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ABSTRACT

Most neural models of causality assume static causal graphs, failing to capture
the dynamic and sparse nature of physical interactions where causal relationships
emerge and dissolve over time. We introduce the Causal Process Framework and
its neural implementation, Causal Process Models (CPMs), for learning sparse,
time-varying causal graphs from visual observations. Unlike traditional approaches
that maintain dense connectivity, our model explicitly constructs causal edges only
when objects actively interact, dramatically improving both interpretability and
computational efficiency. We achieve this by formulating causal discovery as a
multi-agent reinforcement learning problem, where specialized agents sequentially
decide which objects are causally connected at each timestep. Our key innovation
is a structured representation that factorizes object and force vectors along three
learned dimensions (mutability, causal relevance, and control relevance), enabling
the automatic discovery of semantically meaningful encodings. We demonstrate
that a CPM significantly outperforms dense graph baselines on physical prediction
tasks, particularly for longer horizons and varying object counts.

1 INTRODUCTION

Causality plays a fundamental role in building intelligent systems capable of physical reasoning
(Gerstenberg et al., 2020). Explicitly modeling causal relationships is increasingly recognized to
be crucial for developing robust, generalizable, and interpretable neural network models capable
of accurate prediction and effective intervention (Xia et al., 2021). Despite their black-box nature,
models such as transformers have demonstrated surprising capacity for causal reasoning (Nichani
et al., 2024; Shou et al., 2023; Melnychuk et al., 2022; Dettki et al., 2025). One explanation posits that
this is possible due to the attention mechanism forming implicit causal edges between tokens (Vaswani
et al., 2017; Rohekar et al., 2023). However, recent work has highlighted a phenomenon known
as over-squashing, in which the attention mechanism (and related message-passing mechanisms in
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Figure 1: Dynamic Causality: (a) In many physical domains, such as a game of billiards, objects
interact only sparsely. (b) Static causal graphs must encode all possible interactions, resulting in
dense connectivity that fails to capture this local sparsity. (c) In a Causal Process Model (CPM), an
RL agent dynamically constructs a causal graph by connecting forces and objects through process
blocks, yielding a sparse, dynamic causal graph that reflects the actual interactions at each timestep.
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Figure 2: Model Overview: Our model has three components: a vision encoder, an action encoder,
and a transition function. The transition function is an implementation of a Causal Process Model.
The state is factorized into distinct object representations, actions are mapped to force representations
that act as causal interventions, and the directed edges are causal.

Graph Neural Networks) loses sensitivity to individual tokens or nodes (Barbero et al., 2024a; Alon
& Yahav, 2021; Barbero et al., 2024b; Giovanni et al., 2023; 2024; Topping et al., 2022; Scarselli
et al., 2009; Battaglia et al., 2018). This compression of information in transformer models can sever
causal chains, thus limiting the effectiveness of causal inference.

In contrast, graphical causal models, such as Pearl’s Structural Causal Models (SCMs; Pearl, 2009),
explicitly encode causal relationships and thus preserve perfect causal connectivity by design. Yet, a
key challenge for SCMs is causal discovery (Schölkopf et al., 2021): inferring the causal graph from
data. Most existing approaches assume access to a complete dataset and construct a static causal
graph, e.g., for all possible interactions of three billiard balls a dense graph is necessary (see Fig. 1a).
This assumption is misaligned with the nature of physical environments, where causal influence is
typically local in space and sparse in time (Butz, 2017; Pitis et al., 2020; Seitzer et al., 2021; Gumbsch
et al., 2021; Lange & Kording, 2025). For instance, objects may only interact upon contact. Recent
work has therefore emphasized the importance of local causal models (Pitis et al., 2020; Seitzer et al.,
2021; Urpı́ et al., 2024; Lei et al., 2024; Willig et al., 2025) that explain causal connections through
the sparsest possible graph, which changes dynamically over time.

Our work aims to bridge these areas by proposing a novel causal framework tailored to capture the
dynamics of physical object interactions. We propose Causal Process Models (CPMs), as a neural
implementation of this framework casting the construction of sparse dynamic causal graphs as a
sequential reinforcement learning (RL) problem. Instead of relying on dense message passing
(e.g., soft attention or standard GNNs, Fig. 1b), CPMs use RL agents to dynamically determine
all-or-nothing connections between entities (Fig. 1c). This allows the model to adaptively control
connectivity based on the input, avoiding the over-squashing problem and enabling more efficient
and interpretable causal reasoning.

Our novel causal framework is designed specifically for modeling the dynamics of physical object
interactions, aiming to synthesize the formal rigor of static dependency theories, e.g. Pearl’s do-
calculus (Pearl, 2009), with the intuitive strengths of process-based accounts (Russell, 1948; Salmon,
1984; Skyrms, 1981; Dowe, 2000, see Section 2 below). Our approach explicitly addresses the
limitations of Pearlian SCMs by enabling the construction of sparse, time-varying causal graphs that
reflect only the active interactions between objects. When modeling two colliding balls for instance,
our framework only instantiates a direct causal link between the balls upon contact, for the transfer
of momentum, while leaving them causally disconnected otherwise. This yields a computationally
efficient model, only scaling with actual rather than all potential interactions, and one that is highly
interpretable since the causal graph mirrors intuitive physical processes.

Our main contributions are: 1) We formalize a Causal Process Framework (CPF) for local causal
modeling in physical environments. 2) We implement this in a neural architecture as a Causal Process
Model (CPM) to dynamically infer sparse, time-varying causal graphs by framing edge selection
as an RL problem. 3) We apply our CPM to physical interaction scenarios, demonstrating superior
performance, interpretability, and scalability compared to densely connected models.
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2 RELATED WORK

2.1 CAUSAL FRAMEWORKS

Pearl’s (2009) framework of Structural Causal Models (SCMs) is a dominant approach to causal
modeling, by representing causal relationships using directed acyclic graphs (DAGs). An SCM can
be described as a tuple C := (S,P(U)) where P is a distribution over the exogenous variables U
(i.e., variables external to the system and not caused by any variable within it) and S is a collection of
structural equations of the form:

Vi = fVi
(PaVi

,UVi
).

Each endogenous variable Vi is determined by a function of its parent variables PaVi (i.e., other
variables in the system that directly influence Vi) and its associated exogenous noise term UVi .

While successful in many domains, standard SCMs require extensions to handle systems characterized
by dynamic object interactions; without such extensions, they fail to adequately capture the temporal
and structural intricacies of such systems (Rubenstein et al., 2016; Weber, 2016; Blom et al., 2020;
Boeken & Mooij, 2024). Consider the simple scenario of two colliding balls shown in Fig. 1a.
Representing this within a traditional SCM framework often requires specifying potential causal
links between all properties of all objects at all relevant timescales. This leads to densely connected
causal graphs (Fig. 1b), with the number of causal edges scaling quadratically with time, even
when interactions are sparse in reality. Such dense representations suffer from high computational
costs for inference and learning, and crucially, obscure the underlying causal structure, hindering
interpretability. Thus, a core challenge is to adapt standard SCMs to dynamically represent only the
relevant interactions as they occur, rather than needing to specify all potential dependencies.

Recognizing these limitations, other lines of research offer valuable perspectives, often aligning
closely with causal process theories (Russell, 1948; Salmon, 1984; Skyrms, 1981; Dowe, 2000).
Research in cognitive science, such as Gerstenberg et al. (2020)’s counterfactual simulation models,
leverage simulation to assess causality and responsibility in physical events, capturing process-
like intuitions. Furthermore, philosophical inquiries into causal processes provide rich conceptual
foundations, distinguishing causal processes from pseudo-processes by focusing on mechanisms
like causal lines (Russell, 1948), defining causality in ontological terms (Salmon, 1984), or using
conserved quantities (Skyrms, 1981; Dowe, 2000). However, this philosophical tradition lacks the
computational formalism required for direct implementation in ML systems. Our Causal Process
Framework bridges this gap by providing a computationally tractable formalism that integrates
process-based intuitions with graphical causal models, enabling dynamic and sparse representations
suitable for learning from visual data in physical environments.

2.2 NEURAL CAUSAL MODELS

While philosophical causal process theories offer intuitive insights into dynamic physical interactions,
their abstract nature limits direct application in scalable machine learning systems. To operationalize
these ideas computationally, researchers have sought to integrate causal process intuitions with
neural architectures, particularly by embedding SCMs into deep learning frameworks. Previous
attempts to reconcile deep learning with SCMs have resulted in Neural Causal Models (NCMs),
which model fVi as feedforward neural nets parametrized by θVi (Xia et al., 2021). Yet this solution
still suffers from the disadvantage of needing to train arbitrarily many feedforward neural networks
for each node across time. To address this parameter explosion, Zecevic et al. (2021) have tried to
theoretically quantify the capacity for GNNs to implement SCMs, but are restricted to the assumption
of static causal graph. In contrast, Melnychuk et al. (2022) designed a Causal Transformer that
incorporates temporal dynamics to infer causality over time, yet is still unable to yield interpretable
graph representations. This limitation arises from its reliance on the potential outcomes framework
(Rubin, 1978; Robins & Hernan, 2008), which focuses on estimating counterfactual outcomes without
explicitly representing causal relationships as graphs, thus making it less suitable for discovering and
utilizing sparse, time-varying structures.
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2.3 CAUSAL REINFORCEMENT LEARNING

Buesing et al. (2019) have tried to take advantage of the Pearlian causality framework by reformulating
the MDP graph as an SCM using which they designed a counterfactually-guided policy search. A
similar approach has been pursued by Gasse et al. (2023) in which they draw parallels between
confounding variables and offline RL. Neither of these approaches factors the MDP state space
into distinct object-centric nodes and their causal relations, instead focusing on the aforementioned
inherent causality of the MDP structure as suggested by Bareinboim et al. (2021).

3 CAUSAL PROCESS FRAMEWORK

Pearl’s structural causal models (SCMs) and do-calculus (Pearl, 2009) provide a powerful foundation
for causal reasoning. However, without extensions, it is not straightforward to apply SCM to dynamic
physical systems requiring object-centric representations and real-time causal interactions. Prior
approaches (Buesing et al., 2019; Gasse et al., 2023) have attempted to bridge model-based RL and
causality by representing the full Markov Decision Process (MDP) state st using a single node and
modeling actions as direct interventions in a static causal graph. However, this approach is limited
because it circumvents the problem of inferring the causal structure that generates the underlying
environment dynamics (i.e., the causal context; Butz et al., 2025), and focuses only on the causal
implications of action sequences.

3.1 CAUSAL PROCESS MODELS (CPMS)

To address the inability of SCMs to capture sparse, time-varying interactions, the computational
burden of dense connectivity, and the loss of causal information in over-squashed message-passing,
we introduce Causal Process Models (CPMs). CPMs dynamically construct sparse causal graphs that
represent only active interactions, enabling both computational efficiency and interpretable causal
structure in physical environments.

We adopt an object-centric factorization of states, in which physical objects are represented separately
as nodes O = {O1, O2, ..., ON} (e.g., balls) and interactions between objects are represented as
force nodes F = {F1, F2, ..., FM} (e.g., collisions). At each timestep t, we have object states
Ot = {Ot

1, ..., O
t
N} and force states F t = {F t

1 , ..., F
t
M}. The key insight is that not all objects

interact at all times, hence we need to dynamically determine which causal edges are active.

3.1.1 DYNAMIC CAUSAL GRAPH CONSTRUCTION

To dynamically determine active causal edges in the graph, CPMs employ two types of specialized
controller functions: interaction scope controllers ρtO determine which objects interact, that is, ex-
change forces (e.g., based on spatial proximity), while effect attribution controllers ρtO↔F determine
how objects are affected by these interacting forces.

Formally, each controller outputs probabilistic distributions over possible edge subsets at each
timestep. The interaction scope controllers ρtO define a distribution over edge sets J t ⊆ Ot × F t

conditioned on current object states Ot , yielding J t ∼ ρtO(· | Ot). Similarly, the effect attribution
controllers ρtO↔F define a distribution over edge sets It ⊆ F t ×Ot+1 conditioned on current object
and force states (Ot,F t), yielding It ∼ ρtO↔F (· | Ot,F t).

Within this framework, state evolutions are governed by object and force update functions fO and fF ,
which propagate information along the dynamically selected causal edges:

Forces F
t
j := fF

(
F

t−1
j ,

{
O

t−1
i

}
i|(i,j)∈Jt−1

)
s.t. Jt−1 ∼ ρ

t−1
O ,

Objects O
t
i := fO

(
O

t−1
i ,

{
F

t
j

}
j|(j,i)∈It−1

)
s.t. It−1 ∼ ρ

t−1
O↔F .

(1)

Thus, update functions fF and fO are force- and object-specific (respectively) and invariant to the
number of inputs (i.e., size of the parent node set). When interventions occur at time step t̃, they
introduce perturbations over object nodes, denoted as act(Ot̃

∗) representing externally applied actions
(e.g., hitting a billiard ball). Intuitively, this step captures how such external influences propagate
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Figure 3: Causal Process Block (illustrating fF ): Modified transformer with attention replaced by
gate mechanism (see Appendix B.3). Incoming causes Ot

i are pre-selected by the causal controllers.
Latent vectors are divided into causal (C), control (P), and mutable (M) regions, enforcing structured
updates.

forward in time, akin to resimulating the physical system from the intervention point onward: the
model dynamically recomputes the subgraph for all subsequent time steps t ≥ t̃ by resampling causal
edges and updating node states via the controllers and transition functions, ensuring the causal graph
reflects the altered dynamics (following Algorithm 1).

3.1.2 CONCRETE EXAMPLE: TWO COLLIDING BALLS

To illustrate, consider a scenario with three balls, where Ball 1 collides with Ball 2 at time t
(Fig. 1a). The objects are represented as {Ot

1, O
t
2, O

t
3}, and a single force node F t

1 mediates the
interaction. Here, the interaction scope controller ρtO assigns high probability to the edges J t =
{E (Ot

1, F
t
1) , E (Ot

2, F
t
1)}, indicating that both Ball 1 and Ball 2 contribute to generating the collision

force. Similarly, the effect attribution controller ρtO↔F assigns high probability to the edges It ={
E
(
F t
1 , O

t+1
1

)
, E

(
F t
1 , O

t+1
2

)}
, specifying that the force affects both balls post-collision. The

resulting graph is illustrated in Fig. 1c. In contrast, when the balls are far apart and no interaction
occurs, both controllers would output empty edge sets, resulting in a sparse graph with only self-
connections during that time period (e.g., Ball 3 in Fig. 1c).

3.1.3 INDUCTIVE BIASES

To ground the flexible graph construction in realistic physical principles and mitigate the risk of
overfitting to spurious connections, we incorporate two key inductive biases that reflect common
patterns in object interactions. Pairwise Interactions restrict each force node to connect to exactly
two different object nodes. This corresponds to the assumption that typically not more than two
objects interact at a certain time step. This restriction can be lifted later to generalize to hypergraphs
for more complicated systems (e.g., 3-body problems). Newton’s Third Law and Force Symmetry
are modeled through our mirroring constraint: when two objects interact, the force node must affect
both objects that contributed to it. In physical collisions, forces come in equal and opposite pairs
acting on both objects. This design ensures physical consistency while maintaining computational
efficiency. In environments with asymmetric interactions (e.g., large objects unaffected by small
ones), the learned weights in fO can effectively set the influence to zero (see Appendix B.1 for formal
definitions).

4 MODEL

We base our model implementation on the Contrastively-trained Structured World Model (C-SWM;
Kipf et al., 2020). The model consists of an object-centric vision encoder, an action encoder, and a
transition function (Fig. 2). We keep the structure of the vision and action encoders intact, but modify
the transition function.

The vision encoder is a CNN-based object extractor Eext, operating directly on images and outputting
I feature maps. Each feature map mt

i = [Eext(s
t)]i acts as an object mask where [. . . ]i is the selection

of the ith feature map. An MLP-based object encoder Eenc with shared weights across objects maps
the flattened feature map mt

i to object latent representation: Ot
i = Eenc(m

t
i). Additionally, an

MLP-based action encoder maps action at to force latent representation: F t = A(at). Next, we

5
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introduce our new transition function (Sec. 4.1) before detailing how to construct the causal graph on
the fly using reinforcement learning (Sec. 4.2).

4.1 CAUSAL PROCESS BLOCK

Our main innovation is the Causal Process Block as a neural network implementation of a CPM (Fig.
3). Before introducing the technical details, we need to address a key challenge: not all components
of force and object representations play the same role in causal interactions.

4.1.1 STRUCTURED REPRESENTATIONS

Let us revisit the example of collision between two balls (Fig. 1a). Their masses affect momentum
transfer (causally relevant) but remain unchanged during the collision (immutable). In contrast,
their velocities are both causally relevant and mutable. Meanwhile, visual properties like color may
change due to lighting, but don’t affect the collision dynamics (mutable but not causally relevant).
To capture these distinctions and enable our model to learn interpretable encodings that naturally
separate these different physical properties, we factorize our representations along three key binary
subspaces of Causal Relevance (C), Control Relevance (P ), and Mutability (M ). The binary nature
of each subspace arises from selective routing within the CPM (Fig. 3).

Causal Relevance (C) describes whether a component influences the dynamics of other objects.
For instance mass and velocity affect collision outcomes (C = 1), but color does not (C = 0).
Control Relevance (P ) encodes whether a component is used by the control/policy functions for
decision-making. For example, a controller deciding which balls are about to collide will rely on
current positions and velocities (P = 1), but will ignore other properties such as mass or purely visual
features like color (P = 0). Mutability (M ) captures whether a component can change over time
through interactions. For instance, an object being struck may change velocity (M = 1), while its
mass remains constant (M = 0). Importantly, while the factorization structure is fixed (based on C,
P , and M ), the model learns which specific features belong to each category through training. This
hard architectural partitioning forces the model to discover semantically meaningful, disentangled
representations that align with intuitive physical concepts.

4.1.2 TECHNICAL IMPLEMENTATION

We use two feedforward neural networks, fF (. . . ; θF ) and fO(. . . ; θO), shared by all the force and
object nodes respectively. The force vector F t

j :=
⊕

C,P,M∈{1,0},(C,P,M) ̸=(0,0,0) F
t,CPM
j is the

concatenation of all combinations of the C, P , M dimensions except for (C,P,M) = (0, 0, 0),
which must be omitted since forces, by definition, do not contain subspaces that are irrelevant to the
causal process. This results in 23 − 1 = 7 sub-vectors of equal size dF , where a sub-vector’s identity
determines how it is processed by the neural networks: The object-update function fO and force-
update function fF operate exclusively on the causally relevant subspace (C = 1), while mutable
parts are updated and immutable parts are copied unchanged (M = 0; Fig. 3). The object vector
Ot

i is more straightforwardly divided into 23 = 8 subvectors, i.e., all possible combinations of the
C, P , M dimensions, including the (C,P,M) = (0, 0, 0) subspace: Ot

i :=
⊕

C,P,M∈{1,0} O
t,CPM
i .

The extra subspace is present here for the network to learn to shift visual input features that are
irrelevant to the causal process into this subspace, for example the object’s color in a collision
event (See Appendices B.2 and B.3 for details). Note that the implementation of the causal process
blocks fO (· · · | θO) and fF (· · · | θF ) is similar to that of transformer blocks, but with the attention
mechanism (Vaswani et al., 2017) replaced by indices of the chosen force and object nodes (tokens in
transformers; see Appendix B.3 and Fig. 3 for more details). Unlike the attention mechanism of the
transformer, It, J t) can also be an empty set. This is analogous to transformer attention assigning
zero weight to all the tokens, which they cannot do by design.

4.2 CAUSAL CONTROLLER

The main proposal of our model is that we perform graph construction through sequential decision
making using the interaction scope and effect attribution controllers. We treat causal discovery as a
multi-agent RL problem. One agent (the interaction scope policy πO (Ot) := ρtO) determines the
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Figure 4: Causal MDP used by the reactive agents to construct causal process graphs. Agents
successively add edges to the causal graph. Each causal graph hypothesis corresponds to a potential
sequence of frames.

scope of interacting objects, and another (the effect attribution policy πO↔F

(
Ot,F t+1

)
:= ρtO↔F )

determines how force effects are attributed .

More specifically, the chosen indices It and J t are provided by the agents πO↔F and πO. The
two agents alternate outputting an action. An action taken by πO corresponds to two edge addi-
tions E

(
Ot

i , F
t+1

)
, E

(
Ot

j , F
t+1

)
, i ̸= j to the graph (selecting a pair of objects for interaction).

Whereas an action taken by πO↔F results in either one or two edge additions E (F t, Ot
i) , E

(
F t, Ot

j

)
(attributing the force effect to either one or both objects; see Fig. 4). The index set It is sampled using
the policy of the agent πO↔F . Note that the policies only utilize the Control Relevant (P) features of
the latent representations:

I
t ∼ πO↔F

(
I
t | Gt

,WO,WF

)
= softmax

(
QO↔F

(
G

t
, I

t | WO,WF

))

= softmax


(
F t,C1MWF

)([
Ot,C1M

i ;Ot,C1M
j ;

(
Ot,C1M

i + Ot,C1M
j

)
/2

]
WO

)T

d

 ,

(2)

where WO ∈ R4dO×d, WF ∈ R4dF×d, and QO↔F is the corresponding Q-value. J t, on the other
hand, is sampled using the policy of the agent πO:

J
t ∼ πO

(
J

t | Gt
,WÕ

)
= σ

(
QO

(
G

t
, J

t | Gt
,WÕ

))
= σ

((
O

t,C1M
i WÕ

)
·
(
O

t,C1M
j WÕ

))
, (3)

where WÕ ∈ R4dO×d, σ is the sigmoid function, and QO is the corresponding Q-value.

We then define separate reward functions for πO↔F and πO, modeled by MLPs parameterized by
θRO↔F and θRO respectively:

RO↔F

(
G

t
, G

t+1 | θRO↔F

)
= MLP

(
G

t
V ,1E(Ft,Ot

i)
,1

E
(
Ft,Ot

j

), Gt+1
V

∣∣∣∣θRO↔F

)
,

RO

(
G

t
, G

t+1 | θRO

)
= MLP

(
G

t
V ,1

E(Ot
i
,Ft+1)∧E

(
Ot

j
,Ft+1

), Gt+1
V

∣∣∣∣θRO

)
,

(4)

where Gt := (Gt
V , G

t
E) is the graph at time t and 1E(·,·) indicates the presence or absence of the

edge E (·, ·). These reward functions are learned through inverse reinforcement learning (IRL), where
the goal is to find a reward function whose corresponding optimal policy would select causal edges
that would minimize prediction error.
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5 TRAINING

5.1 TRAINING OVERVIEW AND REWARD LEARNING

Our training procedure addresses a fundamental challenge: jointly learning the causal dynamics
model and the policy for selecting causal edges. The key insight is that good edge selections lead to
better prediction accuracy, which we use as an implicit reward signal through inverse reinforcement
learning (Ng & Russell, 2000).

The optimization has three objectives: 1) The CPM should accurately predict future states given the
selected causal edges; 2) the RL agents should select edges that minimize prediction error; 3) the
reward functions RO and RO↔F should capture which edge selections lead to better predictions.
At convergence, the agents select sparse causal graphs that capture only the active interactions,
leading to both computational efficiency and interpretability. The optimum of the combined CPM
and RL objectives is reached when the agents consistently construct causal graphs that minimize the
prediction error; at this point the learned reward networks stabilize.

5.2 TRAINING PROCEDURE

The overall goal is to learn a predictive world model (CPM) whose structure is determined by
the policies (πO, πO↔F ). This requires optimizing both the model parameters Θ and the policy
parameters Ψ := [WO,WF ,WÕ]. We achieve this using a 3-stage procedure that also involves
expectation-maximization (EM) with alternating optimization (Dempster et al., 1977).

1. Prediction. At this stage, we freeze all the weights except Θ = [θV ; θA; θO; θF ] and sample edges
{Iτ , Jτ}τ using frozen controllers. This allows the vision encoder, action encoder, and transition
functions (fO, fF ) to learn useful representations before the controllers get the chance to optimize
their behavior on these representations. We train the model parameters Θ using contrastive loss (Kipf
et al., 2020):

Lpred (Θ|β,Dpred) =
∥∥∥CPM

(
V

(
s
t
∣∣∣θV )

,A
(
a
t
∣∣∣θA)

,
(
I
τ
, J

τ)
tτ

∣∣∣θO, θF
)
− V

(
s
t+1

∣∣∣θV )∥∥∥
+ max

(
0, β −

∥∥∥V (
s̃
t
∣∣∣θV )

− V
(
s
t+1

∣∣∣θV )∥∥∥) (5)

where Dpred =
{(

st, at, st+1
)
, s̃t, {(Gtτ , Itτ , J tτ , Gtτ+1)}τ

}
t
, V and A are the vision and action

encoders, s̃t is a negative example sampled from the experience buffer, and the hinge margin β is set
to 1 (following Kipf et al., 2020).

2. Expectation. In the second stage, we freeze all the weights but ΘR = [θRO↔F ; θRO ] and use
temporal difference (TD) loss (Watkins & Dayan, 1992) to learn reward functions:

LTD (ΘR | DTD,Ψ) =
∑

X∈{O↔F,O}

∑
τ

∥∥∥∥∥∥∥∥∥∥∥
RX

(
G

τ
, G

τ+1
∣∣∣θRX

)
︸ ︷︷ ︸

learned

−

QX

(
G

τ
, I

τ
X | Ψ

)
− γmax

I
τ+1
X

QX

(
G

τ+1
, I

τ+1
X | Ψ

)
︸ ︷︷ ︸

target

∥∥∥∥∥∥∥∥∥∥∥
(6)

where DTD =
{(

Gτ , IτO, I
τ
O↔F , G

τ+1
)}

τ
and we set γ = 0.9.

3. Maximization. During the third stage, we freeze all but the policy parameters Ψ and use the same
TD loss from above with target and learned terms reversed. The agents learn to select edges based on
the rewards RO↔F and RO.

The overall optimization landscape is complex; the optimum represents a state where the agents select
the sparse causal graph that yields the minimal prediction loss for the CPM, and simultaneously, the
reward MLPs stabilize under the IRL objective.

6 EXPERIMENTS

We hypothesize that our model outperforms models that assume dense causal graphs to capture
physical interactions in: 1) longer prediction horizons; 2) test-time generalization across unobservable
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Figure 5: Prediction results for a synthetic physics environment in a) observed and b) unobserved
settings (Ke et al., 2021). Top: Description of the task. Bottom: Prediction metric vs number of
objects after 10 steps (average of 10 seeds).

properties; 3) robustness with regards to the number of objects in the scene; 4) solving downstream
tasks. We use the physics environment designed by Ke et al. (2021) to empirically answer these
questions (Fig. 5 top). The environment consists of different objects colored according to their
weights. The only force in this environment is pushing (double-pushes are not allowed) and only
heavier objects can push lighter ones. The environment has two settings: an observed setting (Fig. 5a)
where weight corresponds to the intensity of a particular color and an unobserved setting (Fig. 5b)
where different colors did not systematically map to different weights.

6.1 COMPARISON BASELINES

We compare our model against 10 baselines, a graph attention network (GAT) (Veličković et al.,
2018), a graph isomorphism network (GIN) (Xu et al., 2019), a causal variatiational auto-encoder
(CausalVAE) (Yang et al., 2021), a graph convolutional network (GCN) (Kipf & Welling, 2017), a
causal dynamics learning network (CDL) (Wang et al., 2022), a graph neural network (GNN) (Scarselli
et al., 2009), a transformer network (Vaswani et al., 2017), a recurrent independent mechanisms
(RIM) network (Goyal et al., 2021b), a schema / object-file factorization network (SCOFF) (Goyal
et al., 2021a), and a modular network which has a separate MLP to model each object’s dynamics
(Ke et al., 2021).

6.2 PREDICTION METRICS

To investigate robustness towards the length of prediction horizons, we trained the model to make
1-step predictions in the Observed setting with 5 objects and then tested for 5 (Fig. 9) and 10 steps
(Fig. 5a bottom, Fig. 7). We used Hits at Rank 1 (H@1) to measure model performance as an
all-or-nothing metric measuring how often the rank of the predicted representation was 1 when ranked
against all reference state representations. Here, our model broadly outperformed the baseline models,
with the gap increasing over longer time horizons.

Next, to estimate the test-time generalization across unobservable properties, we trained our model in
the Unobserved setting where generalization at test time is harder due to previously unseen weights.

9
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Figure 6: Downstream RL results over number of objects. Mean reward vs number of objects. All
results are the average of 10 seeds

Again, our model broadly outperformed the baselines displaying capacity to generalize also in this
domain (Fig. 5b bottom; see Fig. 7 and Fig. 9 for more results).

6.3 DOWNSTREAM RL TASKS

To make sure the above metrics overlap with the learned model’s usefulness for downstream tasks, we
also tested our CPM’s capacity to serve as a world model for a model-based RL agent. The agent’s
task was to move an object to a certain location each taken step resulting in negative reward. In
both Observed and Unobserved settings, the agent with CPM as model of the environment broadly
outperformed the baselines for all objects in 10-step unrolling of the learned model (Fig. 6, Fig. 8).

7 DISCUSSION

In this paper, we introduced the Causal Process Framework (CPF) as a novel approach for modeling
the dynamics of physical object interactions. Our key contribution is the Causal Process Model
(CPM), which implements this framework by treating the edge distributions inherent to CPF as
a reinforcement learning policy. Instead of the soft, dense connections typical of many baselines
(Veličković et al., 2018; Goyal et al., 2021a; Xu et al., 2019; Yang et al., 2021; Kipf & Welling,
2017; Wang et al., 2022; Scarselli et al., 2009; Vaswani et al., 2017; Goyal et al., 2021b), our model
employs RL agents to dynamically construct sparse, time-varying causal graphs. Our experiments in a
simulated physics environment (Ke et al., 2021) show that this approach not only improves prediction
accuracy and downstream task performance compared to baselines, but also excels in generalization
and scalability.

The superior performance of our model, particularly over longer prediction horizons and with a
varying number of objects, lends strong support to our central hypothesis. We argue that by explicitly
modeling only active causal links, the CPM avoids the pitfalls of dense message-passing architectures
(Barbero et al., 2024a; Alon & Yahav, 2021; Barbero et al., 2024b; Giovanni et al., 2023; 2024;
Topping et al., 2022; Scarselli et al., 2009; Battaglia et al., 2018). Our discrete, “all-or-nothing”
connections, determined by a goal-oriented RL agent, preserve the salience of individual interactions.
This leads to more robust and precise world models, which proved crucial for the model-based RL
agent’s success in downstream tasks. Furthermore, the model’s ability to generalize to unobserved
object properties suggests that it learns an underlying model of physical dynamics rather than
memorizing superficial correlations.

Despite these promising results, the present work has several limitations that open clear avenues
for future research. A crucial next step is to deepen the analysis of the learned representations. To
do so, the semantic content of the force and object sub-vectors could be decoded to verify that our
inductive biases are indeed effective in fostering an interpretable internal structure. To provide further
validation our claims of causal discovery, we will be necessary to compare the inferred graphs against
the ground-truth interaction graphs of the simulation, providing a quantitative measure of the model’s
ability to recover the true causal processes.
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A OBJECT-CENTRIC CAUSAL DYNAMICS

Consider two objects O1 and O2 (depicted in magenta) with a force F (depicted in violet) acting on
them:

O1
F−→O2

This recovers the familiar structure of a directed acyclic graphs (DAGs) from Pearl’s causal formalism
Pearl (2009). However, in physical interactions, such as in a collision, it is not always clear which
object is the “cause” since both are affected simultaneously. A more intuitive representation would
be a bidirectional edge:

O1
F←→O2

However, DAGs prohibit cycles and bidirectional edges. To resolve this, we introduce temporal
dynamics which represent causal effects as unfolding over time rather than as a simultaneous influence.
Thus, a collision between object O1 and object O2 yields forces F2 and F3 as emerging from the past
state and influencing future object states:

Ot
1 Ot+1

1

Ot
2 Ot+1

2

F1

F2

F4

F3

Yet, this representation still has drawbacks. Specifically, we break the identity of the force F into F2

and F3 which, in principle, can act as separate causal links (F1 and F4 can be thought of as inertia).
This becomes apparent when interventions are applied. Let us imagine that somebody picks up object
O1 just before it collides with O2. This can be represented by a do-calculus-like intervention applied
to either Ot

1 or Ot+1
1 :

�Ot
1 Ot+1

1

Ot
2 Ot+1

2

F1

F2

F4

F3

Ot
1

�Ot+1
1

Ot
2 Ot+1

2

F2

F4

When the intervention is applied to Ot
1, the graph structure is preserved, thus implying a no-collision

scenario (one of the balls was lifted). Yet, the same graph can also imply a collision scenario. This
kind of setup necessitates having causal links between objects that can potentially collide irrespective
of the actualization of said collision. While this approach can work in principle, it results in extremely
dense graphs with complete subgraphs per time step, especially in cluttered scenes. Ideally, we would
like to have causal links in our graph if there is an actualized interaction between the involved objects.

On the other hand, intervening on Ot+1
1 results in a graph a with counter-intuitive interpretation: O1

gets lifted at time step t+ 1, while O2 behaves as if a collision has happened. This is due to the split
of F into F2 and F3 since an intervention removes F3 while leaving F2 untouched. To tackle the
aforementioned issues, let us re-imagine force edges as nodes and re-introduce F2 and F3 as a single
node F and extend the time horizon by a step.

Ot−1
1 Ot

1 Ot+1
1

F

Ot−1
2 Ot

2 Ot+1
2

Now, imagine, just like before, the ball O1 gets picked up at time step t. In do-calculus terms, this
amounts to intervention to Ot

1 which results in mutilation of the edge Ot−1
1 →Ot

1
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Ot−1
1

�Ot
1 Ot+1

1

F

Ot−1
2 Ot

2 Ot+1
2

While the problem of splitting of the force identity seems to be resolved here, the graph structure
modeling the collision remains preserved despite the intervention. As mentioned before, this can
be addressed by complete subgraphs per time step, which is not desirable for our purposes. This
problem arises due to the inclusion of time dynamics into our graphs. Unlike in Pearlian Causality,
in physics, interventions at a time step have implications for the causal connections corresponding
to downstream time steps. To account for that, we have to re-imagine interventions under a new
framework that takes physical processes and time into account (see Algorithm 1).

B MODEL DETAILS

B.1 INDUCTIVE BIAS

We introduce two inductive biases: (1) limiting each force node to interact with exactly two objects to
reflect pairwise interactions, and (2) enforcing a bidirectional mirroring constraint to ensure temporal
coherence in causal attribution. Formally the latter is defined as:

∀i, j, k, t :
{
E(Ot

i , F
t+1
j ), E(Ot

k, F
t+1
j )

}
⊂ Gt

E =⇒
E(F t+1

j , Ot+1
i ) ∈ Gt

E ⊻ E(F t+1
j , Ot+1

k ) ∈ Gt
E ,

∀i, j, t :E(F t+1
j , Ot+1

i ) ∈ Gt
E =⇒ E(Ot

i , F
t+1
j ) ∈ Gt

E .

B.2 VECTOR CONSTRAINTS

Causal relevance is coded by C. Perturbing the sub-vectors of the parent with C = 0 does not affect
the child nodes, i.e., only the causally-relevant C = 1 sub-vectors affect the child nodes:

∀t, i : F t+1,1PM
j = F̃ t+1,1PM

j =⇒ fO

(
Ot

i ,
{
F t+1
j

}
j|(j,i)∈It

; θO

)
= fO

(
Ot

i ,
{
F̃ t+1
j

}
j|(j,i)∈It

; θO

)
.

Control relevance is coded by P . Two force vectors whose sub-vectors with P = 1 are identical have
identical control functions that are conditioned on them, i.e., control functions are conditioned only
on the control-relevant sub-vectors :

∀t : F t+1,C1M
j = F̃ t+1,C1M

j =⇒ ρtO↔F̃ = ρtO↔F .

Lastly, mutability is coded by M . If M = 0, the corresponding sub-vector does not change over time,
i.e., an immutable sub-vector does not change over time: ∀t, j : F t,CP0

j = F t+1,CP0
j .

B.3 CAUSAL PROCESS BLOCK

Given the data F t, Ot
1, . . . , Ot

n, and the chosen indices J t, we calculate F t+1 in the following way:

F t+1 := fF
(
F t, Ot

1, . . . , O
t
n, J

t | θF
)
,

with Ot+1 also calculated similarly.

gate :=
1

|J t|
∑
i∈Jt

(
Ot,1PM

i WF
gate

)
WF

output,

residual := gate + F t,CP1,

F t+1,CP1 := χgate̸=0 ⊙ FFN (Norm (residual)) + residual,

F t+1 :=
[
F t+1,CP1;F t,CP0

]
,
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where θF :=
{
WF

gate,W
F
output,W

F
1 ,WF

2 , bF1 , b
F
2

}
FFN is a feed-forward neural network FFN(x) :=

max
(
0, xWF

1 + bF1
)
WF

2 + bF2 , WF
gate is the analogue of the attention mechanisms value token

projection, and WF
output is again the analogous out-projection that maps the token from the attention

dimension back to residual dimension (Vaswani et al., 2017)

C PLOTS

Figure 7: Prediction metric vs number of objects for 10-steps.

Figure 8: Downstream RL results over number of objec. Mean reward vs number of objects. All
results are the average of 10 seeds
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Figure 9: Prediction metric vs number of objects after 1 and 5 steps (average of 10 seeds).
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Figure 10: Mean reward vs number of objects after 1 and 5 steps (average of 10 seeds).
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D ALGORITHMS

Algorithm 1 Interventions under Causal Process Framework

Require: F t,Ot, fF , fO, ρ
t
O↔F , ρ

t
O, act

(
Ot̃

∗

)
, GO1:OT , t ∈ {1, . . . , T}, i ∈ {1, . . . , I}, j ∈

{1, . . . , J}
Ensure: Output result G̃O1:OT

1: Initialize Õt̃−1 :=
{
Ot̃−1

∗

}
∪̇Ot̃−1

2: Initialize F̃ t̃ := F t̃

3: Initialize J t := {(i, j)} s.t. E
(
Ot̃−1

i , F t̃
j

)
∈ GE

Ot̃−1:F t̃

4: Initialize G̃O1:Ot̃−1 := GO1:Ot̃−1

5: for t = t̃, . . . , T do ▷ Loop from t = t̃ up to T

6: G̃O1:Ft :=

(
F̃ t∪̇G̃V

O1:Ot−1 ,
{
E
(
Õt−1

i , F̃ t
j

)}
(i,j)∈Jt

∪̇G̃E
O1:Ot−1

)
▷ Update the graph

7: It ∼ ρt
Õ↔F̃

▷ Sample new edges
8: for i = 1, . . . , I do ▷ Loop from i = 1 up to I

9: Õt
i := fO

(
Õt−1

i ,
{
F̃ t
j

}
j|(j,i)∈It

)
▷ Update the nodes

10: end for
11: G̃O1:Ot :=

(
Õt∪̇G̃V

O1:Ft ,
{
E
(
F̃ t
j , Õ

t
i

)}
(j,i)∈It

∪̇G̃E
O1:Ft

)
▷ Update the graph

12: J t ∼ ρt
Õ

▷ Sample new edges
13: for j = 1, . . . , J do ▷ Loop from j = 1 up to J

14: F̃ t+1
j := fF

(
F̃ t
j ,
{
Õt

i

}
i|(i,j)∈Jt

)
▷ Update the nodes

15: end for
16: end for
17: return G̃O1:OT
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