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Abstract

Recent advances in multiagent reinforcement learning have enabled artificial agents
to coordinate effectively in complex domains; however, these agents can struggle to
coordinate with humans, in part due to their implicit but inaccurate assumptions
about optimal decision-making and behavioral homogeneity while interacting with
humans. Although we can train models to learn the best responses to human behav-
ior using a large corpus of human-human interaction, the cost of collecting this data
can be prohibitive. We demonstrate how, even without such data, we can leverage
our knowledge of biases and limitations in human behavior to develop a technique
for effective human-agent coordination. To do this, we present an approach that
trains an RL agent by best responding to a pool of other agents that incorporate
human behavioral biases. We evaluate this method in the fully-cooperative game
Overcooked. Our results show an improvement when incorporating these biases
compared to methods that do not account for these biases within their agent pop-
ulation.

1 Introduction

We study the problem of human-Al ad hoc teamwork (AHT) where an agent is paired with a human
in a cooperative task without prior access to data on human behavior in the task. We show that
leveraging prior knowledge of human behavior in the form of skill asymmetry and cognitive bias can
help us learn reinforcement learning agents perform that can coordinate with agents learned from
human behavior while reducing training time in the fully-cooperative game Overcooked.

Prior works in AHT propose using reinforcement learning (RL) to train a best-response (BR) agent
to coordinate with a diverse set of other agents, usually also trained with RL. This prevents the BR
agent from learning a single convention to solve the problem since it has to be able to coordinate
with a multitude of other agents. The challenge is to learn agent behavior that is compatible
with, or adaptable to, any agent. If the interacting agent is chosen at random from the set of
all possible agents, all feasible actions become equally likely and adaptation is infeasible. One
way to avoid this issue is by assuming that the interacting agents have the same goals but may
deviate from optimal behavior (Zhao et al., 2023; Lupu et al., 2021). Strouse et al. (2021) use this
assumption to train agents that can coordinate with other agents optimizing for the same rewards,
while including partially trained agents to introduce skill diversity, and others rely on statistical
metrics like maximum entropy (Zhao et al., 2023) in the objective to induce diversity in goal-driven
behavior while reducing the number of agents sampled.
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(c) Agent action spaces.

Figure 1: Example game where the goal of the agents is to occupy both yellow squares. In (a) the
agents are symmetrical and have a straightforward optimal path to the goal closest to them. In (b),
the agents have to take a circuitous path to the goal due to the inability one of the agents to move
right as shown in (c).

In our problem, human-AI AHT, the interacting agents are known to be human and we want to
leverage known properties of human behavior. Although individual humans have different behaviors,
the class of humans has some systematic biases. Inspired by research in cognitive and social sciences,
we use cognitive and behavioral biases to generate a set of agents to help enable the BR agent to
coordinate with humans (Norton et al., 2012; Ainslie & Haslam, 1992). We show that our method
can achieve similar or better coordination with humans and human-like agents than methods with
other diversity metrics. We believe that incorporating this knowledge in our approach can help us
learn agents compatible with human behavior with fewer samples.

To understand why this might happen, let us take an example of the grid-world coordination scenario
in Fig. 1. In Fig. 1(a), there are two symmetrical agents each trying to reach one of the goal locations
in yellow. The trajectory depicts one of the optimal solutions. In Fig. 1(b), we assume that the
agents are asymmetric with one agent unable to move towards the right. This leads to a different
solution where the agents have to reach for the goal locations that are further away from them. Such
a behavior is very unlikely to emerge if we sample diverse behaviors of symmetric agents. Although,
this is a simple example, we claim that incorporating simple biases from human behavior can have
a large effect on coordination.

Our observation is that humans and artificial agents are not symmetric and leveraging the behavioral
biases and skill differences in a principled manner can improve human-Al coordination. Our main
contributions are:

1. Present an approach to train RL agents capable of coordinating with humans by incorpo-
rating human cognitive biases into a group of RL agents.

2. Show improved task performance and training efficiency in Overcooked as compared to other
methods that do not utilize these biases.
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2 Related Work

There has been growing recent research in ad hoc teamwork Mirsky et al. (2022) and the related
problem of zero-shot coordination (ZSC) Hu et al. (2020). Although these terms are sometimes
used interchangeably, we adopt the distinction provided by Treutlein et al. (2021). According to
their classification, a ZSC agent assumes that its interaction will be with agents that are optimized
to coordinate well with ZSC agents, without having access to these partners during training. This
makes ZSC a special case of the general AHT problem. Next, we review this problem and some
prior solutions from the lens of game theory.

Game Theory. The equilibrium selection problem (Harsanyi & Selten, 1988) arises in pure coor-
dination games with multiple equilibria because it is within the agents’ best interests to coordinate
on a single equilibrium, but this coordination is challenging without prior agreement. This problem
is similar to AHT, where agents are also cooperative but may fail to coordinate due to a lack of
prior interaction. Solutions to equilibrium selection can be categorized into two types: those that
rely only on endogenous information about the game, and, those that also incorporate exogenous
information about the agents. We use a similar classification to describe prior work in AHT below.

Examples using only endogenous information in AHT include: Hu et al. (2020) handling game
symmetries in Hanabi by learning permutation-robust policies, Strouse et al. (2021) training agents
as best-response to multiple Nash equilibria by learning multiple SP policies and pairing them with
it, and, Zhao et al. (2023) include a maximum entropy objective to increase SP policy diversity
paired with the best response agent.

In game theory, exogenous information based on the the agent’s options independent of the rewards
of the game has been used to explain human behavior. For instance, Schelling (1980) showed that
humans were able to coordinate significantly better than chance when playing a simple coordination
game where agents aim to choose the same side of a coin. In human-Al coordination examples
include: Bansal et al. (2020) using information about human behavior and social norms to group
Nash equilibria and adapt online to human behavior in a table-top manipulation task, and, Yu
et al. (2023) leveraging information about human bias to generate multiple event-based reward
functions and learn a BR policy in Overcooked. Our approach also utilizes exogenous information
in the form of systematic biases in human behavior. However, unlike Yu et al. (2023), which sample
reward functions based on defined game events, we sample policies based on human behavioral traits
without introducing a new reward structure.

Cognitive Bias: Starting soon after scientists began formalizing and describing human behavior
as rational actors (Von Neumann & Morgenstern (1944)), they also began observing and describing
systematic human deviations from these classic notions of rationality via logic, probability theory,
and, expected utility (Tversky & Kahneman (1974); Kahneman & Tversky (1979)). Known as cog-
nitive biases, these systematic deviations, have been identified in myriad environments and contexts,
challenging the idealized concept of humans as rational. They have been used to introduce frame-
works like bounded rationality, bounded optimality, ecological rationality, rational analysis, and
more recently, resource-rational analysis, that can account for them (Simon (1955; 1956); Gigeren-
zer & Goldstein (1996); Anderson (1990); Lieder & Griffiths (2020)). Their core idea is to describe
and explain these cognitive agents functioning within environments and contexts that take the best
advantage of limited cognitive resources. Understanding human cognition as optimal and general
under limitations of time, computation and communication (Griffiths (2020)), might help us formal-
ize and introduce these patterns of human behavior as inductive biases in Al systems that need to
coordinate with humans. Towards this goal, our research takes into account two human limitations:
(1) limitation on human reaction speed to situational changes, and, (2) preference for immediate
over future rewards (Ainslie & Haslam, 1992).

Availability of Data. When human behavior data is available, it can help to learn agents that
successfully coordinate with humans, as shown by Carroll et al. (2019) in Overcooked. However,
collecting this task-specific data for every scenario that AI agents will interact with humans is
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impractical. Also, human behavior can evolve over time, and, can vary in interactions with Al
versus other humans. We aim to identify task-invariant properties of human behavior that are
broadly applicable across various domains. Even when human data is available, our method can be
used as a prior for agent policies, potentially leading to more robust Al agents as observed by Yang
et al. (2022).

3 Background

We model interaction as a two-agent common-payoff Markov game, M, defined as a tuple
(N,S, A r,T,7). Here, N = {1, 2} is the set of agents, S is the set of joint states, A = {A;, Az} is
the set of actions for each agent, r : Sx. A — R is the common reward function,, 7 : Sx AxS — [0, 1]
is the transition function, and v € [0, 1] is the discount factor. At each timestep ¢, agent ¢ receives
the state s;, and samples an action, a;; ~ m;(s), according to a policy m; : S — A;. We define
the expected return for a joint policy as J(mwy,m2) = ]E{I\fw(mm)[ztio r(st, at)], where a; is a joint
action, and, an episode goes from time 0 to 7T'.

Ad-hoc teamwork. The goal of ad-hoc teamwork, as defined by Stone et al. (2010), is “to create
an autonomous agent that is able to efficiently and robustly collaborate with previously unknown
teammates on tasks to which they are all capable of contributing as team members”. We can write
this as, arg max,. E./qear J (7, 7), where II¢P is the set of policies of capable team members.

Self-Play (SP). In self-play, the objective is to maximize the expected return by finding the optimal
joint policy, 7 € arg max ., .y J (m1,m2). This solution is a Pareto-optimal equilibrium because if
either agent can improve the return by selecting a different policy then it will contradict the arg max.
However, it fails as a solution for ad-hoc teamwork because it assumes both agents follow the same
equilibrium, or compatible policies, which is not guaranteed even if both agents were trained by SP.

Best-Response (BR). In best-response, the objective is to maximize the expected return in
response to a fixed policy of the other agent. We consider a policy 72, to be BR to m, if
J(#xB ) > J(«',m)Vn' € II. We define the BR function, B, such that 7% € B(rx). Similarly,
we define BR over a policy set, [T = {n!,... 75} as,

B(Ilg) € argmax B/ iz [J(7BR, 7)),

TBR

where U is the uniform distribution.

4 Approach

Our goal is to develop a method that helps an agent find policies that effectively coordinate with
human behavior. Human behavior may not align perfectly with optimizing the rational self-play
objectives for several reasons, such as the skill difference between humans and autonomous agents
(e.g. bounded rationality, reaction speed), and, cognitive bias (e.g. hyperbolic time discounting,
preference for specific sub-tasks).

We want our agent to collaborate effectively with humans, so we train our agent to respond optimally
to the behaviors that humans are likely to adopt, 7BE(H) ¢ B(IT17*). Here, IT7* is the unknown set
of all human policies. To derive this method we make the assumption that human behavior can be
described by a set of policies, and each policy is an equilibrium for some Markov game. Our goal,
then, is to learn an agent that can adapt to this human behavior, instead of trying to influence it.

For this, we use reinforcement learning (RL) in two stages. First, we find approximate human self-
play policies by placing constraints on the policy-space based on a subset of known human skill
factors and modifying the Markov game M to account for cognitive biases, IT#bias see Algorithm 1.
Second, we train a policy as best-response to the human self-play policy set, B(IT*vias) in Algorithm
2. We aim to improve ad hoc teamwork with unseen human teammates and reduce training time
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without requiring task-specific human training data by utilizing task-invariant properties of human
behavior.

We define the term, behavior prior, to mean both skill asymmetry and cognitive bias. We use the
following behavior priors in our experiments to sample from ITHvies

1. Speed Asymmetry. Humans and agents do not have the same speed of action and decision-
making, also this speed varies among humans. We model this by taking an action from a
trained SP model with probability p and taking no action otherwise. This has the added
benefit of improving training efficiency since a population of agents with differing behavior
can be produced, by varying p, while using only a single trained SP model.

2. Time discounting. Humans often value immediate rewards over future rewards. We model
this by varying the discount factor v when training the SP model.’

Algorithm 1 Learn SP human behavior prior

Input: Set P with Markov games representing different behavior priors.
Initialize TTvies o 0.
for m € P do
Train self-play policy, H*P, for Markov game m.
Add H*P to ITHvias,
end for
Output: ITHvias,

Algorithm 2 Best-response to human prior policies

Input: IIvies,

Initialize BR agent, 7R,

while 7BRH) not converged do
Form minibatch from 7BRM) paired with elements of TTHvias,
Use minibatch to update wBR(H),

end while

Output: 7BRH),

5 Experiments

Overcooked. We utilize the Overcooked environment introduced by Carroll et al. (2019) due to its
combination of strategy and motion coordination challenges. In this setting, two agents collaborate
to cook and serve soup, aiming to deliver as many soups as possible. While the original study
outlines five MDPs, our preliminary experiments focus on the one illustrated in Figure 2. In this
MDP, the agents’ objective is to deliver soup, which involves placing three onions in a pot, cooking
them for 20 timesteps, transferring the soup into a dish, and serving it. The primary challenge
lies in the agents’ ability to navigate the environment, interact with objects, and coordinate their
strategies. The action space consists of six possible actions: up, down, right, left, noop, and
interact. For training RL agents, we used the JaxMARL Overcooked environment by Rutherford
et al. (2024), using the same state encoding provided and network architecture developed by them.
We use proximal policy optimization (Schulman et al., 2017) to train these models.

Results. We present experimental results in Table 1. Here we compare the average return per
episode for three types of agents over an episode length of 400 timesteps. The Self-Play agent is
a single SP agent trained for this game. The BR(Ngp) agent is trained as best response to Ngp
SP agents, similar to the approach used by Strouse et al. (2021). Our method, BR (Hgpeed), is a

1This experiment is not included in this preliminary work but will be included in the future.
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Figure 2: A human and an Al agent interact in a shared environment in the fully-cooperative game
of Overcooked.

Method | Self-Play | BR(8) | BR(16) | BR(32) | BR (Hspeed)
Avg. Episodic Returns | 91.2+3.1 | 95.6+2.2 | 100.8+2.5 | 105.0 £ 2.0 | 152

Table 1: Performance with proxy human. The average accumulated reward when the agents are
paired with the proxy human model. Our method (in bold) was trained with two self-play models
with different speed of action p =1, 0.

best-response to SP(p = 1) and SP (p = 0), where p is the probability of the agent taking a noop
action. The results show us that the SP model has the lowest return, and increasing the number of
SP agents in the BR increase the return. This is expected as the BR agent with more SP agents
is able to adapt to more partner behaviors. We also see that our approach, using only two SP
agents for the BR, is able to significantly outperform even BR(Ngp = 32), validating the increased
efficiency due to the included bias of variable agent reaction speed.

6 Conclusion and Future Work

This research explores an innovative approach by incorporating well-studied systematic biases in
human behavior to enhance reinforcement learning (RL) systems for fully cooperative games. By
modifying the Markov game framework to create biased RL agents and subsequently training a
best-response agent to interact with humans, we aim to develop solutions that can adapt well to
human behavior without the need for task-specific human data.

Our preliminary results indicate that even simple behavioral biases can lead to significant improve-
ments in learning efficiency. However, this work is still in progress and requires further experimen-
tation to validate these findings comprehensively. Future work will focus on implementing a broader
array of cognitive biases and conducting user experiments to evaluate their effectiveness.

Our approach exemplifies how human biases can be integrated into reinforcement learning systems
within a cooperative framework. An important avenue for future research is to determine which
biases are beneficial in different domains and how these biases can be systematically translated into
objectives for learning agents. We hope our work contributes to a deeper understanding of how
human behavioral biases can be harnessed to improve Al systems across diverse applications.
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