Llama-70B sees a 1.25% boost from Simple fine-
tuning (76.60%) to ReSQL (77.85%), while Qwen-
32B reaches 84.14% with ReSQL, surpassing all
prior approaches. Furthermore, the comparison
between ReSQL and ReSQL w/o RAG highlights
the effectiveness of retrieval-augmented generation
(RAG) in refining SQL generation, particularly for
rare or complex queries. This is evident in models
like Gemma-9B, where ReSQL w/o RAG achieves
81.32%, while full ReSQL pushes it to 80.51% in
SPIDER-dev, showcasing the benefits of incorpo-

rating retrieval-based corrections.

Overall, these results affirm that ReSQL pro-
vides a robust, scalable, and generalizable error-
correction framework across varying model sizes,
establishing a new benchmark for Text-to-SQL gen-
eration.

5.2 Error correction result

SPIDER BIRD
Easy Medium Hard Extra Avg Easy Medium Hard Avg

Simple  55.56  17.65 4238 4.83 2678 1275 12.14 8.67 10.45
ReSQL 88.89 68.63 7036 39.32 64.38 3855 2823 27.96 30.56

Table 4: Comparison of Correction Rates (%) Between
the Simple SFT and ReSQL Framework. The baseline
model used for evaluation is Llama-3.1 8B. The SPI-
DER dataset is categorized into four difficulty levels:
Easy, Medium, Hard, and Extra, while the BIRD dataset
comprises three levels: Simple, Moderate, and Chal-
lenging. The reported values represent the average CR
across all difficulty levels.

ReSQL

Error types Simple w/o RAG ReSQL
Gold Error 59.32 42.37 42.11
No such column 15.97 6.13 6.00
No such function 2.87 1.56 1.63
No such table 2.09 1.17 1.30
Ambiguous column name 2.35 0.52 0.33
Syntax error 5.48 2.35 2.54
Unrecognized token 1.56 091 0.85
More than one statement 0.85 0.33 0.20
Incomplete input 1.63 0.26 0.20
Misuse of aggregate function 0.46 0.46 0.40
Misuse of window function 0.39 0.33 0.26
Wrong number of arguments 0.20 0.20 0.13
Aggregate with GROUP BY 0.26 0.20 0

ORDER BY before UNION ALL  0.33 0.26 0.07
1st ORDER BY does not match 0.20 0.13 0.13

77.25 56.12

Incorrect prop.

Table 5: Error type analysis of incorrect SQL queries on
BIRD-deyv, showing the proportion (%) of each error cat-
egory across different methods: Simple, ReSQL without
RAG, and ReSQL. The Llama-3.2 3B model serves as
the baseline. Lower values indicate better performance.
The best result for each error type is highlighted in bold,
while the second-best is underlined.

We evaluate the effectiveness of the ReSQL
framework in reducing execution errors and im-
proving correction rates across two benchmark
datasets: SPIDER and BIRD. Table 4 highlights
ReSQL’s superior error correction across all diffi-
culty levels on SPIDER and BIRD. On SPIDER,
ReSQL achieves an average CR of 64.38%, more
than doubling Simple SFT (26.78%), with notable
gains in medium (68.63% vs. 17.65%) and hard
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Figure 2: Number of execution errors remaining across difficulties on SPIDER and BIRD after second iteration of
correction. The instruct versions of the open-source Llama family (1B, 3B, 8B, 70B) are evaluated. The comparison
includes three model variants: (1) Baseline (no SFT), (2) Simple SFT (fine-tuned on the respective training dataset),
and (3) the ReSQL framework. For reference, GPT models are presented separately on the right.

(70.36% vs. 42.38%) queries. Even for extra-
hard cases, ReSQL significantly outperforms Sim-
ple SFT (39.32% vs. 4.83%), showcasing its
robustness in handling complex queries. Simi-
larly, on BIRD, ReSQL attains 30.56% CR, nearly
three times that of Simple SFT (10.45%), with the
largest improvement in simple queries (38.55% vs.
12.75%). These results validate ReSQL’s scalabil-
ity and effectiveness in refining Text-to-SQL gen-
eration.

Figure 2 demonstrates that across all Llama
model sizes, the ReSQL framework consistently
reduces execution errors compared to the Baseline
and Simple SFT variants. This pattern is evident
in both SPIDER and BIRD datasets, regardless
of difficulty level. The error reduction effect is
particularly pronounced in larger models (Llama
8B and 70B), suggesting that ReSQL effectively
leverages increased model capacity to minimize
execution failures. The total number of errors de-
creases markedly across all Llama model variants,
with ReSQL leading to the lowest error count. In
BIRD, a similar trend is observed, with ReSQL sub-
stantially lowering execution errors, particularly in
the Medium and Hard categories. The total error
count remains higher than SPIDER, indicating the
dataset’s increased difficulty.

These results collectively indicate that ReSQL is
highly effective in both reducing execution errors
and improving correction rates across all model

sizes and difficulty levels. The consistent improve-
ments across multiple datasets and various model
sizes underscore its robustness. Notably, ReSQL’s
impact scales with larger model sizes, which sug-
gests that future work could explore further opti-
mization strategies to maximize performance on
extreme difficulty levels.

SPIDER BIRD
EX AEX EX AEX
All tools 69.25 - 43.88 -
w/o error feedback 5571 -13.54 35.66 -8.22
w/o error reasoning 5822 -11.03 26.27 -17.61
w/o RAG 6841 -0.84 4283 -1.05
with 1-time revise 65.86 -3.39 40.10 -3.78

Table 6: Ablation study results on the SPIDER and
BIRD datasets using Llama-3.2 3B as the baseline
model. Error feedback refers to utilizing training data
corrections from each dataset. 1-time revise denotes a
single correction pass without further iterative refine-
ment. The results demonstrate the impact of removing
specific components on execution accuracy (EX) and its
relative change (AEX).

5.3 Evaluating RAG in SQL Error Correction

Table 5 compares SQL error types across Simple,
ReSQL w/o RAG, and ReSQL using the Llama-
3.2 3B model. Lower values indicate better per-
formance. Overall, ReSQL achieves the lowest
incorrect proportion (56.12%), demonstrating the
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Figure 3: Execution error reduction across correction
iterations on SPIDER and BIRD datasets. Comparison
of LLaMA-3.1 (8B) and LLaMA-3.2 (3B) models with
and without ReSQL framework.

effectiveness of RAG in reducing SQL errors.

For Gold Error, ReSQL (42.11%) marginally
outperforms ReSQL w/o RAG (42.37%) but signif-
icantly improves over Simple (59.32%). In schema-
related errors (No such column, No such table),
ReSQL performs comparably to ReSQL w/o RAG
but significantly reduces errors from Simple, sug-
gesting that retrieval aids schema reasoning but
does not fully resolve it. For syntax and struc-
ture errors (Syntax error, More than one statement,
ORDER BY issues), ReSQL consistently achieves
lower error rates, showing that retrieval improves
query formulation. Notably, for rare errors (Misuse
of window function, Wrong number of arguments),
ReSQL performs best, indicating that RAG is par-
ticularly effective in handling low-frequency error
cases, likely because these errors are underrepre-
sented in training data. In summary, ReSQL out-
performs both baselines, with RAG proving most
beneficial for rare error types where training expo-
sure is limited.

5.4 Ablation study

Table 6 presents the ablation study results on the
SPIDER and BIRD datasets using llama-3.2 3B
as the baseline. The most significant performance
drop occurs when error reasoning is removed, par-
ticularly on BIRD, where execution accuracy (EX)
drops by 17.61%. This highlights the critical role of
reasoning in handling complex queries, especially
in less structured datasets like BIRD. Similarly, re-
moving error feedback leads to a substantial decline
(-13.54% on SPIDER, -8.22% on BIRD), demon-
strating that leveraging training data corrections
is essential for improving model predictions. The
removal of RAG has a smaller effect, suggesting
that the model can rely on internal representations
in most cases. The 1-time revise setting improves
results compared to ablated versions but remains
inferior to the full system, reinforcing the impor-
tance of iterative refinement. Overall, these results
underscore that both explicit reasoning and feed-
back from the original training dataset are crucial
for maximizing execution accuracy.

6 Conclusions

In this paper, we introduce ReSQL, a retrieval-
augmented error reasoning framework for Text-to-
SQL models. ReSQL enhances self-debugging ca-
pabilities by fine-tuning models on a self-generated
error reasoning dataset and incorporating retrieval-
augmented generation to improve execution accu-
racy. The framework systematically identifies, ana-
lyzes, and corrects execution errors, addressing a
key challenge in Text-to-SQL generation.

Experimental results on SPIDER and BIRD
benchmarks show that ReSQL significantly im-
proves execution accuracy and error correction
rates, outperforming existing self-correction and
prompting-based methods. Notably, ReSQL en-
ables 1-3B parameter models to achieve substan-
tial accuracy gains, reducing execution errors and
narrowing the performance gap with larger models.
Ablation studies confirm that explicit error reason-
ing is essential for self-correction, while RAG fur-
ther enhances robustness, particularly for rare error
types. We believe ReSQL will provide a scalable
and generalizable approach to improving Text-to-
SQL models, demonstrating its effectiveness across
different model sizes and query complexities.



7 Limitations

While ReSQL demonstrates significant improve-
ments in execution accuracy and error correction
for Text-to-SQL tasks, certain limitations remain.
The framework is particularly effective for smaller
models (1B-9B parameters), but its impact dimin-
ishes for larger models such as Llama-3.3 70B and
Qwen-2.5 32B, where baseline models have few
execution errors.

ReSQL primarily focuses on post-execution er-
ror correction, meaning it does not prevent er-
rors before query execution. A proactive rea-
soning mechanism could further reduce the need
for iterative debugging. Additionally, fine-tuning
large models requires significant computational re-
sources, with models like Llama-3.1 8B requiring
at least two A100 40GB GPUs, making widespread
adoption challenging.

While RAG helps resolve less frequent execu-
tion errors, its effectiveness is limited for rare SQL
errors that were underrepresented in training data.
Future work could explore data augmentation and
dynamic retrieval strategies to further improve error
resolution.
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A Appendix

Model Init | C1 | C2 | C3 | C4
LLaMA-3.1 (8B) 83 71 57 54 52
LLaMA-3.1 (8B) + ReSQL | 76 25 16 14 14
LLaMA-3.2 (3B) 219 | 135 | 124 | 122 | 120
LLaMA-3.2 (3B) + ReSQL | 198 | 76 45 38 34
Table 7: Execution errors across Llama-3.1 8B and
Llama-3.2 3B models on the SPIDER dataset. ’Init’
represents the initial errors, while "C1” to *’C4’ indicate
subsequent correction steps aimed at reducing these
errors.
Model Init | C1 | C2 | C3 | C4
LLaMA-3.1 (8B) 441 | 344 | 286 | 282 | 280
LLaMA-3.1 (8B) + ReSQL | 405 | 154 | 88 75 72
LLaMA-3.2 (3B) 672 | 562 | 531 | 520 | 512
LLaMA-3.2 (3B) + ReSQL | 628 | 238 | 152 | 137 | 132

Table 8: Execution errors across Llama-3.1 8B and
Llama-3.2 3B models on the BIRD dataset.
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SPIDER Error message

Number of errors

Syntax Errors

Syntax error 45

Unrecognized token 11

ORDER BY clause should come after UNION 1
Reference Errors

No such column 542

No such function 30

No such table 7

Ambiguous column name 11
Function Misuse Errors

Misuse of aggregate function 11

Aggregate functions are not allowed in the GROUP BY clause 2
Execution Errors

Timeout 11

Incorrect number of bindings supplied

Table 9: Summary of BIRD SQL Execution Errors and Their Frequencies for Llama-3.2 3B.

All Error Type Error message

Number of errors

Syntax Errors

Syntax error 2

Unrecognized token 1

Sub-select returns 2 columns 1
Reference Errors

No such column 199

No such function 2

No such table 10

Ambiguous column name 2
Encoding and Format Errors

Could not decode to UTF-8 1

Row value misused

Table 10: Summary of SPIDER SQL Execution Errors and Their Frequencies for Llama-3.2 3B.
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Exgcution Errors
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Figure 4: Donut chart representing the distribution of BIRD SQL Execution errors for Llama-3.2 3B, categorized
into reference, syntax, execution and function misuse error.

Encoding and Format Errors
1%

syntax errors
2%

\!

SPIDER

Llama 3B
Errors

Figure 5: Donut chart representing the distribution of SPIDER SQL Execution errors for Llama-3.2 3B, categorized
into reference, syntax, encoding and format error.
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[System prompt]

You are SQL query master. Only return generated question.

[User prompt]

Generate a SQL question using the given table info. Provided row values are the first three rows of the table. Only return
the question.

### Context

Name: {table_0_name}

Info: {table_0_cols}

Rows: {table_0_first_three_rows}

Name: {table_N_name}

Info: {table_N_cols}
Rows: {table_N_first_three_rows}

Primary keys: {db_primary_key}
Foreign keys: {db_foreign_key}

Hint: {evidence} // Only apply to BIRD dataset

### Output
Generated question:

Figure 6: Template for generating SQL queries from table information, showing system and user prompts, along
with the context structure.
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[System prompt]
You are an SQL query master, a knowledgeable assistant for writing SQLite queries.

[User prompt]
### Task: Your task is to analyze *why the generated SQL query failed’ and provide an explanation of the error.

You are given:

- A ’Question’ that needs to be answered using SQL.

- A ’Database information’ that describes the tables and columns.

- A ’Gold SQL Query’that correctly answers the question.

- A ’Genearted SQL query’ that was produced by the model but resulted in an execution error.

- The ’Error message’ that was returned when executing the generated query.

Your task is to analyze *why the generated SQL query failed’ and provide an explanation of the error.

Guidelines for Analysis:

1. **Identify the Error Type**

- Syntax Error: Issues like incorrect SQL syntax or missing keywords.

- Semantic Error: The query structure is valid but references nonexistent tables/columns.
- Logical Error: The query does not match the intended question meaning.

2. **Compare Against the Gold Query**
- Identify key differences between the ’generated query’ and ’gold query’.
- Explain which specific mistakes led to the execution error.

Response Format (JSON)

ey

json

non

"Reasoning": "<Your generated analysis here>",

"Error Type": "<Syntax Error / Semantic Error / Logical Error>"

%3

### Context
Question: {generated_question}
Hint: {evidence} // Only apply to BIRD dataset

Name: {table_0_name}
Info: {table_0_cols}
Rows: {table_0_first_three_rows}

Name: {table_N_name}

Info: {table_N_cols}
Rows: {table_N_first_three_rows}

Primary keys: {db_primary_key}
Foreign keys: {db_foreign_key}

Gold SQL Query: {gold_query}
Wrong SQL: {prediction_query}
Execution error: {execution_error_message}

### Output
Reasoning:
Error Type:

Figure 7: Template for Analyzing Execution Errors in Generated SQL Queries.
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Question

for K-12 students?

SQL Query l SQL Query l

[ What is the unabbreviated mailing street address of the school with the highest FRPM count ]

SELECT T2.MailStreet SELECT T2.MailStreet
FROM frpm AS T1 FROM frpm AS T1

INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode
ORDER BY T1.FRPM_COUNT_K_12 ORDER BY T1.FRPM_COUNT_K_12

DESC DESC

LIMIT 1 LIMIT 1

Error Msg l Execution Error Msg l Execution

I EXECUTION ERROR:no such column : T1.FRPM_COUNT_K_12 |

EXECUTION ERROR:no such column : T1.FRPM_COUNT_K_12 I

1 Reasoning l

Fixed SQL Query Self-Correction: Attempt 1

SELECT MailStreet The generated SQL query failed because it incorrectly references

FROM schools WHERE CDSCode = ( SELECT CDSCode FROM the column name ‘FRPM_COUNT_K_12" instead of the correct

from ORDER BY FRPM_COUNT_K_12 DESC LIMIT 1 ) column name "FRPM Count (K-12)". This is a syntax error as the
database does not recognize the column with the name
"FRPM_COUNT_K_12". In SQL, column names that contain spaces

Error Msg : New Error l 2nd Execution must be enclosed in backticks (") to be properly referenced.

EXECUTION ERROR:no such column : FRPM_COUNT_K_12 I
Fixed SQL Query Self-Correction: Attempt 1
SELECT T2.MailStreet FROM frpm AS T1 INNER JOIN schools AS
T2 ON T1.CDSCode = T2.CDSCode ORDER BY T1."FRPM Count
(K-12)" DESC LIMIT 1

Incorrect SQL Correct SQL
<Without Reasoning > <With Reasoning >

Figure 8: Comparison of SQL self-correction with and without reasoning. The model without reasoning fails to
correctly self-correct the initial SQL query, generating another incorrect query even after attempting self-correction.
In contrast, our model (with reasoning) identifies the root cause of the error, correctly fixes the query, and ensures
execution accuracy.
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Question

What is the highest eligible free rate for K-12 students in the schools in
Alameda County?

SQL Generation and Execution
First attempt - Error Msg

Free_Meal_Count K 12

Prompt: | Given question and error message

EXECUTION ERROR: no such col

A
VectorDB

Retrieve Top K similar examples '

Question: How many students who have never been absent from

school? Question: Which school county in the state of New York has a high

number of low poverty levels? Question: How many of those students are filed for bankruptcy?

EXECUTION ERROR: no such column: no_payment_due.bool

Reasoning: The generated SQL query includes a reference to the
“no_payment_due.bool' column, which is not relevant to the

question and does not exist in the ‘longest_absense_from_school’

table. The gold query correctly targets the ‘month" column in the.
“longest_absense_from_school table to count students who have
never been absent. The generated query incorrectly joins with the
i ie" table and filters by the ‘no_payment_due.bool"
ing to the 'no such column: no_payment_due.bool’

EXECUTION ERROR: no such column: T2.school_county

Reasoning: The generated SQL query failed due to a reference to a
non-existent column in the table. Specifically, the query incorrectly
joins the ‘essays' table (referred to as T2) and attempts to select
*T2.school_county', but there is no 'school_county’ column in the
‘essays' table. The correct table to join for the ‘school_county’
column is the 'projects' table. Additionally, the query should
directly use the ‘poverty_level’ from the ‘projects' table without the
need for an inner join with the ‘essays' table since the required data

EXECUTION ERROR: ambiguous column name: school

Reasoning: The generated SQL query failed due to an ambiguity in
the column name 'school'. In the final SELECT statement, the query
attempts to select the column 'school’ from both the
*school_enroliment' subquery and the ‘enrolled" table, leading to an
ambiguity since there is no alias provided for the 'school’ column in
the "enrolled table within the GROUP BY clause. This ambiguity
causes the database engine to raise an error.

is already available in the 'projects' table.

Self-Correction Prompt‘

Given context, i query, error
message, reasoning, and three similar few-shot examples.
{db_context

{few_shot_1}

{few_shot_2}...

Figure 9: Overview of the Retrieval-Augmented Generation (RAG) framework for SQL error correction. When an
execution error occurs, the system retrieves the top three most similar error cases from a database of past execution
errors using vector similarity. These retrieved examples serve as in-context learning references, helping the model
resolve underrepresented error types and improve robustness.
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