Think Twice Before Assure: Confidence Estimation for Large Language
Models through Reflection on Multiple Answers

Anonymous ACL submission

Abstract

Confidence estimation aiming to evaluate out-
put trustability is crucial for the application of
large language models (LLM), especially the
black-box ones. Existing confidence estimation
of LLM is typically not calibrated due to the
overconfidence of LLM on its generated incor-
rect answers. Existing approaches addressing
the overconfidence issue are hindered by a sig-
nificant limitation that they merely consider the
confidence of one answer generated by LLM.
To tackle this limitation, we propose a novel
paradigm that thoroughly evaluates the trusta-
bility of multiple candidate answers to mitigate
the overconfidence on incorrect answers. Build-
ing upon this paradigm, we introduce a two-
step framework, which firstly instructs LLM
to reflect and provide justifications for each
answer, and then aggregates the justifications
for comprehensive confidence estimation. This
framework can be integrated with existing con-
fidence estimation approaches for superior cal-
ibration. Experimental results on six datasets
of three tasks demonstrate the rationality and
effectiveness of the proposed framework.

1 Introduction

LLM suffers from the hallucination issue (Zhang
et al., 2023c; Li et al., 2023a; Golovneva et al.,
2022; Bang et al., 2023), which poses a signifi-
cant challenge to the trustability of its outputs. A
promising research direction for evaluating the out-
put trustability is confidence estimation (Guo et al.,
2017; Lin et al., 2022), which could be useful for
identifying and rejecting unreliable outputs (Ka-
math et al., 2020). Given a question, confidence
estimation aims to acquire LLM’s confidence level
on its generated answer, which reflects the LLM’s
certainty regarding the accuracy of the answer. The
core of confidence estimation is to achieve calibra-
tion (Lin et al., 2022), ensuring that the confidence
level aligns with the actual answer accuracy. In
this paper, we aim to calibrate confidence estima-
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Figure 1: An illustration of our Think Twice before
Assure framework for mitigating LLM overconfidence.
LLM is instructed to reflect on the trustability of each
answer before joint confidence estimation.

tion for black-box API LLMs due to their excellent
performance (Achiam et al., 2023; OpenAl, 2024).

The key to achieving calibrated confidence esti-
mation for black-box LLM lies in addressing the
overconfidence issue. The LLM may be inher-
ently biased towards trusting its generated answers
(Mielke et al., 2022; Ling et al., 2023), making
it hard to truly discern incorrect answers (Huang
et al., 2023b) and exhibiting a tendency to assign
overly high confidence scores to them (Si et al.,
2022; Xiong et al., 2023). Previous studies at-
tempting to tackle the overconfidence issue can
be broadly categorized into two paradigms. The
first paradigm mainly assumes that overconfidence
is partly caused by the context bias between the
prompt and the answer and thus performs prompt
ensemble by constructing various instruction tem-
plates and diverse rephrasing of the question (Jiang
et al., 2023; Zhao et al., 2023c). The second
paradigm focuses on LLM self-evaluation, design-
ing instructions such as asking LLM about the an-
swer truthfulness (Kadavath et al., 2022) or exam-
ining the Chain-of-Thought (CoT) reasoning (Miao
et al., 2023). However, both lines of research only



consider a single target answer generated by LLM,
and the LLM may still contain bias towards the
incorrect answers and be overconfident in them.
To tackle this limitation, we introduce a new
multi-answer evaluation paradigm involving the
consideration of multiple candidate answers to en-
hance confidence calibration (c¢f. Figure 2), where
the evaluation of potentially correct answers helps
to reduce the biased trust in the incorrect ones. This
paradigm scrutinizes various answers on the trusta-
bility of being the correct response to the question,
and aggregates these evaluations to derive a better
confidence score for the target answer. The biased
trust in the incorrect target answers can be allevi-
ated through the trustability comparison with other
more trustable answers. Our preliminary experi-
ments reveal the efficacy of considering multiple
answers to reduce overconfidence (cf. Section 2).
There are two key considerations in arriving at
the proposed paradigm: resisting the inherent bias
of LLM to precisely evaluate the trustability of each
question-answer pair, and aggregating these assess-
ments in the confidence estimation of the target
answer. In this light, we present a novel confidence
estimation framework to tackle the overconfidence
issue of LLMs, named Think Twice before Assure
(TTA) (cf. Figure 1). Our framework pushes LLM
to reflect and justify from different answers’ per-
spectives before confidence estimation on the target
answer. Firstly, the LLM is instructed to generate
justifications regarding the potential correctness
of each answer. Subsequently, a prompt-based
method is employed to integrate these justifications
into joint confidence estimation for the target an-
swer. Extensive experiments on six datasets across
three tasks show improved calibration of TTA over
methods from existing paradigms. Notably, TTA
can be combined with other methods to further im-
prove calibration. Our contributions are three-fold.

* We introduce a novel confidence estimation
paradigm for mitigating the overconfidence is-
sue in LLM, addressing the limitation of existing
paradigms by reflection on multiple answers.

* We present a novel TTA framework to implement
the multi-answer evaluation paradigm, which can
be easily combined with existing methods.

* We conduct extensive experiments on three NLP
tasks with six datasets, validating the rationality
and effectiveness of the proposed framework.

2 Problem Formulation

Confidence Estimation for LLM. We formulate
the task of confidence estimation for LLM as fol-
lows. Given the input comprising of question ¢
combined with prompt p, which consists of an in-
struction and optional in-context examples, LLM
can generate the answer a (Brown et al., 2020), de-
noted as the target answer. Thereafter, confidence
estimation aims to obtain the LLM’s confidence
level on a, in the form of a confidence score c € R.
Denoting the confidence estimation strategy as a
function C'E)(+), this process can be abstracted as

a= LLM(p(q)), (1)
c=CE(LLM(-),p(q),a). (2)

A common idea of CE(-) is to utilize the LLM
output probability of a to estimate the confidence
score (Kuhn et al., 2023; Hu et al., 2023), denoted
asc = Pr(LLM(-),p(q),a). For black-box API
LLM where the token probability is unavailable,
this can be achieved by self-consistency (Wang
et al., 2022; Si et al., 2022; Lin et al., 2023) and
verbalized methods (Lin et al., 2022; Tian et al.,
2023b). Self-consistency methods estimate the
probability of answer a by sampling D > 1 re-
sponses from LLM (e.g., using nucleus sampling
(Holtzman et al., 2020)). Formally, we have

D P
c= Zi:l 1-éa”b - a)7 (3)

where a; = LLM (p(q)).

Besides, the verbalized methods leverage a well-
designed prompt p? to instruct the LLM to output
the K most likely answers and their corresponding
probabilities in one response, i.e.,

[{alvcl}a'“{aKacK}] = LLM(pb(q)). 4)

where [-] denotes the concatenation of the & most
likely answers with their probabilities.

Overconfidence Issue and Existing Solution
Paradigms. However, LLMs are prone to be
overconfident. Both self-consistency and verbal-
ized methods have a severe overconfidence issue,
where they exhibit high confidence in some incor-
rect answers (Si et al., 2022; Xiong et al., 2023). In
fact, LLM has a bias to blindly trust its generated
answers, leading to difficulties in distinguishing
the answer correctness (Huang et al., 2023b; Ling
et al., 2023; Mielke et al., 2022; Ren et al., 2023b).
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Figure 2: Two existing paradigms to tackle the overcon-
fidence issue for LLM and our proposed multi-answer
evaluation paradigm.

As aresult, it causes a miscalibration between the
confidence score and the answer accuracy.

We conclude the existing research addressing
the overconfidence issue into two paradigms (cf.
Figure 2). The first paradigm includes prompt
ensemble methods. They posit that the overcon-
fidence of LLM in «a is influenced by the context
bias between g and a (Zhao et al., 2023c) or p and a
(Jiang et al., 2023). Therefore, they adopt different
prompts, P = {p1, ..., pasr }, or various rephrasings
of ¢, @ = {¢},....,q},}, to alleviate the biased
probability estimation of a. Assuming using M
different inputs, the first paradigm estimates the
confidence c by

M
1
i=1
where p; € P, ¢, € Q.

The second paradigm involves self-evaluation,
which utilizes instructions to guide LLM in self-
evaluating the correctness of a from different per-
spectives, and uses the self-evaluated correctness as
the confidence score, denoted as C'o(+). Formally,

c= CO(LLM('),pt(q),CL). (6)

where p! denotes the evaluation prompt. This in-
cludes assessing the correctness of the CoT reason-
ing of a (Miao et al., 2023), completing masked
questions using a (Weng et al., 2023), and check-
ing input-output consistency (Manakul et al., 2023).
To give an example, the P(True) method (Kadavath

et al., 2022) asks LLM whether a is the true answer
to ¢ via the prompt p", and uses the probability of
“True” in the sampled LLM responses as the con-
fidence score, ¢ = Pr(LLM(-),p"(q,a), True).
The two paradigms can also be combined for better
calibration (Xiong et al., 2023; Chen and Mueller,
2023; Ren et al., 2023a; Agrawal et al., 2023).

A New Multi-Answer Evaluation Paradigm. A
notable limitation of the existing two paradigms is
that they merely focus on confidence estimation for
a single LLM-generated answer a, in which LLM
may be overconfident. Despite efforts in context
bias elimination and self-evaluation, LLM’s biased
trust in the incorrect a may persist. However, we
think that this biased trust could be alleviated if
LLM had thoroughly compared the trustability of
more candidate answers of ¢. If other answers
had a strong tendency to be correct, the high confi-
dence in a could be diminished, reducing the over-
confidence risk. Therefore, we propose a novel
multi-answer evaluation paradigm that considers
N potential answers, denoted as {a{,ad, ..., a%}
in confidence estimation!. First, LLM evaluates
the trustability of each ¢,a; pair using a desig-
nated prompt p°. Then, all obtained evaluations
e, ..., en are aggregated to derive a more refined
confidence score for a, using the prompt p*.

¢=Pr(LLM(-),p"(¢[e1,....en]),a), (D
where € = LLM(pe(Q7azq>)7Z € {17 7N}

This paradigm can also be combined with existing
paradigms for better calibration (cf. Section 5.1).

Preliminary Experiments. We conduct a prelim-
inary experiment to validate that considering more
answers to adjust confidence scores is beneficial for
calibration. Our hypothesis is that the confidence
levels of other answers can be leveraged to identify
and mitigate overconfidence in the incorrect a. To
demonstrate this, we employ counterfactual ques-
tions with different labels. Counterfactual question
@ 1s minimally edited from ¢ to have a different la-
bel with q. We aim to utilize the difference in ¢ and
q’s labels to identify unreliable LLM answers and
adjust the confidence. Suppose the LLM-generated
answers for ¢ and ¢ are a and a, respectively. If
a equals a, a and a must have at least one wrong

'In the case of multiple-choice questions, candidate an-
swers are naturally provided. However, for questions without
predefined choices, we can prompt the LLM to generate high-
probability answers as candidates (Jiang et al., 2023).
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Figure 3: Comparison of confidence estimation methods
on CAD. w/ ¢f denotes our strategy with counterfactual
data. The AUROC is shown in the x-axis. The boxes
on the left and right represent the confidence scores of
incorrect and correct answers, respectively.

answer since ¢ and g have different labels. Thus
the confidence of a should be reduced according
to the confidence of @ because the increasing con-
fidence of a indicates the weakened confidence of
a. Conversely, if a differs from a, a and a are rel-
atively trustable, and the confidence of a can be
an average of itself and a’s confidence. Denoting
the confidences of a on p(q) and a on p(q) as ¢,
and cg, respectively, the confidence of a on p(q) is
re-calculated as

(ca + ca)
(ca + O(ca))

if a # a,

else.

CcC =

®)

D= D=

where O(cg) denotes the confidence that ¢’s label
is not a. In a k-classification task, we roughly
estimate O(cz) = 25 (1 — ca).

We experiment with the CAD dataset (Kaushik
et al.,, 2019), which contains human-annotated
original and counterfactual data pairs for senti-
ment analysis (SA) and natural language inference
(NLI) tasks. We compare the AUROC with self-
consistency and Top-K verbalized methods to eval-
uate the confidence calibration of LLM (see Sec-
tion 5 and Appendix B for more details). Fig-
ure 3 shows the performance and the statistics
of confidence scores for correct and incorrect an-
swers, from which we can observe that 1) the self-
consistency and Top-K verbalized methods have
notable overconfidence. The incorrect answers
have similar confidence scores as correct answers,
making it challenging to distinguish them. 2) Our
strategy, denoted as w/ cf, improves AUROC by
lowering confidence scores on incorrect answers,
showing that considering more answers has the
potential to alleviate the overconfidence issue in in-
correct answers. However, human-annotated coun-

terfactual data is not easily available, motivating us
to propose the following framework.

3 Think Twice Before Assure Framework

Implementing the proposed paradigm involves two
key considerations. First, given the potential bias
of LLM being overconfident in the generated an-
swer a, it is essential to develop strategies to resist
this bias and thoroughly evaluate the trustability of
each answer a?. Secondly, it is crucial to derive
strategies to effectively combine these evaluations
for calibrated confidence estimation of a. To ad-
dress these concerns, we introduce the following
two-step framework.

Step 1: Reflection and Justification. We first
instruct LLM to reflect on the trustability of each
answer a] and force LLM to seek justification for
a! as the correct answer of ¢, as defined by Eq. 7.
The LLM is instructed with the prompt p® in Ta-
ble 1 to gather comprehensive evidence e; from its
knowledge, in order to support the rationality of
using a] to answer g. The rationality of this step
is that p® instructs LLM to abduct the justification
from ¢ and a], which avoids the LLM bias that lies
in the generation direction from p(q) to a. Generat-
ing CoT explanations from p(q) before a has been
validated to be ineffective for calibration (Zhang
et al., 2020, 2023a).

The task is to [task description].

p® | Question: [g]. Answer choices: [af, ..., a%].
The answer is [a]].
Please generate an explanation to try to justify the
answer judgment.
The task is to [task description].
Provide your N best guesses and the probability that
P each is correct (0.0 to 1.0) for the following question...

Question: [¢]. Answer choices: [a], ..., a%].
Possible explanation 1: [e!]

N

Possible explanation n: [e

Table 1: Prompts used in our TTA framework. p°
prompts LLM to reflect and generate justification e;
for each a!, and p¥ prompts LLM to estimate confi-
dence according to different e;.

Step 2: Joint Confidence Estimation. After ob-
taining the justification e; for each a?, we proceed
to integrate these e; using the Top-K verbalized
method (cf. Eq. 4) to derive the answer probability
of a. We choose Top-K verbalized method due
to its capability to generate a set of K potential
answers along with their respective probabilities ef-



ficiently in a single response, where we set K as the
number of answers N. As indicated in the prompt
p* of Table 1, the generated justifications e; can be
seamlessly integrated for confidence estimation.
An alternative approach to determine the final
confidence score is to put one justification to each
pY, generating N distinct confidence scores for
answer a, and then compute the average score.

N
1
c=% ;PT(LLM('%PU(Q’ ei),a) )

In our experiments, we do not choose this setting,
as prompting LLM to estimate from different per-
spectives via a unified prompt is more efficient
and effective than a simple average of the con-
fidence scores (further validated in Section 5.2).
Moreover, we find that the confidence scores are
sensitive to the order of justification in p*, thus
we shuffle the order of e’ in p¥ and use the av-
erage confidence. Notably, the TTA framework
can be combined with existing approaches, such
as directly applying prompt ensemble, and Hybrid
method which adjust the confidence based on the
difference with other methods. (Xiong et al., 2023).

4 Related Work

Confidence Estimation of LLM. The idea of cal-
ibrated confidence estimation has been previously
studies in neural networks (Guo et al., 2017) and
applied in NLP models (Desai and Durrett, 2020;
Dan and Roth, 2021; Hu et al., 2023). After the ad-
vent of LLM, many confidence estimation methods
still utilize the output token probability, such as se-
mantic uncertainty (Kuhn et al., 2023), temperature
scaling (Shih et al., 2023), entropy-based method
(Huang et al., 2023c), semantic significance (Duan
et al., 2023), and fine-tuning based methods (Jiang
et al., 2021; Lin et al., 2022). Our research is or-
thogonal to them, since we focuses on confidence
estimation for black-box API LLM.

Others lines of research that are related but or-
thogonal to our approach include training indepen-
dent models for LLM output evaluation (Wang and
Li, 2023; Li et al., 2023b; Khalifa et al., 2023; Zhao
et al., 2023b), and using external tools for LLM
verification (Min et al., 2023; Ni et al., 2023). How-
ever, these works are usually applied to specific
domains, while we aim at LLM self-calibration for
general tasks. Also, there is research in fine-tuning
the LLM for better trustability (An et al., 2023;
Tian et al., 2023a), which is also orthogonal to us.

To tackle the overconfidence issue, the first cate-
gory of methods also includes answer choice shuf-
fling (Ren et al., 2023a), and reflection from mul-
tiple perspective (Zhang et al., 2024). Zhang et al.
(2023b) also employ model ensemble for better
calibration. The second category of method also in-
cludes program-like evaluation on CoT (Ling et al.,
2023), generating and executing verification codes
(Zhou et al., 2023), asking verification questions
(Manakul et al., 2023), while some of them are
limited to certain domains. Notably, the Top-K
verbalized (Tian et al., 2023b), the self-consistency
(Si et al., 2022), and their Hybrid (Xiong et al.,
2023) methods also involve the confidence of other
answers, yet the estimation of their confidences
is also affected by the LLLM bias and thus these
answers do not genuinely contribute to the overcon-
fidence mitigation of the target answer.

Application of LLM Confidence. Calibrated
confidence score can be applied in many ways to
avoid hallucination and erroneous outputs, such as
identifying potentially hallucinated generation for
knowledge retrieval and verification (Zhao et al.,
2023a), guided output decoding (Xie et al., 2023),
identifying ambiguous questions (Hou et al., 2023),
selective generation (Ren et al., 2023a; Zablotskaia
et al., 2023), and LLM self-improve (Huang et al.,
2023a). More applications can be found in this
survey (Pan et al., 2023).

5 Experiments

Setup. We conduct experiments on six datasets
across three tasks. IMDB (Maas et al., 2011) and
Flipkart (Vaghani and Thummar, 2023) for SA,
SNLI (Bowman et al., 2015) and HANS (McCoy
et al., 2019) for NLI, CommonsenseQA (Talmor
et al., 2019) and PIQA (Bisk et al., 2020) for com-
monsense question answering (CQA). For LLMs,
we utilize GPT-3.5 (gpt-3.5-turbo-1106), GPT-4
(gpt-4-0613) from OpenAI®, and GLM-4 (Du et al.,
2022) from ZhipuAI’. Dataset statistics and LLM
parameters are listed in Appendices A.1 and A.2.

Compared Methods. We utilize the following
categories of compared methods. Firstly, the base-
lines, including Self-cons (Wang et al., 2022) (cf.
Eq. 3), CoT-cons, an extension of Self-cons by in-
structing LLM to output the CoT reasoning before
the answer, Top-K Verb (Tian et al., 2023b) (cf.

Zhttps://openai.com/blog/openai-api.
3https: //open.bigmodel.cn/.
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Eq. 4), and Hybrid (Xiong et al., 2023), an integra-
tion of Top-K Verb and Self-cons/CoT-cons, where
we show the better results. Secondly, from the first
paradigm, we have Self-detect (Zhao et al., 2023c),
taking the answer entropy of multiple rephrased
questions, and CAPE (Jiang et al., 2023), a prompt
ensemble method that we implement on Top-K
Verb. Thirdly, from the second paradigm, we have
P(True) (Kadavath et al., 2022). We only compare
with P(True) because most methods from the sec-
ond paradigm are designed for specific domains or
answers with CoT reasoning which are incompati-
ble with our datasets. Finally, to show the flexibility
of TTA in combining with existing methods to fur-
ther improve calibration, we show the performance
of Hybrid TTA with Top-K Verb (TTA + Top-K
Verb), and TTA with prompt ensemble following
CAPE (TTA + PE). For a fair comparison, we gen-
erate the target answer for each dataset with LLM
temperature as 0, and compare all methods based
on this target answer (c¢f. Eq 1). More details are
provided in Appendices A.3 and A 4.

Evaluation Metrics. We use AUROC (Boyd
et al., 2013) and PRAUC (Manning and Schutze,
1999) as evaluation metrics for confidence calibra-
tion, both ranging from O to 1. They assess the
effectiveness of confidence scores in distinguishing
answer correctness using true positive/false posi-
tive and precision/recall curves, respectively.

5.1 Results

Table 2 shows the performance of the compared
methods on GPT-3.5. We can observe the follow-
ings. 1) TTA outperforms all compared methods
in terms of both AUROC and PRAUC on IMDB
and Flipkart for SA task, SNLI for NLI task, and
CommonsenseQA for CQA task, demonstrating
the effectiveness of TTA. 2) After combining TTA
with other methods i.e., Top-K Verb and PE, our
method surpasses all compared methods on all
datasets, showing the potential and flexibility of
TTA in combining with others to further improving
calibration. 3) Hybrid with Top-K Verb usually
improves TTA’s performance, which is in line with
the performance improvement from Self-cons/CoT-
cons to Hybrid. 4) CAPE is a very strong method,
showing that the confidence estimation is largely
influenced by the prompt. Combining TTA with
PE usually improves TTA performance except for
SNLI and Flipkart, which is in line with the perfor-
mance decrease from Top-K Verb to CAPE. This

IMDB Flipkart

AUROC PRAUC AUROC PRAUC
Self-cons 65.5 96.8 71.4 91.4
CoT-cons 75.6 97.7 72.8 91.9
Top-K Verb 82.8 98.5 79.3 93.7
P(True) 80.1 98.1 54.5 86.7
Hybrid 87.0 98.8 79.5 94.2
Self-detect 68.9 97.1 71.2 91.4
CAPE 87.7 98.9 76.4 93.9
TTA 87.9 98.9 81.3 94.5
TTA + Top-K Verb 88.0 98.9 81.6 94.9
TTA + PE 88.1 98.9 74.2 92.9

(a) SA.

SNLI HANS

AUROC PRAUC AUROC PRAUC
Self-cons 63.3 71.4 56.0 64.8
CoT-cons 66.7 73.8 59.4 67.9
Top-K Verb 63.6 74.0 53.3 64.9
P(True) 55.4 67.4 60.8 70.1
Hybrid 66.7 78.8 62.0 71.1
Self-detect 59.3 68.5 55.3 64.5
CAPE 69.0 79.6 71.9 80.1
TTA 77.9 84.6 69.9 71.5
TTA + Top-K Verb 77.1 84.7 713 79.6
TTA + PE 70.8 76.7 74.5 81.2

(b) NLI.

CommonsenseQA  PIQA

AUROC PRAUC AUROC PRAUC
Self-cons 70.7 81.7 78.6 94.0
CoT-cons 81.8 88.9 76.7 94.2
Top-K Verb 69.4 81.5 76.8 93.3
P(True) 62.5 78.0 71.9 93.9
Hybrid 71.5 89.0 82.4 95.5
Self-detect 67.9 81.5 68.5 91.0
CAPE 78.7 88.8 87.9 97.8
TTA 83.5 90.7 83.4 95.2
TTA + Top-K Verb 85.8 93.4 85.3 96.2
TTA + PE 84.4 92.1 90.3 97.9

(c) CQA.

Table 2: Results of the compared methods on GPT-3.5.
Bold font and underline indicate the best and second
best performance, respectively.

is potentially related to the prompt sensitivity of
these methods and the specific prompts adopted.
5) For other methods, CoT-cons outperforms Self-
cons in 5 out of 6 datasets, as many tasks performs
better with CoT reasoning. P(True) has ambivalent
results which limits its applicability.

5.2 In-depth Analysis

Ablation Studies. We conduct the following ab-
lation studies to further validate the rationality of
our framework design. 1) w/ CoT expl: substitut-
ing e, ..., eV in p¥ with N different CoT reasoning
generated from p(q) to reveal the rationality of re-



IMDB Flipkart
AUROC PRAUC AUROC PRAUC
TTA 87.9 98.9 81.3 94.5
w/ CoT expl 72.4 97.5 76.6 93.4
sep expl 86.5 98.8 79.5 94.2
w/o shuffle ~ 75.9 98.3 71.7 92.0
(a) SA.
SNLI HANS
AUROC PRAUC AUROC PRAUC
TTA 77.9 84.6 69.9 71.5
w/ CoT expl 67.1 75.2 53.7 64.1
sep expl 68.5 75.3 54.1 63.8
w/o shuffle  70.6 77.6 60.7 67.9
(b) NLIL
CommonsenseQA  PIQA
AUROC PRAUC AUROC PRAUC
TTA 83.9 90.9 83.4 95.2
w/ CoT expl 78.7 86.8 81.3 94.8
sep expl 83.3 92.0 84.0 95.8
w/o shuffle ~ 80.3 87.8 80.4 943
(c) CQA.

Table 3: Ablation studies.

flection on various answers. 2) sep expl: placing
a single e; in p¥ each time and calculating the av-
eraged confidence score to reveal the effectiveness
of joint considering all e; in one p”. 3) w/o shuffle:
ablating the order shuffling of e; in p°.

From Table 3, we can observe that: 1) w/ CoT
expl largely underperforms TTA on all three tasks,
demonstrating the rationality of pushing LLM to re-
flect and justify from each answer’s perspective. 2)
sep expl underperforms TTA on both SA and NLI
tasks, showing that jointly considering multiple jus-
tifications in one prompt is often more beneficial,
and thus we choose this setting. It slightly outper-
forms TTA on the CQA task, potentially due to the
higher independency and objectivity of the answer
choices. 3) w/o shuffle also underperforms TTA,
indicating that there exists order sensitivity for e;,
and shuffling their order improves calibration by
mitigating their position bias.

Effect on Bias Mitigation. Since our goal of
mitigating the overconfidence issue is to reduce
the extremely high confidence scores on incor-
rect answers, we show the statistics of the con-
fidence scores for each dataset regarding the an-
swer correctness in Figure 4 to reveal the mecha-
nism of TTA. We compare TTA with Self-cons and
Top-K Verb which are witnessed with overconfi-
dence. We can observe that TTA clearly reduces
the confidence overlaps between correct and incor-
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Figure 4: Visualization of bias mitigation effect of TTA
which largely reduces the confidence overlaps between
correct (right) and incorrect (left) answers.
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Figure 5: Accuracy improvement of selective prediction
on TTA confidence scores.

rect answers on all datasets, and significantly de-
creases the confidence scores on incorrect answers
in IMDB, Flipkart, SNLI and HANS. Thus, the an-
swer accuracy is more separable by the confidence
score, achieving better calibration.

Effect on Selective Prediction via Confidence
Score. To show the utility of the confidence score,
we conduct experiments in selective prediction.
The idea of selective prediction is to refrain from
adopting the answers from LLM with low confi-
dence to maintain better accuracy of the remaining
answers. In Figure 5, we show the accuracy of the
remaining answers by abstaining 0% - 50% of an-



Flipkart HANS

Self-cons 72.7 52.7 68.2
CoT-cons 74.4 57.5 80.4
Top-K Verb 80.4 51.8 69.2
TTA 82.2 69.5 82.7

Self-cons 78.3 57.0 68.1
CoT-cons 79.2 57.8 74.3
Top-K Verb 83.9 53.3 67.5
TTA 84.3 69.2 75.0

CommonsenseQA

Table 4: AUROC on two different target answers.

swers with the lowest confidences from TTA. We
can observe that by increasing the percentage of
abstained answers, the accuracy for these datasets
gradually improves around 10% - 30%, and IMDB
even achieves 100% accuracy. Naturally, the in-
crease for datasets with lower accuracy is generally
easier than datasets with higher accuracy. The re-
sult shows that TTA possess strong potential to be
applied in selective prediction scenarios.

Analysis on the Robustness of TTA. We evalu-
ate the robustness of TTA from three aspects: dif-
ferent target answers, different LLMs, and param-
eter sensitivity. In addition, we examine prompt
sensitivity in Appendix C.

Firstly, the generation of target answer a may
vary under LLM randomness, e.g., setting the tem-
perature greater than 0. We verify the robustness
of TTA by utilizing different target answers, i.e.,
the majority answer of Self-cons (a°¢) and CoT-
cons (a“®), respectively, as shown in Table 4. We
can observe the following. 1) For both sets of tar-
get answers, TTA largely outperforms baselines,
showing its effectiveness. 2) Different target an-
swers may have very different calibration perfor-
mance. Specifically, a““ on CommonsenseQA has
a sharp decrease in AUROC of TTA and CoT-cons
compared with the other target answers, which is
probably due to the majority voting with CoT ex-
planation diminished the the effect of reflection and
justification in calibration.

Secondly, we evaluate TTA on different LLMs,
i.e., GPT-4 and GLM-4. Table 5 shows the perfor-
mance of Flipkart on its top two compared methods.
We can observe that across different LLMs, TTA
outperforms baseline methods, and further hybrid
with Top-K Verb outperforms the Hybrid method,
validating its effectiveness. Moreover, Hybrid does
not stably outperform single method across LLMs.

Thirdly, we evaluate the parameter sensitiv-
ity of TTA by changing the number of justifica-
tions and number of guesses in p”. We conduct

GPT-4 GLM-4

AUROC PRAUC AUROC PRAUC
Top-K Verb 80.8 94.3 81.1 92.1
Hybrid 81.7 94.7 80.4 92.0
TTA 81.0 94.5 83.3 93.4
TTA + Top-K Verb 82.2 94.9 82.7 93.2

Table 5: Performance comparison of Flipkart on differ-
ent LLMs.
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Figure 6: Parameter sensitivity, i.e., changing the num-
ber of justifications and number of guesses in p”.

experiments on CommonsenseQA with five answer
choices, and SNLI with three answer choices. From
Figure 6, we can observe the followings. 1) A
larger number of justifications increases the model
performance on both SNLI and CommonsenseQA
datasets, indicating a sufficient number of justifica-
tions is vital for better calibration. 2) Increasing the
number of guesses results in a significant perfor-
mance improvement on the SNLI dataset, revealing
that enough number of guesses is demanded for the
NLI task. 3) Comparably, the change in the number
of guesses has a slight effect on the performance of
the CommonsenseQA dataset, which is potentially
because the CQA task is more objective than NLI.

6 Conclusion

In this paper, we tackled the overconfidence is-
sue of confidence estimation on black-box API
LLMs. We categorized existing methods into
two paradigms and pointed out their limitation of
merely estimating for a single target answer with
potential LLM overconfidence. We proposed a
novel paradigm to address this limitation by eval-
uating the trustability of multiple candidate an-
swers. Following our paradigm, we presented a
two-step framework TTA by asking LLM to reflect
and justify the trustability of each answer for joint
confidence estimation. Our framework achieved
improved calibration performance over compared
methods and was combined with existing methods
for further improvement. In future work, we will
explore the combination of TTA with more meth-
ods, and its utility in white-box LLMs.



Limitations

Our work has several limitations. Firstly, our re-
search scope is limited to the confidence estima-
tion for black-box API LLM. While our framework
is suitable for many state-of-the-art LLMs in this
form, it might not be optimal for white-box LLMs,
which offer access to token probabilities, thus lim-
iting its broader applicability. Secondly, the utility
of confidence estimation is not primarily studies in
this work. Although we demonstrate the utility of
confidence scores in selective prediction scenarios,
the challenge still lies in leveraging them to en-
hance task accuracy or enable LLM self-correction,
calling for further exploration. Lastly, our frame-
work lacks consideration in prompt optimization
for calibration, an area where future confidence
estimation methods are supposed to consider.

Ethics Statement

Our ethical concerns involve the following. First,
our experimental results are mainly obtained in
English datasets, where the applicability on other
languages are not comprehensively evaluated. Sec-
ondly, our research scope is black-box API LLMs,
where open-sourced LLMs are more advocated for
its reproducibility. Finally, the confidence estima-
tion of LLM may mislead people to blindly trust
LLM and easily accept untrustable answers, caus-
ing potential harms.
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A Details for compared methods.

A.1 LLM Parameters.

For all LLMs, we set the maximum token as 200.
For GPT-3.5 and GPT-4, if sampling a single re-
sponse (N = 1), we set the temperature as 0, and
other parameters as default. If sampling multiple
responses, we sample N = 30 responses with tem-
perature as 1, which is only for Self-cons, CoT-
cons, P(True). Specially, for Self-detect we sample
15 rephrasing for each question with temperature
as 1, and one answer for each rephrased question
with temperature as 0, following the original paper.
For GLM-4, if sampling a single response, we set
the do_sample as False. If sampling a variety of re-
sponses, we set temperature as 0.9 and top p as 0.9.
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N  examples
IMDB 2 positive negative
Flipkart 2 positive negative
SNLI 3 entailment, neutral, contradiction
HANS 2 entailment, non entailment
CommonsenseQA 5  (a) yard, (b) basement,

(c) kitchen, (d) living room, (e) garden

PIQA 2 (a) pour it onto a plate, (b) pour it into a jar

Table 6: The number (/N) and examples of candidate
answers for each dataset.

Note that these LLM parameters are not carefully
tuned.

A.2 Dataset Detail.

Due to the cost limitation, we randomly sample 300
training data for each dataset in our experiments.
For IMDB and SNLI datasets, we use the same
randomly sampled 300 data sets as the CAD SA
and NLI in the preliminary experiments. We will
release the dataset splits. Table 6 shows the num-
ber and examples of candidate answers for each
dataset.

A.3 Prompts

The basic instructions for different datasets are
shown as below, where [] refers to specific task
inputs.

» IMDB:
Given a piece of movie review, classify the
attitude to the movie as Positive or Negative.
[text]

Flipkart:
Given a piece of text, classify the sentiment as
Positive or Negative. [text]

SNLI:

Determine whether the hypothesis is an en-
tailment (can be logically inferred from the
premise), a contradiction (cannot be true
given the premise), or neutral (does not have
enough information to determine its truth
value). Premise: [premise] Hypothesis: [hy-
popthesis].

HANS:

Determine whether the second sentence in
each pair logically follows from the first sen-
tence. The output is either "entailment" if
the second sentence logically follows from
the first, or "not entailment" if it does not.


https://doi.org/10.18653/v1/2023.acl-long.320
https://doi.org/10.18653/v1/2023.acl-long.320
https://doi.org/10.18653/v1/2023.acl-long.320

Sentence 1: [sentencel]. Sentence 2: [sen-
tence?].

CommonsenseQA:

Read the given question and select the most
appropriate answer by indicating the asso-
ciated letter. Question: [question]. Answer
choices: (a) af (b) al (c) al (d) ai (e) a.

* PIQA.:
Read the given question and select the most
appropriate answer by indicating the asso-
ciated letter. Question: [question]. Answer
choices: (a) a‘f (b) ag.

original sentence. [question]
For inference: [instruction].

CAPE:

Provide your 2 best guesses and the proba-
bility that each is correct (0.0 to 1.0) for the
following task. Give ONLY the guesses and
probabilities, no other words or explanation.
For example:

Gl: <first most likely guess, as short as
possible; not a complete sentence, just the
guess!>

P1: <the probability between 0.0 and 1.0 that

G| is correct, without any extra commentary
whatsoever; just the probability!> ... GN:
<N-th most likely guess, as short as possible;
not a complete sentence, just the guess!>

The prompts for compared methods are shown
below, where [instruction] denotes the task instruc-
tion with the task input, and [instruction_only]
denotes the instruction without task input.

e Self-cons: [instruction].

* CoT-cons:
[instruction]. Please output strictly following
this format: Explanation: [reasons for the
sentiment label] Answer: [Positive or Nega-
tive]

* Top-K Verb p’:
The task is to [instruction_only]. Provide your
n best guesses and the probability that each is
correct (0.0 to 1.0) for the following question.
Give ONLY the guesses and probabilities, no
other words or explanation. For example:
G1: <first most likely guess, as short as possi-
ble; not a complete sentence, just the guess!>
P1: <the probability between 0.0 and 1.0 that
G| is correct, without any extra commentary
whatsoever; just the probability!> ... GN: <N-
th most likely guess, as short as possible; not
a complete sentence, just the guess!>
PN: <the probability between 0.0 and 1.0 that
GN is correct, without any extra commentary
whatsoever; just the probability!> [question]
[answer choices].

e P(True) p':
The task is to [instruction]. Label: [label]. Is
the label correct or incorrect?

* Self-detect:
For question rephrasing: Paraphrase the given
sentence. Please make sure the paraphrased
sentence has exactly the same meaning as the
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PN: <the probability between 0.0 and 1.0 that
GN is correct, without any extra commentary
whatsoever; just the probability!> Instruction:
[instruction_only] [question]

-af (orA. a)

- a?\, (or N. a?v )
Possible explanation 1: [ el]
Possible explanation N: [ eV
Correct Choice:

TTA pv:

The task is to [instruction_only]. Provide your
n best guesses and the probability that each is
correct (0.0 to 1.0) for the following question.
Give ONLY the guesses and probabilities, no
other words or explanation. For example:
G1: <first most likely guess, as short as possi-
ble; not a complete sentence, just the guess!>
P1: <the probability between 0.0 and 1.0 that
G| is correct, without any extra commentary
whatsoever, just the probability!> ... GN: <N-
th most likely guess, as short as possible; not
a complete sentence, just the guess!>

PN: <the probability between 0.0 and 1.0 that
GN is correct, without any extra commentary
whatsoever; just the probability!>

[question] [answer choices].

Possible explanation 1: [explanation 1].

Possible explanation N: [explanation N].



A.4 Additional Implementation Detail.

For TTA and Top-K Verb, the IV is set to the num-
ber of candidate answers for each dataset as in
Table 6.

For the shuffling of the justification order in p*,
we use one original and one reversed order for
TTA on all datasets. For datasets with more than
two justifications (SNLI and CommonsenseQA),
we set the original justification order for SNLI as
“entailment, neutral, contradiction" and follow the
given answer choice order for CommonsenseQA
in the dataset.

CAPE is prompt ensemble for Top-K Verb. We
follow the original paper to adopt two multi-choice
template with alphabetic or itemized labels in addi-
tion to the original Top-K Verb prompt (See Sec-
tion A.3). For each multi-choice template, we use
the original and the reversed label orders. In total,
the confidence score is an average of five prompts.

For TTA + PE, we put TTA into the multi-choice
template with alphabetic labels, and use two re-
versed label orders and 2 reversed justification or-
ders, in total four prompts.

The number of API calls for different methods
are shown in Table 7.

Self-cons  CoT-cons Top-K Verb P(True) Hybrid

#call 30 30 1 30 31

Self-detect CAPE TTA TTA + Top-K Verb TTA +PE

#call 30 5 N+2 N+3 N+4

Table 7: Comparison on the number of API calls of com-
pared methods, where n denotes the number of choices
for different datasets.

B Implementation Detail for Preliminary
Experiments.

For the preliminary experiments, we randomly sam-
ple 300 instances from the training set of CAD SA
and NLI, respectively. For those original ques-
tions with more than one counterfactual questions,
we randomly select one counterfactual question
for experiment. The prompts can be viewed in
Section A.3. CAD SA is annotated from IMDB,
and CAD NLI is annotated from SNLI. The w/
cf is based on Top-K Verb, which is better cal-
ibrated than Self-cons. For w/ c¢f, we obtain the
Top-K Verb outputs for counterfactual and origi-
nal questions, respectively. We use the guess with
the largest probability in the response as the an-
swer to the question (a for ¢ and a for @), and the
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probability as its confidence score. The LLM is
GPT-3.5 (gpt-3.5-1106). See Section A.1 for LLM
parameters.

PIQA HANS Flipkart
p¢ 842+£20 627+43 78.0+22
p’ 830£05 683+17 812403

Table 8: The average and standard deviation of AUROC
for TTA with different rephrasing of prompts.

C Prompt Sensitivity

We examine the prompt sensitivity of p© and p* by
rephrasing each of them three times with ChatGPT*
and compute the average and standard deviation
of AUROC, as shown in Table 8. We can observe
the followings. 1) The variation of prompts has
a mild effect on the calibration of TTA. Across
the three datasets, HANS is the most sensitive to
prompt rephrasing, potentially related to its lower
calibration performance. 2) The change of p® has
larger impact on calibration than p*. This is proba-
bly because the justifications generated by p® have
a larger space of variation than the outputs of p",
i.e., guesses and probabilities.

D Case study

We present two case study of PIQA. From Table 9,
we can observe that the confidence of the incorrect
answer (a) is lowered by TTA (0.7 — 0.45). The
justification (b) points out the reason why (b) is the
preferred answer, which increased the confidence
in (b) and in turn decreases (a)’s confidence. From
Table 10, we can observe that the LLM is not sure
whether the sponge should be dampened, thus hav-
ing an ambivalent confidence score of 0.5 is better
than being 0.7 confident on (b).

4https: //chat.openai.com/.


https://chat.openai.com/

Input: The task is to read the given question and
select the most appropriate answer by indicating the
associated letter. Provide your 2 best guesses and
the probability that each is correct (0.0 to 1.0) for
the following question. Give ONLY the guesses and
probabilities, no other words or explanation. For
example:

G1: <first most likely guess, as short as possible; not
a complete sentence, just the guess!>

P1: <the probability between 0.0 and 1.0 that G1 is
correct, without any extra commentary whatsoever;
just the probability!> ... G2: <2-th most likely guess,
as short as possible; not a complete sentence, just the
guess!>

P2: <the probability between 0.0 and 1.0 that G2 is
correct, without any extra commentary whatsoever;
just the probability!>

Question: How do you repair a torn shirt?

Answer Choices:

(a) To repair a torn shirt, prepare the needle with a
piece of thread tied to it. Pull together the fabric
where the shirt is torn and sew together.

(b) Prepare the needle with a piece of thread tied to
it. Flip the shirt inside-out, pull together the fabric
where the shirt is torn and sew together.

Prediction: (a). Ground truth: (b).

Top-K Verb Output: G1: A P1: 0.7 G2: B P2: 0.3.
Confidence: 0.7

Justification for (a): The most appropriate answer is
(a) because it provides a clear and direct explanation
of how to repair a torn shirt. It instructs to prepare
the needle with a piece of thread tied to it and then
pull together the fabric where the shirt is torn and sew
it together. This answer is straightforward and does
not include unnecessary steps, making it the most
appropriate choice.

p¥ output 1: G1: AP1: 0.6 G2: BP2: 0.4
Justification for (b): Option (b) is the most appro-
priate answer because it provides a more detailed
and accurate description of the process of repairing
a torn shirt. It includes the step of flipping the shirt
inside-out, which is an important step in order to hide
the stitches and make the repair less visible. This ad-
ditional detail makes option (b) the better choice for
repairing a torn shirt.

p?¥ output 2: G1: B P1: 0.7 G2: AP2: 0.3

TTA Confidence: (0.6 + 0.3)/2 = 0.45

Table 9: Case study for PIQA. p¥ output 1 refers to
p¥ with explanation (a) before explanation (b), and p*
output 2 refers to the reversed order.
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Input: The task is to read the given question and
select the most appropriate answer by indicating the
associated letter. Provide your 2 best guesses and
the probability that each is correct (0.0 to 1.0) for
the following question. Give ONLY the guesses and
probabilities, no other words or explanation. For
example:

G1: <first most likely guess, as short as possible; not
a complete sentence, just the guess!>

P1: <the probability between 0.0 and 1.0 that G1 is
correct, without any extra commentary whatsoever;
just the probability!> ... G2: <2-th most likely guess,
as short as possible; not a complete sentence, just the
guess!>

P2: <the probability between 0.0 and 1.0 that G2 is
correct, without any extra commentary whatsoever;
just the probability !>

Question: How do I keep my favorite couch fur free?
Answer Choices:

(a) Purchase a dry sponge at a pet supply store and
use it to lightly wipe dog hair in a sweeping motion
from upholstery.

(b) Purchase a dry sponge at a pet supply store and
dampen it and use it to lightly wipe dog hair in a
sweeping motion from upholstery.

Prediction: (b). Ground truth: (a).

Top-K Verb Output: G1: B P1: 0.7 G2: A P2: 0.3.
Confidence: 0.7

Justification for (a): The most appropriate answer is
(a) because using a dry sponge to wipe dog hair in a
sweeping motion from upholstery will help to remove
the fur without getting the couch wet. Dampening
the sponge, as suggested in option (b), may lead to
the couch getting wet and potentially causing damage
to the upholstery. Therefore, option (a) is the best
choice for keeping the favorite couch fur free.

p¥ output 1: G1: A P1: 0.7 G2: BP2: 0.3
Justification for (b): The most appropriate answer
is (b) because dampening the dry sponge will help
to better pick up and remove the dog hair from the
upholstery. Using a dry sponge alone may not be as
effective in removing the fur. Therefore, dampening
the sponge will provide better results in keeping the
favorite couch fur free.

p¥ output 2: G1: BP1: 0.7 G2: AP2: 0.3

TTA Confidence: (0.3 +0.7)/2=0.5

Table 10: Case study for PIQA. p¥ output 1 refers to
p" with justification (a) before justification (b), and p*
output 2 refers to the reversed order.



