
Ring Attention with Blockwise
Transformers for Near-Infinite Context

Anonymous Author(s)
Affiliation
Address
email

Abstract

Transformers have emerged as the architecture of choice for many state-of-the-art AI models,1

showcasing exceptional performance across a wide range of AI applications. However, the2

memory demands imposed by Transformers limit their ability to handle long sequences, thereby3

creating challenges for tasks involving extended sequences or long-term dependencies. We4

present a distinct approach, Ring Attention, which leverages blockwise computation of self-5

attention to distribute long sequences across multiple devices while concurrently overlapping the6

communication of key-value blocks with the computation of blockwise attention. By processing7

longer input sequences while maintaining memory efficiency, Ring Attention enables training8

and inference of sequences that are device count times longer than those of prior memory-9

efficient Transformers, effectively eliminating the memory constraints imposed by individual10

devices. Extensive experiments on language modeling tasks demonstrate the effectiveness of11

Ring Attention in allowing large sequence input size and improving performance.12

1 Introduction13

Transformers [35] have become the backbone of many state-of-the-art AI systems that have demon-14

strated impressive performance across a wide range of AI problems. Transformers achieve this success15

through their architecture design that uses self-attention and position-wise feedforward mechanisms.16

Figure 1: Maximum context length on TPUv4-
512 (32GB memory on each TPUv4). Baselines
are vanilla transformers [35], transformers with
memory efficient attention [27], and memory ef-
ficient attention and feedforward (blockwise par-
allel transformers) [22]. Our proposed approach
Ring Attention allows training 512 times longer
sequence than prior SOTAs and enables the train-
ing of sequences that exceed 100 million in length
without making approximations to attention.

These components facilitate the efficient cap-17

ture of long-range dependencies between input18

tokens, and enable scalability through highly19

parallel computations.20

However, scaling up the context length of Trans-21

formers is a challenge [26], since the inherited22

architecture design of Transformers, i.e. the self-23

attention has memory cost quadratic in the input24

sequence length, which makes it challenging to25

scale to longer input sequences. Large context26

Transformers are essential for tackling a diverse27

array of AI challenges, ranging from processing28

books and high-resolution images to analyzing29

long videos and complex codebases. They ex-30

cel at extracting information from the intercon-31

nected web and hyperlinked content, and are32

crucial for handling complex scientific experi-33

ment data. There have been emerging use cases34

of language models with significantly expanded35

context than before: GPT-3.5 [29] with context36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Workshop. Do not
distribute.



length 16K, GPT-4 [26] with context length 32k, MosaicML’s MPT [24] with context length 65k,37

and Anthropic’s Claude [1] with context length 100k.38

Driven by the significance, there has been surging research interests in reducing memory cost. One39

line of research leverages the observation that the softmax matrix in self-attention can be computed40

without materializing the full matrix [23] which has led to the development of blockwise computation41

of self-attention and feedforward [27, 9, 22] without making approximations. Despite the reduced42

memory, a significant challenge still arises from storing the output of each layer. This necessity arises43

from self-attention’s inherent nature, involving interactions among all elements (n to n interactions).44

The subsequent layer’s self-attention relies on accessing all of the prior layer’s outputs. Failing to45

do so would increase computational costs cubically, as every output must be recomputed for each46

sequence element, rendering it impractical for longer sequences. To put the memory demand in47

perspective, even when dealing with a batch size of 1, processing 100 million tokens requires over48

10,000GB of memory for a modest model with a hidden size of 1024. This is much greater than the49

capacity contemporary GPUs, which typically have less than 100GB of high-bandwidth memory50

(HBM).51

To tackle this challenge, we make a key observation: by performing self-attention and feedforward52

network computations in a blockwise fashion [22], we can distribute sequence dimensions across53

multiple devices, allowing concurrent computation and communication. This insight stems from54

the fact that when we compute the attention on a block-by-block basis, the results are invariant to55

the ordering of these blockwise computations. Our method distributes the outer loop of computing56

blockwise attention among hosts, with each device managing its respective input block. For the inner57

loop, every device computes blockwise attention and feedforward operations specific to its designated58

input block. Host devices form a conceptual ring, where during the inner loop, each device sends59

a copy of its key-value blocks being used for blockwise computation to the next device in the ring,60

while simultaneously receiving key-value blocks from the previous one. Because block computations61

take longer than block transfers, overlapping these processes results in no added overhead compared62

to standard transformers. By doing so, each device requires memory only proportional to the block63

size, which is independent of the original input sequence length. This effectively eliminates the64

memory constraints imposed by individual devices. Since our approach overlaps the communication65

of key-value blocks between hosts in a ring with blockwise computation, we name it Ring Attention.66

We evaluate the effectiveness of our approach on language modeling benchmarks. Our experiments67

show that Ring Attention can reduce the memory requirements of Transformers, enabling us to68

train more than 500 times longer sequence than prior memory efficient state-of-the-arts and enables69

the training of sequences that exceed 100 million in length without making approximations to70

attention. Importantly, Ring Attention eliminates the memory constraints imposed by individual71

devices, empowering the training and inference of sequences with lengths that scale in proportion to72

the number of devices, essentially achieving near-infinite context size.73

Our contributions are twofold: (a) proposing a memory efficient transformers architecture that allows74

the context length to scale linearly with the number of devices while maintaining performance, elimi-75

nating the memory bottleneck imposed by individual devices, and (b) demonstrating the effectiveness76

of our approach through extensive experiments.77

2 Large Context Memory Constraint78

Given input sequences Q,K, V ∈ Rs×d where s is the sequence length and d is the head dimension.79

We compute the matrix of outputs as:80

Attention(Q,K, V ) = softmax(
QKT

√
d

)V,

where softmax is applied row-wise. Each self-attention sub-layer is accompanied with a feedforward81

network, which is applied to each position separately and identically. This consists of two linear82

transformations with a ReLU activation in between.83

FFN(x) = max(0, xW1 + b1)W2 + b2.

Blockwise Parallel Transformers. Prior state-of-the-arts have led to substantial reductions in mem-84

ory utilization, achieved through innovative techniques that enable attention computation without full85

2



materialization by computing attention in a block by block manner [27, 9, 22]. These advancements86

lowered the memory overhead of attention to 2bsh Bytes per layer, where b represents the batch87

size, s denotes the sequence length, and h stands for the hidden size of the model. To further reduce88

memory usage, blockwise parallel transformer (BPT) [22] introduced a strategy where the feedfor-89

ward network associated with each self-attention sub-layer is computed in a block-wise fashion. This90

approach effectively limits the maximum activation size of feedforward network from 8bsh to 2bsh.91

For a more detailed analysis of memory efficiency, please refer to the discussion provided therein. In92

summary, the state-of-the-art transformer layer’s memory cost of activation is 2bsh.93

Large Output of Each Layer. While BPT significantly reduces memory demand in Transformers, it94

still presents a major challenge for scaling up context length because it requires storing the output95

of each layer. This storage is crucial due to the inherent nature of self-attention, which involves96

interactions among all elements (n to n interactions). Without these stored outputs, the subsequent97

layer’s self-attention becomes computationally impractical, necessitating recomputation for each98

sequence element. To put it simply, processing 100 million tokens with a batch size of 1 requires99

over 10,000GB of memory even for a modest model with a hidden size of 1024. In contrast, modern100

GPUs typically provide less than 100GB of high-bandwidth memory (HBM), and the prospects for101

significant GPU HBM expansion are hindered by physical limitations and high manufacturing costs.102

3 Ring Attention103

Our primary objective is to eliminates the memory constraints imposed by individual devices by104

efficiently distribute long sequences across multiple hosts without adding overhead. To achieve this105

goal, we propose an enhancement to the blockwise parallel transformers (BPT) framework [22].106

When distributing an input sequence across different hosts, each host is responsible for running one107

element of the outer loop of blockwise attention corresponding to its designated block, as well as the108

feedforward network specific to that block. These operations do not necessitate communication with109

other hosts. However, a challenge arises in the inner loop, which involves key-value block interactions110

that require fetching blocks from other hosts. Since each host possesses only one key-value block,111

the naive approach of fetching blocks from other hosts results in two significant issues. Firstly,112

it introduces a computation delay as the system waits to receive the necessary key-value blocks.113

Secondly, the accumulation of key-value blocks leads to increased memory usage, which defeats the114

purpose of reducing memory cost.115

Ring-Based Blockwise Attention. To tackle the aforementioned challenges, we leverage the per-116

mutation invariance property of the inner loop’s key-value block operations. This property stems117

from the fact that the self-attention between a query block and a group of key-value blocks can be118

computed in any order, as long as the statistics of each block are combined correctly for rescaling.119

We leverage this property by conceptualizing all hosts as forming a ring structure: host-1, host-2, ...,120

host-N . As we compute blockwise attention and feedforward, each host efficiently coordinates by121

concurrently sending key-value blocks being used for attention computation to the next host while122

receiving key-value blocks from the preceding host, effectively overlapping transferring of blocks123

with blockwise computation. Concretely, for any host-i, during the computation of attention between124

its query block and a key-value block, it concurrently sends key-value blocks to the next host-(i+ 1)125

while receiving key-value blocks from the preceding host-(i− 1). If the computation time exceeds126

the time required for transferring key-value blocks, this results in no additional communication cost.127

This overlapping mechanism applies to both forward and backward passes of our approach since the128

same operations and techniques can be used.129

Arithmetic Intensity Between Hosts. In order to determine the minimal required block size to130

overlap transferring with computation, assume that each host has F FLOPS and that the bandwidth131

between hosts is denoted as B. It’s worth noting that our approach involves interactions only with132

the immediately previous and next hosts in a circular configuration, thus our analysis applies to both133

GPU all-to-all topology and TPU torus topology. Let’s consider the variables: block size denoted134

as c and hidden size as d. When computing blockwise self-attention, we require 2dc2 FLOPs for135

calculating attention scores using queries and keys, and an additional 2dc2 FLOPs for multiplying136

these attention scores by values. In total, the computation demands amount to 4dc2 FLOPs. We137

exclude the projection of queries, keys, and values, as well as blockwise feedforward operations,138

since they only add compute complexity without any communication costs between hosts. This139

simplification leads to more stringent condition and does not compromise the validity of our approach.140

3



Figure 2: Top (a): In the framework of Ring Attention, key-value blocks traverse through hosts
to facilitate attention and feedforward computations in a block-by-block fashion. As we compute
attention, each host concurrently sends key-value blocks to the next host while receive key-value
blocks from the preceding host, effectively overlapping communication with computation. Bottom
(b): Ring Attention is the same as the original Transformer but with a different way of organizing the
compute. In the diagram, we explain this by showing that the current device holds the left column
first query block; then we iterate over the same key-value blocks sequence positioned horizontally.
The query block, and the bottle middle key-value blocks, are used to compute self-attention (yellow
box), whose output is pass to feedforward network (cyan box).

On the communication front, both key and value blocks require a total of 2cd bytes. Thus, the141

combined communication demand is 4cd bytes. To achieve an overlap between communication and142

computation, the following condition must hold: 4dc2/F ≥ 4cd/B. This implies that the block size,143

denoted as c, should be greater than or equal to F/B. Effectively, this means that the block size needs144

to be larger than the ratio of FLOPs over bandwidth.145

Memory Requirement. A host needs to store multiple blocks, including one block size to store146

the current query block, two block sizes for the current key and value blocks, and two block sizes147

for receiving key and value blocks. Furthermore, storing the output of blockwise attention and148

feedforward necessitates one block size, as the output retains the shape of the query block. Therefore,149

a total of six blocks are required, which translates to 6bch bytes of memory. It’s worth noting that150

the blockwise feedforward network has a maximum activation size of 2bch [22]. Consequently, the151

4



Table 1: Comparison of maximum activation sizes among different Transformer architectures. Here,
b is batch size, h is hidden dimension, n is number of head, s is sequence length, c is block size, the
block size (c) is independent of the input sequence length (s). The comparison is between vanilla
Transformer [35], memory efficient attention [27], memory efficient attention and feedforward [22],
and our proposed approach Ring Attention. Numbers are shown in Bytes per layer, assuming bfloat16
precision.

Layer Type Self-Attention FeedForward Total

Vanilla 2bns2 8bsh 2bhs2

Memory efficient attention 2bsh+ 4bch 8bsh 8bsh
Memory efficient attention
and feedforward 2bsh 2bsh 2bsh

Ring Attention 6bch 2bch 6bch

Table 2: Minimal sequence length needed on each device. Interconnect Bandwidth is the uni-
directional bandwidth between hosts, i.e., NVLink / InfiniBand bandwidth between GPUs and
ICI bandwidth between TPUs. Minimal sequence length s = 6c and minimal block size
c = FLOPS/Bandwidth.

Spec Per Host FLOPS HBM Interconnect
Bandwidth

Minimal
Blocksize

Minimal
Sequence Len

(TF) (GB) (GB/s) (×1e3) (×1e3)

A100 NVLink 312 80 300 1.0 6.2
A100 InfiniBand 312 80 100 3.1 18.7
TPU v3 123 16 112 1.1 6.6
TPU v4 275 32 268 1.0 6.2
TPU v5e 196 16 186 1.1 6.3

total maximum activation size remains at 6bch bytes. Table 1 provides a detailed comparison of the152

memory costs between our method and other approaches. Notably, our method exhibits the advantage153

of linear memory scaling with respect to the block size c, and is independent of the input sequence154

length s.155

Our analysis shows that the model needs to fit in s = 6c sequence length, i.e., six times of minimal156

block size. Requirements on popular computing servers as shown in Table 3, the required minimal157

sequence length to be fit in each host is between 6K to 20K. This requirement is easy to meet158

using blockwise computation of attention and feedforward [22], which we will show in experiment159

section 5.160

Algorithm and Implementation. Algorithm 1 provides the pseudocode of the algorithm. Ring161

Attention is compatible with existing code for memory efficient transformers: Ring Attention just162

needs to call whatever available memory efficient computation locally on each host, and overlap the163

communication of key-value blocks between hosts with blockwise computation. We use collective164

operation jax.lax.ppermute to send and receive key value blocks between nearby hosts. A Jax165

implementation is provided in Appendix A.166

4 Setting167

We evaluate the impact of using Ring Attention in improving Transformer models by benchmarking168

maximum sequence length and model flops utilization.169

Model Configuration. Our study is built upon the LLaMA architecture, we consider 3B, 7B, 13B,170

and 30B model sizes in our experiments.171

Baselines. We evaluate our method by comparing it with vanilla transformers [35] which computes172

self-attention by materializing the attention matrix and computes the feedforward network normally,173

transformers with memory efficient attention [27] and its efficient CUDA implementation [9], and174

transformers with both memory efficient attention and feedforward [22].175

5



Algorithm 1 Reducing Transformers Memory Cost with Ring Attention.
Required: Input sequence x. Number of hosts Nh.
Initialize
Split input sequence into Nh blocks that each host has one input block.
Compute query, key, and value for its input block on each host.
for Each transformer layer do

for count = 1 to Nh − 1 do
for For each host concurrently. do

Compute memory efficient attention incrementally using local query, key, value blocks.
Send key and value blocks to next host and receive key and value blocks from previous
host.

end for
end for
for For each host concurrently. do

Compute memory efficient feedforward using local attention output.
end for

end for

Training Configuration. For all methods, we apply full gradient checkpointing [5] to both attention176

and feedforward, following prior works [27, 22]. The experiments are on both GPUs and TPUs.177

For GPUs, we consider both single DGX A100 server with 8 GPUs and distributed 32 A100 GPUs.178

We also experiment with TPUs, from older generations TPUv3 to newer generations of TPUv4 and179

TPUv5e. We note that all of our results are obtained using full precision instead of mixed precision.180

5 Results181

In our experiments, our primary objective is to comprehensively evaluate the performance of Ring182

Attention across multiple key metrics, including maximum supported sequence length within acceler-183

ator memory, model flops utilization, and throughput. We compare Ring Attention’s performance184

with several baseline models , including the vanilla transformers [35], transformers with memory185

efficient attention [27], and transformers with both memory efficient attention and feedforward [22],186

across different model sizes and accelerator configurations.187

5.1 Evaluating Max Context Size188

We evaluate maximum supported context length using tensor parallelism and batch size 1 in sequences.189

Following prior works [22, 31], we note that no data parallelism is considered in our evaluations190

since our approach is independent of data parallelism. As a result, the batch sizes used in our analysis191

are much lower than the ones used for the end-to-end training. Practitioners can combine our method192

with data parallelism to scale up batch size, which we will show in Section 5.2. Table 3 summarizes193

the results of our experiments.194

Our Ring Attention model consistently surpasses baselines, delivering superior scalability across195

diverse hardware setups. For example, with 32 A100 GPUs, we achieve over 32 million tokens in196

context size, a significant improvement over baselines. Furthermore, when utilizing larger accelerators197

like TPUv4-512, Ring Attention enables a 512x increase in context size, allows training sequences of198

over 100 million tokens. Furthermore, our Ring Attention model scales linearly with the number of199

devices, as demonstrated by the 8x improvement over BPT on 8 A100 and the 512x improvement on200

TPUv4-512. If a model can be trained with context size s on n GPUs using the blockwise attention201

and feedforward, with our Ring Attention approach, it becomes possible to train a model with a202

context size of ns.203

1Unlike TPUv4-256 and TPUv5-256 where the number 256 represents the count of TPUv4 (v5) hosts, TPUv3 uses a doubled host count
notation. So, TPUv3-512 means there are 256 hosts. See https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#
tpu_v3 for more details.

6

https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v3
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v3


Table 3: Maximum context length supported in device memory on different model sizes and clusters of
accelerators. Baselines are vanilla transformer [35], transformer with memory efficient attention [27],
and transformer with memory efficient attention and feedforward [22]. The context size is reported in
tokens (1e3). Our Ring Attention substantially outperforms baselines and scales linearly with number
of devices, achieving over 100M context size.

Max context size supported (×1e3)

Vanilla Memory
Efficient Attn

Memory Efficient
Attn and FFN

Ring Attention
(Ours)

Ours
vs SOTA

8x A100 NVLink
3B 16 256 512 4096 (4M) 8x
7B 16 256 512 4096 (4M) 8x
13B 8 128 256 2048 (2M) 8x
30B 8 64 256 2048 (2M) 8x

32x A100 InfiniBand
7B 32 512 1024 32768 (32M) 32x
30B 16 128 512 16384 (16M) 32x

TPUv3-512 1

7B 4 16 64 16384 (16M) 256x
13B 2 8 32 8192 (8M) 256x
30B 1 4 16 4096 (4M) 256x

TPUv4-512
3B 8 64 256 131072 (131M) 512x
7B 8 32 128 65536 (65M) 512x
13B 4 16 64 32768 (32M) 512x
30B 2 8 32 16384 (16M) 512x

TPUv5e-256
7B 4 16 64 16384 (16M) 256x
30B 1 4 16 4096 (4M) 256x

5.2 Evaluating Model Flops Utilization204

We evaluate the model flops utilization (MFU) of Ring Attention in standard training settings205

using fully sharded data parallelism(FSDP) [10] and tensor parallelism following LLaMA and206

OpenLLaMA [34, 11]. The batch size in tokens are 2M on 8/32x A100 and 4M on TPUv4-256. Our207

goal is investigating the impact of model size and context length on MFU, a critical performance208

metrics while highlighting the benefits of our approach. Table 5.1 presents the results of our209

experiments on MFU for different model sizes and context lengths. We present the achieved MFU210

using state-of-the-art memory efficient transformers BPT [22], compare it to our anticipated MFU211

based on these results, and demonstrate the actual MFU obtained with our approach (Ring Attention).212

For fair comparison, both BPT and our approach are based on the same BPT implementation2 on213

both GPUs and TPUs. It’s worth noting that on GPUs our approach Ring Attention can be also214

integrated with the more compute efficient Triton code [16] or CUDA code [9] of memory efficient215

attention [27], similarly on TPUs it is also compatible with Pallas [33]. Combing these low level216

kernels implementations with our approach can maximize MFU, we leave that to future work.217

Ring Attention trains much longer context sizes for self-attention, resulting in higher self-attention218

FLOPs compared to baseline models. Since self-attention has a lower MFU than feedforward, Ring219

Attention is expected to have a lower MFU than the baseline models. Our method offers a clear220

advantage in terms of maintaining MFU while enabling training with significantly longer context221

lengths. As shown in Table 5.1, when comparing our approach to prior state-of-the-arts, it is evident222

that we can train very large context models without compromising MFU or throughput.223

2https://github.com/lhao499/llm_large_context

7

https://github.com/lhao499/llm_large_context


Table 4: Model flops utilization (MFU) with different training configurations: model sizes,
compute, and context lengths. Ring Attention enables training large models (30B-65B) for
over 1M context size with negligible overheads.

Model size 7B 13B 30B 30B 65B

Compute 8x A100 8x A100 32x A100 TPUv4-256 TPUv4-256

Memory efficient
attention & FFN

Context size
(×1e3) 64 32 64 32 16

Ring Attention Context size
(×1e3) 512 256 512 8192 (8M) 4096 (4M)

Figure 3: Comparison of different models on the long-range line retrieval task.

5.3 Impact on LLM Performance224

We evaluate Ring Attention by applying our method to finetune LLaMA model to longer context. In225

this experiment, while our approach enables training with millions of context tokens, we conducted226

finetuning on the LLaMA-13B model, limiting the context length to 512K tokens due to constraints227

on our cloud compute budget. This finetuning was carried out on 8 A100 GPUs, using the ShareGPT228

dataset, following methodologies as outlined in prior works [6, 12]. We then evaluated our finetuned229

model on the line retrieval test [19]. In this test, the model needs to precisely retrieve a number230

from a long document, the task can effectively capture the abilities of text generation, retrieval, and231

information association at long context, reflected by the retrieving accuracy. Figure 3 presents the232

accuracy results for different models across varying context lengths (measured in tokens). Notably,233

our model, Ring Attention-13B-512K, stands out as it maintains high accuracy levels even with234

long contexts. GPT3.5-turbo-16K, Vicuna-16B-16K, and Claude-2-100K demonstrate competitive235

accuracy within short context lengths. However, they cannot handle extended context lengths.236

8



6 Related Work237

Transformers have garnered significant attention in the field of AI and have become the backbone238

for numerous state-of-the-art models. Several works have explored memory-efficient techniques239

to address the memory limitations of Transformers and enable their application to a wider range240

of problems. Computing exact self-attention in a blockwise manner using the tiling technique [23]241

has led to the development of memory efficient attention mechanisms [27] and its efficient CUDA242

implementation [9], and blockwise parallel transformer [22] that proposes computing both feedfor-243

ward and self-attention block-by-block, resulting in a significant reduction in memory requirements.244

In line with these advancements, our work falls into the category of memory efficient computation245

for Transformers. Other works have investigated the approximation of attention mechanisms, yet246

these efforts have often yielded sub-optimal results or encountered challenges during scaling up.247

For an in-depth review of these techniques, we recommend referring to the surveys by Narang et al.248

[25], Tay et al. [32]. Another avenue of research explores various parallelism methods, including249

tensor parallelism [31], pipeline parallelism [14], sequence parallelism [20, 17], and FSDP [10, 28].250

The activations of self-attention take a substantial amount of memory for large context models and251

tensor parallelism can only reduce parts of activations memory. Sequence parallelism of self-attention252

introduces a significant communication overhead that cannot be overlapped with computation, our253

work leverages on blockwise parallel transformers to distribute blockwise computation across devices254

and concurrently overlaps the communication of key-value blocks between hosts with blockwise255

computation. Overlapping communication with computation has been studied in high performance256

computing literature [7, 36, 8, inter alia]. While ring communication has found applications in other257

parallel computing scenarios [2, 15, 13, 30], our work stands out as the first work to show that it can258

be applied to self-attention as used in Transformers and to make it fit efficiently into Transformer259

training and inference without adding significant overhead by overlapping blockwise computation260

and communication.261

7 Conclusion262

In conclusion, we propose a memory efficient approach to reduce the memory requirements of263

Transformers, the backbone of state-of-the-art AI models. Our approach enables the context length to264

scale linearly with the number of devices while maintaining performance, eliminating the memory265

bottleneck imposed by individual devices. Through extensive experiments, we demonstrate its266

effectiveness, achieving up to 512x memory reduction than prior memory efficient Transformers. Our267

contributions include a practical method for large context sizes in large Transformer models.268

Limitations and Future Work. Although our method achieves state-of-the-art low memory usage269

for Transformer models, it does have some limitations that need to be addressed:270

• Scaled up training: due to compute budget constraint, our experiments focus on evaluation the271

effectiveness of the proposed approach without large scale training models.272

• Optimal compute efficiency: While Ring Attention enables the context length to scale linearly273

with the number of devices while maintaining performance, optimizing low-level operations is274

crucial for achieving optimal compute efficiency. In future works, we suggest considering porting275

our method to CUDA / OpenAI Triton /Jax Pallas to achieve maximum sequence length and276

compute performance.277

In terms of future prospects, the possibility of near-infinite context introduces a vast array of exciting278

opportunities, such as large video-language models, decision making and tool use transformers on ex-279

tended trial-and-error experience, understanding and generating large code projects, and transforming280

language models into a versatile AI scientist for helping understand science experimental data.281

References282

[1] Anthropic. Introducing claude, 2023. URL https://www.anthropic.com/index/283

introducing-claude.284

[2] Christian Bischof. Parallel computing: Architectures, algorithms, and applications, volume 15.285

IOS Press, 2008.286

9

https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude


[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,287

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are288

few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.289

[4] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter290

Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning291

via sequence modeling. Advances in neural information processing systems, 34:15084–15097,292

2021.293

[5] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear294

memory cost. arXiv preprint arXiv:1604.06174, 2016.295

[6] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,296

Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot297

impressing gpt-4 with 90%* chatgpt quality. See https://vicuna.lmsys.org, 2023.298

[7] Anthony Danalis, Ki-Yong Kim, Lori Pollock, and Martin Swany. Transformations to parallel299

codes for communication-computation overlap. In SC’05: Proceedings of the 2005 ACM/IEEE300

conference on Supercomputing, pages 58–58. IEEE, 2005.301

[8] Anthony Danalis, Lori Pollock, Martin Swany, and John Cavazos. Mpi-aware compiler op-302

timizations for improving communication-computation overlap. In Proceedings of the 23rd303

international conference on Supercomputing, pages 316–325, 2009.304

[9] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and305

memory-efficient exact attention with io-awareness. Advances in Neural Information Processing306

Systems, 35:16344–16359, 2022.307

[10] Facebook. Fully Sharded Data Parallel: faster AI training with fewer GPUs — engineer-308

ing.fb.com. https://engineering.fb.com/2021/07/15/open-source/fsdp/, 2023.309

[11] Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, may 2023. URL310

https://github. com/openlm-research/open_llama, 2023.311

[12] Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey Levine, and312

Dawn Song. Koala: A dialogue model for academic research. Blog post, April, 1, 2023.313

[13] Andrew Gibiansky. Bringing hpc techniques to deep learning. Baidu Research, Tech. Rep.,314

2017.315

[14] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, Hy-316

oukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant317

neural networks using pipeline parallelism. Advances in neural information processing systems,318

32, 2019.319

[15] Joshua Hursey and Richard L Graham. Building a fault tolerant mpi application: A ring320

communication example. In 2011 IEEE International Symposium on Parallel and Distributed321

Processing Workshops and Phd Forum, pages 1549–1556. IEEE, 2011.322

[16] OpenAI kernel team. Openai triton fused attention, 2023. URL https://github.com/323

openai/triton/blob/main/python/tutorials/06-fused-attention.py.324

[17] Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Moham-325

mad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer326

models. arXiv preprint arXiv:2205.05198, 2022.327

[18] Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang,328

Lerrel Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark. arXiv329

preprint arXiv:2110.15191, 2021.330

[19] Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph E. Gonzalez, Ion331

Stoica, Xuezhe Ma, and Hao Zhang. How long can open-source llms truly promise on context332

length?, June 2023. URL https://lmsys.org/blog/2023-06-29-longchat.333

10

https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://github.com/openai/triton/blob/main/python/tutorials/06-fused-attention.py
https://github.com/openai/triton/blob/main/python/tutorials/06-fused-attention.py
https://github.com/openai/triton/blob/main/python/tutorials/06-fused-attention.py
https://lmsys.org/blog/2023-06-29-longchat


[20] Shenggui Li, Fuzhao Xue, Yongbin Li, and Yang You. Sequence parallelism: Making 4d334

parallelism possible. arXiv preprint arXiv:2105.13120, 2021.335

[21] Hao Liu and Pieter Abbeel. Emergent agentic transformer from chain of hindsight experience.336

International Conference on Machine Learning, 2023.337

[22] Hao Liu and Pieter Abbeel. Blockwise parallel transformer for large context models. Advances338

in neural information processing systems, 2023.339

[23] Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. arXiv340

preprint arXiv:1805.02867, 2018.341

[24] MosaicML. Introducing mpt-7b: A new standard for open-source, commercially usable llms,342

2023. URL https://www.mosaicml.com/blog/mpt-7b.343

[25] Sharan Narang, Hyung Won Chung, Yi Tay, William Fedus, Thibault Fevry, Michael Matena,344

Karishma Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong Lan, et al. Do transformer modifi-345

cations transfer across implementations and applications? arXiv preprint arXiv:2102.11972,346

2021.347

[26] OpenAI. Gpt-4 technical report, 2023.348

[27] Markus N Rabe and Charles Staats. Self-attention does not need o(n2) memory. arXiv preprint349

arXiv:2112.05682, 2021.350

[28] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-351

tions toward training trillion parameter models. In SC20: International Conference for High352

Performance Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.353

[29] J. Schulman, B. Zoph, C. Kim, J. Hilton, J. Menick, J. Weng, J. F. C. Uribe, L. Fedus, L. Metz,354

M. Pokorny, R. G. Lopes, S. Zhao, A. Vijayvergiya, E. Sigler, A. Perelman, C. Voss, M. Heaton,355

J. Parish, D. Cummings, R. Nayak, V. Balcom, D. Schnurr, T. Kaftan, C. Hallacy, N. Turley,356

N. Deutsch, and V. Goel. Chatgpt: Optimizing language models for dialogue. OpenAI Blog,357

2022. URL https://openai.com/blog/chatgpt.358

[30] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in359

tensorflow. arXiv preprint arXiv:1802.05799, 2018.360

[31] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan361

Catanzaro. Megatron-lm: Training multi-billion parameter language models using model362

parallelism. arXiv preprint arXiv:1909.08053, 2019.363

[32] Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng Rao,364

Sharan Narang, Vinh Q Tran, Dani Yogatama, and Donald Metzler. Scaling laws vs model365

architectures: How does inductive bias influence scaling? arXiv preprint arXiv:2207.10551,366

2022.367

[33] Jax team. Jax pallas fused attention, 2023. URL https://github.com/google/jax/blob/368

main/jax/experimental/pallas/ops/tpu/flash_attention.py.369

[34] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-370

thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open371

and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.372

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,373

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information374

processing systems, 30, 2017.375

[36] Shibo Wang, Jinliang Wei, Amit Sabne, Andy Davis, Berkin Ilbeyi, Blake Hechtman, Dehao376

Chen, Karthik Srinivasa Murthy, Marcello Maggioni, Qiao Zhang, et al. Overlap communication377

with dependent computation via decomposition in large deep learning models. In Proceedings of378

the 28th ACM International Conference on Architectural Support for Programming Languages379

and Operating Systems, Volume 1, pages 93–106, 2022.380

[37] Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro381

Lazaric, and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for382

offline reinforcement learning. arXiv preprint arXiv:2201.13425, 2022.383

11

https://www.mosaicml.com/blog/mpt-7b
https://openai.com/blog/chatgpt
https://github.com/google/jax/blob/main/jax/experimental/pallas/ops/tpu/flash_attention.py
https://github.com/google/jax/blob/main/jax/experimental/pallas/ops/tpu/flash_attention.py
https://github.com/google/jax/blob/main/jax/experimental/pallas/ops/tpu/flash_attention.py


A Code384

The implementation of Ring Attention in Jax is provided in Figure 4. We use defvjp function385

to define both the forward and backward passes, and use collective operation jax.lax.ppermute386

to facilitate the exchange of key-value blocks among a ring of hosts. The provided code snip-387

pet highlights essential components of Ring Attention. The complete implementation with388

maximum memory efficient just needs to replace the local blockwise computation, specifi-389

cally jnp.einsum("bshd,btd->bhst", q, k) and jnp.einsum("bhst,btd->bshd", s, v)390

as well as the local blockwise feedforward computation with BPT’s Jax based blockwise attention391

and FFN computation. For maximum compute efficiency our Ring Attention can be integrated392

with exiting kernel-level fused-attention implementations, such as on GPUs Ring Attention can be393

integrated with Triton code [16] or CUDA code [9], similarly on TPUs it is also compatible with394

Pallas code [33] of the memory efficient attention [27].395

B Experiment Details396

B.1 Evaluation of context length397

In the experimental results presented in Section 5.1, we used tensor parallelism to partition the model398

across GPUs or TPU units. Our evaluation focused on determining the maximum achievable sequence399

length, using a sequence number of one. For TPUs, we utilized its default training configuration,400

which involved performing matmul operations in bfloat16 format with weight accumulation in401

float32. On the other hand, for GPUs, we adopted the default setup, where all operations were402

performed in float32.403

B.2 Evaluation of MFU404

In the evaluation presented in Section 5.2, the training was conducted using FSDP [10] with no405

gradient accumulation. The batch size in tokens is 2 million per batch on GPU and 4 million per batch406

on TPU. For gradient checkpointing [5], we used nothing_saveable as checkpointing policies for407

attention and feedforward network (FFN). For more details, please refer to Jax documentation.408

B.3 Evaluation on line retrieval409

In the evaluation presented in Section 5.3, the training was conducted using FSDP on 8x A100 80GB410

Cloud GPUs. We finetuned the LLaMA-13B model [34], limiting context length to 512K tokens due411

to constraints on our cloud compute budget, though our approach enables training with millions of412

context tokens. We use user-shared conversations gathered from ShareGPT.com with its public APIs413

for finetuning, following methodologies as outlined in prior works [6, 12]. ShareGPT is a website414

where users can share their ChatGPT conversations. To ensure data quality, we convert the HTML415

back to markdown and filter out some inappropriate or low-quality samples, which results in 125K416

conversations after data cleaning.417

12



1 @partial(jax.custom_vjp, nondiff_argnums=[3, 4, 5])
2 def _ring_attention_fwd(q, k, v, mask, axis_name, float32_logits):
3 if float32_logits:
4 q, k = q.astype(jnp.float32), k.astype(jnp.float32)
5 batch, q_len, num_heads, _ = q.shape
6 batch, kv_len, dim_per_head = k.shape
7 numerator = jnp.zeros((batch, q_len, num_heads, dim_per_head)).astype(q.dtype)
8 denominator = jnp.zeros((batch, num_heads, q_len)).astype(q.dtype)
9 axis_size = lax.psum(1, axis_name)

10 scale = jnp.sqrt(q.shape[-1])
11 def scan_kv_block(carry, idx):
12 prev_max_score, numerator, denominator, k, v = carry
13 mask = lax.dynamic_slice_in_dim(mask,
14 (lax.axis_index(axis_name) - idx) % axis_size * kv_len, kv_len, axis=-1)
15 attn_weights = jnp.einsum("bqhd,bkd->bhqk", q, k) / scale
16 attn_weights = jnp.where(mask, -jnp.inf, attn_weights)
17 max_score = jnp.maximum(prev_max_score, jnp.max(attn_weights, axis=-1))
18 exp_weights = jnp.exp(attn_weights - max_score[..., None])
19 correction = rearrange(jnp.exp(prev_max_score - max_score), 'b h q -> b q h')[..., None]
20 numerator = numerator * correction + jnp.einsum("bhqk,bkd->bqhd", exp_weights, v)
21 denominator = denominator * jnp.exp(prev_max_score - max_score) + jnp.sum(exp_weights, axis=-1)
22 k, v = map(lambda x: lax.ppermute(x, axis_name, perm=[(i,
23 (i + 1) % axis_size) for i in range(axis_size)]), (k, v))
24 return (max_score, numerator, denominator, k, v), None
25 prev_max_score = jnp.full((batch, num_heads, q_len), -jnp.inf).astype(q.dtype)
26 (numerator, max_score, denominator, _, _), _ = lax.scan(scan_kv_block,
27 init=(prev_max_score, numerator, denominator, k, v), xs=jnp.arange(0, axis_size))
28 output = numerator / rearrange(denominator, 'b h q -> b q h')[..., None]
29 return output.astype(v.dtype), (output, q, k, v, numerator, denominator, max_score)
30

31 def _ring_attention_bwd(mask, axis_name, float32_logits, res, g):
32 del float32_logits
33 axis_size = lax.psum(1, axis_name)
34 output, q, k, v, numerator, denominator, max_score = res
35 dq = jnp.zeros_like(q, dtype=jnp.float32)
36 dk = jnp.zeros_like(k, dtype=jnp.float32)
37 dv = jnp.zeros_like(v, dtype=jnp.float32)
38 batch, kv_len, dim_per_head = k.shape
39 scale = jnp.sqrt(q.shape[-1])
40 def scan_kv_block(carry, idx):
41 dq, dk, dv, k, v = carry
42 mask = lax.dynamic_slice_in_dim(mask,
43 (lax.axis_index(axis_name) - idx) % axis_size * kv_len, kv_len, axis=-1)
44 attn_weights = jnp.einsum("bqhd,bkd->bhqk", q, k) / scale
45 attn_weights = jnp.where(mask, -jnp.inf, attn_weights)
46 exp_weights = jnp.exp(attn_weights - max_score[..., None]) / denominator[..., None]
47 ds = jnp.einsum("bqhd,bkd->bhqk", g, v)
48 dl = (ds - jnp.einsum("bqhd,bqhd->bhs", g, output)[..., None]) * exp_weights
49 dq = dq + jnp.einsum("bhqk,bkd->bqhd", dl, k) / scale
50 dk = dk + jnp.einsum("bqhd,bhqk->bkd", q, dl) / scale
51 dv = dv + jnp.einsum("bhqk,bqhd->bkd", exp_weights, g)
52 k, v, dk, dv = map(lambda x: lax.ppermute(x, axis_name, perm=[(i,
53 (i + 1) % axis_size) for i in range(axis_size)]), (k, v, dk, dv))
54 return (dq, dk, dv, k, v), None
55 (dq, dk, dv, k, v), _ = lax.scan(scan_kv_block, init=(dq, dk, dv, k, v), xs=jnp.arange(0, axis_size))
56 dq, dk, dv = dq.astype(q.dtype), dk.astype(k.dtype), dv.astype(v.dtype)
57 return dq, dk, dv
58

59 @partial(jax.custom_vjp, nondiff_argnums=[3, 4, 5])
60 def ring_attention(q, k, v, mask, axis_name, float32_logits=True):
61 y, _ = _ring_attention_fwd(q, k, v, mask, axis_name, float32_logits)
62 return y
63

64 ring_attention.defvjp(_ring_attention_fwd, _ring_attention_bwd)

Figure 4: Key parts of the implementation of Ring Attention in Jax. We use collective operation
lax.ppermute to send and receive key value blocks between previous and next hosts.

13



Figure 5: The per dataset trainig FLOPs cost ratio relative to a 4k context size, considering different
model dimensions. On the x-axis, you’ll find the context length, where, for example, 32x(128k)
denotes a context length of 128k, 32x the size of the same model’s 4k context length.

C Training FLOPs Scaling of Context Size418

Given that our proposed approach unlocks the possibility of training with a context size exceeding 100419

million tokens and allows for linear scaling of the context size based on the number of devices, it is420

essential to understand how the training FLOPs per dataset scale with the context size. While a larger421

context size results in a higher number of FLOPs, the increased ratio does not scale quadratically422

because the number of tokens remains fixed. We present these results in Figure 5, which showcases423

various model sizes and context lengths, representing different computational budgets. The figure424

illustrates the ratio of FLOPs for larger context lengths compared to the same model with a shorter425

4K context size. We calculated the per sequence FLOPs using (24bsh2 + 4bs2h)n where h is426

model hidden dimension, b is batch size, s is total sequence length, and n is number of layers. The427

per dataset FLOPs ratio is then given by ((24bs2h
2 + 4bs2

2h)/(24bs1h
2 + 4bs1

2h))/(s2/s1) =428

(6h + s2)/(6h + s1), where s2 and s1 are new and old context lengths. Model sizes and their429

hidden dimensions are as follows: LLaMA-7B (4096), LLaMA-13B (5140), LLaMA-33B (7168),430

LLaMA-65B (8192), GPT3-175B (12288), and 1TB (36864). These model configurations are from431

LLaMA [34] and GPT-3 [3] papers, except the 1TB model size and dimension were defined by us.432

As depicted in Figure 5, scaling up small models to a 1M context size results in approximately 20-40433

times more FLOPs, and even more for 10M and 100M token context sizes. However, as the model434

sizes increase, the cost ratio decreases. For instance, scaling up the 170B model from 4K to 10M435

incurs 162.6x higher per dataset FLOPs, despite the context size being 3072 times longer.436

D Impact on In Context RL Performance437

In addition to show the application of Ring Attention to finetune LLM in Section 5.3, we present438

additional results of applying Ring Attention for learning trial-and-error RL experience using Trans-439

formers. We report our results in Table 5, where we evaluate our proposed model on the ExoRL440

benchmark across six different tasks. On ExoRL, we report the cumulative return, as per ExoRL [37].441

We compare BC, DT [4], AT [21], and AT with memory efficient attention [27] (AT+ME), AT with442

blockwise parallel transformers [22] (AT+BPT), and AT with our Ring Attention (AT+Ring Attention).443

14



Table 5: Application of Ring Attention on improving Transformer in RL. BC and DT use vanilla
attention. AT + ME denotes using memory efficient attention, AT + BPT denotes using blockwise
parallel transformer. AT + RA denotes using Ring Attention.

ExoRL BC-10% DT AT + ME AT + BPT AT + BPT AT + RA
Task N Trajs = 32 N Trajs = 32 N Trajs = 128 N Trajs = 128

Walker Stand 52.91 34.54 oom 95.45 oom 98.23
Walker Run 34.81 49.82 oom 105.88 oom 110.45
Walker Walk 13.53 34.94 oom 78.56 oom 78.95
Cheetah Run 34.66 67.53 oom 178.75 oom 181.34
Jaco Reach 23.95 18.64 oom 87.56 oom 89.51
Cartpole Swingup 56.82 67.56 oom 120.56 oom 123.45

Total Average 36.11 45.51 oom 111.13 oom 113.66

The numbers of BC, DT, AT are from the ExoRL and AT paper. AT + Ring Attention numbers are444

run by ourselves. Since the ExoRL data is highly diverse, having been collected using unsupervised445

RL [18], it has been found that TD learning performs best, while behavior cloning struggles [37].446

AT [21] shows that conditioning Transformer on multiple trajectories with relabeled target return can447

achieve competitive results with TD learning. For more details, please refer to their papers. We are448

interested in applying Ring Attention to improve the performance of AT by conditioning on a larger449

number of trajectories rather than 32 trajectories in prior works. It is worth noting that each trajectory450

has 1000 × 4 length where 1000 is sequence length while 4 is return-state-action-reward, making451

training 128 trajectories with modest 350M size model infeasible for prior state-of-the-art blockwise452

parallel transformers. Results in Table 5 show that, by scaling up the sequence length (number of453

trajectories), AT + Ring Attention consistently outperforms oringal AT with BPT across all six tasks,454

achieving a total average return of 113.66 compared to the AT with BPT model’s total average return455

of 111.13. The results show that the advantage of Ring Attention for training and inference with long456

sequences.457

15


	Introduction
	Large Context Memory Constraint
	Ring Attention
	Setting
	Results
	Evaluating Max Context Size
	Evaluating Model Flops Utilization
	Impact on LLM Performance

	Related Work
	Conclusion
	Code
	Experiment Details
	Evaluation of context length
	Evaluation of MFU
	Evaluation on line retrieval

	Training FLOPs Scaling of Context Size
	Impact on In Context RL Performance

