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ABSTRACT

Most neural models of causality assume static causal graphs, failing to capture
the dynamic and sparse nature of physical interactions where causal relationships
emerge and dissolve over time. We introduce the Causal Process Framework and
its neural implementation, Causal Process Models (CPMs), for learning sparse,
time-varying causal graphs from visual observations. Unlike traditional approaches
that maintain dense connectivity, our model explicitly constructs causal edges only
when objects actively interact, dramatically improving both interpretability and
computational efficiency. We achieve this by formulating causal discovery as a
multi-agent reinforcement learning problem, where specialized agents sequentially
decide which objects are causally connected at each timestep. Our key innovation
is a structured representation that factorizes object and force vectors along three
learned dimensions (mutability, causal relevance, and control relevance), enabling
the automatic discovery of semantically meaningful encodings. We demonstrate
that a CPM significantly outperforms dense graph baselines on physical prediction
tasks, particularly for longer horizons and varying object counts.

1 INTRODUCTION

Causality plays a fundamental role in building intelligent systems capable of physical reasoning
(Gerstenberg et al., 2020). Explicitly modeling causal relationships is increasingly recognized to
be crucial for developing robust, generalizable, and interpretable neural network models capable
of accurate prediction and effective intervention (Xia et al., 2021). Despite their black-box nature,
models such as transformers have demonstrated surprising capacity for causal reasoning (Nichani
et al., 2024; Shou et al., 2023; Melnychuk et al., 2022; Dettki et al., 2025). One explanation posits that
this is possible due to the attention mechanism forming implicit causal edges between tokens (Vaswani
et al., 2017; Rohekar et al., 2023). However, recent work has highlighted a phenomenon known
as over-squashing, in which the attention mechanism (and related message-passing mechanisms in
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Figure 1: Dynamic Causality: (a) In many physical domains, such as a game of billiards, objects
interact only sparsely. (b) Static causal graphs must encode all possible interactions, resulting in
dense connectivity that fails to capture this local sparsity. (c) In a Causal Process Model (CPM), an
RL agent dynamically constructs a causal graph by connecting forces and objects through process
blocks, yielding a sparse, dynamic causal graph that reflects the actual interactions at each timestep.
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Figure 2: Model Overview: Our model has three components: a vision encoder, an action encoder,
and a transition function. The transition function is an implementation of a Causal Process Model.
The state is factorized into distinct object representations, actions are mapped to force representations
that act as causal interventions, and the directed edges are causal.

Graph Neural Networks) loses sensitivity to individual tokens or nodes (Barbero et al., 2024a; Alon
& Yahav, 2021; Barbero et al., 2024b; Giovanni et al., 2023; 2024; Topping et al., 2022; Scarselli
et al., 2009; Battaglia et al., 2018). This compression of information in transformer models can sever
causal chains, thus limiting the effectiveness of causal inference.

In contrast, graphical causal models, such as Pearl’s Structural Causal Models (SCMs; Pearl, 2009),
explicitly encode causal relationships and thus preserve perfect causal connectivity by design. Yet, a
key challenge for SCMs is causal discovery (Scholkopf et al., 2021): inferring the causal graph from
data. Most existing approaches assume access to a complete dataset and construct a static causal
graph, e.g., for all possible interactions of three billiard balls a dense graph is necessary (see Fig. 1a).
This assumption is misaligned with the nature of physical environments, where causal influence is
typically local in space and sparse in time (Butz, 2017; Pitis et al., 2020; Seitzer et al., 2021; Gumbsch
et al., 2021; Lange & Kording, 2025). For instance, objects may only interact upon contact. Recent
work has therefore emphasized the importance of local causal models (Pitis et al., 2020; Seitzer et al.,
2021; Urpf et al., 2024; Lei et al., 2024; Willig et al., 2025) that explain causal connections through
the sparsest possible graph, which changes dynamically over time.

Our work aims to bridge these areas by proposing a novel causal framework tailored to capture the
dynamics of physical object interactions. We propose Causal Process Models (CPMs), as a neural
implementation of this framework casting the construction of sparse dynamic causal graphs as a
sequential reinforcement learning (RL) problem. Instead of relying on dense message passing
(e.g., soft attention or standard GNNs, Fig. 1b), CPMs use RL agents to dynamically determine
all-or-nothing connections between entities (Fig. 1¢). This allows the model to adaptively control
connectivity based on the input, avoiding the over-squashing problem and enabling more efficient
and interpretable causal reasoning.

Our novel causal framework is designed specifically for modeling the dynamics of physical object
interactions, aiming to synthesize the formal rigor of static dependency theories, e.g. Pearl’s do-
calculus (Pearl, 2009), with the intuitive strengths of process-based accounts (Russell, 1948; Salmon,
1984; Skyrms, 1981; Dowe, 2000, see Section 2 below). Our approach explicitly addresses the
limitations of Pearlian SCMs by enabling the construction of sparse, time-varying causal graphs that
reflect only the active interactions between objects. When modeling two colliding balls for instance,
our framework only instantiates a direct causal link between the balls upon contact, for the transfer
of momentum, while leaving them causally disconnected otherwise. This yields a computationally
efficient model, only scaling with actual rather than all potential interactions, and one that is highly
interpretable since the causal graph mirrors intuitive physical processes.

Our main contributions are: 1) We formalize a Causal Process Framework (CPF) for local causal
modeling in physical environments. 2) We implement this in a neural architecture as a Causal Process
Model (CPM) to dynamically infer sparse, time-varying causal graphs by framing edge selection
as an RL problem. 3) We apply our CPM to physical interaction scenarios, demonstrating superior
performance, interpretability, and scalability compared to densely connected models.
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2 RELATED WORK

2.1 CAUSAL FRAMEWORKS

Pearl’s (2009) framework of Structural Causal Models (SCMs) is a dominant approach to causal
modeling, by representing causal relationships using directed acyclic graphs (DAGs). An SCM can
be described as a tuple € := (S,IP(U)) where PP is a distribution over the exogenous variables U
(i.e., variables external to the system and not caused by any variable within it) and S is a collection of
structural equations of the form:

Vi= f‘/i(PaVi?UVi)'

Each endogenous variable V; is determined by a function of its parent variables Pay; (i.e., other
variables in the system that directly influence V;) and its associated exogenous noise term Uy;,.

While successful in many domains, standard SCMs require extensions to handle systems characterized
by dynamic object interactions; without such extensions, they fail to adequately capture the temporal
and structural intricacies of such systems (Rubenstein et al., 2016; Weber, 2016; Blom et al., 2020;
Boeken & Mooij, 2024). Consider the simple scenario of two colliding balls shown in Fig. 1a.
Representing this within a traditional SCM framework often requires specifying potential causal
links between all properties of all objects at all relevant timescales. This leads to densely connected
causal graphs (Fig. 1b), with the number of causal edges scaling quadratically with time, even
when interactions are sparse in reality. Such dense representations suffer from high computational
costs for inference and learning, and crucially, obscure the underlying causal structure, hindering
interpretability. Thus, a core challenge is to adapt standard SCMs to dynamically represent only the
relevant interactions as they occur, rather than needing to specify all potential dependencies.

Recognizing these limitations, other lines of research offer valuable perspectives, often aligning
closely with causal process theories (Russell, 1948; Salmon, 1984; Skyrms, 1981; Dowe, 2000).
Research in cognitive science, such as Gerstenberg et al. (2020)’s counterfactual simulation models,
leverage simulation to assess causality and responsibility in physical events, capturing process-
like intuitions. Furthermore, philosophical inquiries into causal processes provide rich conceptual
foundations, distinguishing causal processes from pseudo-processes by focusing on mechanisms
like causal lines (Russell, 1948), defining causality in ontological terms (Salmon, 1984), or using
conserved quantities (Skyrms, 1981; Dowe, 2000). However, this philosophical tradition lacks the
computational formalism required for direct implementation in ML systems. Our Causal Process
Framework bridges this gap by providing a computationally tractable formalism that integrates
process-based intuitions with graphical causal models, enabling dynamic and sparse representations
suitable for learning from visual data in physical environments.

2.2 NEURAL CAUSAL MODELS

While philosophical causal process theories offer intuitive insights into dynamic physical interactions,
their abstract nature limits direct application in scalable machine learning systems. To operationalize
these ideas computationally, researchers have sought to integrate causal process intuitions with
neural architectures, particularly by embedding SCMs into deep learning frameworks. Previous
attempts to reconcile deep learning with SCMs have resulted in Neural Causal Models (NCMs),
which model fy, as feedforward neural nets parametrized by 6y, (Xia et al., 2021). Yet this solution
still suffers from the disadvantage of needing to train arbitrarily many feedforward neural networks
for each node across time. To address this parameter explosion, Zecevic et al. (2021) have tried to
theoretically quantify the capacity for GNNs to implement SCMs, but are restricted to the assumption
of static causal graph. In contrast, Melnychuk et al. (2022) designed a Causal Transformer that
incorporates temporal dynamics to infer causality over time, yet is still unable to yield interpretable
graph representations. This limitation arises from its reliance on the potential outcomes framework
(Rubin, 1978; Robins & Hernan, 2008), which focuses on estimating counterfactual outcomes without
explicitly representing causal relationships as graphs, thus making it less suitable for discovering and
utilizing sparse, time-varying structures.
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2.3 CAUSAL REINFORCEMENT LEARNING

Buesing et al. (2019) have tried to take advantage of the Pearlian causality framework by reformulating
the MDP graph as an SCM using which they designed a counterfactually-guided policy search. A
similar approach has been pursued by Gasse et al. (2023) in which they draw parallels between
confounding variables and offline RL. Neither of these approaches factors the MDP state space
into distinct object-centric nodes and their causal relations, instead focusing on the aforementioned
inherent causality of the MDP structure as suggested by Bareinboim et al. (2021).

3 CAUSAL PROCESS FRAMEWORK

Pearl’s structural causal models (SCMs) and do-calculus (Pearl, 2009) provide a powerful foundation
for causal reasoning. However, without extensions, it is not straightforward to apply SCM to dynamic
physical systems requiring object-centric representations and real-time causal interactions. Prior
approaches (Buesing et al., 2019; Gasse et al., 2023) have attempted to bridge model-based RL and
causality by representing the full Markov Decision Process (MDP) state s using a single node and
modeling actions as direct interventions in a static causal graph. However, this approach is limited
because it circumvents the problem of inferring the causal structure that generates the underlying
environment dynamics (i.e., the causal context; Butz et al., 2025), and focuses only on the causal
implications of action sequences.

3.1 CAUSAL PROCESS MODELS (CPMS)

To address the inability of SCMs to capture sparse, time-varying interactions, the computational
burden of dense connectivity, and the loss of causal information in over-squashed message-passing,
we introduce Causal Process Models (CPMs). CPMs dynamically construct sparse causal graphs that
represent only active interactions, enabling both computational efficiency and interpretable causal
structure in physical environments.

We adopt an object-centric factorization of states, in which physical objects are represented separately
as nodes O = {01,04,...,On} (e.g., balls) and interactions between objects are represented as
force nodes F = {F1, F, ..., Fa} (e.g., collisions). At each timestep ¢, we have object states
Ot = {0}, ...,04} and force states F* = {F{, ..., F%,}. The key insight is that not all objects
interact at all times, hence we need to dynamically determine which causal edges are active.

3.1.1 DyNAMIC CAUSAL GRAPH CONSTRUCTION

To dynamically determine active causal edges in the graph, CPMs employ two types of specialized
controller functions: interaction scope controllers pﬁg determine which objects interact, that is, ex-
change forces (e.g., based on spatial proximity), while effect attribution controllers pl,,, » determine
how objects are affected by these interacting forces.

Formally, each controller outputs probabilistic distributions over possible edge subsets at each
timestep. The interaction scope controllers p’, define a distribution over edge sets J* C O x F*
conditioned on current object states O , yielding J* ~ p., (- | O"). Similarly, the effect attribution
controllers pf, ., » define a distribution over edge sets I* C F* x O'*! conditioned on current object
and force states (O, F'), yielding I' ~ pl, , (- | OF, F").

Within this framework, state evolutions are governed by object and force update functions fo and fr,
which propagate information along the dynamically selected causal edges:

F F o= fe (F {007} LI e
orces P fF< ' H P s Po

€8}
Objects  O! := fo <o§*1, {F;}jw i)61t71> st I~ plt

Thus, update functions fr and fo are force- and object-specific (respectively) and invariant to the
number of inputs (i.e., size of the parent node set). When interventions occur at time step £, they
introduce perturbations over object nodes, denoted as act(O?) representing externally applied actions
(e.g., hitting a billiard ball). Intuitively, this step captures how such external influences propagate
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Figure 3: Causal Process Block (illustrating fr): Modified transformer with attention replaced by
gate mechanism (see Appendix B.3). Incoming causes O! are pre-selected by the causal controllers.
Latent vectors are divided into causal (C), control (P), and mutable (M) regions, enforcing structured
updates.

forward in time, akin to resimulating the physical system from the intervention point onward: the
model dynamically recomputes the subgraph for all subsequent time steps ¢ > by resampling causal
edges and updating node states via the controllers and transition functions, ensuring the causal graph
reflects the altered dynamics (following Algorithm 1).

3.1.2 CONCRETE EXAMPLE: TWO COLLIDING BALLS

To illustrate, consider a scenario with three balls, where Ball 1 collides with Ball 2 at time ¢
(Fig. 1a). The objects are represented as {O%, 0%, O%}, and a single force node F} mediates the
interaction. Here, the interaction scope controller pl, assigns high probability to the edges J' =
{E (0%, F}), E (0%, F})}, indicating that both Ball 1 and Ball 2 contribute to generating the collision
force. Similarly, the effect attribution controller p,_, » assigns high probability to the edges I* =
{E (F},01") ,E (F},04™)}, specifying that the force affects both balls post-collision. The
resulting graph is illustrated in Fig. Ic. In contrast, when the balls are far apart and no interaction
occurs, both controllers would output empty edge sets, resulting in a sparse graph with only self-
connections during that time period (e.g., Ball 3 in Fig. 1c).

3.1.3 INDUCTIVE BIASES

To ground the flexible graph construction in realistic physical principles and mitigate the risk of
overfitting to spurious connections, we incorporate two key inductive biases that reflect common
patterns in object interactions. Pairwise Interactions restrict each force node to connect to exactly
two different object nodes. This corresponds to the assumption that typically not more than two
objects interact at a certain time step. This restriction can be lifted later to generalize to hypergraphs
for more complicated systems (e.g., 3-body problems). Newton’s Third Law and Force Symmetry
are modeled through our mirroring constraint: when two objects interact, the force node must affect
both objects that contributed to it. In physical collisions, forces come in equal and opposite pairs
acting on both objects. This design ensures physical consistency while maintaining computational
efficiency. In environments with asymmetric interactions (e.g., large objects unaffected by small
ones), the learned weights in fo can effectively set the influence to zero (see Appendix B.1 for formal
definitions).

4 MODEL

We base our model implementation on the Contrastively-trained Structured World Model (C-SWM;
Kipf et al., 2020). The model consists of an object-centric vision encoder, an action encoder, and a
transition function (Fig. 2). We keep the structure of the vision and action encoders intact, but modify
the transition function.

The vision encoder is a CNN-based object extractor Fex, operating directly on images and outputting
I feature maps. Each feature map m} = [Eex(s")]; acts as an object mask where [. .. ]; is the selection
of the i feature map. An MLP-based object encoder E,,. with shared weights across objects maps
the flattened feature map m! to object latent representation: O} = Feu(m!). Additionally, an
MLP-based action encoder maps action a! to force latent representation: F'* = A(a'). Next, we
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introduce our new transition function (Sec. 4.1) before detailing how to construct the causal graph on
the fly using reinforcement learning (Sec. 4.2).

4.1 CAUSAL PROCESS BLOCK

Our main innovation is the Causal Process Block as a neural network implementation of a CPM (Fig.
3). Before introducing the technical details, we need to address a key challenge: not all components
of force and object representations play the same role in causal interactions.

4.1.1 STRUCTURED REPRESENTATIONS

Let us revisit the example of collision between two balls (Fig. 1a). Their masses affect momentum
transfer (causally relevant) but remain unchanged during the collision (immutable). In contrast,
their velocities are both causally relevant and mutable. Meanwhile, visual properties like color may
change due to lighting, but don’t affect the collision dynamics (mutable but not causally relevant).
To capture these distinctions and enable our model to learn interpretable encodings that naturally
separate these different physical properties, we factorize our representations along three key binary
subspaces of Causal Relevance (C'), Control Relevance (P), and Mutability (M). The binary nature
of each subspace arises from selective routing within the CPM (Fig. 3).

Causal Relevance (C) describes whether a component influences the dynamics of other objects.
For instance mass and velocity affect collision outcomes (C' = 1), but color does not (C' = 0).
Control Relevance (P) encodes whether a component is used by the control/policy functions for
decision-making. For example, a controller deciding which balls are about to collide will rely on
current positions and velocities (P = 1), but will ignore other properties such as mass or purely visual
features like color (P = 0). Mutability (M) captures whether a component can change over time
through interactions. For instance, an object being struck may change velocity (M = 1), while its
mass remains constant (M = 0). Importantly, while the factorization structure is fixed (based on C,
P, and M), the model learns which specific features belong to each category through training. This
hard architectural partitioning forces the model to discover semantically meaningful, disentangled
representations that align with intuitive physical concepts.

4.1.2 TECHNICAL IMPLEMENTATION

We use two feedforward neural networks, fr(...;0r) and fo(...;00), shared by all the force and

object nodes respectively. The force vector F} := D pareii01,c,p1)£0,00) F;’CPM is the
concatenation of all combinations of the C', P, M dimensions except for (C, P, M) = (0,0,0),
which must be omitted since forces, by definition, do not contain subspaces that are irrelevant to the
causal process. This results in 23 — 1 = 7 sub-vectors of equal size dy, where a sub-vector’s identity
determines how it is processed by the neural networks: The object-update function fo and force-
update function fr operate exclusively on the causally relevant subspace (C' = 1), while mutable
parts are updated and immutable parts are copied unchanged (M = 0; Fig. 3). The object vector
Of is more straightforwardly divided into 23 = 8 subvectors, i.e., all possible combinations of the
C, P, M dimensions, including the (C, P, M) = (0,0,0) subspace: O} := Dec preio OE’CPM.
The extra subspace is present here for the network to learn to shift visual input features that are
irrelevant to the causal process into this subspace, for example the object’s color in a collision
event (See Appendices B.2 and B.3 for details). Note that the implementation of the causal process
blocks fo (-++ | 6o) and fr (--- | Op) is similar to that of transformer blocks, but with the attention
mechanism (Vaswani et al., 2017) replaced by indices of the chosen force and object nodes (tokens in
transformers; see Appendix B.3 and Fig. 3 for more details). Unlike the attention mechanism of the
transformer, I, J?) can also be an empty set. This is analogous to transformer attention assigning
zero weight to all the tokens, which they cannot do by design.

4.2 CAUSAL CONTROLLER

The main proposal of our model is that we perform graph construction through sequential decision
making using the interaction scope and effect attribution controllers. We treat causal discovery as a
multi-agent RL problem. One agent (the interaction scope policy 7o (O!) := pl,) determines the
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Figure 4: Causal MDP used by the reactive agents to construct causal process graphs. Agents
successively add edges to the causal graph. Each causal graph hypothesis corresponds to a potential
sequence of frames.

scope of interacting objects, and another (the effect attribution policy 7o« r ((’)t, F t“) = Pl )
determines how force effects are attributed .

More specifically, the chosen indices I* and J* are provided by the agents To., 7 and 7. The
two agents alternate outputting an action. An action taken by m» corresponds to two edge addi-
tions £ (Of, F**1) , E (O}, F™*1) ;i # j to the graph (selecting a pair of objects for interaction).
Whereas an action taken by To., 7 results in either one or two edge additions E (F*, O%) , E (F*, O;)

(attributing the force effect to either one or both objects; see Fig. 4). The index set I* is sampled using
the policy of the agent o, r. Note that the policies only utilize the Control Relevant (P) features of
the latent representations:

It ~ o r (It | G, WO,WF) = softmax (QOH]: (Gt, It | Wo, WF))

) ((Ft,01MWF) ([OE’ClM;O;’ClM; (O:’CIM + 05,011\4) /2} Wo)T
= softmax

d
2

where W € R4oxd 17, € R4*r>d and Qo r is the corresponding Q-value. J*, on the other
hand, is sampled using the policy of the agent 7o :

It~ o (Jt | G*’,Wé) — <Q@ (G*, It Gt,wé)) —0 ((ofrClMW()) . (O;’ClMWO)) , 3)

where W5 € R*doxd_ is the sigmoid function, and Qo is the corresponding Q-value.

We then define separate reward functions for 7o, r and 7o, modeled by MLPs parameterized by
Or, .. and O, respectively:

RowF (Gt}GHl \ (’Ron) = MLP <G2/71E(Ft,o§)’ lE(Ft,O;)’GtV+1}9RO<—>.F> ’
)
Ro (GthHl | eRo) = MLP (Gi/v ]lE(Ot.,Ft+1)/\E(Ot.,Ft+1)’G§/+1‘9RO> ’

b J

where G* := (GY,, G%;) is the graph at time ¢ and 1 E(.,-) indicates the presence or absence of the
edge E (-, ). These reward functions are learned through inverse reinforcement learning (IRL), where
the goal is to find a reward function whose corresponding optimal policy would select causal edges
that would minimize prediction error.
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5 TRAINING

5.1 TRAINING OVERVIEW AND REWARD LEARNING

Our training procedure addresses a fundamental challenge: jointly learning the causal dynamics
model and the policy for selecting causal edges. The key insight is that good edge selections lead to
better prediction accuracy, which we use as an implicit reward signal through inverse reinforcement
learning (Ng & Russell, 2000).

The optimization has three objectives: 1) The CPM should accurately predict future states given the
selected causal edges; 2) the RL agents should select edges that minimize prediction error; 3) the
reward functions Rp and Ro., r should capture which edge selections lead to better predictions.
At convergence, the agents select sparse causal graphs that capture only the active interactions,
leading to both computational efficiency and interpretability. The optimum of the combined CPM
and RL objectives is reached when the agents consistently construct causal graphs that minimize the
prediction error; at this point the learned reward networks stabilize.

5.2 TRAINING PROCEDURE

The overall goal is to learn a predictive world model (CPM) whose structure is determined by
the policies (mp, Tow ). This requires optimizing both the model parameters © and the policy
parameters ¥ := [Wo, Wg, Ws]. We achieve this using a 3-stage procedure that also involves
expectation-maximization (EM) with alternating optimization (Dempster et al., 1977).

1. Prediction. At this stage, we freeze all the weights except © = [0y;0.4; 00; 0] and sample edges
{I,J T}T using frozen controllers. This allows the vision encoder, action encoder, and transition
functions (fo, fr) to learn useful representations before the controllers get the chance to optimize
their behavior on these representations. We train the model parameters © using contrastive loss (Kipf
et al., 2020):

o (019D = 00 (v (+}9v) 4 (+[02) 77, [, 00) v (52 o)

s (0,8~ v (+[ov) - v ([0 ) )

where Dyeq = {(s*,a’, s') 58 {(G'7, I'", JtT,GtT+1)}T}t, V and A are the vision and action
encoders, 5¢ is a negative example sampled from the experience buffer, and the hinge margin 3 is set
to 1 (following Kipf et al., 2020).

2. Expectation. In the second stage, we freeze all the weights but ©p = [0, »;0r,] and use
temporal difference (TD) loss (Watkins & Dayan, 1992) to learn reward functions:

Lo (OR | Dp, ¥) = S ST |[Rx (G*,G**l‘eRx) - (QX (G, I% | ¥) — ymax Qx (G**l,z;“ | w))
Xe{ooF,0} 7 5t

learned

target

(6)
where Drp = {(G7, 15, 5,7 G™)}_and we set y = 0.9.

3. Maximization. During the third stage, we freeze all but the policy parameters ¥ and use the same
TD loss from above with target and learned terms reversed. The agents learn to select edges based on
the rewards Rp ., and Rp.

The overall optimization landscape is complex; the optimum represents a state where the agents select
the sparse causal graph that yields the minimal prediction loss for the CPM, and simultaneously, the
reward MLPs stabilize under the IRL objective.

6 EXPERIMENTS

We hypothesize that our model outperforms models that assume dense causal graphs to capture
physical interactions in: 1) longer prediction horizons; 2) test-time generalization across unobservable



Under review as a conference paper at ICLR 2026

a Observed

>

Underlying Causal Graph

Where should this new object be
> placed in the causal graph?

Even if the model hasn't seen this
shape and/or color, it should still be

: able to insert it in the graph correctl:
Increasing weight orap v

Observed - 10-step

—— T T )
Increasing weight ———=

b Unobserved

Underlying Causal Graph

The model hasn't seen this shape but has
. seen red color before. Should still be able to
insert the object in the above causal graph

The model hasn't seen this color before. So
shouldn't be able to insert the object in the
above causal graph without performing
some interventions

Unobserved - 10-step

100

GAT

GIN
CausalVAE
GCN

CDL
CausalProcess

80

GAT
GIN
CausalVAE

60

Hel

40

CausalProcess

20

ol — - | ——

3 4 5
Number of Objects

5
Number of Objects
Figure 5: Prediction results for a synthetic physics environment in a) observed and b) unobserved
settings (Ke et al., 2021). Top: Description of the task. Bottom: Prediction metric vs number of
objects after 10 steps (average of 10 seeds).

properties; 3) robustness with regards to the number of objects in the scene; 4) solving downstream
tasks. We use the physics environment designed by Ke et al. (2021) to empirically answer these
questions (Fig. 5 top). The environment consists of different objects colored according to their
weights. The only force in this environment is pushing (double-pushes are not allowed) and only
heavier objects can push lighter ones. The environment has two settings: an observed setting (Fig. 5a)
where weight corresponds to the intensity of a particular color and an unobserved setting (Fig. 5b)
where different colors did not systematically map to different weights.

6.1 COMPARISON BASELINES

We compare our model against 10 baselines, a graph attention network (GAT) (Veli¢kovic et al.,
2018), a graph isomorphism network (GIN) (Xu et al., 2019), a causal variatiational auto-encoder
(CausalVAE) (Yang et al., 2021), a graph convolutional network (GCN) (Kipf & Welling, 2017), a
causal dynamics learning network (CDL) (Wang et al., 2022), a graph neural network (GNN) (Scarselli
et al., 2009), a transformer network (Vaswani et al., 2017), a recurrent independent mechanisms
(RIM) network (Goyal et al., 2021b), a schema / object-file factorization network (SCOFF) (Goyal
et al., 2021a), and a modular network which has a separate MLP to model each object’s dynamics
(Ke et al., 2021).

6.2 PREDICTION METRICS

To investigate robustness towards the length of prediction horizons, we trained the model to make
1-step predictions in the Observed setting with 5 objects and then tested for 5 (Fig. 9) and 10 steps
(Fig. 5a bottom, Fig. 7). We used Hits at Rank 1 (HQ1) to measure model performance as an
all-or-nothing metric measuring how often the rank of the predicted representation was 1 when ranked
against all reference state representations. Here, our model broadly outperformed the baseline models,
with the gap increasing over longer time horizons.

Next, to estimate the test-time generalization across unobservable properties, we trained our model in
the Unobserved setting where generalization at test time is harder due to previously unseen weights.
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Figure 6: Downstream RL results over number of objects. Mean reward vs number of objects. All
results are the average of 10 seeds

Again, our model broadly outperformed the baselines displaying capacity to generalize also in this
domain (Fig. 5b bottom; see Fig. 7 and Fig. 9 for more results).

6.3 DOWNSTREAM RL TASKS

To make sure the above metrics overlap with the learned model’s usefulness for downstream tasks, we
also tested our CPM'’s capacity to serve as a world model for a model-based RL agent. The agent’s
task was to move an object to a certain location each taken step resulting in negative reward. In
both Observed and Unobserved settings, the agent with CPM as model of the environment broadly
outperformed the baselines for all objects in 10-step unrolling of the learned model (Fig. 6, Fig. 8).

7  DISCUSSION

In this paper, we introduced the Causal Process Framework (CPF) as a novel approach for modeling
the dynamics of physical object interactions. Our key contribution is the Causal Process Model
(CPM), which implements this framework by treating the edge distributions inherent to CPF as
a reinforcement learning policy. Instead of the soft, dense connections typical of many baselines
(Velickovi¢ et al., 2018; Goyal et al., 2021a; Xu et al., 2019; Yang et al., 2021; Kipf & Welling,
2017; Wang et al., 2022; Scarselli et al., 2009; Vaswani et al., 2017; Goyal et al., 2021b), our model
employs RL agents to dynamically construct sparse, time-varying causal graphs. Our experiments in a
simulated physics environment (Ke et al., 2021) show that this approach not only improves prediction
accuracy and downstream task performance compared to baselines, but also excels in generalization
and scalability.

The superior performance of our model, particularly over longer prediction horizons and with a
varying number of objects, lends strong support to our central hypothesis. We argue that by explicitly
modeling only active causal links, the CPM avoids the pitfalls of dense message-passing architectures
(Barbero et al., 2024a; Alon & Yahav, 2021; Barbero et al., 2024b; Giovanni et al., 2023; 2024,
Topping et al., 2022; Scarselli et al., 2009; Battaglia et al., 2018). Our discrete, “all-or-nothing”
connections, determined by a goal-oriented RL agent, preserve the salience of individual interactions.
This leads to more robust and precise world models, which proved crucial for the model-based RL
agent’s success in downstream tasks. Furthermore, the model’s ability to generalize to unobserved
object properties suggests that it learns an underlying model of physical dynamics rather than
memorizing superficial correlations.

Despite these promising results, the present work has several limitations that open clear avenues
for future research. A crucial next step is to deepen the analysis of the learned representations. To
do so, the semantic content of the force and object sub-vectors could be decoded to verify that our
inductive biases are indeed effective in fostering an interpretable internal structure. To provide further
validation our claims of causal discovery, we will be necessary to compare the inferred graphs against
the ground-truth interaction graphs of the simulation, providing a quantitative measure of the model’s
ability to recover the true causal processes.

10



Under review as a conference paper at ICLR 2026

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
1800PhOCVH2.

Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, Jodo G. M. Aradjo, Alex
Vitvitskyi, Razvan Pascanu, and Petar Velickovic. Transformers need glasses! information over-
squashing in language tasks. CoRR, abs/2406.04267, 2024a. doi: 10.48550/ARXIV.2406.04267.
URL https://doi.org/10.48550/arXiv.2406.04267.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael M. Bronstein, and Francesco Di Giovanni.
Locality-aware graph rewiring in gnns. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024b. URL
https://openreview.net/forum?id=4Uad4hKiAJX.

Elias Bareinboim, S Lee, and J Zhang. An introduction to causal reinforcement learning, 2021.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Flores
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Caglar Giilgehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish
Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan
Wierstra, Pushmeet Kohli, Matthew M. Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu.
Relational inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261, 2018.
URL http://arxiv.org/abs/1806.01261.

Tineke Blom, Stephan Bongers, and Joris M. Mooij. Beyond structural causal models: Causal con-
straints models. In Ryan P. Adams and Vibhav Gogate (eds.), Proceedings of The 35th Uncertainty
in Artificial Intelligence Conference, volume 115 of Proceedings of Machine Learning Research,
pp- 585-594. PMLR, 22-25 Jul 2020. URL https://proceedings.mlr.press/v115/
blom20a.html.

Philip A. Boeken and Joris M. Mooij. Dynamic structural causal models. 2024. URL https:
//api.semanticscholar.org/CorpusID:2702138409.

Lars Buesing, Theophane Weber, Yori Zwols, Nicolas Heess, Sébastien Racaniere, Arthur Guez,
and Jean-Baptiste Lespiau. Woulda, coulda, shoulda: Counterfactually-guided policy search.
In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
1d=BJGOvoC9YQ.

Martin V. Butz. Which structures are out there? learning predictive compositional concepts based on
social sensorimotor explorations, 2017. ISSN 978-3-95857-138-9.

Martin V. Butz, Maximilian Mittenbiihler, Sarah Schwobel, Asya Achimova, Christian Gumbsch,
Sebastian Otte, and Stefan Kiebel. Contextualizing predictive minds. Neuroscience & Biobe-
havioral Reviews, 168:105948, 2025. ISSN 0149-7634. doi: https://doi.org/10.1016/j.neubiorev.
2024.105948. URL https://www.sciencedirect.com/science/article/pii/
S0149763424004172.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39
(1):1-38, 1977. doi: 10.1111/1.2517-6161.1977.tb01600.x. URL http://www. jstor.org/
stable/2984875. JSTOR: 2984875.

Hanna M Dettki, Brenden M Lake, Charley M Wu, and Bob Rehder. Do large language models
reason causally like us? even better? arXiv preprint arXiv:2502.10215, 2025.

Phil Dowe. Physical Causation. New York, 2000.

Maxime Gasse, Damien Grasset, Guillaume Gaudron, and Pierre-Yves Oudeyer. Using confounded
data in latent model-based reinforcement learning. Trans. Mach. Learn. Res., 2023, 2023. URL
https://openreview.net/forum?id=nFWRuJXPkU.

11


https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://doi.org/10.48550/arXiv.2406.04267
https://openreview.net/forum?id=4Ua4hKiAJX
http://arxiv.org/abs/1806.01261
https://proceedings.mlr.press/v115/blom20a.html
https://proceedings.mlr.press/v115/blom20a.html
https://api.semanticscholar.org/CorpusID:270213849
https://api.semanticscholar.org/CorpusID:270213849
https://openreview.net/forum?id=BJG0voC9YQ
https://openreview.net/forum?id=BJG0voC9YQ
https://www.sciencedirect.com/science/article/pii/S0149763424004172
https://www.sciencedirect.com/science/article/pii/S0149763424004172
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
https://openreview.net/forum?id=nFWRuJXPkU

Under review as a conference paper at ICLR 2026

Tobias Gerstenberg, Noah D. Goodman, David A. Lagnado, and Joshua B. Tenenbaum. A counterfac-
tual simulation model of causal judgments for physical events. Psychological review, 2020. URL
https://api.semanticscholar.org/CorpusID:235361720.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M.
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Re-
search, pp. 7865-7885. PMLR, 2023. URL https://proceedings.mlr.press/v202/
di-giovanni23a.html.

Francesco Di Giovanni, T. Konstantin Rusch, Michael M. Bronstein, Andreea Deac, Marc Lackenby,
Siddhartha Mishra, and Petar Velickovic. How does over-squashing affect the power of gnns?
Trans. Mach. Learn. Res., 2024, 2024. URL https://openreview.net/forum?id=
KJROQVRWNs.

Anirudh Goyal, Alex Lamb, Phanideep Gampa, Philippe Beaudoin, Charles Blundell, Sergey Levine,
Yoshua Bengio, and Michael Curtis Mozer. Factorizing declarative and procedural knowledge in
structured, dynamical environments. In International Conference on Learning Representations,
2021a. URL https://openreview.net/forum?id=vvdmjgu7pKM.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and
Bernhard Scholkopf. Recurrent independent mechanisms. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021b. URL https://openreview.net/forum?id=mLcmdlEUxy—.

Christian Gumbsch, Martin V Butz, and Georg Martius. Sparsely changing latent states for prediction
and planning in partially observable domains. Advances in Neural Information Processing Systems,
34:17518-17531, 2021.

Nan Rosemary Ke, Aniket Didolkar, Sarthak Mittal, Anirudh Goyal, Guillaume Lajoie, Stefan Bauer,
Danilo Jimenez Rezende, Michael Mozer, Yoshua Bengio, and Chris Pal. Systematic evaluation of
causal discovery in visual model based reinforcement learning. In Joaquin Vanschoren and Sai-Kit
Yeung (eds.), Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, NeurlPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/8f121ce07d74717e0b1f21d122e04521-Abstract—round2.html.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Thomas N. Kipf, Elise van der Pol, and Max Welling. Contrastive learning of structured world models.
In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
Hlgax6VtDB.

Richard D. Lange and Konrad P. Kording. Causality in the human niche: lessons for machine
learning. CoRR, abs/2506.13803, 2025. doi: 10.48550/ARXIV.2506.13803. URL https:
//doi.org/10.48550/arXiv.2506.13803.

Anson Lei, Bernhard Scholkopf, and Ingmar Posner. Spartan: A sparse transformer learning local
causation. arXiv preprint arXiv:2411.06890, 2024.

Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Causal transformer for estimating
counterfactual outcomes. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning
Research, pp. 15293-15329. PMLR, 2022. URL https://proceedings.mlr.press/
v162/melnychuk22a.html.

12


https://api.semanticscholar.org/CorpusID:235361720
https://proceedings.mlr.press/v202/di-giovanni23a.html
https://proceedings.mlr.press/v202/di-giovanni23a.html
https://openreview.net/forum?id=KJRoQvRWNs
https://openreview.net/forum?id=KJRoQvRWNs
https://openreview.net/forum?id=VVdmjgu7pKM
https://openreview.net/forum?id=mLcmdlEUxy-
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/8f121ce07d74717e0b1f21d122e04521-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/8f121ce07d74717e0b1f21d122e04521-Abstract-round2.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=H1gax6VtDB
https://openreview.net/forum?id=H1gax6VtDB
https://doi.org/10.48550/arXiv.2506.13803
https://doi.org/10.48550/arXiv.2506.13803
https://proceedings.mlr.press/v162/melnychuk22a.html
https://proceedings.mlr.press/v162/melnychuk22a.html

Under review as a conference paper at ICLR 2026

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In Pat Langley
(ed.), Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000),
Stanford University, Stanford, CA, USA, June 29 - July 2, 2000, pp. 663—670. Morgan Kaufmann,
2000.

Eshaan Nichani, Alex Damian, and Jason D. Lee. How transformers learn causal structure with
gradient descent. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=jNM4imlHZv.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, USA, 2nd
edition, 2009. ISBN 052189560X.

Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual data augmentation using locally
factored dynamics. Advances in Neural Information Processing Systems, 33:3976-3990, 2020.

James Robins and Miguel Hernan. Estimation of the causal effects of time-varying exposure, pp.
553-599. 08 2008. ISBN 978-1-58488-658-7. doi: 10.1201/9781420011579.ch23.

Raanan Y. Rohekar, Yaniv Gurwicz, and Shami Nisimov. Causal interpretation of self-
attention in pre-trained transformers. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
642a321fba8al0f03765318e629cb93ea—Abstract-Conference.html.

Paul K. Rubenstein, Stephan Bongers, Joris M. Mooij, and Bernhard Scholkopf. From deterministic
odes to dynamic structural causal models. In Conference on Uncertainty in Artificial Intelligence,
2016. URL https://api.semanticscholar.org/CorpusID:2303037.

Donald B. Rubin. Bayesian Inference for Causal Effects: The Role of Randomization. The Annals of
Statistics, 6(1):34 — 58, 1978. doi: 10.1214/a0s/1176344064. URL https://doi.org/10.
1214/a0s/1176344064.

Bertrand Russell. Human Knowledge: Its Scope and Limits. Routledge, London and New York,
1948.

Wesley C. Salmon. Scientific Explanation and the Causal Structure of the World. Princeton University
Press, 1984.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Trans. Neural Networks, 20(1):61-80, 2009. doi: 10.1109/
TNN.2008.2005605. URL https://doi.org/10.1109/TNN.2008.2005605.

Bernhard Scholkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of the
IEEE, 109(5):612-634, 2021.

Maximilian Seitzer, Bernhard Scholkopf, and Georg Martius. Causal influence detection for improv-
ing efficiency in reinforcement learning. Advances in Neural Information Processing Systems, 34:
22905-22918, 2021.

Xiao Shou, Debarun Bhattacharjya, Tian Gao, Dharmashankar Subramanian, Oktie Hassanzadeh,
and Kristin P. Bennett. Pairwise causality guided transformers for event sequences. In Al-
ice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
91b047c5f5bd4lefb6bfaf4dadlbdl9e3-Abstract—-Conference.html.

Brian Skyrms. Causal necessity. Philosophy of Science, 48(2):329-335, 1981. doi: 10.1086/289003.

13


https://openreview.net/forum?id=jNM4imlHZv
https://openreview.net/forum?id=jNM4imlHZv
http://papers.nips.cc/paper_files/paper/2023/hash/642a321fba8a0f03765318e629cb93ea-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/642a321fba8a0f03765318e629cb93ea-Abstract-Conference.html
https://api.semanticscholar.org/CorpusID:2303037
https://doi.org/10.1214/aos/1176344064
https://doi.org/10.1214/aos/1176344064
https://doi.org/10.1109/TNN.2008.2005605
http://papers.nips.cc/paper_files/paper/2023/hash/91b047c5f5bd41ef56bfaf4ad0bd19e3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91b047c5f5bd41ef56bfaf4ad0bd19e3-Abstract-Conference.html

Under review as a conference paper at ICLR 2026

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In The Tenth In-
ternational Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=7UmjRGzp—A.

Nuria Armengol Urpi, Marco Bagatella, Marin Vlastelica, and Georg Martius. Causal action influence
aware counterfactual data augmentation. arXiv preprint arXiv:2405.18917, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998-6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053clcd4a845aa—-Abstract.html.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Zizhao Wang, Xuesu Xiao, Zifan Xu, Yuke Zhu, and Peter Stone. Causal dynamics learning for
task-independent state abstraction. CoRR, abs/2206.13452,2022. URL https://doi.org/
10.48550/arXiv.2206.13452.

Christopher J. C. H. Watkins and Peter Dayan. Technical note gq-learning. Mach. Learn., 8:279-292,
1992. doi: 10.1007/BF00992698. URL https://doi.org/10.1007/BF00992698.

Marcel Weber. On the incompatibility of dynamical biological mechanisms and causal graphs.
Philosophy of Science, 83(5):959-971, 2016. ISSN 00318248, 1539767X. URL https://www.
jstor.org/stable/26551794.

Moritz Willig, Tim Nelson Tobiasch, Florian Peter Busch, Jonas Seng, Devendra Singh Dhami,
and Kristian Kersting. Systems with switching causal relations: A meta-causal perspective. In
The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.net/forum?id=
J9VogDTalWw.

Kevin Xia, Kai-Zhan Lee, Yoshua Bengio, and Elias Bareinboim. The causal-neural con-
nection: Expressiveness, learnability, and inference. @ In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
10823-10836, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
5989add1703e4b0480£75€2390739f34-Abstract.html.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Kn.

Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. Causalvae:
Disentangled representation learning via neural structural causal models. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9588-9597, 2021. doi:
10.1109/CVPR46437.2021.00947.

Matej Zecevic, Devendra Singh Dhami, Petar Velickovic, and Kristian Kersting. Relating graph
neural networks to structural causal models. CoRR, abs/2109.04173, 2021. URL https://
arxiv.org/abs/2109.04173.

14


https://openreview.net/forum?id=7UmjRGzp-A
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.48550/arXiv.2206.13452
https://doi.org/10.48550/arXiv.2206.13452
https://doi.org/10.1007/BF00992698
https://www.jstor.org/stable/26551794
https://www.jstor.org/stable/26551794
https://openreview.net/forum?id=J9VogDTa1W
https://openreview.net/forum?id=J9VogDTa1W
https://proceedings.neurips.cc/paper/2021/hash/5989add1703e4b0480f75e2390739f34-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5989add1703e4b0480f75e2390739f34-Abstract.html
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://arxiv.org/abs/2109.04173
https://arxiv.org/abs/2109.04173

Under review as a conference paper at ICLR 2026

A OBIJECT-CENTRIC CAUSAL DYNAMICS

Consider two objects O; and O (depicted in magenta) with a force F' (depicted in violet) acting on
them:

0,50,

This recovers the familiar structure of a directed acyclic graphs (DAGs) from Pearl’s causal formalism
Pearl (2009). However, in physical interactions, such as in a collision, it is not always clear which
object is the “cause” since both are affected simultaneously. A more intuitive representation would
be a bidirectional edge:

016%6&

However, DAGs prohibit cycles and bidirectional edges. To resolve this, we introduce temporal
dynamics which represent causal effects as unfolding over time rather than as a simultaneous influence.
Thus, a collision between object O, and object O yields forces F5 and F3 as emerging from the past
state and influencing future object states:

o /
Ol — ot
Fs :
0§ =5 — Oy
Yet, this representation still has drawbacks. Specifically, we break the identity of the force F' into F»
and F3 which, in principle, can act as separate causal links (F; and F}; can be thought of as inertia).
This becomes apparent when interventions are applied. Let us imagine that somebody picks up object
O just before it collides with O. This can be represented by a do-calculus-like intervention applied
to either O! or O'"':
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When the intervention is applied to O, the graph structure is preserved, thus implying a no-collision
scenario (one of the balls was lifted). Yet, the same graph can also imply a collision scenario. This
kind of setup necessitates having causal links between objects that can potentially collide irrespective
of the actualization of said collision. While this approach can work in principle, it results in extremely
dense graphs with complete subgraphs per time step, especially in cluttered scenes. Ideally, we would
like to have causal links in our graph if there is an actualized interaction between the involved objects.

On the other hand, intervening on ()i+l results in a graph a with counter-intuitive interpretation: O
gets lifted at time step ¢ + 1, while O, behaves as if a collision has happened. This is due to the split
of F'into F> and F3 since an intervention removes F3 while leaving F5 untouched. To tackle the
aforementioned issues, let us re-imagine force edges as nodes and re-introduce F5 and F3 as a single
node F' and extend the time horizon by a step.

oi1 ot

t—1 t t+1
o) o} o}

Now, imagine, just like before, the ball O, gets picked up at time step ¢. In do-calculus terms, this
amounts to intervention to O} which results in mutilation of the edge O~ —O!
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While the problem of splitting of the force identity seems to be resolved here, the graph structure
modeling the collision remains preserved despite the intervention. As mentioned before, this can
be addressed by complete subgraphs per time step, which is not desirable for our purposes. This
problem arises due to the inclusion of time dynamics into our graphs. Unlike in Pearlian Causality,
in physics, interventions at a time step have implications for the causal connections corresponding
to downstream time steps. To account for that, we have to re-imagine interventions under a new
framework that takes physical processes and time into account (see Algorithm 1).

B MODEL DETAILS

B.1 INDUCTIVE BIAS

We introduce two inductive biases: (1) limiting each force node to interact with exactly two objects to
reflect pairwise interactions, and (2) enforcing a bidirectional mirroring constraint to ensure temporal
coherence in causal attribution. Formally the latter is defined as:

Vi, j, k.t : {E(O}, F;*"), E(O}, F;*")} c Gy =
E(F/*, 0" e Gy YE(F™, O € G,
Vi,j,t :E(F{*,0i") € Gy = E(O},F/™) € G,

B.2 VECTOR CONSTRAINTS

Causal relevance is coded by C. Perturbing the sub-vectors of the parent with C' = 0 does not affect
the child nodes, i.e., only the causally-relevant C' = 1 sub-vectors affect the child nodes:

. t+1,1PM _ St+1,1PM t t+1 . _ t ) pt+1 .
Vi, i F = Fj = fo (Oi’{Fj }j\(j,i)el“go) =Jo <Oi’{Fj }j(j,i)elt’00> ’

Control relevance is coded by P. Two force vectors whose sub-vectors with P = 1 are identical have
identical control functions that are conditioned on them, i.e., control functions are conditioned only
on the control-relevant sub-vectors :

. pt+1,C1IM _ 7t4+1,01M t _ ot
vt F; =] = PpoF = Poer:

Lastly, mutability is coded by M. If M = 0, the corresponding sub-vector does not change over time,

i.e., an immutable sub-vector does not change over time: V¢, j : th COPO _ F;H’CPO.

B.3 CAUSAL PROCESS BLOCK

Given the data F, O¢, ..., O!, and the chosen indices J?, we calculate F**! in the following way:

F'*= fp (F',05,...,05,J" | 0F)
with O**1 also calculated similarly.

1PM
gate .= (Of ! nggte> W(ﬂtpUU
ieJt
residual := gate + 7!
FtHLCPL . Xeate20 @ FFN (Norm (residual)) + residual,

t+1 ._ [pt+1,CP1, t,CPO
FHl = [F , FHOPO]

1
| 7]
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where 05 := {Wk., WE ..., W, WS bl b5} FFN is a feed-forward neural network FFN(z) :=
max (0, zW[" +b{") Wi + bf, Wk, is the analogue of the attention mechanisms value token

projection, and Woﬁput is again the analogous out-projection that maps the token from the attention
dimension back to residual dimension (Vaswani et al., 2017)
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Figure 7: Prediction metric vs number of objects for 10-steps.
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Figure 8: Downstream RL results over number of objec. Mean reward vs number of objects. All

results are the average of 10 seeds
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Figure 9: Prediction metric vs number of objects after 1 and 5 steps (average of 10 seeds).
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D

ALGORITHMS

Algorithm 1 Interventions under Causal Process Framework

Require: 7', O fr, fo,plo 7. P, act (Oi),Golon,t e {1,....,T},i € {1,...,1},j €

(1,....J}

Ensure: Output result éol .0T

1:

A A

~

10:
11:

12:
13:

14:

15:
16:
17:

Initialize O ! := {Oi_l} UOi-1

Initialize 77 := F! ) i
Initialize J* := {(i, )} s.t. E (05-1, F;) €CE,
Initialize G 1,011 = Gp1,pi-1

fort =1¢,....,7 do > Loop fromt = tup to T’
éol:]:t = (]T"toct%lzot_l, {E (5;‘?*17 ﬁf) }(i et Ué‘élzot_l) > Update the graph

t t
It ~ PG 7 > Sample new edges
fori=1,...,1do > Loop from? = 1upto ]
0! = fo (65‘1, {ﬁ;} ) > Update the nodes

JlG,9)elt

end for
Gor.ot = (5750@51:}.“ {E (f]t, 6f) }(j ber Ué%l:ﬁ) > Update the graph
It~ p > Sample new edges
fory=1,...,Jdo > Loop from j = 1upto J
FJ?+1 = fr (F;, {Of} _(i’j)eﬂ) > Update the nodes

end for

end for _

return Gpi1.07
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