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Abstract

Computationally integrating spatial transcriptomics (ST) and single-cell transcrip-
tomics (SC) greatly benefits biomedical research such as cellular organization,
embryogenesis and tumorigenesis, and could further facilitate therapeutic devel-
opments. We proposed a transfer learning model, STEM, to learn spatially-aware
embeddings from gene expression for both ST and SC data. The embeddings
satisfy both the preservation of spatial information and the elimination of the
domain gap between SC and ST data. We used these embeddings to infer the
SC-ST mapping and the pseudo SC spatial adjacency, and adopted the attribution
function to indicate which genes dominate the spatial information. We designed
a comprehensive evaluation pipeline and conducted two simulation experiments,
and STEM achieved the best performance compared with previous methods. We
applied STEM to human squamous cell carcinoma data and successfully uncovered
the spatial localization of rare cell types. STEM is a powerful tool for build-
ing single-cell level spatial landscapes and could provide mechanistic insights of
heterogeneity and microenvironments in tissues.

1 Introduction

High-resolution single-cell gene expression data with spatial information is critical for revealing
the mechanisms of cellular organization, embryogenesis and tumorigenesis [1–5], and could further
facilitate therapeutic developments [6, 7]. Recently, many spatial transcriptomic (ST) profiling
protocols have been developed [8–11]. The most commonly-used ST protocols aggregate multiple
cells into one spot, and the provided data contain both spatial coordinates and in-situ gene expressions
with limited resolution and gene coverage [12]. On the contrary, single-cell RNA sequencing (SC)
captures exact single-cell level transcripts with a higher throughput of gene species [13] but cannot
detect any spatial information. Computationally integrating SC and ST data can build an informative
single-cell level spatial landscape and benefits studies of both sides [14]. For example, inferring the
pseudo spatial adjacency association of SC data helps identify spatial structures of cell types or niches
[15, 16], and deconvoluting cell type proportions of spots in ST data by using annotated SC data can
benefit the illustration of cell spatial niches and communication landscapes in microenvironments
[17–20].
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The core of building a single-cell level spatial landscape is to establish SC-ST and SC-SC spatial
associations. The computational challenge is to recover the spatial information of SC data, which
requires us to learn the relation between gene expression profiles and locations from ST data and
transfer it to SC data for spatial information inference.

In this study, we proposed a deep transfer learning model, STEM, to learn SpaTially-aware EM-
beddings of ST and SC data. We designed a shared encoder for SC and ST data to get unified
embeddings in one latent space, and optimized the embeddings to satisfy both the preservation of
spatial information and the elimination of the domain gap between SC and ST data. We further used
the embeddings to infer the SC-ST mapping and the pseudo SC spatial adjacency.

Compared with existing methods [15, 16, 21–23], STEM overcomes the domain gap between SC
and ST data and explicitly extracts the spatial information from gene expression as spatially-aware
embeddings. Based on the embeddings, STEM provides a flexible and accurate way to infer spatial
associations. Moreover, STEM identifies spatially dominant genes (SDGs) that highly dominate the
inferred spatial location of a cell, which could benefit the understanding of underlying mechanisms
related to cellular spatial organization or communication.

We designed a comprehensive pipeline at both single-cell and tissue levels for evaluation, including
examining the correctness of the predicted SC-ST mapping matrix and the inferred SC spatial
adjacency matrix. We conducted two simulation experiments, and the results shown the superiority of
STEM in inferring spatial associations. We further used STEM to identify SDGs in mouse gastrulation
data [24] and locate enriched regions of rare cell types in human squamous cell carcinoma [19].
These experiments highlight the power of representation learning for extracting spatial information
from gene expression, and demonstrate the feasibility of transfer learning models for integrating data
in different modalities and constructing cross-domain associations.

2 Task Formulation

ST data include two types of information: a gene expression matrix XST ∈ RN×K and a spatial
coordinate matrix Y ST ∈ RN×2, where N is the number of sequenced spots and K is the number of
genes. SC data only have the gene expression matrix XSC ∈ RM×K , where M is the number of
sequenced single cells. As SC and ST data are obtained by different techniques, distributions of gene
expressions within XST and XSC such as the sparsity and maximum expression values are different.

Three goals are needed for establishing SC and ST spatial associations. The first goal is to infer
the spatial information of SC data. It can be formulated as a SC adjacency matrix Sc ∈ RM×M or
the estimated spatial coordinate ỸSC ∈ RM×2. The second goal is to learn the spatial associations
between SC and ST data, and it can be formulated as a SC-ST mapping matrix C ∈ RM×N . The
third goal is to know the contribution of genes to determining the spatial location of one single cell,
i.e. a gene attribution vector. The attribution vector W of a single cell i is defined as

Wi = (a1, a2, ..., aK) := F(xSCi , Ci) ∈ RK (1)

where F is an attribution function, the vector Ci is the corresponding row in the mapping matrix C,
and aj is the contribution of gene j to the mapping result Ci. The vector W can be further used to
identify SDGs.

3 Methodology

STEM is in an encoder-predictor fashion (Fig. 1). The encoder represents SC and ST gene expression
vectors as embeddings in a unified latent space. The embeddings are simultaneously optimized
by two modules of predictor: the spatial information extracting module and the domain alignment
module. These two modules predict the same ST spatial adjacency in different ways. The spatial
information extracting module only uses the ST embeddings and guarantees the learned embeddings
contain spatial information extracted from the gene expression. The domain alignment module uses
SC and ST embeddings and eliminates the SC-ST domain gap by first minimizing the Maximum
Mean Discrepancy (MMD) [25] of SC and ST embeddings and then constructing ST-SC-ST spatial
associations as ST adjacency to find the optimal mapping matrix C.
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Figure 1: The schematic overview of our model.

After training, the embeddings of SC and ST are used to infer SC-ST mapping matrix and SC-SC
spatial adjacency matrix. The SDGs are found by applying the integrated gradient [26] technique as
an attribution function upon the trained model.

Encoder We input SC and ST gene expression vectors (rows in XSC or XST ) into one encoder.
As one spot in ST data contains more than one cell in SC data, the number of expressed genes in
one spot is usually more than that in one cell. To make our model robust to data sparsity, We add an
additional dropout layer [27] for ST data before the encoder. The dropout rate d is defined as follows:

d = 1− Median(nSC)

Median(nST )
(2)

where nSC and nST represent the number of expressed gene species in each cell or spot, respectively.
We use a MLP encoder to embed the expression vectors into latent embeddings ZST ∈ Rh and
ZSC ∈ Rh with the same dimension size h.

Predictor part 1: spatial information extracting module We use the ST embeddings ZST to
construct the ST spatial adjacency matrix S̃ and calculate the loss between it and the ground truth ST
spatial adjacency matrix S. The ground truth matrix S is created from the spatial coordinate labels
via a spatial kernel function φ which could be Gaussian, Mahalanobis or others. Here we use the
Gaussian kernel (see Appendix 1 for details). We apply the L1 normalization over columns in S to
let the sum of adjacency values of each spot be 1:

Sij :=
φ(Y STi , Y STj )∑

k Sik
(3)

Meanwhile, the predicted S̃ matrix is measured by the inner product of two ST embedding vectors
with softmaxing over columns:

S̃ij := softmaxcol < ZSTi , ZSTj >=
exp(< ZSTi , ZSTj >)∑
k exp(< ZSTi , ZSTk >)

. (4)

We use the cross entropy H to calculate the loss between S̃ and S:

Lextract = H(S̃, S) (5)

Predictor part 2: domain alignment module We reduce the mean distance between ST and
SC embeddings, and use these embeddings to estimate the SC-ST and ST-SC mapping matrices.
Then we exploit two mapping matrices to construct another two-step ST spatial adjacency matrix
Ŝ. As Ŝ depends on the SC-ST cross-domain spatial relationship, we can indirectly find the optimal
cross-domain relationship by directly optimizing Ŝ. The similar idea is proposed in the Haeusser’s
work [28, 29]. In our work, we extend its applicability from classification to relation construction and
fully utilize the cross domain association matrix as the SC-ST mapping matrix.
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We introduce the MMD loss on SC embeddings ZSC and ST embeddings ZST in a mini-batch to
reduce the mean distance between them (Appendix 2):

LMMD = MMD(ZSC , ZST ) (6)

We get the similarity between ST and SC embeddings as Bij :=< ZSCi , ZSTj >. We define the
mapping matrix C ∈ RM×N from SC to ST by softmaxing B over columns:

Cij := softmaxcolBij =
exp(Bij)∑
k exp(Bik)

. (7)

We also define the mapping matrix from ST to SC Ĉ ∈ RN×M by replacing B with BT . We can get
the two-step spatial adjacency matrix Ŝ ∈ RN×N from ST to ST as:

Ŝ = Ĉ · C where Ŝij := (Ĉ · C)ij =
∑
k

ĈikCkj (8)

We calculate the cross entropy loss between Ŝ and the ground truth spatial adjacency matrix S:

Ltrans = H(Ŝ, S) (9)

The total loss of our model consists of three parts (Equation 5, 6 and 9):

L = Lextract + αLMMD + βLtrans (10)

We set the hyper parameter α = 0.2 and gradually increase β from 0 to 1 during training, which
enforces the model first to rebuild the spatial adjacency in ST and then learn the spatial mapping
between ST and SC.

Attribution function The integrated gradient (IG) requires three parts for computing attributions:
the input and output of the deep learning model, and a baseline input (Appendix 3). For cell i in SC
data, we set the input as the corresponding SC gene expression vector XSC

i , the baseline as a zero
vector, and the output as the maximum value in the corresponding row in the mapping matrix Ci·:

Wi = IG(XSC
i ,0,maxCi·) (11)

As the maximum value of Ci· indicates that this cell has the maximum probability located around
some ST spot, the attribution vector shows the contribution of genes for determining this spatial
location. We use the attribution function to get the gene attribution vector of each cell in SC data and
group all attribution vectors by cell annotation (e.g. cell type or spatial regions). For a cell group of
interest, we perform the one-versus-others Wilcoxon test [25] and define genes that have significantly
higher values in that group as SDGs.

4 Experimental design

4.1 Evaluation pipeline

We design a comprehensive evaluation pipeline which includes three processes: simulation data
generation, output unification, and performance evaluation (Fig. 2).

Figure 2: The evaluation pipeline.
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Simulation data generation Transcriptomic data with spatial information at the single-cell resolu-
tion is required for evaluating the methods’ ability of inferring spatial associations. Currently, such
data can only be provided by some less popular spatial sequencing technologies [8, 30–32] which are
low-throughput and require complicated operations. We take these experimental single-cell resolution
spatial transcriptomic data as SC data with the ground-truth spatial information, and simulate pseudo
ST data by creating a spatial grid on the spatial space of these data. The detailed simulation process
can be found in Appendix 4. Each spot in the simulated pseudo ST data has the information of gene
expression, spatial coordinate and cell type proportion.

Output unification To make the results comparable, we unify the outputs of different methods
into three parts: the SC spatial adjacency matrix, the reconstructed SC spatial coordinates and the
SC-ST mapping matrix. For methods that predict SC coordinates, the SC-ST mapping matrix and
SC adjacency matrix are obtained by calculating the spatial distance between or within single cells
and spots. The closer the spatial distance between the cells or spots, the higher the weight in the
matrix. For other methods that provide the SC-ST mapping matrix, the SC coordinates are obtained
by averaging the coordinates of spots according to the mapping weights.

Performance evaluation For the first and second goals, we validate the model performance at the
single-cell level and tissue level, respectively. For the third goal, it is worth emphasizing that our
model STEM is the only one that could achieve it, and thus we validate the detected SDGs by known
knowledge. At the single-cell level, we focus on whether the spatial association within single cells
can be inferred. We use the mean squared error (MSE) as the error metric between the predicted and
true spatial coordinates. As the number of reference spots (Kref ) may affect the predicted coordinate
results, we calculate MSEs under different Kref . To measure the models’ ability of constructing the
spatial relationship among cells, we use the SC spatial adjacency matrix to calculate the hit number
which is defined as the number of one cell’s K-nearest neighbors that are successfully predicted. At
the tissue level, we focus on whether the cell type information can be correctly mapped from single
cells to spots through the SC-ST mapping matrix. We calculate the Pearson correlation coefficient
(PCC) between the predicted and true cell type spatial distribution.

4.2 Simulation experiments

We conducted simulation experiments on two datasets with the evaluation pipeline. The first dataset
is single-cell resolution mouse gastrulation data generated by seqFISH [30]. The second dataset is
mouse hippocampus data generated by Slide-seq V2 [8] with a spatial resolution of 10 µm which
is comparable to the size of a cell. Both of the datasets consist of gene expression profiles, spatial
coordinates and cell type information, and we treated them as SC data with true spatial coordinates.

We compared STEM with five methods, including Seurat [21], Tangram [22], SpaOTsc [23], Celltrek
[16] and scSpace [15]. Seurat integrates SC and ST data by performing canonical correlation analysis
on gene expression data. Tangram optimizes the mapping matrix between SC and ST data by
minimizing the cosine distance between predicted and true gene expression. SpaOTsc introduces
structured and unbalanced optimal transport to integrate SC and ST data. Celltrek builds a graph
containing both SC and ST nodes based on the random forest distance and estimates the spatial
coordinates of SC data. scSpace uses transfer component analysis to directly estimate the spatial
coordinates. The original outputs of these approaches are summarized in Table 1. We ran all these
methods with default parameters and unified the outputs. The embedding-based calculation makes
STEM the only one that satisfies both goal without any additional result transformation.

4.3 Real data application

We applied STEM to human squamous cell carcinoma (hSCC) data. The data are obtained from Ji’s
study [19] and contain paired SC and ST data from the same donor. The true spatial association
between SC and ST data is unknown. We trained a model for each donor. To explore the results, We
first verified whether STEM can reproduce the conclusion reported in the original study, and then
used STEM to gain new biological insights.
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Table 1: Original outputs of different approaches

SC-ST mapping SC-SC association SC coordinate SDG detection

Celltrek % % ! %

scSpace % % ! %

Seurat ! % % %

SpaOTsc ! % % %

Tangram ! % % %

Ours ! ! % !

4.4 Implementation details

STEM is based on the publicly available Pytorch [33] platform. The encoder is a three-layer MLP
with LayerNorm [34] regularization and ReLU activation. The hidden size is 512, 256 and 128,
respectively. The dropout rate of the Dropout Layer is 0.6, 0.8 and 0.2 for gastrulation, hippocampus
and hSCC data, respectively. During training, the AdamW [35] optimizer is applied with default
parameters. We took all SC and ST data in one training step, and sampled 2,000 SC and ST data for
MMD Loss. We didn’t observe any performance improvement by setting a larger sample size. We
used the Captum [36] package to implement the integrated gradient technique. With one NVIDIA
GeForce RTX 3090 GPU, the training process takes around 5-10 minutes.

5 Results

5.1 Results on simulation data

5.1.1 At the single-cell level

Compared with other methods, STEM achieved the lowest MSE for predicting the absolute spatial
coordinates (Fig. A2). Moreover, we found that STEM achieved the lowest MSE in the majority
of cell groups with different cell type annotations (Fig. A3 and A4), demonstrating that cell type
information does not affect the model’s ability of extracting spatial information from expression
values. Under different numbers of reference spots Kref (Table 2 and 3 right), STEM also achieved
the lowest MSE. We observed that the MSE of STEM was decreased and converged as the number
of reference spots increases. The error of Tangram and Seurat was stable, and the error of SpaOTsc
increased as the reference number increased.

We then assessed the methods’ ability of constructing the spatial relationship among single cells. on
the gastrulation data, STEM got the highest hit number, about two times as many as the second-place
method (Fig. 3a). When the true neighbor number Knbr = 200, STEM found more than 80 correct
neighbors. On the hippocampus data, STEM had a comparable performance with Tangram when
Knbr ≤ 100, and had a higher improvement as Knbr increased. And other methods showed relatively
low hit numbers. These results show that the spatial association inferred by STEM is more consistent
with the actual spatial distribution for single-cell data.

Table 2: PCC and MSE on the gastrulation data

Tissue-level PCC Cell-level MSE
Brain Card. Endothelium Gut tube Neur. Spin. Kref = 10 Kref = 30 Kref = 50 ALL

Celltrek 0.896 0.931 0.682 0.881 0.821 0.820 \ \ \ 24.193
scSpace 0.773 0.767 0.091 0.458 0.462 0.670 \ \ \ 37.684
Seurat 0.519 0.767 0.680 0.708 0.546 0.478 28.416 30.066 30.074 30.074

SpaOTsc 0.892 0.849 0.822 0.828 0.706 0.824 21.341 29.379 35.151 59.846
Tangram 0.871 0.942 0.885 0.918 0.921 0.829 29.274 29.270 29.270 29.275

Ours 0.969 0.972 0.793 0.954 0.917 0.936 16.146 16.125 16.125 16.125
*Card. = Cardiomyocytes, Neur. = Neural crest, Spin. = Spinal cord
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Table 3: PCC and MSE on the hippocampus data

Tissue-level PCC Cell-level MSE
Astr. CA region Dent. Inte. Poly. Kref = 10 Kref = 30 Kref = 50 ALL

Celltrek 0.502 0.822 0.721 0.421 0.262 \ \ \ 1120.889
scSpace 0.129 0.355 0.157 0.019 0.014 \ \ \ 926.345
Seurat 0.453 0.574 0.516 0.570 0.439 814.535 818.980 819.747 819.747

SpaOTsc 0.707 0.785 0.783 0.714 0.367 859.681 867.138 878.930 1084.062
Tangram 0.337 0.821 0.698 0.724 0.734 628.639 626.379 628.677 631.207

Ours 0.728 0.863 0.794 0.674 0.621 604.161 585.110 579.306 573.174
*Astr. = Astrocytes, Dent. = Dentate pyramids, Inte. = Interneurons, Poly. = Polydendrocytes

Figure 3: a) The hit number of different methods with different Knbr. b) Spatial subclusters and the
attribution values of representative SDGs in mouse gut tube. c) Spatial subclusters and the attribution
value of representative SDGs in mouse brain. d) The attribution heatmaps and four representative
SDGs in mouse spinal cord.

5.1.2 At the tissue level

As shown in Fig. A5, STEM and Tangram had the comparable performance across all cell types on
the gastrulation data. All methods achieved PCCs higher than 0.6 for all cell types except for Seurat
and scSpace. Seurat transfers cell type information from SC to ST data only using gene expression
information, and scSpace focuses on reconstructing the spatial location of single cells in the latent
space, which may lead to the low efficiency of these two methods in restoring the SC-ST spatial
association. STEM got higher correlations on cardiomyocytes, gut tube, brain and spinal cord (Table
2 left). By visually checking these cell types, we found that they exhibit stronger signals in spatial
distributions compared with other cell types (Fig. A6). From the biological perspective, the functions
of these cells are highly correlated with the region they are located, so it is more easily to infer their
spatial location information from gene expression profiles. For example, cells in forebrain, midbrain
and hindbrain subregions participate in different functional processes, have different cell fates, and
thus highly express different gene sets [24].

On the hippocampus data, the predicted distribution of different cell types is shown in Fig. A7. We
observed that the performance of all methods was decreased (Table 3 left) in comparison with that of
the gastrulation data, which may be because the SC data used here are not at real single-cell resolution.
STEM and Tangram were the only two methods to achieve PCCs above 0.5 on all cell types (Fig.
A8). STEM showed higher PCCs on astrocytes, Cornu Ammonis (CA) regions, dentate pyramids of
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0.73, 0.86 and 0.79, respectively. These results support our intuition that by supervising the two-step
spatial adjacency matrix in the association module, a good SC-ST mapping matrix could be learned.

5.1.3 Spatial dominate genes

We followed Lohoff’s work [24] to spatially separate the gut tube into the dorsal side and ventral
side on the gastrulation data. We found that Tbx1, Smoc2 and Kmt2b are SDGs for the dorsal side,
and Sox4, Osr1 and Podxl are SDGs for the ventral side (Fig. 3b). Among these SDGs, the spatial
patterns of Tbx1 and Smoc2 have been validated by the hybridization chain reaction experiments in
the previous study [24]. We performed a similar procedure on the brain region of gastrulation data to
spatially separate it into 3 subregions: forebrain, midbrain and hindbrain. We uncovered Fezf1,Irx3
and Sfrp1 are the representative SDGs of these three subregions, respectively (Fig. 3c). All these
genes have been identified as marker genes of the corresponding brain region in previous studies
[37–39].

STEM could reveal SDGs in a continuous manner. We focused on the spinal cord region and generated
a spatial trajectory through its spatial distribution. Along the trajectory curve, we found several
SDGs including Hoxb1, Pcdh19, Sfrp1 and Marcks that showed continuous trends (Fig. 3d). These
results demonstrate that STEM successfully identifies marker genes that have high contributions for
determining cell location, which could provide insights into the spatial formation and evolution of
cells in complex normal tissues or tumor microenvironments.

5.2 Discovery on the real dataset

We used STEM to map all the single cells in the hSCC data into the tissue spatial space (Fig. 4a).
We checked whether the results obtained by STEM support the known descriptions illustrated by the
original paper. As shown in Fig. 4b, we verified that a sub-cell type called tumor specific keratinocyte
(TSK) is colocalized with the cancer-associated fibroblast and endothelial cell at the tumor leading
edge. We compared the estimated location of TSKs with the sc-TSK score defined by Ji’s study [19]
(Fig. A9), and found STEM located TSKs in the high-score region. We then explored the spatial
distribution of other keratinocyte (KC) subtypes, including normal, tumor basal, tumor cycling, and
tumor differentiating KCs. We found that TSKs are spatially distant from them (Fig. 4c). This finding
suggests that the formation of TSKs may be caused by the difference in microenvironment. We also
found that pDC cells are located in the non-TSK leading edge region (Fig. 4d), which unveils the
mechanism of the finding reported in the original paper that pDC-enriched gene functions are active
in this region.

Figure 4: a) The hematoxylin-eosin (HE) stained image of the sequenced tissue and estimated cell
locations given by our model. b) Spatial distribution of TSKs, endothelial cells and fibroblasts. c)
Spatial distribution of other KC subtypes. d) Spatial distribution of pDC cells.

6 Discussion

Computationally building the spatial gene expression landscape at the single cell level can promote
our understanding of heterogeneity and microenvironments in tissues. We proposed a model, STEM,
to learn the spatially-aware representations of transcriptomic data via transfer learning. We designed
a comprehensive pipeline to evaluate the different methods’ ability of inferring spatial associations,
which could serve as a benchmark for future work. We conducted two simulation experiments and one
real dataset application. The results proved the superiority of STEM compared with other methods.
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STEM is a powerful model to build up a single-cell level spatial landscape by integrating SC
and ST data in a unified embedding space. Upon the model, the attribution technique is used to
computationally highlight the SDGs with high contributions to cells’ spatial location. These SDGs
could benefit the discovery of biological mechanisms and even potential drug targets.

STEM takes the advantage of deep transfer learning to eliminate the SC-ST domain gap and infer
spatial associations between and within domains. Our work demonstrates that transfer learning could
not only unify data in different domains but also be feasible to establish mapping across domains, and
knowledge can be discovered from the mapping via the attribution technique or other approaches.
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Appendix

1 Spatial adjacency matrix

Giving the ground truth ST data spatial coordinate Y ST ∈ RN×2, the pairwise spatial association
strength Sij in the ST spatial adjacency matrix S is calculated by the kernel function between
coordinate Y STi of cell i and Y STj of cell j. In our work we use the Gaussian kernel function:

φ(Y STi , Y STj ) =
1√
2πσ

exp(− (x− µ)2

2σ2
) (1)

where σ is the standard deviation and controls the width of the Gaussian ’bell’. To select a proper
size of σ, on the two simulation data we traversed the values from 0 to 3 times of distance between
two adjacent spots, and use the hit number as the evaluation metric. We found that by setting σ as the
half of the adjacent distance (σ = 3 on the gastrulation data and σ = 55 on the hippocampus data),
our model achieved the highest hit number.

2 Maximum mean discrepancy

Maximum mean discrepancy (MMD) is a distance between the mean embeddings of distributions
defined in a reproducing kernel Hilbert spaceHk with a characteristic kernel k. It has widely applied
in Transfer Learning models. In general, the data X in source domain follows the distribution Px,
and the data Y in target domain follow the distribution Py. And the mean embeddings of these
distributions Px and Py inH are unique elements µk(Px) and µk(Py). Then the MMD is

MMD(Px, Py) = ‖µk(Px)− µk(Py)‖Hk
(2)

In practice, this distance has its empirical estimation via the kernel trick. In our work, we implemented
the multi-kernel MMD, and each kernel has is the Gaussian kernel with different bandwidth.

3 Integrated gradient

A common way for humans to perform attribution relies on counterfactual intuition. To assign blame
to a certain cause, the Integrated Gradient technology implicitly consider the absence of the cause
as a baseline for comparing outcomes. Specifically, the absence is modeled as a baseline input
vector. For a deep neural network F : Rn → [0, 1], let x be the input and x′ be the baseline. The
integrated gradient (IG) is the gradient at all points along the path from the baseline x′ to the input x.
Specifically, For ith dimension for an input, the integrated gradient is defined as follows:

IG := (xi − x′i)×
∫ 1

α=0

∂F (x′ + α× (xi − x′i))
∂xi

(3)

Compared with other attribution methods, the IG satisfies the axiom of sensitivity while the others
like gradients-based methods violate sensitivity. The sensitivity is defined as: If for every input and
baseline that differ in one feature and have different predictions, the differing feature should be given
a non-zero attribution.

4 Simulation data generation

We placed the pseudo ST spots on the crossing point of the grid. We generated a 30× 40 grid and
50 × 30 grid for gastrulation and hippocampus data, respectively. The gene expression profile of
each spot is obtained by summing the expression of its surrounding single cells. We kept the spots
which contains more than 3 cells. It is noticeable that in real spatial data the tissue cannot be fully
covered by spots, so the transcripts of some single cells cannot be captured. We also take this into
account in the simulation process. The gene expression of each spot aggregates only about 50-70%
of the local surrounding single cells. In other words, one-third of single cells gene expression profiles
are not included in the ST data. As shown in Fig. A1, only the cells in red compose the spot data.
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Then the cell type proportion of each spot is calculated based on its contained single cells. So the
generated pseudo ST data contain gene expression profile, spatial coordinate and cell type proportion
information. For gene selection, we kept all 351 genes on the gastrulation data and selected the top
5,000 highly variable genes for SC and ST data on the hippocampus data.

5 Supplemental Figures

Figure A1: the pipeline of pseudo ST data simulation. Step1: Creating spatial grid. Step2: Filtering
out spots covering no more than 3 cells. Only purple spots are kept. Step3: Aggregating partial cell
gene expression. Only cells in red contribute the spot gene expression.

Figure A2: The boxplot of total MSE on gastrulation and hippocampus data. The lower the better.

Figure A3: MSE of all approaches acorss different cell types on the gastrulation data. The lower the
better. Full name in X axis: Erythroid, Gut tube, Haematoendothelial progenitors, Allantois, Lateral
plate mesoderm, Endothelium, Mixed mesenchymal mesoderm, Intermediate mesoderm, Blood
progenitors, Splanchnic mesoderm, Forebrain/Midbrain/Hindbrain, Neural crest, Cranial mesoderm,
Surface ectoderm, Spinal cord, Definitive endoderm, ExE endoderm, Anterior somitic tissues, NMP,
Presomitic mesoderm, Dermomyotome, Cardiomyocytes, Sclerotome
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Figure A4: MSE of all approaches acorss different cell types on the hippocampus data. The lower
the better. Full name in X axis: CA1/CA2/CA3 Subiculum, Oligodendrocytes, Endothelial Tip,
DentatePyramids, Interneurons, Ependymal, Neurogenesis, Subiculum Entorhinal cl3, Astrocytes,
Microglia, Endothelial Stalk, Polydendrocytes, Subiculum Entorhinal cl2, Mural

Figure A5: a) Overall PCC of all approaches on the gastrulation data. b) PCC of all approaches acorss
different cell types on the gastrulation data. Name in X axis: Cardiomyocytes, Cranial mesoderm,
Dermomyotome, Endothelium, Forebrain/Midbrain/Hindbrain, Gut tube, Haematoendothelial pro-
genitors, Intermediate mesoderm, Lateral plate mesoderm, Mixed mesenchymal mesoderm, Neural
crest, Spinal cord, Splanchnic mesoderm, Surface ectoderm
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Figure A6: Visualization of cell type spatial distribution on the gastrulation data. Above: Ground
truth. Bottom: Our prediction

Figure A7: Visualization of cell type spatial distribution on the hippocampus data. Above: Ground
truth. Bottom: Our prediction
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Figure A8: a) Overall PCC of all approaches on the hippocampus data. b) PCC of all approaches
acorss different cell types on the hippocampus data. Name in X axis: Astrocytes, CA1/CA2/CA3
Subiculum, DentatePyramids, Endothelial Stalk, Endothelial Tip, Interneurons, Microglia, Mural,
Neurogenesis, Oligodendrocytes, Polydendrocytes, Subiculum Entorhinal cl2, Subiculum Entorhinal
cl3

Figure A9: The predicted spatial distribution of TSK, endothelial and firbroblast cells (left) and the
sc-TSK score reported on Ji’s study.
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