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ABSTRACT

Formal frameworks of causality have operated largely parallel to modern trends
in deep reinforcement learning (RL). However, there has been a revival of interest
in formally grounding the representations learned by neural networks in causal
concepts. Yet, most attempts at neural models of causality assume static causal
graphs and ignore the dynamic nature of causal interactions. In this work, we
introduce Causal Process framework as a novel theory for representing dynamic
hypotheses about causal structure. Furthermore, we present Causal Process Model
as an implementation of this framework. Leveraging the inherent causality of
the RL framework, we reformulate the attention mechanism from Transformer
networks within an RL setting to infer interpretable causal processes from visual
observations. Here, causal inference corresponds to constructing a causal graph
hypothesis, which itself becomes an RL task nested within the original RL problem.
To create an instance of such hypothesis, we employ RL agents. These agents
establish links between units similar to the Transformer attention mechanism.
We demonstrate the effectiveness of our approach in an RL environment where
we outperform current alternatives in causal representation learning and agent
performance.

1 INTRODUCTION

Causality plays a fundamental role in building intelligent systems capable of physical reasoning
(Gerstenberg et al., 2020). Explicitly modeling causal relationships is increasingly recognized to
be crucial for developing robust, generalizable, and interpretable neural network models capable
of accurate prediction and effective intervention (Xia et al., 2021). Despite their black-box nature,
models such as transformers have demonstrated surprising capacity for causal reasoning (Nichani
et al., 2024; Shou et al., 2023; Melnychuk et al., 2022; Dettki et al., 2025). One explanation posits that
this is possible due to the attention mechanism forming implicit causal edges between tokens (Vaswani
et al., 2017; Rohekar et al., 2023). However, recent work has highlighted a phenomenon known
as over-squashing, in which the attention mechanism (and related message-passing mechanisms in
Graph Neural Networks) loses sensitivity to individual tokens or nodes (Barbero et al., 2024a; Alon
& Yahav, 2021; Barbero et al., 2024b; Giovanni et al., 2023; 2024; Topping et al., 2022; Scarselli
et al., 2009; Battaglia et al., 2018). This compression of information in transformer models can sever
causal chains, thus limiting the effectiveness of causal inference.

In contrast, graphical causal models, such as Pearl’s Structural Causal Models (SCMs; Pearl, 2009),
explicitly encode causal relationships and thus preserve perfect causal connectivity by design. Yet,
a key challenge for SCMs is causal discovery (Scholkopf et al., 2021): inferring the causal graph
from data. Most existing approaches assume access to a complete dataset and construct a static
causal graph. This assumption is misaligned with the nature of physical environments, where causal
influence is typically local in space and sparse in time (Pitis et al., 2020; Seitzer et al., 2021; Gumbsch
et al., 2021; Lange & Kording, 2025). For instance, objects may only interact upon contact. Recent
work has therefore emphasized the importance of local causal models (Pitis et al., 2020; Seitzer et al.,
2021; Urpi et al., 2024; Lei et al., 2024; Willig et al., 2025) that explain causal connections through
the sparsest possible graph changing dynamically over time.

Our work aims to bridge these areas by proposing a novel causal framework tailored to capture
the dynamics of physical object interactions. We propose Causal Process Models (CPMs) which
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Figure 1: Our model has three components: a vision encoder, an action encoder, and the transition
function. The transition function is an implementation of a Causal Process Model. The state is
factorized into distinct object representations, actions are mapped to force representations, and the

directed edges are causal. The model is trained via contrastive loss (Eq. 8).

reinterprets attention as a reinforcement learning problem. Instead of computing soft attention,
CPMs replace the transformer’s attention mechanism with all-or-nothing connections determined
by a reinforcement learning (RL) agent. While standard transformers process inputs through a fixed
stack of blocks in a fixed order, CPMs introduce a dynamic architecture in which blocks can be
conditionally selected, skipped, or reused. This allows the model to adaptively control both structure
and depth based on the input, enabling more efficient and interpretable causal reasoning.

Our novel causal framework is designed specifically for modeling the dynamics of physical object in-
teractions, aiming to synthesize the formal rigor of static dependency theories, e.g. Pearl’s do-calculus
(Pearl, 2009), with the intuitive strengths of process-based accounts (Russell, 1948; Salmon, 1984;
Skyrms, 1981; Dowe, 2000, see Appendix 2). Our approach explicitly addresses the limitations of
Pearlian SCMs by enabling the construction of sparse, time-varying causal graphs that reflect only the
active interactions between objects. When modeling two colliding balls for instance, our framework
only instantiates a direct causal link between the balls upon contact, for the transfer of momentum,
while leaving them causally disconnected otherwise. This yields a computationally efficient model,
scaling with actual rather than potential interactions, and one that is highly interpretable since the
causal graph mirrors intuitive physical processes.

Our main contribution are as follows

1. We formalize a framework for local causal modeling in physical environments.

2. We implement this framework in a neural architecture that dynamically infers sparse, time-
varying causal graphs by reinterpreting attention as a decision making problem.

3. We apply our model to a canonical physical interaction scenario demonstrating superior
performance and interpretability compared to densely connected models.

2 RELATED WORK

2.1 CAUSAL FRAMEWORKS

One dominant approach to causal modeling stems from Pearl’s framework of Structural Causal
Models (SCMs) (Pearl, 2009), which represents causal relationships using directed acyclic graphs
(DAGs). An SCM can be described as a tuple € := (S,[P(U)) where P is a distribution over the
exogenous variables U (i.e., variables external to the system and not caused by any variable within it)
and S is a collection of structural equations of the form:

Vi= .qu'(PanUVi)'

Each endogenous variable V; is determined by a function of its parent variables Pay; (i.e., other
variables in the system that directly influence V;) and its associated exogenous noise term Uy;,.
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While successful in many domains, standard SCMs encounter significant hurdles when applied to
systems characterized by dynamic object interactions. Consider the simple scenario of two colliding
balls. Representing this within a traditional SCM framework often requires specifying potential
causal links between all properties of all objects at all relevant timescales. This leads to densely
connected causal graphs, with the number of causal edges scaling quadratically with time, even
when interactions are sparse in reality. Such dense representations suffer from high computational
costs for inference and learning, and crucially, obscure the underlying causal structure, hindering
interpretability. Thus, a core challenge is to adapt standard SCMs to dynamically represent only the
relevant interactions as they occur, rather than needing to specify all potential dependencies.

Recognizing these limitations, other lines of research offer valuable perspectives, often aligning
closely with causal process theories (Russell, 1948; Salmon, 1984; Skyrms, 1981; Dowe, 2000).
Research in cognitive science, such as Gerstenberg et al. (2020)’s counterfactual simulation models,
leverage simulation to assess causality and responsibility in physical events, capturing process-
like intuitions. Furthermore, philosophical inquiries into causal processes by thinkers like Russell,
Salmon, Skyrms, and Dowe provide rich conceptual foundations, distinguishing causal processes
from pseudo-processes by focusing on mechanisms like causal lines (Russell, 1948), defining causality
in ontological terms (Salmon, 1984), or using conserved quantities (Skyrms, 1981; Dowe, 2000), but
typically lack the computational formalism required for direct implementation in ML systems.

2.2 NEURAL CAUSAL MODELS

Previous attempts to reconcile deep learning with SCMs have resulted in Neural Causal Models
(NCMs), which model fy, as feedforward neural nets parametrized by 6y, (Xia et al., 2021). This
solution is not satisfactory for us since that implies training arbitrarily many feedforward neural
networks for each node across time. Zecevic et al. (2021) have to tried to theoretically establish
GNNs capacity to implement SCMs, but as such, they also assume static causal graph. Melnychuk
et al. (2022) designed a Causal Transformer that can infer causality over time, yet lacks an explicit
dynamic causal graph. This is due to the reliance on the potential outcomes framework, which is not
a graph-based approach (Rubin, 1978; Robins & Hernan, 2008).

2.3 CAUSAL REINFORCEMENT LEARNING

Buesing et al. (2019) have tried to take advantage of the Pearlian causality framework by reformulating
the MDP graph as an SCM using which they designed a counterfactually-guided policy search. A
similar approach has been pursued by Gasse et al. (2023) in which they draw parallels between
confounding variables and offline RL. Neither of these approaches considers the causal structure that
generates the dynamics of the environment as suggested by Bareinboim et al. (2021).

3 CAUSAL PROCESS FRAMEWORK

Pearl’s structural causal models (SCMs) and do-calculus (Pearl, 2009) provide a powerful foundation
for causal reasoning. However, SCMs, by design, cannot be applied to dynamic physical systems
requiring object-centric representations and real-time causal interactions. Prior approaches (Buesing
etal., 2019; Gasse et al., 2023) have attempted to bridge model-based RL and causality by representing
the full Markov Decision Process (MDP) state s’ using a single node and modeling actions as direct
interventions in a static causal graph. However, this approach is limited because it circumvents the
problem of inferring the causal structure that generates the underlying environment dynamics (i.e.,
the causal context; Butz et al., 2025), and focuses only on the causal implications of action sequences.

3.1 CAUSAL PROCESS MODELS (CPMS)

Here, we adopt an object-centric factorization of states, where each object in a scene as well as the
forces causally influecing them are modeled as nodes (see Appendix A for details). Let F and O
represent the sets of force nodes and object nodes, respectively. Let’s denote the power set of all
possible edges between forces F' € F and objects O € O as £ (F, O). For simplicity, we assume the
existence of only one type of object and force nodes. In the future, our framework will be extended
to multiple types.
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We introduce two types of controller functions that control the construction of a causal subgraph
Gor.ot+1 defining the causal chain of object-to-force and force-to-object connections, respectively.

The interaction scope controllers, pt,, are expressed as a probability distribution over edge subsets
& (O, F*) conditioned on O,

Py £(0FF) = [0,1],

(D
t _ t t t t
It P [Gorr = ({04, FLY o enen - {E (O FD Yy )|
The effect attribution controllers , pt, .,  describe a distribution over edge subsets £ (F*, O*!) and
are conditioned on both O and F*:

Poor € (FLO™) —0,1],
' P {G}_t:otﬂ - <{F£“ Of;rl}(m,n)EJWxN ’ {E (F]t’ O§+1)}(j,i)61t)} )
2

In the equations above, E (O}, F}) and E (F}, O!*1) represent directed edges from O} to F. '+ and
from F’ Jt to OEH, respectively. The sets of index tuples J* C N x M and I* C M x N identify these
edges, Got. 7t == (th:f,,, G‘ét:f,,) and G rt.ot+1 1= (G)’m:om , G?tzotﬂ) stand for the random
variables describing the causal subgraphs with nodes G‘ét:ft, edges Gét:F and nodes G;tzotﬂ,
edges fot: or+1 Tespectively.

As the name suggests, interaction scope controllers decide the causal context for interactions, i.e.,
they decide which objects are currently relevant. The effect attribution controllers choose to which
force node to relay the context information. With the help of these controllers, we define the CPM by
specifying how each node is updated over time:

t._ t—1 t—1 t—1 t—1
Fy = [fr (Fj A0 }i\(i,peﬂ—l) st.J ~po

3)
t._ t—1 t t—1 t—1
0t = fo (Oi {FY, (N,)Ep_l) st. I pld
Thus, update functions fz and fo are force- and object-specific (respectively) and invariant to the
number of inputs (i.e., size of the parent node set). When interventions occur at time step ¢, they
introduce new force nodes, denoted as act(F!) representing externally applied actions. At this point,
the subgraph corresponding to time steps ¢ > ¢ gets recomputed following Algorithm 1.

3.2 INDUCTIVE BIASES

To constrain complexity and utilize prior knowledge, we introduce two inductive biases. First, we
restrict each force node to connect to exactly two different object nodes. This corresponds to the
assumption that typically not more than two objects interact at a certain time step. This restriction
can be lifted later to generalize to hypergraphs for more complicated systems (e.g., 3-body problem).
Second, we enforce a mirroring constraint between force nodes and object nodes to ensure
coherence in causal attribution and prevent nonsensical unidirectional relationships. Intuitively, at
time ¢ + 1, a force must influence exactly one of the objects it has taken as input at time ¢. Similarly,
if an object node has been affected by a force node at time ¢ + 1, it must have affected that same force
node in the previous time step ¢ (see Fig. 1 and Appendix B.1 for a formal definition).

4 MODEL

We base our model implementation on the Structured World Model (C-SWM; Kipf et al., 2020). The
model consists of an object-centric vision encoder, an action encoder, and a transition function. We
keep the structure of the vision and action encoders intact, but modify the transition function.
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Figure 2: Causal Process Block. Modified transformer with attention replaced by gate mechanism
(see Appendix B.3). Incoming causes O! are pre-determined by the causal controllers. Of and F'** are
divided into mutable and causal regions including their intersection.

The vision encoder is a CNN-based object extractor E.y, operating directly on images and outputting
I feature maps. Each feature map m! = [Eey(s")]; acts as an object mask where [. .. ]; is the selection
of the i feature map. An MLP-based object encoder E,,. with shared weights across objects maps
the flattened feature map m} to object latent representation: O} = Een(m}). Additionally, an
MLP-based action encoder maps action a® to force latent representation: F'* = A(a?).

Next we introduce our new transition function (Sec. 4.1) before detailing how construct the causal
graph on the fly using reinforcement learning (Sec. 4.2).

4.1 CAUSAL TRANSITION FUNCTION

Our main innovation is the transition function as a neural network implementation of a CPM. We use
two feedforward neural networks, fr(...;0r) and fo(...;00), shared by all the force and object
nodes respectively. The force F! and object O} vectors processed by these neural networks come
with inductive biases. Based on mutability, causal relevance, and control relevance, the force vector
F jt is divided into 23 — 1 = 7 (all possible combinations except the case with a sub-vector carrying
none of these features) sub-vectors of equal size d where a sub-vector’s identity determines how it
is being affected by the neural networks:

Fnzﬂ%eﬂf.wzqt.wgﬂt.wgﬂt.ggﬂt

Vi b b ) )
F; F; F;

3 [%9ﬂt.ggfy}.

F;’ F’ F;
“

In Eq. 4, M stands for mutability, C' for causal relevance, K for control relevance, and e indicates the

presence of a feature, while o is the absence. We are going to use the following shorthand notation:

t

LI L A G ML

J J J J

The object vector O! is divided into 8 subvectors with the first 7 being similar to that of F} and an
t
. MC K . . .
additional [o o o} that stands for the part of the object representation that does not change, and is
neither causally, nor control relevant. The goal here is to enforce inductive biases that will result in
learned semantic encoding; for example, if the force F' represents collision between two objects O
and O3, the masses of these objects will be learned to be causally relevant but immutable, belonging

M C K1! . . .
to {o ° o} . However, their velocities will be learned to be both mutable and causally relevant
o

; \
belonging to [1\./1 S 101 o Additionally, their light reflectance will be learned to be mutable but not

t
causally relevant for the collision momentum belonging to [Ao/f S Icﬂ o See Appendix B.2 for the

further constraints we impose on vector representations.

The actual implementation of the causal process blocks fo (- | 0p) and fr (- | 0F) is quite
similar to that of transformer blocks, but with the attention mechanism (Vaswani et al., 2017) replaced
by indices of the chosen force and object nodes (tokens in transformers). See Appendix B.3 and
Fig. 2 for more details.
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4.2 CAUSAL CONTROLLER
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Figure 3: Causal MDP used by the reactive agents to construct causal process graphs. Agents
successively add edges to the causal graph. Each causal graph has a corresponding sequence of
frames next to it.

The main proposal of our model is that we perform graph construction through sequential decision
making using the interaction scope and effect attribution controllers. Leveraging the inherent causality
of the RL framework, we treat causal discovery as a multi-agent RL problem in which one agent
determines the scope of interacting objects (7o (O') := pl,) and another determines how force

effects are attributed (1o, p (OF, F'11) := pby 7).

More specifically, for the computations above, we assume the chosen indices I* and J* are provided
by the agents 7o, r and mo. The two agents alternate outputting an action. An action taken by
To corresponds to two edge additions E (O}, F'*1) , E (O}, F**1) ;i # j to the graph. Whereas
an action taken by mo, 7 results in one edge addition E (F*, O?) (see Fig. 3). The index set I* is

sampled using the policy of the agent mp ., 7:
Kt o Kt T
( [.} r Wagenl) ( [.} o Wctrl)

7 ®

It ~ TOF (It | Gt,ll)(g(_}]:) = softmax

where Yo7 = {Wa]g:em, W} and d is the dimension of Waé:em’s codomain, Wa]g:em € Ridrxd,
J&, on the other hand, is sampled using the policy of the agent mo:

Jt~ 7o (Jt | Gt,w@) = softmax

(6)

where Yo := {W G, Wi }» 0 is a dummy variable indicating no-choice, and triu is an operator
picking out the upper triangular segment of a matrix (excluding its diagonal), and d is the same as
above.

We then define separate reward functions for 7o, and Tp:
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Note that this reward is a priori undefined and needs to be learned, making this an inverse reinforce-
ment learning task.

5 TRAINING

We use three-staged training for our model. In the first stage, we freeze the weights of 7 and 7o, 7,
and train the rest of the model assuming a complete causal graph with contrastive loss (Kipf et al.,
2020):

Lepw (O, at, s, 5, KC) = ||CPM (V (s']0v) , A (a']0.4) ,K[00,0) — V (5771 |0v) |

8
+max (0,8~ [V (3[6v) — V (1 [6v) ) ©

where © = [0v;04;00;0F;0r0..; 0ro ], CPM is the Causal Process Model, V is a vision encoder,
A is an action encoder, s! is state, a’ is action, K is a layered multi-partite graph with adjacent layers
forming complete bi-partite sub-graphs, and 5! is a state sampled at random from the experience
buffer to serve as a negative example for the contrastive loss. The first summand is the prediction error
and the second summand is contrastive regularizer. The hinge margin (3 is set to be 1 as recommended
by Kipf et al. (2020).

In the second stage, we flip the roles to train the parameters of 7o and 7o, r using policy gradient
(Williams, 1992), and freeze the rest of the model. The loss at this stage is defined as:

L, (|G 10,6, 0) == logmowr (I'|G' Your) Y7 Rowr (G7,GT |0ro., )
t T

_ Zlogﬂ'@ (Jt|Gt,wo) Z’yTRo (GT,GT+1|GRO) R
t T
)
where U = [Yoor; Yol

In the third stage, we employ iterative training of the CPM and agents 7o, mo«,  Where we minimize
Lcpm and £, in an alternating fashion. However, we add regularization terms to Lcpy to account for
reward learning:

Ll (®|st,at,st+1,§t, (GT,IT, JT,GT“)T \1/) = Lomm (®|st,at,st+1,§t, (IT,JT)T) +
2 _m HROHF (67,67 orpo ) - <10g7704—>]-" (I"|G7, bowr) — ymaxlogmoor (r

a*v0)|
10

where we assume log T 7 (IH|GE Yoo r) o Q (G 1Y) and log o (JHGE, o) o< Q (G, JY).
The regularization terms are a reformulation of the converged Q-learning update (Watkins & Dayan,
1992). We set 4 = 0.1, v = 0.9 in the above loss functions.

)

Z:p, HR@ (GT,GT+1‘0RO> — (logﬂo (JT|GT,’L[)(9) — 'yﬁzri log mo (JT+1

6 EXPERIMENTS

We hypothesize that our model outperforms models that assume dense causal graphs to capture
physical interactions in: 1) longer prediction horizons; 2) test-time generalization across unobservable
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Figure 4: Prediction results for a synthetic physics environment in a) observed and b) unobserved
settings (Ke et al., 2021) Top: Description of the task. Bottom: Prediction metric vs prediction
horizon for 5 objects (average of top 8 out of 10 seeds).

properties; 3) robustness with regards to the number of objects in the scene; 4) solving downstream
tasks. We use the physics environment designed by Ke et al. (2021) to empirically answer these
questions (Fig. 4 top). The environment consists of different objects colored according to their
weights. The only force in this environment is pushing (double-pushes are not allowed) and only
heavier objects can push lighter ones. The environment has two settings: an observed setting (Fig. 4a)
where weight corresponds to the intensity of a particular color and an unobserved setting (Fig. 4b)
where different colors did not systematically map to different weights.

6.1 COMPARISON BASELINES

We compare our model against 4 baselines, a graph neural network (GNN) (Scarselli et al., 2009), a
transformer network (Vaswani et al., 2017), a recurrent independent mechanisms (RIMs) network
(Goyal et al., 2021) , and a modular network which has a separate MLP to model each object’s
dynamics.

6.2 PREDICTION METRICS

To investigate robustness towards the length of prediction horizons, we trained the model to make
1-step predictions in the Observed setting with 5 objects and then tested for 5 and 10 steps (Fig. 4a
bottom). We used Hits at Rank 1 (HQ@1) to measure model performance as an all-or-nothing metric
measuring how often the rank of the predicted representation was 1 when ranked against all reference
state representations (see Fig. 8 for comparison to other metrics). Here, our model consistently
outperformed the baseline models, with the gap increasing over longer time horizons.

Next, to estimate the test-time generalization across unobservable properties, we trained our model in
the Unobserved setting where generalization at test time is harder due to previously unseen weights.
Again, our model consistently outperformed the baselines displaying capacity to generalize also in
this domain (Fig. 4b bottom; see Fig. 7 for more results).

Additionally, we tested robustness with regards to the number of objects in the scene. We trained our
model to make 1-step predictions in the Observed setting with 3-7 objects and then tested for 5 steps
(Fig. 6). Here as well, our model outperformed the baselines in all but 3-object setting.

6.3 DOWNSTREAM RL TASKS

To make sure the above metrics overlap with the learned model’s usefulness for downstream tasks, we
also tested our CPM'’s capacity to serve as a world model for a model-based RL agent. The agent’s
task was to move an object to a certain location each taken step resulting in negative reward. In the



Under review as a conference paper at ICLR 2026

Unobserved: 1-step Unobserved: 5-step Unobserved: 10-step

-0.6
-0.8

-1.0

Mean Reward

-1.2
— -1.0 e i
| cPM CPM —-1.4 cPMm
— GNN —— GNN —— GNN
-0.4 — Modular 12 —— Modular —— Modular
RIM . RIM -1.6 RIM
Transformer Transformer Transformer

3 4 5 6 7 3 4 5 6 7 3 4 5 6 7
Number of Objects Number of Objects Number of Objects

Figure 5: Downstream RL results over number of objects in the Unobserved setting. Mean reward vs
number of objects. All results are the average of top 8 out of 10 seeds

Unobserved setting, our model was consistently better than the baselines (Fig. 5¢). In the Observed
setting, our model outperformed the baselines for all settings except for the 3-object setting and
7-object 10-step prediction setting (Fig. 9b).

7 DISCUSSION

In this paper, we introduced the Causal Process Framework, a novel approach for modeling the
dynamics of physical object interactions. Our key contribution is the Causal Process Model (CPM),
which implements this framework by reframing the attention mechanism as a reinforcement learning
problem. Instead of the soft, dense connections typical of Transformers, our model employs RL
agents to dynamically construct sparse, time-varying causal graphs. Our experiments in a simulated
physics environment show that this approach not only improves prediction accuracy and downstream
task performance compared to GNN and modular baselines, but also excels in generalization and
scalability.

The superior performance of our model, particularly over longer prediction horizons and with a
varying number of objects, lends strong support to our central hypothesis. We argue that by explicitly
modeling only active causal links, the CPM avoids the pitfalls of dense message-passing architectures.
Our discrete, “all-or-nothing” connections, determined by a goal-oriented RL agent, preserve the
salience of individual interactions. This leads to more robust and precise world models, which proved
crucial for the model-based RL agent’s success in downstream tasks. Furthermore, the model’s ability
to generalize to unobserved object properties suggests that it learns an underlying model of physical
dynamics rather than memorizing superficial correlations.

Despite these promising results, the present work has several limitations that open clear avenues
for future research. A crucial next step is to deepen the analysis of the learned representations. We
will conduct experiments to decode the semantic content of the force and object sub-vectors (e.g.,
mutable, causal, and controllable components) to verify that our inductive biases are effective in
fostering an interpretable internal structure. To fully validate our claims of causal discovery, we
will also compare the inferred graphs against the ground-truth interaction graphs of the simulation,
providing a quantitative measure of the model’s ability to recover the true causal processes.

Looking forward, we intend to scale our model to more complex and realistic domains. A key
challenge will be to extend the framework beyond pairwise interactions to handle hypergraphs, which
are necessary for scenarios like the three-body problem or multi-object collisions. Ultimately, we aim
to apply our CPM to high-dimensional, real-world settings, such as controlling a 3D robotic arm from
visual input. Success in these environments would demonstrate the framework’s potential to bridge
the gap between formal causal reasoning and modern deep learning, paving the way for more robust,
generalizable, and interpretable agents that can safely and effectively interact with the physical world.
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A OBIJECT-CENTRIC CAUSAL DYNAMICS

Consider two objects O; and O (depicted in magenta) with a force F' (depicted in violet) acting on
them:

0,50,

This recovers the familiar structure of a directed acyclic graphs (DAGs) from Pearl’s causal formalism
Pearl (2009). However, in physical interactions, such as in a collision, it is not always clear which
object is the “cause” since both are affected simultaneously. A more intuitive representation would
be a bidirectional edge:

016%6&

However, DAGs prohibit cycles and bidirectional edges. To resolve this, we introduce temporal
dynamics which represent causal effects as unfolding over time rather than as a simultaneous influence.
Thus, a collision between object O, and object O yields forces F5 and F3 as emerging from the past
state and influencing future object states:

o /
Ol — ot
Fs :
0§ =5 — Oy
Yet, this representation still has drawbacks. Specifically, we break the identity of the force F' into F»
and F3 which, in principle, can act as separate causal links (F; and F}; can be thought of as inertia).
This becomes apparent when interventions are applied. Let us imagine that somebody picks up object
O just before it collides with O. This can be represented by a do-calculus-like intervention applied
to either O! or O'"':

F
rop B o o i
Fy \\\\\EE\\\\\$
oy — " % ot Oy —— 3 o
2 Fy 2 2 Fy 2

When the intervention is applied to O, the graph structure is preserved, thus implying a no-collision
scenario (one of the balls was lifted). Yet, the same graph can also imply a collision scenario. This
kind of setup necessitates having causal links between objects that can potentially collide irrespective
of the actualization of said collision. While this approach can work in principle, it results in extremely
dense graphs with complete subgraphs per time step, especially in cluttered scenes. Ideally, we would
like to have causal links in our graph if there is an actualized interaction between the involved objects.

On the other hand, intervening on ()i+l results in a graph a with counter-intuitive interpretation: O
gets lifted at time step ¢ + 1, while O, behaves as if a collision has happened. This is due to the split
of F'into F> and F3 since an intervention removes F3 while leaving F5 untouched. To tackle the
aforementioned issues, let us re-imagine force edges as nodes and re-introduce F5 and F3 as a single
node F' and extend the time horizon by a step.

oi1 ot

t—1 t t+1
o) o} o}

Now, imagine, just like before, the ball O, gets picked up at time step ¢. In do-calculus terms, this
amounts to intervention to O} which results in mutilation of the edge O~ —O!
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021571 /\ Oq O§+]
e

0y O} oL

While the problem of splitting of the force identity seems to be resolved here, the graph structure
modeling the collision remains preserved despite the intervention. As mentioned before, this can
be addressed by complete subgraphs per time step, which is not desirable for our purposes. This
problem arises due to the inclusion of time dynamics into our graphs. Unlike in Pearlian Causality,
in physics, interventions at a time step have implications for the causal connections corresponding
to downstream time steps. To account for that, we have to re-imagine interventions under a new
framework that takes physical processes and time into account (see Algorithm 1).

B MODEL DETAILS

B.1 INDUCTIVE BIAS

We introduce two inductive biases: (1) limiting each force node to interact with exactly two objects to
reflect pairwise interactions, and (2) enforcing a bidirectional mirroring constraint to ensure temporal
coherence in causal attribution. Formally the latter is defined as:

Vi, gkt : {E(OL, Fi*Y), E(O}, FI™)} € Goipin =
E(FIT, 00 € Goipen YE(FIT 00 € Goipeins
Vi, j,t :E(FiT, O € Goiprn = E(O, F/Y) € Goupi-
B.2 VECTOR CONSTRAINTS
e M .M . . .

Mutability is coded by e. If o, the corresponding sub-vector does not change over time, i.e., an
M7t vl

immutable sub-vector does not change over time: V¢, j : [o} {o} .

FJ

J

. e} . .. C
Causal relevance is coded by e. Perturbing the sub-vectors of the parent with o does not affect the

child nodes, i.e., only the causally-relevant . sub-vectors affect the child nodes:

Vi, m :1 - m;l — Jo (Olt" {7 gwer: ;90> =fo (Of’ {ﬁfﬂ}j\(m)eﬂ ;90) '

) K K . .
Lastly, control relevance is coded by e. Two force vectors whose sub-vectors with e are identical
have identical control functions that are conditioned on them, i.e., control functions are conditioned
only on the control-relevant sub-vectors :

K} t+1 B {K} t+1 i
B.3 CAUSAL PROCESS BLOCK

Given the data F'*, O%, ..., O!, and the chosen indices J*, we calculate F**! in the following way:

F' = fp (F',04,...,04,J" | 0F),
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with O also calculated similarly.

1 ak
gate := 7 Z ({o] o Wg]a:te> Woaput

t
residual := gate + [1\04] ,
F

iVakan
{o} = Xeate£t0 © FFN (Norm (residual)) + residual,
F

et )

where 0p := {WZe, Wehipus W1, Wa, by, by } FFN is a feed-forward neural network FFN(z) :=

max (0, zW7 + by) Wa+bo, Wg’;e is the analogue of the attention mechanisms value token projection,

and Woftpm is again the analogous out-projection that maps the token from the attention dimension
back to residual dimension (Vaswani et al., 2017).

C PLOTS

The y-axis in Figure 8 uses Mean Reciprocal Rank, i.e., average inverse rank:

1N 1
MRR = — —
N Z rank,,’
n=1
where rank,, is the rank of n" sample over all reference state representations.

Observed: 5-step
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Figure 6: Prediction metric vs number of objects for 5-steps.
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Figure 7: Prediction Metrics: Hit-at-One.
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Figure 9: Downstream RL results over number of objects in the Observed setting. Mean reward vs
number of objects. All results are the average of top 8 out of 10 seeds

D

ALGORITHMS

Algorithm 1 Interventions under Causal Process Framework

Require: 7', O fr, fo,plo 7. P, act (FE),GOIIOT,IS e {1,...,T},i € {1,...,I},j €

(1,...,.7}

Ensure: Output result éol .OT

1:

SANE A

~

10:
11:

12:
13:

14:

15:
16:
17:

Initialize F7 := {Ff} UFt

> Loop fromt = fup to T'
> Update the graph

> Sample new edges
> Loop from? = 1upto ]

> Update the nodes

> Update the graph

> Sample new edges
> Loop from j = 1upto J

> Update the nodes

Initialize Of—1 .= Ot -1 }

s o T t—1 ot 3
Initialize J* := {(4, )} s.t. E (Oi 7F7t) € Goioi pi
Initialize G101 == Gor,pi-1
fort=1¢,...,Tdo

601:.7:" = (‘ftoé(\’})lzotl’ {E (65_1’ﬁjt)} . Uéglzot*1
) (i,5)eJt
t
I~ 05,7
fori=1,...,Ido
0= fo (0 (R, L)
J ’ P ilGaert
end for
éol:of = <(5toég1:}'” {E (ﬁﬂt’ 6f> }(j i)elt Uéélt}_t)
t t
for;=1,...,Jdo
B = o (B, {01}
i I\ F9 e
end for
end for _
return Go1.or

18



	Introduction
	Related Work
	Causal frameworks
	Neural Causal Models
	Causal Reinforcement Learning

	Causal Process Framework
	Causal Process Models (CPMs)
	Inductive biases

	Model
	Causal Transition Function
	Causal Controller

	Training
	Experiments
	Comparison Baselines
	Prediction Metrics
	Downstream RL tasks

	Discussion
	Object-centric Causal Dynamics
	Model details
	Inductive bias
	Vector constraints
	Causal Process Block

	Plots
	Algorithms

