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Abstract

Entity alignment (EA) aims to find equiva-001
lent entities between two Knowledge Graphs.002
Existing embedding-based EA methods usu-003
ally encode entities as embeddings, triples as004
embeddings’ constraint and learn to align the005
embeddings. However, the details of the un-006
derlying logical inference steps among the007
alignment process are usually omitted, result-008
ing in inadequate inference process. In this009
paper, we introduce NALA, an entity align-010
ment method that captures three types of logi-011
cal inference paths with Non-Axiomatic Logic012
(NAL). Type I&II align the entity pairs and013
type III aligns relations. NALA iteratively014
aligns entities and relations by integrating015
the conclusions of the inference paths. Our016
method is logically interpretable and exten-017
sible by introducing NAL, and thus suitable018
for various EA settings. Experimental re-019
sults show that NALA outperforms state-of-020
the-art methods in terms of Hits@1, achiev-021
ing 0.98+ on all three datasets of DBP15K022
with both supervised and unsupervised set-023
tings. We offer a pioneering in-depth analysis024
of the fundamental principles of entity align-025
ment, approaching the subject from a unified026
and logical perspective. Our code is available027
at https://anonymous.4open.science/r/NALA-028
976B.029

1 Introduction030

Knowledge graphs (KGs), which store massive031

facts about the real world, expresses massive in-032

formation in a form closer to human cognition.033

KGs can be used by various application domains,034

such as question answering, recommender systems035

and language representation learning (knowledge036

graph enhanced language model) (Ji et al., 2021;037

Logan IV et al., 2019). The information contained038

in each individual KG project, such as DBpedia039

(Auer et al., 2007) and YAGO (Suchanek et al.,040

2007) is limited. So the task of entity alignment041
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Figure 1: An overview illustration of NALA.

(EA) is proposed to increase KG completeness. 042

The EA task consists of integrating two or more 043

KGs into a same KG by aligning nodes that refer 044

to the same entity. 045

There are many embedding-based EA meth- 046

ods (Fanourakis et al., 2023) that leverage deep 047

learning techniques to represent entities with low- 048

dimensional embeddings, and align entities with a 049

similarity function on the embedding space. KGs’ 050

triples and seed alignments are usually seen as em- 051

beddings’ constraint during the training process of 052

such embedding model. The structural and side 053

information of KGs are usually utilized via em- 054

bedding propagation, aggregation or interaction. 055

Generally speaking, there are some crucial short- 056

comings of embedding-based EA methods: First, 057

they lack complex reasoning capability. Some of 058

them are enhanced by paths (Cai et al., 2022), how- 059

ever, due to the nature of vector representation, it 060

1

https://anonymous.4open.science/r/NALA-976B
https://anonymous.4open.science/r/NALA-976B
https://anonymous.4open.science/r/NALA-976B


is not easy to perform or approximate symbolic061

reasoning on such paths. Second, they lack in-062

terpretability in the models, so they have to rely063

solely on numerical evaluation metrics to evaluate064

their performance. Thus the cons and pros of their065

model design may not be properly evaluated. Third,066

the absence of a unified framework explaining the067

mechanism of embedding learning and processing068

renders their semantic or structural learning capa-069

bility quite mysterious.070

Apart from embedding-based methods, path-071

based methods directly estimates entity similarities072

from the contextual data (path) that are available073

in the two input KGs. A "path" usually refers to074

an interconnected sequence of edges that links two075

entities of different KGs. The edges can be ei-076

ther relations or entity similarities. We refer to077

the estimation of entity similarities by process-078

ing and aggregating the paths as "similarity infer-079

ence". There is a potential advantage that path-080

based methods can capture fine-grained matches of081

neighbors while the traditional embedding-based082

methods can’t. There are also emerging methods083

that combine the idea of embedding learning and084

path reasoning. More recently, path-based (such085

as PARIS+ (Leone et al., 2022)) and combined086

methods (such as BERT-INT (Tang et al., 2020)087

and FGWEA (Tang et al., 2023)) are starting to088

surpass the performance of traditional embedding-089

based methods. However, they failed to handle the090

similarity inference appropriately to some extent,091

possibly due to the lack of proper formalization of092

the inference paths and steps.093

To address the aforementioned issues of existing094

methods, we carefully examine the similarity infer-095

ence of EA from the logical perspective. Thus we096

propose a path-based EA method NALA, where097

NAL stands for Non-Axiomatic Logic (Wang,098

2013) and "A" for align. NAL is a term logic with099

a specific semantic theory and its design suits KG100

tasks (see Section 2.3).101

NALA first loads the KGs and then aligns enti-102

ties iteratively. In each iteration, it first performs103

similarity inference, then uses a matching module104

to obtain EA results. In the similarity inference105

module, it exhaustively searches the KGs for in-106

stances of three type of paths. The path instances107

are formalized in NAL sentences (as premises) and108

then path inference is conducted for each instance.109

We use BERT embedding to obtain similarity be-110

tween entity names and attribute values, which con-111

stitutes some premises of the paths. For each path112

instance, a conclusion sentence is reached and con- 113

clusions of different path instances are aggregated 114

using a specific inference rule. The similarity infer- 115

ence module ends up with a list of similarity sen- 116

tences for each entity of KG1. NALA also infers 117

the matching of relations in each iteration with path 118

inference. In the matching module, we propose the 119

rBMat algorithm to obtain 1-to-1 EA results. 120

Experiments on cross-lingual EA dataset 121

DBP15K demonstrate that NALA outperforms 122

SOTA EA methods in 5 different setting groups (in- 123

cluding both supervised and unsupervised scenar- 124

ios), showcasing the effectiveness of our proposed 125

logical similarity inference module and match- 126

ing module.Ablation study shows that our design 127

choices jointly boost the overall performance of 128

NALA. 129

Our contributions can be summarized as: 130

• We propose an interpretable EA framework 131

NALA, which tackle the EA problem with 132

similarity inference phase and matching phase. 133

Various types of logical paths are formalized 134

within the similarity inference phase. 135

• NALA aligns entities and relations simulta- 136

neously with a unified yet extensible logical 137

framework. 138

• Our framework bridges the gap between 139

embedding-based and path-based EA. 140

• Our proposed method achieves SOTA on a 141

widely used EA dataset DBP15K’s various 142

settings. 143

• We present the first in-depth analysis of EA’s 144

basic principles from a unified logical perspec- 145

tive, and help explain the mechanism of other 146

EA methods. 147

2 Preliminaries 148

2.1 Knowledge Graph and Entity Alignment 149

KGs. Knowledge graphs (KGs) are knowledge 150

bases that store knowledge in the form of triples 151

(or "facts"). We refer to (head, relation, tail) and 152

(head, attribute, literal) as relation and attribute 153

triples, respectively. Examples of both triple types 154

are (New_Zealand, capital, Wellington) and (New_- 155

Zealand, establishedDate, "1947-11-25"), respec- 156

tively. To summarize, a KG is characterized with a 157

number of relation triples from E × R × E and a 158

number of attribute triples from E ×A×L , where 159
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E ,R,A, and L indicate the set of entities, relations,160

attributes and literals, respectively.161

EA. The entity alignment (EA) problem is typ-162

ically defined between two KGs, KG1 and KG2,163

where the task consists of finding equivalences (so-164

called alignment) between the set of entities E1165

and E2 of the two KGs. Sometimes there exists a166

set of given equivalences that can be used as su-167

pervision. This set S is known as seed alignment168

set. We assume that there exists a ground truth set169

G = {(x1, x2) ∈ E1 × E2| x1 ≡ x2} that includes170

all known equivalences between pairs of entities.171

We use the ground truth set to evaluate the perfor-172

mance of our method.173

2.2 Represent KGs with NAL174

A brief introduction to NAL is presented in Ap-175

pendix B.176

In this paper, every entity, literal or relation is177

regarded as an atomic term in NAL. Triple (x1, r1,178

y1) is reinterpreted as inheritance statement (*, x1,179

y1) → r1. Its intuitive meaning is "The relation180

between x1 and y1 is a specialization of relational181

term r1". The triples (or "facts") of the KGs can182

be seen as absolutely true (for frequency) and with183

sufficient evidence (for confidence) to some ex-184

tent, so the truth-value attached to the statement185

is ⟨1, 1⟩. Entity equivalency x1 ≡ x2 can be seen186

as an extreme case of entity similarity x1 ↔ x2 ,187

so we align entities by similarity inference. As for188

relations, the inheritance statement r1 → r2 intu-189

itively represents a correspondence of two relations190

of different KGs such that one relational fact of r1191

in KG1 implies the existence of a corresponding192

relational fact of r2 in KG2.193

Inference path. We define an instance of in-194

ference path as a premise set of NAL sentences195

(triples, similarities, etc.) and a series of corre-196

sponding inference steps which will eventually lead197

to a conclusion sentence. The premise sentences198

are either in the KGs or inferred from the KGs. A199

type of inference path is a shared form of paths200

and it can be instantiated with concrete entities and201

relations. It is usually utilized for a certain purpose,202

such as aligning entities or aligning relations.203

2.3 Why NAL204

Actually there might be many different logical sys-205

tems that are qualified to represent the similarity206

inference process of EA. However, we believe that207

the non-axiomatic nature of NAL fits in the domain208

of knowledge graph better than those axiomatic209

logical systems, because real world KGs need to 210

deal with the problem of open-domain and alter- 211

able/incomplete/conflicting facts. Fundamentally, 212

the tasks of knowledge graph (such as EA), fits 213

well with the assumption of insufficient knowledge 214

and resources (Wang, 2013), which is the basic 215

assumption of NAL. 216

Technically speaking, NAL can represent enti- 217

ties, relations and relational triples, which are es- 218

sential for EA. It can also perform formal reasoning 219

and evidence aggregation, which is useful to align 220

entities. The frequency/confidence measurement 221

of truth-value is suitable to represent fuzziness and 222

unknownness in the similarity inference process. 223

The high expressiveness of NAL makes our ap- 224

proach extensible, which may benefit subsequent 225

studies. 226

2.4 Related Work of EA 227

Generally speaking, there are three families of EA 228

methods: embedding-based, path-based and com- 229

bined methods, as elaborated in this section. 230

In recent years, embedding-based methods have 231

become mainstream for addressing the EA task 232

(Tang et al., 2023; Fanourakis et al., 2023). Their 233

main idea is to embed the nodes (entities) and 234

edges (relations or attributes) of a KG into a low- 235

dimensional vector space that preserves their simi- 236

larities in the original KG. 237

In addition to embedding-based methods, there 238

exist path-based methods that directly estimates 239

entity similarities from the contextual data (path) 240

that are available in the two input KGs. There is 241

a potential advantage that path-based methods can 242

capture fine-grained matches of neighbors while 243

the traditional embedding-based methods can’t. 244

Embedding-based methods may suffer from the 245

negative influence from the dissimilar neighbors, 246

according to (Tang et al., 2020). The distinction 247

between embedding-based and path-based methods 248

is sometimes obscure. 249

There are also emerging methods that combine 250

the idea of embedding learning and path reasoning. 251

More recently, path-based and combined methods 252

are starting to surpass the performance of tradi- 253

tional embedding-based methods. Our proposed 254

method NALA inherits and develops the ideas of 255

two path-based methods PARIS and PARIS+. The 256

two methods as well as some other EA methods 257

that will be compared with our results are intro- 258

duced in Appendix A. 259
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3 The Proposed Method260

The overall structure of NALA (as illustrated in Fig-261

ure 1 and Algorithm 3) adopts an iterative aligning262

strategy, and for each iteration it first performs sim-263

ilarity inference, then it uses the matching module264

(rBMat algorithm with modification in Section 3.2)265

to obtain EA results. Note that the inference within266

each iteration benefits from the alignment results267

(both entities and relations) of the previous itera-268

tion. We register evidential information while per-269

forming path inference, that is memorizing which270

premises constitute the specific path instance and271

such information will be used to generate evidence272

log file.273

3.1 Similarity Inference Module274

We formalize the similarity inference module as275

using NAL’s revision inference rule to aggregate276

three types of inference paths. The first two types277

calculates similarity for entities and the third type278

for relations.279

3.1.1 Type I Path: Align Entities by Triples280

Inspired by the probabilistic alignment method of281

PARIS, we formalize the key point of the similarity282

inference process as type I path. Type I paths are283

bridge-like inference paths between to-be-aligned284

entity pairs. Valid type I paths are retrieved from285

the KGs in a depth-first manner. An example of it286

is shown in Figure 2 and the NAL formalization287

is in Appendix F. Entity y1 and entity y2 belong288

to different KGs (where subscripts represent differ-289

ent KGs) and (y1, y2) forms a to-be-aligned entity290

pair. Triple (x1, r1, y1) is a relational or attribute291

triple in KG1, where x1 is either an entity or a lit-292

eral respectively. Note that NALA automatically293

duplicates every original KG triple (a, b, c) with294

a reversed triple (c, b−1, a) upon KG loading, so295

the attribute triple (x1, r1, y1) with a literal x1 is296

a reversed attribute triple. Similarly, triple (x2, r2,297

y2) is a relational or attribute triple in KG2.298

Note that in the case of entity pair, the similarity299

statement in the premise comes from either seed300

alignments or alignments of the previous iteration.301

We omit the entity similarity statement which has a302

f or c lesser than theta, a hyper-parameter. And in303

the case of literal pair (attribute value), see Section304

3.1.2.305

The relation inheritance is inferred in Section306

3.1.3. PARIS evaluates the degree of functionality307

of relation r2 with precomputed functionalities of308

KG2

functionality

KG1
zh:Heal the World

zh:迈克尔·杰克逊

zh:writer

en:Heal the World

en:Michael Jackson

en:artist

?

aligned  

(y1)

(r1)

(x1) (x2)

(r2)

(y2)

Figure 2: An instance of type I path, fetching from
DBP15K zh-en and omitting irrelevant triples. Grey
dashed arrow represents inheritance between the rela-
tions and "functionality".

each relation. We interpret it as an inheritance 309

statement r2→ [fun] with the degree reflected in 310

the truth-value. The statement intuitively means 311

"r2 has the functional property (to some extent)". 312

The idea of type I path can be explained with 313

the example. We would like to figure out whether 314

"zh:迈克尔·杰克逊" and "en:Michael Jackson" 315

refers to the same entity. We find out that a related 316

pair of entity: "zh:Heal the World" and "en:Heal the 317

World" are known aligned entity pair (or, inferred 318

to be aligned). "zh:Heal the World"’s writer is 319

"zh:迈克尔·杰克逊" and "en:Heal the World"’s 320

artist is "en:Michael Jackson". We also know that 321

being the writer of something probably implies 322

being the artist of it (the relation inheritance). We 323

look through the KG and find out that a certain 324

work usually has only one artist. We conclude 325

that these premises together form a certain amount 326

of positive evidence that supports "zh:迈克尔·杰 327

克逊" and "en:Michael Jackson" being the same 328

entity. Type I path can be seen as the fundamental 329

entity alignment evidence (signal). 330

The conclusions with the same statement but ob- 331

tained from different type I paths are merged by 332

probabilistic revision rule because of the proba- 333

bilistic nature of functionality. For example, the 334

functionality of relation "zh:writer" is 0.78 which 335

means that the majority of works approximately 336

have one to two writers. While reasoning with 337

type I paths, we could not know how many writ- 338

ers does "zh:Heal the World" have, the conclusion 339

has a probabilistic nature because we don’t know 340

whether "zh:迈克尔·杰克逊" and "en:Michael 341

Jackson" is the same writer of "Heal the World". 342

The probabilistic revision rule is similar with the 343

continued multiplication of PARIS’s probability 344
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formula for Pr (x1 ≡ x2) (given in Appendix A),345

except for the introduction of confidence.346

3.1.2 Type II Path: Align Entities by Name347

Type II path is the direct path linking the to-be-348

aligned entities with their name/description simi-349

larity. It only have a conclusion statement:350

y1 ↔ y2 ⟨sim(name(y1), name(y2)), Cname⟩
where sim is the cosine similarity of entity351

name/description embedding and Cname is a hyper-352

parameter. NALA adopts BERT as the embed-353

ding model. The BERT unit is finetuned on the354

name/description of seed alignment entity pairs355

before embedding generation, similar with BERT-356

INT. The conclusion of a type II path is seen as a357

piece of evidence and fused with other evidences358

by revision rule. See more discussion of utilizing359

literal value in appendix C.1 and C.2.360

We implement an adaptive method to auto-361

matically set Cname to avoid excessive param-362

eter tuning. First, with a specific setting and363

dataset, we run NALA for 5 iterations (with a364

default Cname = 0.5 which represents a unit365

amount of evidence) and calculate the alignment366

output’s average confidence. We set Cname =367

halve_evidence(average_confidence), where368

halve_evidence is a function that outputs a con-369

fidence value that corresponds to half of evidence370

amount of the input confidence. The idea is to bal-371

ance the influence of structural information and372

name information, preventing the name informa-373

tion’s evidence from being too strong or too weak.374

Then, the we restart NALA from the first itera-375

tion and Cname remain unchanged. If translated376

name is available, the evidence amount is equally377

divided between translated and original name’s378

Cname. If the BERT unit is un-finetuned, we penal-379

ize Cname’s evidence amount by a factor Cpenalty.380

Attribute value embeddings’ cosine similarity is381

used to convert to the truth-value of premise (5)382

where x1 and x2 are distinct attribute values:383

x1 ↔ x2 ⟨f = sim(x1, x2), c = sim(x1, x2)⟩
The idea is that the deep learning model’s result384

which has higher similarity is usually more verifi-385

able. For identical attribute values, the truth-value386

is simply ⟨1, 1⟩. There are thousands of distinct387

attribute values in a KG, so for an attribute value388

we only consider the Kvalue most similar (but not389

identical) values in the other KG to prevent an390

explosive number of value similarities. Kvalue is391

a hyper-parameter and in implementation we set392

Kvalue to 1.393

KG2KG1

zh:情慾_(瑪丹娜專輯)

zh:麥當娜

zh:writer

en:Erotica_(Madonna_album)

en:Madonna_(entertainer)

en:artist

aligned  

?
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zh:蜘蛛人3
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en:Spider-Man_3

en:Stan_Lee

en:artist

aligned  

?
aligned  
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(x2)

(r2)

(y2)

(x1)

(r1)

(y1)

(x2)

(r2)
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Figure 3: An illustration of type III path. The upper half
represents positive version of the path and the lower half
represents negative version. The dark cross represents
the absence of the triple.

3.1.3 Type III Path: Aligning Relations 394

NALA align relations by path inference, which is a 395

different approach from PARIS’s probabilistic rela- 396

tion aligning method. We formalize the inference 397

process as type III path in Appendix F. 398

Two instances of type III path are illustrated in 399

Figure 3. We would like to figure out the inheri- 400

tance between relations "zh:writer" and "en:artist", 401

so multiple path instances are collected, including 402

both positive version and negative version of the 403

type of path. The conclusions of the two versions 404

are supposed to be merged by the revision rule. 405

The relation inheritance sentence of type I path use 406

computation result of type III path in the previous 407

iteration or a default value ⟨1, iota⟩ (in the first 408

two iterations), where iota is a hyper-parameter. 409

3.2 Matching Module 410

In the matching module, first we consider the 1-to-1 411

range assumption (see Appendix C.3). 412

Then the similarity sentences are rearranged. 413

Type I path’s similarities (type I path) are natu- 414

rally sparse, because it only considers the entity 415

pairs which is effectively linked by the logical path. 416

Entity name/description’s similarities (type II path) 417

are dense, however, it is noisy and most of the sim- 418

ilarities are useless. NALA’s similarity inference 419
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module exhaustively search for and aggregates the420

two types of similarity sentences for a specific to-421

be-aligned entity versus any entity in the other KG.422

Then, because of the sparsity of informative simi-423

larity signal, the similarity sentences is rearranged424

into ordered linked list, one list for a specific to-425

be-aligned entity. The sentences are ordered (de-426

scending) by its expectation value. We only store427

the top Ksim similarity sentences in the linked list,428

where Ksim is a hyper-parameter.429

Then we perform a recursive bidirectional match-430

ing algorithm (rBMat) which has similar idea with431

BMat (Tang et al., 2020) but different implementa-432

tion. See Algorithm 1 and Algorithm 2 for details.433

The main idea is to recursively delete the simi-434

larity sentences that don’t conform the 1-to-1 as-435

sumption. Considering sorting cost, our rBMat has436

O(kn2) time complexity and O(kn) space com-437

plexity, where k represents Ksim and k ≪ n.438

We found that there are still some mismatches af-439

ter performing rBMat algorithm and most of them440

share a same pattern. For example, e1 ↔ e2 and441

e3 ↔ e4 are two ground truth pairs, however, rB-442

Mat’s result is e1 ↔ e3 and e2 ↔ e4. We imple-443

ments a simple swapping technique to handle this.444

For every pair of similarity sentences, we swap445

their alignment if the swapped similarity sentences446

have a higher total expectation value than their447

original form.448

3.3 Unsupervised Learning449

The seed alignment set is not always available for450

different EA tasks or real-world EA applications.451

So an unsupervised scenario is sometimes adopted452

to evaluate the industrial applicability of EA meth-453

ods. We adapt our method to the unsupervised454

scenario, that is, without using seed alignments.455

The BERT embedding model need to finetune on456

seed alignments, so we adopt a bootstrapping strat-457

egy. First, a NALA instance performs alignment on458

the dataset with 0% seed and no literal embedding459

information. Then, filter the initial alignment re-460

sults’ expectation with a threshold θfilter and use461

the filtered result as the training set of BERT. Next,462

another 0% seed NALA instance performs align-463

ment with the help of BERT’s literal embedding464

information to obtain the final result.465

4 Interpretability of NALA466

Following (Rudin, 2019; Marcinkevičs and Vogt,467

2020), interpretable ML (machine learning) fo-468

cuses on designing models that are inherently inter- 469

pretable, while explainable ML tries to provide post 470

hoc explanations for existing black box models. 471

NALA is highly interpretable and self-explanatory. 472

It is arguably more interpretable than PARIS for 473

the following two reasons. First, with the introduc- 474

tion of evidence amount (confidence) and logical 475

inference rules, NALA processes data with more 476

information and generates a more informative ex- 477

planation. Second, NALA manages value similar- 478

ity, name similarity and structural similarity in a 479

unified logical framework, while PARIS doesn’t 480

leverage such side information. 481

NALA is self-explanatory in the sense that it 482

generates a log file of evidences for the alignments 483

so we can inspect the file after an iteration. This 484

feature enhances the troubleshooting capacity of 485

us to some extent during the development process 486

of NALA. For example, inspecting the faulty align- 487

ments in the evidence file inspired many decision 488

choices in this paper. The generated evidences are 489

displayed in our GitHub repository. 490

Using the neural BERT model does not weaken 491

the interpretability of type I path because utiliz- 492

ing literal value similarity does not affect the in- 493

terpretable inference steps. Moreover, as we only 494

keep the attribute value similarities with a score 495

above the threshold, these similarities are easily 496

understood and self-explanatory, except the wrong 497

ones. Our method tolerates faulty attribute value 498

similarity because type I path needs a conjunction 499

of all premises, while faulty similarities usually 500

can’t form a complete premise set. 501

We discuss NALA’s relation with other methods 502

and help explain the mechanism of those methods 503

in Appendix C.4. 504

5 Experiments and Results 505

5.1 Datasets and Settings 506

We evaluate our model on two EA datasets: the 507

widely used cross-lingual dataset DBP15K (see 508

(Sun et al., 2017) for details) and a monolingual 509

multi-source dataset OpenEA benchmark (D-W- 510

15K-V2, D-Y-15K-V2 and D-Y-100K-V2) (Sun 511

et al., 2020). DBP15K consists of three subsets 512

of cross-lingual KG pairs extracted from DBpedia. 513

Each sub-dataset of OpenEA benchmark consists 514

of two English KGs. The statistics of the datasets 515

are listed in Table 3. 516

The settings of our main results on DBP15K (Ta- 517

ble 1) consists of five sub-settings: Attr.,Name,- 518
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Group Model
Settings ZH_EN JA_EN FR_EN

Attr. Name Trans. Desc. Seed Hits@1 Hits@1 Hits@1

1

JAPE ! 30% 0.412 0.363 0.324
GCNAlign ! 30% 0.413 0.399 0.373

PARIS+ ! 30% 0.904 0.874 0.928
NALA ! 30% 0.985 0.972 0.990

2
PARIS ! 0% 0.777 0.785 0.793

FGWEA* ! 0% 0.929 0.922 0.967
NALA ! 0% 0.982 0.968 0.987

3

RDGCN ! ! 30% 0.708 0.767 0.886
CUEA ! ! 30% 0.921 0.946 0.956

UPL-EA ! ! 30% 0.949 0.970 0.995
SE-UEA ! ! 0% 0.935 0.951 0.957
LightEA ! ! 0% 0.952 0.981 0.995

FGWEA* ! ! 0% 0.959 0.982 0.994
NALA ! ! 0% 0.952 0.985 0.996

4
BERT-INT ! ! ! 30% 0.968 0.964 0.995

NALA ! ! ! 30% 0.998 0.996 0.999

5
TEA ! ! 30% 0.941 0.941 0.979

FGWEA* ! ! 0% 0.976 0.978 0.997
NALA ! ! 0% 0.993 0.988 0.998

Table 1: Evaluation Results of all compared EA methods on DBP15K in five different setting groups. Methods
marked with * use the additional information of relation names.

Trans.,Desc. and Seed, explained as follows.519

Attr. is for utilizing the attribute triples. Name is520

for utilizing the entity name information. Trans. is521

for utilizing translators for entity name. We use the522

Google translator, which is consistent with many523

other studies.. Desc. is for utilizing the informa-524

tion of entity description. Seed is for the percent-525

age of seed alignments, 30% for the conventional526

supervised scenario and 0% for the unsupervised527

scenario.528

We categorize baselines into five setting groups529

and run NALA using the settings for each group.530

The five groups cover a vast majority of different531

method’s settings. Group 1 is the supervised sce-532

nario with attribute triples. Group 2 is the unsu-533

pervised scenario with attribute triples. Group 3 is534

the supervised or unsupervised scenario with entity535

name information and translator. Group 4 is the536

supervised scenario with entity name and descrip-537

tion information, which is the same scenario as538

BERT-INT. Group 5 is the unsupervised scenario539

with attribute triples and entity name information.540

Most hyper-parameters of our model remain the541

same across different datasets and setting groups,542

except for group 3 which will be discussed later.543

The hyper-parameters are selected manually. We544

set iota = 0.5, theta = 0.1, Cpenalty = 4 and545

end_iteration = 19 (20 iterations in total). Ksim546

is set to 80. θfilter is set to 0.9. The BERT unit547

is finetuned for 15 epochs. The dimension of the 548

BERT CLS embedding is 768 and the dimension 549

of BERT unit’s embedding output is 300. 550

5.2 Main Results 551

We compare NALA with the following methods, 552

most of which are new and well-performing: JAPE 553

(Sun et al., 2017), GCNAlign (Wang et al., 2018), 554

PARIS+ (Leone et al., 2022), PARIS (Suchanek 555

et al., 2011), FGWEA (Tang et al., 2023), RDGCN 556

(Wu et al., 2019) ,CUEA (Zhao et al., 2022), UPL- 557

EA (Ding et al., 2023), SE-UEA (Jiang et al., 558

2023b), LightEA (Mao et al., 2022), BERT-INT 559

(Tang et al., 2020), TEA (Zhao et al., 2023). Their 560

results are fetched from their original papers. 561

The experimental settings and results of NALA 562

and all compared baselines on DBP15K are in 563

Table 1. As observed, NALA achieves the best 564

performance in term of Hits@1 in all five groups 565

except group 3. NALA outperforms BERT-INT 566

significantly with identical setting and the same 567

embedding method, verifying the effectiveness of 568

our similarity inference combined with the match- 569

ing algorithm. NALA outperforms FGWEA in 570

group 2 and 5, indicating that it successfully uti- 571

lizes the information of attribute triples. In group 572

1, two classic EA model JAPE and GCNAlign are 573

outperformed by the newer approaches (PARIS+ 574

and NALA) by a significant margin, indicating the 575
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effective innovation of the new EA approaches in576

the recent years. The performance of NALA in577

unsupervised group 2 approaches its performance578

in supervised group 1 with a minor gap, indicating579

that our proposed bootstrapping strategy effectively580

adapts to the unsupervised setting (with the help of581

attribute information).582

As for setting group 3, the attribute information583

is unavailable and we have to rely on the name and584

translation information to bootstrap the alignment585

process. We adjust the hyper-parameter Ksim to586

400 and other hyper-parameters are unchanged. We587

use two BERT units instead of one to separately588

embed the original entity names and the translated589

entity names. The BERT units are finetuned sep-590

arately. We adapt the bootstrapping strategy in591

Section 3.3 into three steps. In each step, we per-592

form alignment with a NALA instance and filter the593

alignment results as the training set of the BERT594

units of the subsequent step. The results of each595

step of the three datasets are shown in Figure 5.596

As expected, the alignment performance increases597

with the steps, because the BERT unit obtains better598

finetuning data every step and thus produces bet-599

ter embeddings for alignment. The results of each600

iteration of the second bootstrap step are shown601

in Figure 6. NALA outperforms other methods602

in setting group 3 on JA_EN and FR_EN, includ-603

ing three supervised ones. However, on ZH_EN604

unsupervised FGWEA yields better performance.605

This is possibly due to FGWEA’s utilization of ad-606

ditional information of relation names. The error607

accumulation effect of NALA’s strategy in group 3608

is left for further study.609

5.3 Ablation study610

To validate the effectiveness of each component611

in NALA, we compare it with several ablations.612

We demonstrate the results in Table 4, where w/o613

represents without and Evalue represents attribute614

value embedding information. all_revision repre-615

sents replacing probabilistic revision rule with re-616

vision rule and all_prob_revision is the opposite.617

1v1_range is the 1-to-1 matching range informa-618

tion that is utilized in Section 3.2 and swapping is619

a proposed technique in Section 3.2.620

NALA performs the best compared with its vari-621

ants. The revision rule can deal with negative evi-622

dences of similarity sentences, while probabilistic623

revision rule cannot. The ablation results together624

with the main results show that NALA seems to625

have good monotonicity in Hits@1 performance626

in the sense that when adding extra information or 627

procedure (component) into the model, the Hits@1 628

increases monotonically. Arguably, this is because 629

introducing two-dimensional truth-values in every 630

inference step separates confidence from truth de- 631

gree (frequency) in every statement, thus the in- 632

formation of relative reliability level is stored for 633

further usage. 634

NALA also achieves competitive performance 635

compared with LightEA and FGWEA on OpenEA 636

benchmark datasets, as shown in Table 2 and Ta- 637

ble 4. 638

Model D-W-15K-V2 D-Y-15K-V2 D-Y-100K-V2

NALA 0.908 0.981 0.980
LightEA 0.951 0.976 0.977

Table 2: Performance (Hits@1) of NALA on OpenEA
benchmark datasets.

6 Conclusion and Future Work 639

In this paper, we propose an entity alignment 640

method named NALA, tackling the EA problem 641

by modeling similarity inference and performing a 642

matching algorithm. Similarity inference obtains 643

similarity through paths that connect the entities. 644

NALA leverages three type of paths, exploiting 645

both structural and side information of KGs. Using 646

the similarities, NALA matches the entities by the 647

proposed rBMat algorithm. NALA is also success- 648

fully adapted to the unsupervised scenario and a 649

scenario without attribute triples. Compared with 650

up-to-date EA methods, NALA attains competitive 651

result on OpenEA benchmark datasets and various 652

settings of DBP15K, indicating that it successfully 653

handles the most effective part of similarity infer- 654

ence. 655

We also take a step in re-evaluating the de- 656

sign choices of different EA models, by providing 657

some interesting insights (explanations) of differ- 658

ent methods and competitive results compared with 659

them. Hopefully, our approach may broaden the 660

view and deepen the understanding of the EA re- 661

search community. How to combine embedding 662

models with path inference and facilitate its full po- 663

tential is a research question to be further studied. 664

NAL can express and process many different 665

reasoning patterns and logical structures, so NALA 666

can be extended to tackle other challenges in the 667

EA process in future research, such as integrating 668

ontological information. 669
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Limitations670

Roughly speaking, NALA has slightly more hyper-671

parameters than some other EA methods, which672

may be a drawback.673

NALA costs more time compared with the674

fastest EA methods (2418 seconds compared with675

34.5 seconds by LightEA-L on D-Y-100K-V2),676

possibly due to the inability to utilize GPU in its677

logical design, thus being more difficult to be par-678

allelized.679

The performance of NALA on a hard setting of680

the datasets, that is, without both attribute triples681

and entity name information is moderate. Our ap-682

proach is not yet optimized for utilizing pure struc-683

ture information of KGs.684
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A Related Work929

A.1 Embedding-based EA930

Embedding-based EA methods usually consist of931

three parts: the embedding module, the alignment932

module and the matching module. For the embed-933

ding module, translational methods and graph neu-934

ral network (GNN) methods are the most popular.935

Translational methods, such as MTransE (Chen936

et al., 2016), usually optimize a margin-based loss937

function to learn the structural information (relation938

triples) of a KG. On the other hand, GNN methods939

recursively aggregate the representations of neigh- 940

boring nodes with graph convolutional networks 941

(GCNs) or graph attention networks (GATs). The 942

representative ones are RDGCN (Wu et al., 2019) 943

and RREA (Mao et al., 2020b), respectively. The 944

alignment module maps the entity embeddings in 945

different KGs into a unified space. There are gen- 946

erally three techniques (Fanourakis et al., 2023) 947

for this module: 1. Sharing the embedding space 948

by using the margin-based loss to enforce the seed 949

alignment entities’ embeddings from different KGs 950

to be close. 2. Swapping the triples of seed align- 951

ment entities. 3. Mapping the entity vectors from 952

one embedding space to the other using a transfor- 953

mation matrix. The matching module generates 954

the final alignment result. Common practices use 955

the cosine similarity, the Manhattan distance, or 956

the Euclidean distance between entity embeddings 957

to measure their similarities and then perform a 958

specific matching algorithm based on the similarity 959

scores. 960

A.2 Path-based EA 961

PARIS (Suchanek et al., 2011) is a classic unsu- 962

pervised non-neural EA method with competitive 963

performance on benchmark datasets (Leone et al., 964

2022). It is purely path-based. Following previ- 965

ous works (Hogan et al.), PARIS introduces the 966

probabilistic usage of "functionality" into the field 967

of EA to enhance the validity of similarity infer- 968

ence paths. Functionality generally corresponds 969

to the uniqueness of related things, for example a 970

man can only have one father but multiple friends, 971

so fun(father) is close to 1 and fun(friend) 972

is relatively lower, where fun() represents func- 973

tionality of a relation or attribute. See (Suchanek 974

et al., 2011) for more details about functionality. 975

With functionality, PARIS constructs a probabilis- 976

tic model that estimates the probabilities of entity 977

equivalences: 978

Pr (x1 ≡ x2) = 1 −
∏

r1(x1,y1),r2(x2,y2)
(1 − 979

Pr (r1 ⊂ r2)× fun(r−1
2 )× Pr (y1 ≡ y2)) 980

As depicted in the above formula, PARIS estimates 981

the equivalence probabilities by integrating paths 982

that connects corresponding entities. It also find 983

subrelations between the two ontologies of KG. 984

Subrelations, such as r1 ⊂ r2, intuitively means a 985

correspondence of two relations of different KGs 986

such that one relational fact of r1 in KG1 implies 987

the existence of a corresponding relational fact of 988

r2 in KG2. Here is the formula for Pr (r1 ⊂ r2): 989
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Σr1(x1,y1)

(
1−

∏
r2(x2,y2)

(1−Pr(x1≡x2)×Pr(y1≡y2))
)

Σr1(x1,y1)

(
1−

∏
x2,y2

(1−Pr(x1≡x2)×Pr(y1≡y2))
)990

With the help of subrelations’ measurement, PARIS991

generalizes the equation of Pr (x1 ≡ x2) to the992

case where the two ontologies do not share com-993

mon relations. Therefore, PARIS recursively aligns994

the entities and the equivalence probability of995

x1 ≡ x2 depends recursively on other equiva-996

lence probabilities. In each iteration, the proba-997

bilities are re-calculated based on the equivalences998

and subrelations of the previous iteration. Initial999

equivalences are computed between attribute liter-1000

als based on a certain string distance measurement.1001

PARIS+ (Leone et al., 2022) is a variant of1002

PARIS that makes a simple refinement and works1003

in the absence of attribute triples. It processes the1004

seed alignment information to generate synthetic1005

attribute triples. That is, for every pair of seed align-1006

ments (x1, x2), it creates the attribute triples (x1,1007

EA:label, string(x1)) and (x2, EA:label, string(x1)),1008

where EA:label is a synthetic relation. Thus, the1009

reverse of the relation EA:label is designed to be1010

highly functional in order to let the model match1011

the seed alignments easily. NALA adopts the same1012

refinement as PARIS+.1013

A.3 Combined EA1014

BERT-INT (Tang et al., 2020), an embedding-1015

path EA method, uses the well-known transformer1016

model BERT to embed the entities and literals.1017

It calculates the cosine similarity of the entity1018

name/description embedding. Then it proposes1019

an interaction model that compares each pair1020

of neighbors or attributes (which forms a path1021

from the source entity to the target entity) to ob-1022

tain the neighbor/attribute similarity score. The1023

name/description similarity vector, neighbor simi-1024

larity vector and attribute similarity vector are con-1025

catenated and applied to a MLP layer to get the1026

final similarity score.1027

FGWEA (Tang et al., 2023) is a three-step pro-1028

gressive optimization algorithm for EA and it can1029

be classified as an embedding-path EA method.1030

First, the entity names and concatenated attribute1031

triples are used for semantic embedding match-1032

ing to obtain initial anchors. Then in order to ap-1033

proximate GWD (Gromov-Wasserstein Distance1034

(Peyré et al., 2016)), FGWEA computes cross-KG1035

structural and relational similarities, which are then1036

used for iterative multi-view optimal transport alig-1037

nment. Finally, the Bregman Proximal Gradient1038

algorithm (Xu et al., 2019) is employed to refine1039

the GWD’s coupling matrix. 1040

A.4 Other EA methods 1041

There are also a few works that focus on the inter- 1042

pretability or explanability of EA, such as LightEA 1043

(Mao et al., 2022) and ExEA (Tian et al., 2023). 1044

LightEA is an interpretable non-neural EA method. 1045

It is inspired by a classical graph algorithm, label 1046

propagation (Zhu and Zoubin, 2002). First, it 1047

generates a random orthogonal label for each seed 1048

alignment entity pair. Then, the labels of entities 1049

and relations are propagated according to the three 1050

views of adjacency tensor. Finally, LightEA uti- 1051

lizes sparse sinkhorn iteration to address the assign- 1052

ment problem of alignment results. 1053

The ExEA framework, proposed by (Tian et al., 1054

2023), aims to explain the results of embedding- 1055

based EA. It generates semantic matching sub- 1056

graphs as explanation by matching semantically 1057

consistent triples around the two aligned entities. 1058

ExEA devises an alignment dependency graph 1059

structure to gain deeper insights into the explana- 1060

tion. 1061

The recent literature of EA is abundant, focus- 1062

ing on many different aspects or procedures of en- 1063

tity alignment apart from the aforementioned ones, 1064

such as utilizing attribute triples (Liu et al., 2020; 1065

Sun et al., 2017), utilizing literals (Gesese et al., 1066

2021; Chen et al., 2018) , sample mining (Liu et al., 1067

2022; Mao et al., 2021a), reinforcement learning 1068

(Guo et al., 2022), matching algorithm (Lin et al., 1069

2023; Dao et al., 2023; Mao et al., 2021b; Xu et al., 1070

2020; Zeng et al., 2020), iterative strategy (Liu 1071

et al., 2023; Mao et al., 2020a) and unsupervised 1072

learning (Jiang et al., 2023a,b; Liu et al., 2022; 1073

Luo and Yu, 2022; Zhao et al., 2022). There are 1074

also some surveys for EA (Fanourakis et al., 2023; 1075

Zeng et al., 2021; Sun et al., 2020; Mao et al., 1076

2022). Besides graph structural, attribute and lit- 1077

eral information, there are other information forms 1078

researched by the EA community, such as temporal, 1079

spatial and graphical information, however, these 1080

topics are beyond the scope of this paper. 1081

B Introduction of NAL 1082

NAL (Non-Axiomatic Logic) (Wang, 2013) is a 1083

logic designed for the creation of general-purpose 1084

AI systems, by formulating the fundamental reg- 1085

ularities of human thinking in a general level. It 1086

can be used as the logical foundation of a (non- 1087

axiomatic) inference system and it has been ex- 1088
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plored to be utilized in various AI tasks (Beik-1089

mohammadi and Magnússon, 2023; Latapie et al.,1090

2022). Traditional inference systems are usually1091

based on model-theoretic semantics, while under1092

the assumption of insufficient knowledge and re-1093

sources, NAL is a term logic basing on experience-1094

grounded semantics (Wang, 2005). The meaning1095

of a term in NAL, to the inference system, is de-1096

termined by its role in the experience (which will1097

be explained later), that is, how it has been related1098

to other terms in the past. The truth-value of a1099

statement in NAL is determined by how it has been1100

supported or refuted by other statements in the past.1101

In this paper we only utilize a fraction of NAL’s1102

syntax and inference capability (for EA). We will1103

now introduce the relevant parts of its syntax. A1104

term in NAL can either be atomic or compound.1105

An atomic term is a word (string) or a variable term.1106

Independent variable, such as "$x", represents any1107

unspecified term under a given restriction, and in-1108

tuitively correspond to the universally quantified1109

variable in first-order predicate logic. Dependent1110

variable, such as "#y", represents a certain unspec-1111

ified term under a given restriction, and intuitively1112

correspond to the existentially quantified variable.1113

A compound term consists of term connector and1114

components (which are themselves terms).1115

A basic statement has the form of "subject cop-1116

ula predicate", where subject and predicate are1117

terms. There are multiple types of copula and each1118

type has a corresponding statement type, includ-1119

ing: 1.Inheritance ("A→ B", where A and B are1120

terms) which intuitively means "B is a general case1121

of A"; 2.Similarity ("A ↔ B") which intuitively1122

means "A is similar with B"; 3.Implication, which1123

is a higher-order copula ("P ⇒ Q", where P and1124

Q are statements), intuitively means "P implies1125

Q" (different from the "material implication", it1126

requires P to be related to Q in content because1127

NAL is a term logic that uses syllogistic inference1128

rules and only derives conclusions that are related1129

in content). A sentence is a statement together with1130

its truth-value. An intensional set with only one1131

component, for example, "[red]" intuitively means1132

"red things". Term connector "∗" (product) com-1133

bines multiple component terms into an ordered1134

compound term such as (∗, A,B), which intuitively1135

means "an anonymous relation between A and B".1136

Compound terms are usually written in the prefix1137

format, that is the term connector is written in the1138

first place. Statement connector "∧" can be seen as1139

the conjunction operator of propositional logic.1140

NAL is "non-axiomatic" in the sense that the 1141

truth-value of a conclusion in the inference sys- 1142

tem does not indicate how much the conclusion 1143

agrees with the "state of affair" in the world, or 1144

with a constant set of assumptions (the axioms), but 1145

how much it is supported by the evidence provided 1146

by the past experience of the system. Experience 1147

means the inference system’s history of interaction 1148

with the environment or equivalently the input sen- 1149

tences. The acquisition of experience may involve 1150

sensorimotor mechanism and sensation-perception 1151

process, which is beyond our scope. The infor- 1152

mation source of a sentence is characterized as 1153

its evidence. The inference rules of NAL coher- 1154

ently pass on the evidential information from the 1155

premises to the conclusion, so the premises can 1156

be seen as the evidence of the conclusion. The 1157

input sentences can be seen as a synthesis of vir- 1158

tual positive and negative evidences. Assume the 1159

available amount of positive evidence and negative 1160

evidence of a statement are written as w+ and w−, 1161

respectively, then the total amount of evidence is 1162

w = w+ + w−. The frequency of the statement is 1163

f = w+/w, and the confidence of the statement 1164

is c = w/(w + k), where k is a positive constant 1165

representing "evidential horizon". We take k = 1 in 1166

our implementation. Frequency intuitively means 1167

"the degree of truth" and confidence intuitively rep- 1168

resents "the total amount of evidences". The more 1169

evidences that the statement have considered, the 1170

higher confidence value. The truth-value attached 1171

to the statement is the ordered pair ⟨f, c⟩ and it is 1172

often written right after the statement. Expectation 1173

of the truth-value is a combined measurement of f 1174

and c, defined as expectation = f × c. 1175

NAL uses syllogistic (rather than truth- 1176

functional) inference rules, that is, the two premises 1177

have to share at least one common term. Among 1178

them the revision rule merges evidences for the 1179

same statement collected from different sources 1180

together, so it can settle inconsistency among the 1181

system’s sentences. It is very useful in our ap- 1182

proach. The relevant rules with corresponding truth 1183

functions are all listed in Table 5. Note that the in- 1184

ference rules are not domain-specific. There are 1185

three extended boolean operators (Wang, 2013) in 1186

the calculation of truth functions: 1187

13





and(x1, ..., xn) =
n∏

i=1

xi

or(x1, ..., xn) = 1−
n∏

i=1

(1− xi)

not(x) = 1− x

, where1188

xi ∈ [0, 1].1189

C Discussion1190

C.1 Problem of understanding literal value1191

Literal values in real-world KGs act as entity1192

names, entity descriptions, relation/attribute names1193

or attribute values, carrying enormous information.1194

Literal values include texts (strings), numerical val-1195

ues and dates. Deep neural network language mod-1196

els provide an interim solution to the problem of1197

understanding literal values. For example, BERT-1198

INT (Tang et al., 2020) utilize BERT to embed1199

names/descriptions and values into vector space,1200

thus use similarities between the feature vectors for1201

alignment. Literals’ deficiency of its outer seman-1202

tic structure (triples) contrasts with its abundant1203

internal semantics. However, symbolic reasoning1204

languages (systems) like NAL currently can’t effec-1205

tively handle the subtle semantics in texts for the1206

following reasons: semantic parsing/understanding1207

requires processing capacity and efficiency of com-1208

plex logical forms and it also requires automatic1209

learning capacity; the lacking of KGs with com-1210

plex logical forms; the lacking of KGs with de-1211

tailed and comprehensive common sense knowl-1212

edge. In a certain perspective, the literal values in1213

real-world KGs are not really "literal" but rather1214

under-characterized entities, concepts, triples, com-1215

mon sense knowledge and/or statements with com-1216

plex logical forms. The real-world KG project may1217

not have enough information or adequate paradigm1218

to deal with them. For example, the literal value of1219

attribute triple (John Lennon, deathPlace, "Manhat-1220

tan, New York City, United States"@en) referred1221

to entities "Manhattan", "New York" and "United1222

States", and its form indicates a specific relation1223

between these places.1224

C.2 Understanding of type II path1225

Type II path seems straightforward, however we1226

can have a deeper understanding of it. Language1227

models used for the embedding process of EA are1228

distinct information sources other than the KG it-1229

self. The deep language model which has the abil-1230

ity of aligning or translating entity names can be1231

seen as a generalized alignment model that aligns 1232

morphemes, words, entities and concepts. The 1233

pretraining corpus of it consists of sentences, al- 1234

though the sentences do not possesses explicit struc- 1235

tures, they can be understood/parsed by the model 1236

by transforming them into complex logical forms. 1237

However, such transformation (if exist) and the log- 1238

ical forms are implicitly expressed in the model 1239

parameters and intermediate layer vector represen- 1240

tations. To summarize, our similarity inference’s 1241

type II path can be seen as the aggregation of multi- 1242

ple virtual complex logical paths. The aggregation 1243

result is represented into the vector space by the 1244

language model. 1245

C.3 1-to-1 Assumption 1246

There are 1-to-1 assumptions in some EA datasets 1247

(such as DBP15K) and it is a useful informa- 1248

tion for alignment. Formally, we define the 1-to-1 1249

assumption as follows: first, there is a range of 1250

alignable entities A1 ⊂ E1 and A2 ⊂ E2 (for 1251

DBP15K, A1 ⫋ E1). Second, the equivalence 1252

between A1 and A2 is a bijection. Note that the 1253

assumption does not have aligning regularity for 1254

entities outside the range except that they can’t 1255

be aligned with entities inside the range. Many 1256

ranking-based EA methods leverages the 1-to-1 1257

range assumption, however, PARIS do not. There- 1258

fore, in implementation in order to leverage the 1259

range assumption we take the set A1 and A2 as 1260

input and filters out any alignment sentence that 1261

aligns A1 to E2 \A2 or E1 \A1 to A2. 1262

C.4 Relation with Other Methods 1263

In this section, we will discuss the relation be- 1264

tween our proposed method and methods with other 1265

forms. We will propose some preliminary explana- 1266

tions of certain translational embedding methods 1267

and embedding-path EA methods from a theoreti- 1268

cal perspective. 1269

The way NAL models KG information and the 1270

inference process has a similar part with "uncer- 1271

tainty estimation" (Hu et al., 2023) in the natural 1272

language processing domain. The truth-value of 1273

alignments shares some similarity with the distribu- 1274

tive view of facts or beliefs which views facts as 1275

probability distribution of random variables. Also, 1276

the concept of confidence is shared with some in- 1277

formation extraction systems such as Markov logic 1278

network (Jiang et al., 2012), which assigns confi- 1279

dence to extracted facts or logical formulas in some 1280

intermediate steps. 1281
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C.5 Relation with Translational Embedding1282

Methods1283

The well-known KG embedding model1284

TransE (Bordes et al., 2013) is initially pro-1285

posed for link prediction tasks. It may be partially1286

explained from a logical perspective of NAL (or1287

equivalently other logic with similar expressive1288

power). Consider a specific type of Horn clauses1289

((∗, A,B) → R1 ∧ (∗, B,C) → R2) ⇒1290

(∗, A,C) → R3 ⟨f1, c1⟩, the following three1291

triples1292

(Martin_Luther_King_Jr, birthP lace, Georgia_(U.S._state))1293

(Georgia_(U.S._state), country, United_States)1294

(Martin_Luther_King_Jr, citizenship, United_States)1295

together forms a piece of positive evidence of1296

an instantiated Horn clause, in which R1, R21297

and R3 is replaced by birthP lace, country and1298

citizenship respectively. We conjecture that the1299

gradient descent optimization process of TransE1300

implicitly performs approximate logical inference1301

and evidence aggregation. In the above example1302

for each of the three triples, ||h+r−t|| (where bold1303

format represent a vector) is minimized once per1304

epoch (ignoring margin-based criterion), leading to1305

birthPlace+country ≈ citizenship. Thus, the in-1306

stantiated Horn clause together with its truth-value1307

may be represented by the vector representations’1308

correlation, and the truth-value may be reflected1309

in distance ||birthPlace+country−citizenship||.1310

Note that these three relations may appear in more1311

than one Horn clauses, so the gradients from the1312

evidences of a Horn clause may confuse with (or1313

conflict with) those from another Horn clause, for1314

example manufacturer + country ≈ made-1315

InCountry. The training process may force vec-1316

tor birthPlace to be nearly perpendicular with1317

manufacturer, otherwise, there may be halluci-1318

nation in link prediction or EA results. A similar1319

explanation of hallucination may apply to LLMs.1320

A similar analysis applies to the vector representa-1321

tions of two relations which frequently appear on1322

the same head entity (or tail entity). It’s arguable1323

that the test set link prediction process of TransE1324

mainly relies on Horn clauses, because from a log-1325

ical perspective there is no other information. In1326

this paper Horn clauses will not be extracted and1327

managed, leaving for further research.1328

MTransE (Chen et al., 2016) is a translational1329

embedding-based EA method. It encodes the two1330

KGs’ relational triples separately with the TransE1331

loss criterion SK = Σ(h,r,t)||h + r − t||. It pro- 1332

posed a "distance-based axis calibration" alignment 1333

model in order to coincide the vectors of counter- 1334

part entities/relations. The corresponding loss is 1335

Sa2 = Σ||e1 − e2|| + ||r1 − r2|| (Sa2 only has 1336

the first item if there is no available seed relation 1337

alignment). The seed and derived alignments are 1338

assumed to have e1 ≈ e2 and we see it as the em- 1339

bedding representation of the similarity statement 1340

e1 ↔ e2, with its truth-value somehow represented 1341

by the distance ||e1 − e2||. Theoretically, the dis- 1342

tance can’t simultaneously represent frequency and 1343

confidence by itself, but more possibly a combined 1344

effect. We argue that MTransE performs approxi- 1345

mate inference that is similar with the type III path, 1346

because if the learned embedding constraints of the 1347

four premises are considered simultaneously, we 1348

can get r1 ≈ r2 which we interpret as r1 ↔ r2. 1349

Similarly, MTransE performs approximate infer- 1350

ence of the type I path (with functionality omitted 1351

and r1 → r2 replaced by r1 ↔ r2) to obtain de- 1352

rived alignment results. 1353

C.6 Relation with Embedding-path EA 1354

Methods 1355

Here we propose some preliminary explanations of 1356

the similarity inference aspect of some embedding- 1357

path EA methods from a theoretical perspective. 1358

The first method to be discussed is BERT- 1359

INT. It generates entity embedding using the 1360

name/description information with BERT unit and 1361

the embedding is C(e) = MLP (CLS(e)). It 1362

uses pairwise margin loss to approximately enforce 1363

C(e) ≈ C(e′). Different from MTransE which 1364

performs path inference implicitly with the gradi- 1365

ent optimization of loss criterions, BERT-INT ex- 1366

plicitly performs path inference with its proposed 1367

interaction model. Every element of the neighbor- 1368

view interaction matrix represents a inference pro- 1369

cess of a type I path. Its path omits functionality 1370

and relation alignment (for BERT-INT fails to uti- 1371

lize its proposed relation mask matrix). Because 1372

of the ignorance of relation type, its premise (1) 1373

and (4) has the form of (∗, x1, y1) → #r and 1374

(∗, x2, y2)→ #r which represents "There exists an 1375

unspecified relation between x1/y1, and (another) 1376

unspecified relation between x2/y2". Moreover, 1377

its premise (5) fails to utilize derived alignments, 1378

because BERT-INT is not iterative. With such 1379

premises, BERT-INT’s type I path inference’s ef- 1380

fectiveness is supposed to be lower than that of 1381

NALA’s. Similarly, every element of the attribute- 1382
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view interaction matrix represents a type I path1383

which has attribute triples as premises (1) and (4).1384

BERT-INT’s evidence aggregation method is differ-1385

ent from NALA which uses probabilistic revision1386

and revision rules.1387

The second method to be discussed is FGWEA.1388

Its multi-view Optimal Transport (OT) alignment1389

step combines four cost matrices for the OT prob-1390

lem, that is, Csum = Cstru+Crel+Cname+Cattr.1391

Obtaining the cost matrices corresponds to the1392

similarity inference process and different matrices1393

correspond to different groups of inference paths.1394

Among them, Crel corresponds to a degenerated1395

type I path inference where relation alignment is1396

obtained by relation names and without the con-1397

sideration of functionality. Cstru corresponds to1398

a further degenerated type I path inference (simi-1399

lar with BERT-INT’s neighbor-view interaction).1400

Cname corresponds to type II path inference. Cattr1401

fails to model the (fine-grained) attributive type1402

I path because it uses the concatenation of all at-1403

tribute triples of an entity.1404

In this paper, BERT-INT and FGWEA are classi-1405

fied as embedding-path EA methods because their1406

embedding module couples with the path inference1407

to some extent. In contrast, NALA, which we clas-1408

sify as path-based, performs inference wherever it1409

can and uses embeddings minimally.1410

D Experiments1411

Dataset |E| |R| |TR| |TA|

DBP15KZH_EN
19,388 1,701 70,414 379,684
19,572 1,323 95,142 567,755

DBP15KJA_EN
19,814 1,299 77,214 354,619
19,780 1,153 93,484 497,230

DBP15KFR_EN
19,661 903 105,998 528,665
19,993 1,208 115,722 576,543

D-W-15K-V2
15,000 167 73,983 66,813
15,000 121 83,365 175,686

D-Y-15K-V2
15,000 72 68,063 65,100
15,000 21 60,970 131,151

D-Y-100K-V2
100,000 230 576,547 547,026
100,000 31 865,265 855,161

Table 3: Dataset statistics. |E|, |R|, |TR| and |TA| rep-
resent the number of entities, relation types, relation
triples and attribute triples in each KG, respectively.

D.1 Evaluation Metric& Environment1412

We use Hits@1 (which is the same metric as recall1413

for EA) as the sole evaluation metric of our main1414

results of DBP15K for the following reasons. Mean1415

Figure 4: Influence of Cname.

Figure 5: Results of bootstrap steps of setting group 3.

Reciprocal Rank (MRR) is unavailable for NALA 1416

because it does not provide a alignment ranking 1417

for the test entities. There exist a non-negligible 1418

number of equivalent entity pairs that are not in 1419

the ground-truth of DBP15K, so the precision and 1420

F1-score can’t be measured properly. We use the 1421

precision (P), recall (R), and F1 score for OpenEA 1422

benchmark datasets. 1423

Our NALA model is implemented in java and the 1424

BERT unit is implemented in python with PyTorch. 1425

All experiments are performed on a Linux server 1426

with an Intel(R) Xeon(R) Silver 4210R CPU @ 1427

2.40GHz, 251G RAM and a NVIDIA GeForce 1428

RTX 3090 GPU. 1429

D.2 Influence of Confidence Hyper-parameter 1430

The experiment results of Figure 4 shows how en- 1431

tity name/description embedding similarity con- 1432

fidence Cname (without the adaptive setting of 1433

Cname) affects Hits@1. These experiments are 1434

performed on setting group 4 without using at- 1435

tribute value embedding information. We adjust 1436

Cname with other conditions unchanged. The 1437
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Figure 6: Results of the iterations of the second boot-
strap step in setting group 3.

Hits@1 curve is approximately concave and for1438

ZH_EN , JA_EN and FR_EN respectively, it1439

reaches maximum performance at 0.6, 0.55 and 0.8.1440

It shows that the informative embedding similar-1441

ity enhances the performance to different extents.1442

French is often regarded as more closely related to1443

English than Chinese or Japanese, so the BERT unit1444

learns representation easier and thus produces more1445

confident embedding similarity. Pretraining corpus1446

of the BERT unit may include relevant triples (in1447

the form of natural language sentences) which may1448

have same informational origin with DBpedia. So1449

the embedding similarity’s evidences may have an1450

overlap part with type I path’s evidences. The re-1451

vision rule is only appropriately used when the1452

two premises don’t share same evidence (or equiva-1453

lently their evidential bases do not overlap). So the1454

appropriate confidence value need to be lower than1455

the confidence of the BERT output (if it provides1456

such information) in order to exclude the overlap.1457

The best-performance confidence of each dataset1458

is conjectured to reflect the combined influence of1459

embedding quality of the BERT unit and the evi-1460

dence overlapping effect. The Cname confidence1461

value can be alternatively set equal to the cosine1462

similarity of the embeddings, resulting in a slightly1463

decreased performance. This is a good choice if1464

you want to avoid hyper-parameter tuning.1465

E Algorithms1466

Algorithm 1: recursive bidirectional
matching

input :An array of linked list of
similarity sentences
KG1_to_KG2, with each
linked list storing top-k
similarity sentences of an entity
with descending order.

output :Optimized 1-to-1 similarity
sentences (alignment results)

1 populates KG2_to_KG1 with all of the
sentences in KG1_to_KG2;

/* KG2_to_KG1 is another
array of linked list,
arranging the similarity
sentences in the other
direction */

2 for e1 in E1 do
3 recursively_delete(e1, null);
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F Inference Paths

The inference paths are formally represented in a form similar to natural deduction (Pelletier and Hazen,
2021). Each step of inference is characterized by two premises (on the top of the inference line) and a
conclusion (on the bottom of the inference line). The inference rule is indicated on the right edge of the
inference line.
(type I path) :

(∗, x1, y1)→ r1 (1), r1 → r2 (2)

(∗, x1, y1)→ r2 (3)
Deduction

(∗, x2, y2)→ r2 (4), x1 ↔ x2 (5)

(∗, x1, y2)→ r2 (6)
Analogy∗

((∗,#a, $b)→ #r ∧ (∗,#a, $c)→ #r ∧ #r → [fun]) ⇒ $b↔ $c (7), (∗, x1, y1)→ r2 (3)

((∗, x1, $c)→ r2 ∧ r2 → [fun]) ⇒ y1 ↔ $c (8)
Conditional deduction

((∗, x1, $c)→ r2 ∧ r2 → [fun]) ⇒ y1 ↔ $c (8), (∗, x1, y2)→ r2 (6)

r2 → [fun] ⇒ y1 ↔ y2 (9)
Conditional deduction

r2 → [fun] ⇒ y1 ↔ y2 (9), r2 → [fun] (10)

y1 ↔ y2 (11)
Conditional deduction

In the path listed above, we omit two auxiliary inference steps right before arriving at conclusion (6) which
performs structural transformation in order to dismount x2 from the product of (4) without modifying
its truth-value. The last conditional deduction of (11) degenerates into a case without conjunction in its
premises (similar with Modus Ponens) and its truth function remains the same. Note that in the path
listed above only one direction of the relational inheritance is considered (r1 → r2) and there exists a
symmetrical variation of the path that utilizes the other direction (r2 → r1). The conclusions of the two
paths are aggregated by probabilistic revision rule.
Statement (11) is the conclusion of the above inference steps and the whole steps act as a summarizing or
validation process of the type I path. Implication statement (8) is regarded as a definition or a piece of
essence of the concept "functionality". Relations’ functionality seems to reflect a widespread orderliness
of reality or human cognition and PARIS leverages such orderliness.
(type III path) :

(∗, x1, y1)→ r1 (12), x1 ↔ x2 (13)

(∗, x2, y1)→ r1 (14)
Analogy

(∗, x2, y1)→ r1 (14), y1 ↔ y2 (15)

(∗, x2, y2)→ r1 (16)
Analogy

(∗, x2, y2)→ r2 (17), (∗, x2, y2)→ r1 (16)

r1 → r2 (18)
Induction

The only difference between the two versions of type III path is the truth-value of premise (17)
((∗, x2, y2)→ r2). The positive version’s truth-value is ⟨1, 1⟩ and the negative version’s is ⟨0, Cabsent⟩,
where Cabsent is a hyper-parameter for absent/missing fact. We argue that when there is a fact present
in the KG, it is usually confident. However, when there is an absent fact in the KG, its denial is not as
confident because the KG may be incomplete. In implementation we set Cabsent = 0.5 (which represents
a unit amount of evidence).
Note that in type III path the induction inference rule is a weak inference rule, so the upper bound of
its conclusion’s confidence is lower than the strong inference rules (such as deduction and analogy).
The positive version only generates positive evidence for the conclusion and the negative version only
generates negative evidence, because of the characteristic of induction rule.
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Algorithm 2: recursively delete
input :Entity e1, entity eprev.
/* e1 is the entity to be

processed and we assume that
e1 belongs to the left graph,
similarly otherwise. Entity
eprev represents the previous
entity, that is the processed
entity of the recursion
parent. */

output :entity ereturn which represents
the final alignment for e1

1 for sentence in KG1_to_KG2(e1) do
2 e2← predicate_term of

sentence;
/* predicate_term means the

other entity of the
similarity sentence */

3 if e2 == eprev then
4 ereturn← eprev;
5 break;

6 else
7 e3←

recursively_delete(e2, e1);

8 if e3 == e1 then
9 ereturn← e2;

10 break;

11 for sentence in KG1_to_KG2(e1)
except the first node do
/* now that the first

sentence for e1 is
bidirectionally matched,
we delete other sentences
*/

12 removes sentence from the linked
list;

13 removes sentence’s counterpart in
KG2_to_KG1 which expresses
the same similarity in the other
direction;

14 return ereturn;

Algorithm 3: NALA(supervised)
input :Two knowledge graphs KG1

and KG2.
output :Alignment result and other

information.

1 run finetuning for BERT unit;
2 compute entity/value embeddings with

the BERT unit;
3 generate synthetic attribute triples for

seed alignments (for supervision);
4 load the knowledge graphs;
5 for iteration← 0 to end_iteration

do
6 for y1 in E1 do

/* aligning for different
entities of E1 is
divided into multiple
parallel threads */

7 for x1, x2, y2 that forms a
sound type I path with y1
(depth-first) do

8 perform inference of type I
path;

9 perform inference of type III
path;

10 for y2 in E2 do
11 retrieve embedding

similarity for y1 ↔ y2;
12 perform inference of type II

path;

13 filter the similarity sentences
with 1-to-1 range assumption;

14 insert the sentences into a top-k
ordered linked list;

15 perform recursive bidirectional
matching;

16 swapping;
17 save alignment results and evidence

log file;
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Model
ZH_EN JA_EN D-W-15K-V2 D-Y-15K-V2 D-Y-100K-V2
Hits@1 Hits@1 P R F1 P R F1 P R F1

NALA 0.993 0.988 0.917 0.908 0.912 0.983 0.981 0.982 0.985 0.980 0.983
- w/o Evalue 0.980 0.980 - - - - - - - - -

- all_revision 0.964 0.912 0.857 0.814 0.835 0.899 0.871 0.885 0.402 0.312 0.351
- all_prob_revision 0.985 0.987 - - - - - - - - -

- w/o 1v1_range 0.989 0.978 - - - - - - - - -
- w/o swapping 0.991 0.982 0.912 0.901 0.907 0.975 0.972 0.973 0.981 0.976 0.978

FGWEA 0.976 0.978 0.952 0.903 0.927 - - - - - -
LightEA 0.812 0.821 - 0.951 - - 0.976 - - 0.977 -

Table 4: Ablation study of NALA.

Inference rule Premises Conclusion

Deduction
A→ B ⟨f1, c1⟩ A→ C ⟨f = and(f1, f2), c = and(f1, f2, c1, c2)⟩B → C ⟨f2, c2⟩

Analogy
A→ B ⟨f1, c1⟩ C → B ⟨f = and(f1, f2), c = and(f2, c1, c2)⟩A↔ C ⟨f2, c2⟩

Conditional (P ∧Q)⇒ R ⟨f1, c1⟩ P ⇒ R ⟨f = and(f1, f2), c = and(f1, f2, c1, c2)⟩Deduction Q ⟨f2, c2⟩

Induction
A→ B ⟨f1, c1⟩ C → B ⟨w+ = and(f2, c2, f1, c1), w

− = and(f2, c2, not(f1), c1)⟩A→ C ⟨f2, c2⟩

Revision
P ⟨f1, c1⟩ P

〈
w+ = w+

1 + w+
2 , w = w1 + w2

〉
P ⟨f2, c2⟩

Probabilistic P ⟨f1, c1⟩ P ⟨f = or(f1, f2), w = w1 + w2⟩Revision P ⟨f2, c2⟩

Table 5: The table of relevant truth functions.
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